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Comprehensive Modeling of RF Mixers in I/Q
Modulators: Experimental Validation and Parameter

Extraction
Nima Hajiabdolrahim, Graduate Student Member, IEEE, Koen Buisman, Senior Member, IEEE, Siqi Wang,

and Thomas Eriksson, Member, IEEE

Abstract—This article presents an algorithm to effectively
model the non-ideal behavior of RF mixers employed within
the structure of I/Q modulators. The proposed model is based
on the memory polynomial model, which includes nonlinearities
and memory effects. To evaluate the accuracy and validity
of the algorithm, a comprehensive analysis is conducted using
measured data.Furthermore, this study focuses on the analysis
and extraction of key parameters associated with I/Q modulators
based on the proposed mixer model. Experimental comparisons
are performed to assess the agreement between the measured
values of each parameter and their corresponding estimated
values derived from the model-based analysis. By addressing
the non-ideal behavior of RF mixers and providing a method-
ology for parameter extraction, this research contributes to the
advancement of modeling techniques for I/Q modulators. The
experimental validation and comparative analysis validate the
effectiveness of the proposed model in accurately capturing the
intricacies of the mixers’ behavior within the I/Q modulator
structure.

Index Terms—Mixer, I/Q Modulator, Memory Polynomial,
Conversion Gain, Carrier Feed-through, IIP3, Quadrature Phase
Error, I/Q Amplitude Balance.

I. INTRODUCTION

M IXERS play a crucial role in wireless communication
links as integral components of I/Q modulators and

demodulators. In an ideal scenario, mixers within an I/Q
modulator should operate independently, solely multiplying
the intermediate frequency (IF) input signals with the local
oscillator (LO) signal to produce the desired radio frequency
(RF) output signal. However, in practical applications, non-
ideal behaviors can manifest as a result of various factors
such as nonlinearities, memory effects, and leakages between
different ports of the I/Q modulator [1]–[4]. To accurately pre-
dict and account for these non-ideal behaviors, it is necessary
to develop a mixer model that incorporates two input ports
and one output port. This model serves as a valuable tool for
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understanding and characterizing the performance deviations
exhibited by mixers within I/Q modulators. By considering
the interplay between the input signals and the LO signal,
the mixer model enables the analysis and quantification of
key factors that contribute to the overall system performance.
Nonlinearities in mixers can arise in the form of phenomena
such as device saturation and cross-modulation effects, which
introduce undesired signal distortion and impair the fidelity
of the output RF signal. Memory effects, on the other hand,
encompass phenomena where the mixer’s output depends not
only on the instantaneous input signals but also on past signals
and their interactions. These effects can manifest as unwanted
memory in the system, leading to signal distortions and
compromising the accuracy of data transmission. Moreover,
leakages between different ports of the I/Q modulator can oc-
cur, resulting in unwanted coupling between the I/Q channels.
These leakages can lead to impairments such as quadrature
amplitude and phase imbalances, and carrier feed-through.
Understanding and modeling these non-ideal behaviors are
essential for optimizing the performance of I/Q modulators and
ensuring the robustness of wireless communication systems.
By developing a comprehensive mixer model that captures
these non-ideal behaviors, researchers and engineers can gain
deeper insights into the intricacies of I/Q modulators.

Various methodologies have been proposed for modeling
mixers, with two primary approaches being the circuit-level
modeling approach [1], [5], and the behavioral modeling ap-
proaches [6]–[8]. In [9], two distinct approaches are presented
for modeling the nonlinearities in a mixer, involving the
consideration of nonlinearities either before or after an ideal
mixing block. However, the non-ideal effects from the LO
signal, including LO leakage and additional non-linearities, are
not addressed. One of the most comprehensive models that
have been proposed for mixers is presented in [7], where a
multi-box model has been proposed for modeling the memory
effects and the nonlinearities of a mixer separately, however,
the non-ideal effects generated by the LO signal has not been
explored. From another point of view, many studies have been
made on modeling the non-ideal behavior of I/Q modulators,
where the main source of non-linearity is the mixers that
are implemented in in-phase and quadrature branches. For
example, in [10] and [11] non-ideal behavior of an I/Q modula-
tor is modeled as a frequency-selective I/Q mismatch model,
which can model the memory effects of an I/Q modulator
and the linear leakages that can exist between in-phase and
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quadrature branches, however, it does not consider the higher
order nonlinear effects from the input signal and the possible
leakages from LO port to the output port. In [12] a Volterra
model has been proposed for modeling the non-linearities and
the memory effects of I/Q modulators, but again the non-ideal
effects imposed by the LO signal are neglected.

When modeling mixers, it is crucial to consider whether
they should be analyzed independently or as integral compo-
nents of I/Q modulators or demodulators. For instance, in the
models developed in [6]–[8], mixers are studied independently,
however in the I/Q modulator structure, there would be some
additional leakages between the mixers implemented in in-
phase and quadrature branches [10], [12]. On the other hand,
if I/Q modulators are modeled autonomously, without applying
the implemented mixers’ models, some possible crosstalk
nonlinear terms and some possible leaks from LO signal are
neglected, which plays a key role in mixer modeling [13],
[14]. Hence, it is evident that the development of a new
model specifically tailored for RF mixers, considering their
unique utilization within an I/Q modulator structure, would
yield significant benefits. Therefore, in this paper, we propose
such a composite model.

In the realm of wireless transceiver design, careful con-
sideration must be given to the crucial characteristics of I/Q
modulators [15]–[17]. Consequently, leveraging a developed
mixer model enables the extraction of essential parameters
specific to I/Q modulators. This approach provides a practical
means to accurately determine the crucial parameters that
govern the behavior and performance of I/Q modulators.

This study presents a comprehensive model specifically
designed for mixers operating within an I/Q modulator con-
figuration. The proposed model demonstrates its capability
to accurately predict the non-ideal behavior exhibited by
mixers. To assess the effectiveness of the model, a series of
experimental measurements were conducted using a laboratory
setup. Consequently, the main contributions of this work can
be summarized as follows:

• Development of a model based on memory polynomials
that effectively captures the non-ideal behavior of mixers
employed in I/Q modulators. The model offers acceptable
precision in predicting the performance deviations of the
mixers.

• Validation of the proposed model through meticulous
measurement experiments. The experimental results pro-
vide empirical evidence of the model’s accuracy and
reliability.

• Analysis and extraction of key parameters associated
with I/Q modulators based on the proposed model. This
analysis offers valuable insights into the underlying char-
acteristics and performance metrics of I/Q modulators.

These contributions collectively enhance our understanding
and modeling capabilities of mixers operating within an
I/Q modulator configuration. The proposed model provides
a valuable tool for system-level design, optimization, and
performance evaluation of wireless transceivers.

The paper is structured as follows; Section II presents the
proposed model in two steps. First, the proposed structure is
outlined, followed by the introduction of the mathematical

model based on memory polynomials. Section III describes
the development of a measurement setup used to validate the
proposed model, and the corresponding measurement results
are reported. In Section IV, key parameters of I/Q modulators
are discussed, along with the procedure for extracting these
parameters. Finally, Section V concludes the paper by provid-
ing a brief discussion of the results obtained from this research
work.

II. PROPOSED ALGORITHM

The primary objective of this research is to develop a
comprehensive model for mixers that can effectively predict
their non-ideal behaviors. Since mixers are principally im-
plemented as a part of I/Q modulators and demodulators in
communication links, the proposed model is introduced in an
I/Q modulator structure. In the following subsections, first, the
proposed structure for I/Q modulators is introduced, then the
proposed mathematical model for mixers is discussed.

A. Proposed Structure

I/Q modulators consist of two mixers, one in the in-phase
branch and one in the quadrature branch. In the ideal case,
there would be no correlation between the two mixers inside an
I/Q modulator and each mixer only multiplies its IF input with
the LO signal to generate the target RF signal at its output port.
Nevertheless, in many applications, there are leakages between
in-phase and quadrature branches inside an I/Q modulator and
in each branch the mixer output depends on both IF input
signals in in-phase and quadrature branches. Thus, in order to
track the non-ideal behavior of mixers implemented in an I/Q
modulator, each mixer should be considered as a component
with two IF inputs plus an LO input.

Mixer’s input and output signals are basically in different
frequency bands. For example, in the I/Q modulator case,
each mixer has a data input signal in IF band, an LO input
signal in RF band, and an RF output signal which is equal
to the multiplication of the two input signals and is in the
same frequency band as the LO signal. According to the fact
that input and output signals are in different frequency bands,
modeling the non-ideal behaviour of a mixer based on its pure
input and output signals is a challenging task and from signal
processing point of view it is more preferable to have all the
input and output signals in the same frequency band [18]. On
the other hand, based on the study carried out in [19], it can
be concluded that the mixer’s behaviour can be observed by
considering the baseband equivalent signals of the RF input
and output signals, or in other words it can be stated that
we can construct our mixer model based on the baseband
equivalent signals rather than RF signals without any loss of
generality.

Correspondingly, the structure that we use for modeling
mixers as a part of I/Q modulators is illustrated in Fig.1, which
is based on baseband equivalent signals.

In Figure 1, x[n], s[n] and y[n] are all baseband signals,
where xr[n] and xi[n] are real and imaginary parts of x[n],
and sr[n] and si[n] are real and imaginary parts of s[n],
respectively. FI and FQ are the main components of the
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Fig. 1. Proposed structure for modeling mixers as elements of I/Q modulators.

proposed structure which are supposed to model the non-ideal
behavior of the mixers implemented in the in-phase branch
and quadrature branch, respectively.

B. Proposed Model

There are different ways to model a non-linear dynamic
function, where, based on [20], [21] it can be stated that any
time-invariant, non-linear dynamic function has an expression
in the form of Volterra series. Therefore, one reasonable
option for modeling FI and FQ blocks might be applying
a Volterra series structure to be able to track any non-ideal
behavior of the mixers. However, as discussed in [22], a
memory polynomial structure can achieve similar accuracy
level in estimating the non-ideal behavior of a mixer with
lower complexity. Thus, in this work, a memory polynomial
structure with real-valued inputs is employed at FI and FQ

blocks, and their output signals can be expressed as follows
[23]

yI [n] = FI (xr[n], xi[n], sr[n], si[n]) (1)

=

MI∑
m=0

P r
x,I∑

p1=0

P i
x,I∑

p2=0

P r
s,I∑

p3=0

P i
s,I∑

p4=0

a (m, p1, p2, p3, p4)×(
xp1
r [n−m]xp2

i [n−m]sp3
r [n−m]sp4

i [n−m]
)
,

yQ[n] = FQ (xr[n], xi[n], sr[n], si[n]) (2)

=

MQ∑
m=0

P r
x,Q∑

p1=0

P i
x,Q∑

p2=0

P r
s,Q∑

p3=0

P i
s,Q∑

p4=0

b (m, p1, p2, p3, p4)×(
xp1
r [n−m]xp2

i [n−m]sp3
r [n−m]sp4

i [n−m]
)
.

In (1) and (2), xr[n], xi[n], sr[n] and si[n] are real and
imaginary parts of the data input signal and the LO input
signal to the mixers, respectively. In (1) and (2), different
non-linearity orders have been assumed for different inputs
in different branches; P r

x,I , P i
x,I , P r

s,I and P i
s,I are the non-

linearity orders of xr[n], xi[n], sr[n] and si[n] in the in-phase
branch, respectively, while P r

x,Q, P i
x,Q, P r

s,Q and P i
s,Q are the

non-linearity orders of the input signals in the same order in

quadrature branch. Moreover, MI and MQ are the memory
depths in in-phase and quadrature branched in equations (1)
and (2). Finally, a and b are the coefficients of applied memory
polynomials for modeling FI and FQ blocks, which are the 2
mixers in different branches of the considered I/Q modulator
structure in Fig. 1.

For each set of (m, p1, p2, p3, p4), the term xp1
r [n −

m]xp2

i [n−m]sp3
r [n−m]sp4

i [n−m] constructs a basis function
for the memory polynomial expressions in (1) and (2). If the
k-th basis function is represented by Φk[n], then equations (1)
and (2) can be re-expressed as follows

yI [n] =

KI∑
k=1

αkΦk[n], (3a)

yQ[n] =

KQ∑
k=1

βkΦk[n], (3b)

where KI and KQ are the number of different combinations of
valid values of memories and non-linearity orders that satisfy
the constraints in (1) and (2), for in-phase and quadrature
branches, respectively. Additionally, αk and βk are the co-
efficients of k-th basis function in in-phase and quadrature
branches. In general, the number of basis functions is different
in in-phase and quadrature branches, this means that there
might be some basis functions in (3a) that does not appear
in (3b), and vice versa. If the non-linearity orders of different
inputs and memory depths are identical in both the in-phase
and quadrature branches, then all the basis functions utilized
in (3a) would also be present in (3b).

For simplicity in notation, the proposed model for mixers
is referred to as 4-dimensional memory polynomial (4D-MP)
model in the remaining of this article.

III. MEASUREMENT

In this section, the validity of the proposed 4D-MP model
for mixers is examined through experiments over the measure-
ment setup illustrated in Figure 2. The main parts of this setup
are the transmitter part, the modulator part, the LO part, and
the receiver part. In the transmitter part, the digital input signal,
x[n], is separated into in-phase and quadrature inputs first, then
the continuous time input signals are constructed using Active
Technologies AT-1212 DAC which creates 1.25 Giga samples
per second. In the LO part, first, the digitally generated LO
signal is converted to an analog LO signal by using a second
DAC used at the transmitter, then in order to be able to
measure the LO signal, a directional coupler is used to couple a
small fraction the LO signal that is measured by implementing
a low-pass filter (LPF) with a cut-off frequency of 720 MHz
and an analog to digital converter (ADC). The ADC that is
used in the developed setup in Figure 2 is an NI 5771 from
National Instruments with a sampling rate of 1.5 Giga samples
per second. The other output of the coupler is imported to the
I/Q modulator part. In the modulator part, an ADL5385 from
Analog Devices is used as an I/Q modulator, where the analog
signals generated at the transmitter part are imported as the
in-phase and quadrature inputs and the analog LO signal is
also fed as the LO input. In addition, there is a frequency
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Fig. 2. Measurement setup developed for validating the proposed 4D-MP model for mixers.

divider inside the modulator, which divides the frequency of
the LO signal by a factor of 2, so the imported LO signal to
the modulator should be centered at twice the intended carrier
frequency. The main reason for implementing this frequency
divider is to facilitate the 90 degrees LO generation inside
the I/Q modulator. In the receiver part, the RF signal is first
passed through an LPF and then fed into an ADC to get a
digital measurement of the RF output of the I/Q modulator,
which can be used for developing and validating the proposed
4D-MP model. The RF output of the I/Q modulator is passed
through an attenuator before being measured at the receiver
part. The main reason for using an attenuator is to guarantee
that the measured distortion at the output signal is dominated
by the distortion generated by the I/Q modulator under test,
otherwise, there is a risk of introducing additional distortion
from the ADC at the receiver part.

In order to uniquely specify the utilized I/Q modulator based
on the developed 4D-MP model, it is required to estimate the
model’s parameters based on a set of training data. Therefore, a
sequence of 4.2×106 root raised cosine pulse-shaped 64-QAM
samples with a baseband bandwidth of 47 MHz is imported
as x[n] to the measurement setup given in Figure 2. In order
to compensate for the difference between the sampling rates
of the DACs and the ADCs, x[n] needs to be resampled with
ratio 5

6 before being fed to the measurement setup. The LO

signal, s[n], is a perfect cosine function centered at frequency
fLO = 500 MHz, however, due to the frequency division inside
the modulator block the effective carrier frequency would be
fc = 250 MHz. In order to be able to observe the possible
nonlinear effects of LO signal at the output signal it would
be necessary to have variations in the magnitude and phase
of the lowpass equivalent signal of the LO signal, so in order
to create these variations in LO signal the training sequence
is split into subsequences of length 1.5× 105 samples, where
for different subsequences the magnitude and phase of the
LO signal is different. The spectrum of an example input
signal and the corresponding output signal of the measurement
setup are depicted in Figure 3, where the input signal and
the LO signal are generated in the way described above.
Additionally, the power and the initial phase of the applied
LO signal are fixed. As mentioned in Figure 3, there is visible
spectral regrowth in the spectrum of the output signal of the
measurement setup which indicates the existence of some
nonlinearities at the I/Q modulator. Furthermore, Figure 3 dis-
plays noticeable harmonic distortions across various frequency
bands, highlighting the significance of implementing a suitable
band-pass filter to prevent interference in adjacent frequency
ranges.

By following the same procedure as described in [22], it is
possible to fit the proposed 4D-MP model to the measured I/Q
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Fig. 3. Spectrum of an example input signal to the measurement setup and
the corresponding output signal.

modulator based on a set of training data. The parameters of
the 4D-MP model that are required for modeling the specific
I/Q modulator measured in Figure 2 are given in Table I. It
should be noted that a separate sequence of data is used for
evaluating the model and finding the set of parameters that
minimizes the normalized mean squared error (NMSE).

As mentioned in Table I, the maximum nonlinearity order
that can be observed at the output of the measured I/Q mod-
ulator is the 5th order nonlinearity, however, the contribution
of LO signal’s real and imaginary parts, sr[n] and si[n], to
these nonlinearities is only in the form of 1st order terms,
which means that the effects of LO signal at the output can
be formulated in term of linear leakages or it can appear
as terms with the form of xp1

r [n − l]xp2

i [n − l]sr[n − l] or
xp1
r [n−l]xp2

i [n−l]si[n−l]. Moreover, there is a non-negligible
amount of memory in the output of the measured I/Q modu-
lator, which makes the output signal’s samples dependent on
up to 10 previous samples.

By extracting the coefficients of the 4D-MP model for the
mixers in the in-phase and quadrature branches, it becomes

TABLE I
PARAMETERS SET FOR ADAPTING THE 4D-MP MODEL TO THE MEASURED

DATA SET.

Parameter Value
Length of training sequence 4200000 samples

Length of evaluating sequence 1350000 samples

Memory depth 10 samples (6.7 ns)

Non-linearity order of s[n] 1

Non-linearity order of xr[n] (=
max{P r

x,I , P
r
x,Q})

5

Non-linearity order of xi[n] (=
max{P i

x,I , P
i
x,Q})

5

Number of coefficients 2× 561

NMSE -30.98 dB
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Fig. 4. Spectrum of the measured output signal (solid blue line), the simulated
output signal to the same input sequence (solid red line) and the error signal
which is the difference between the measured output and the predicted output
signals (dotted line).

feasible to develop an I/Q modulator simulator. This allows
for expressing the outputs of the in-phase and quadrature
branches, given an arbitrary set of input signal and LO signal,
using the basis functions and the extracted coefficients, as
illustrated in equations (3). The spectrum of the measured
output signal and the simulated output signal to the same
sequence of 64-QAM pulse-shaped samples with 47 MHz
bandwidth are depicted in Figure 4. The spectrums plotted in
Figure. 4 belong to the lowpass equivalents of the measured
and the simulated output signals, so they are centered around
zero.

Figure 4 clearly demonstrates that the spectrum of the
prediction error signal (indicated by the black dotted line)
closely aligns with the noise floor level of the measurement
setup. This confirms that, within the measured frequency
band, the I/Q modulator simulator developed using the 4D-
MP model can accurately predict the actual output signal of
the measured I/Q modulator with high precision. However, for
different frequency bands the parameters of the 4D-MP model
might be different, so for a certain frequency band a specific
simulator needs to be developed to predict the behavior of the
I/Q modulator.

IV. I/Q MODULATOR’S KEY PARAMETERS

There are several essential parameters that characterize the
behavior of I/Q modulators and are typically documented
in datasheets. These parameters play a significant role in
hardware system design. While they can be measured sep-
arately under specific conditions, it is possible to extract
these parameters directly from the proposed 4D-MP model
for mixers. Some of the key parameters of I/Q modulators
include

• Conversion gain,
• Carrier feed-through,
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• Third-order intermodulation intercept point (IIP3),
• Quadrature phase error, and
• I/Q amplitude balance.

Each of these parameters will be discussed individually in the
following subsections.

A. Conversion Gain

Conversion gain which is defined as the up-converting gain
or down-converting gain of a mixer, can be expressed as the
ratio between the magnitude of the desired output signal and
the magnitude of the input signal. If it can be assumed that
the conversion gain is constant over all the desired frequency
band, one can express the conversion gain by

√
Pout
Pin

, where
Pout is the power of desired output signal and Pin is the power
of input data signal. The desired output signal of a mixer is a
part of the mixer output signal that is located in the desired
frequency band, which is usually extracted by applying an
appropriate filter.

In the general case, in order to calculate the conversion
gain according to the proposed 4D-MP model, it is required
to first extract the part of the output signal that is located
in desired frequency band. As discussed in [24], based on
extended Bussgang decomposition for non-linear systems with
memory, the I and Q outputs of an I/Q modulator can be
expressed as

yI [n] = hII [n] ∗ xI [n] + hIQ[n] ∗ xQ[n] + dI [n], (4a)
yQ[n] = hQI [n] ∗ xI [n] + hQQ[n] ∗ xQ[n] + dQ[n], (4b)

where xI [n] = Re{x[n]} and xQ[n] = Im{x[n]} are in-
phase and quadrature inputs to the I/Q modulator, and dI [n]
and dQ[n] are the remaining uncorrelated distortion terms in
I and Q branches respectively, which means that both dI [n]
and dQ[n] are uncorrelated with xI [n] and xQ[n]. In addition,
hII [n], hIQ[n], hQI [n] and hQQ[n] are linear causal filters in
(4). In equations of (4) there is no Gaussian assumption on the
input signals, xI [n] and xQ[n], however as discussed in [25],
[26], it is always possible to decompose the output of a non-
linear system as a linear combination of the input signal and an
uncorrelated distortion term. Moreover, as discussed in [27], it
is more common to introduce distinct conversion gains for in-
phase and quadrature branches of an I/Q modulator. Therefore,
in order to find the conversion gain for the in-phase branch,
the quadrature input should be terminated. By doing that, the
equations in (4) need to be modified as

yI [n] = hII [n] ∗ xI [n] + dI [n], (5a)
yQ[n] = hQI [n] ∗ xI [n] + dQ[n]. (5b)

The baseband equivalent of the I/Q modulator output signal
would be equal to

y[n] = yI [n] + jyQ[n] = hI [n] ∗ xI [n] + d[n], (6)

where hI [n] = hII [n]+jhQI [n] and d[n] = dI [n]+jdQ[n]. So
the conversion gain frequency response for the in-phase branch
would be equal to the frequency response of hI [n]. Thus,
finding the conversion gain frequency response for in-phase

branch would be equivalent to finding the Fourier transform
of hI [n] = hII [n] + jhQI [n].

At the first step of finding hI [n], it can be stated that yI [n]
and yQ[n] will depend on xI [n− l] only for l = 0, 1, · · · ,M ,
since in the developed 4D-MP model the maximum memory
of the system is assumed as M . Therefore, equations in (5)
can be written as

yI [n] =

M∑
l=0

hII [l]xI [n− l] + dI [n], (7a)

yQ[n] =

M∑
l=0

hQI [l]xI [n− l] + dQ[n]. (7b)

In the next step, by formulating the cross correlation functions
between yI [n] or yQ[n], and xI [n − k] for k = 0, 1, · · · ,M ,
the following equations can be concluded

RyIxI
[k] =

M∑
l=0

hII [l]RxIxI
[k − l] , k = 0, 1, · · · ,M,

(8a)

RyQxI
[k] =

M∑
l=0

hQI [l]RxIxI
[k − l] , k = 0, 1, · · · ,M.

(8b)

Now, by using the definition of basis functions given in (3),
RyIxI

, RyQxI
and RxIxI

can be calculated as

RyIxI
[k] = E{yI [n]xI [n− k]}

=

KI∑
m=1

αmE{Φm[n]xI [n− k]}, (9a)

RyQxI
[k] = E{yQ[n]xI [n− k]}

=

KQ∑
m=1

βmE{Φm[n]xI [n− k]}, (9b)

RxIxI
[k] = E{xI [n]xI [n− k]}. (9c)

Furthermore, since dI [n] and dQ[n] are uncorrelated with
xI [n], their cross correlation functions with different delayed
versions of xI [n] are assumed equal to 0 in (8) [24]. In the
next step, the set of linear equations in (8) can be rewritten in
the following vector forms

RyIxI
= ΛxI

hII , (10a)
RyQxI

= ΛxI
hQI , (10b)

where RyIxI
, RyQxI

, hII and hQI are (M + 1) × 1 vectors
defined as follows

RyIxI
= [RyIxI

[0] RyIxI
[1] · · · RyIxI

[M ]]T , (11a)

RyQxI
= [RyQxI

[0] RyQxI
[1] · · · RyQxI

[M ]]T, (11b)

hII = [hII [0] hII [1] · · · hII [M ]]T , (11c)

hQI = [hQI [0] hQI [1] · · · hQI [M ]]T , (11d)

and ΛxI
is an (M + 1) × (M + 1) matrix, whose elements

are ΛxI
(i, j) = RxIxI

[i − j] for i = 1, 2, · · · ,M + 1 and
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Fig. 5. Predicted and measured conversion gain frequency response.

j = 1, 2, · · · ,M + 1. Next, by solving equations in (10) for
hII and hQI , it can be stated that

hII = Λ−1
xI

RyIxI
, (12a)

hQI = Λ−1
xI

RyQxI
. (12b)

Finally, once hII and hQI are specified, the conversion gain
frequency response can be smoothly found by calculating the
FFT of hI = hII+jhQI . For instance, the predicted conversion
gain frequency response of the measured I/Q modulator is
depicted in Figure 5 versus the measured value of conversion
gain at different frequencies. The data signal that is used for
developing the 4D-MP model has a baseband bandwidth of
47 MHz, so the conversion gain can be predicted only in
the same frequency band. In Figure 5 the dashed blue line
represents the conversion gain that is measured by applying a
multi-tone signal to an I/Q modulator modeled by the proposed
4D-MP model, the dotted red line represents the conversion
gain that is measured by transmitting a multi-tone signal over
the measurement setup expressed in Figure 2, and the solid
black line represents the predicted conversion gain based on
Bussgang expression analysis. As illustrated in Figure 5, the
measured conversion gain based on 4D-MP model follows the
conversion gain measured in practice, however, there is less
than 2 percent difference between these 2 measured conversion
gains. The measured conversion gain shows a slight deviation
from the predicted conversion gain obtained through Bussgang
analysis, primarily attributed to the utilization of different
input signals. As described in [27], a real sinusoidal waveform
was employed as the input signal for measuring the conversion
gain of the I/Q modulator at various frequencies. Conversely,
for deriving the predicted conversion gain, a wideband QAM
modulated signal was employed to estimate the hII and hQI

filters across the measured frequency band. Consequently, the
input signals exhibit distinct structures, leading to variations in
conversion gains. When a wideband input signal is employed,

the presence of more nonlinearities in the system becomes
evident, as the second and higher-order terms in the I/Q
modulator model generate in-band distortion. However, when
a single tone input signal is employed, no in-band distortion
arises from the nonlinear terms. Therefore, it is expected that
the predicted conversion gain will deviate from the measured
conversion gain. Furthermore, as depicted in 5, it has been
experimentally validated that the slight discrepancy in the
conversion gain plots is primarily caused by the introduction of
additional in-band distortion when utilizing a wideband input
signal compared with the measured conversion gain for single
tone input signal. In conclusion, it can be inferred that the
predicted conversion gain, derived from the wideband signal
transmission, aligns more closely with the practical conversion
gain observed in actual communication links, as it accurately
accounts for the presence of in-band distortion.

B. Carrier Feed-through
Carrier feed-through is defined as a parameter for measuring

the leakages from the LO port to the mixer’s output port.
In order to measure the carrier feed-through it is beneficial
to use the Bussgang decomposition technique for memory
polynomials to separate the leaked LO signal term from other
parts of the output signal. Therefore, based on the same
approach as in (4) the I and Q outputs can be expressed in the
following form

yI [n] = gII [n] ∗ sI [n] + gIQ[n] ∗ sQ[n] + d̃I [n], (13a)

yQ[n] = gQI [n] ∗ sI [n] + gQQ[n] ∗ sQ[n] + d̃Q[n], (13b)

where sI [n] = Re{s[n]} and sQ[n] = Im{s[n]} are the
real and imaginary parts of the LO signal and d̃I and d̃Q
are the distortion terms that are uncorrelated with sI [n] and
sQ[n]. Furthermore, gII [n], gIQ[n], gQI [n] and gQQ[n] are
linear causal filters. Based on the expressions given in (13)
it would be straightforward to calculate the power of the
leakages from LO port to the output port, but first gII , gIQ,
gQI and gQQ filters should be specified. Considering the fact
that the proposed 4D-MP model has the memory of M , it can
be concluded that gII [n], gIQ[n], gQI [n] and gQQ[n] can take
nonzero values only for n = 0, 1, · · · ,M . Then, utilizing the
same approach as in (8), it can be stated that

RyIsI [k] =

M∑
l=0

gII [l]RsIsI [k − l] , k = 0, 1, · · · ,M,

(14a)

RyIsQ [k] =

M∑
l=0

gIQ[l]RsQsQ [k − l] , k = 0, 1, · · · ,M,

(14b)

RyQsI [k] =

M∑
l=0

gQI [l]RsIsI [k − l] , k = 0, 1, · · · ,M,

(14c)

RyQsQ [k] =

M∑
l=0

gQQ[l]RsQsQ [k − l] , k = 0, 1, · · · ,M.

(14d)
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In equations of (14) it has been assumed that real and
imaginary parts of LO signal are uncorrelated, which means
that E{sI [n]sQ[n − k]} = 0 for k = 0, 1, · · · ,M . Now, by
applying the same approach as used in specifying filters hII [n]
and hQI [n] from equations in (12), it can be declared that

gII =Λ−1
sI RyIsI , (15a)

gIQ =Λ−1
sQ RyIsQ , (15b)

gQI =Λ−1
sI RyQsI , (15c)

gQQ =Λ−1
sQ RyQsQ , (15d)

where gII , gIQ, gQI , gQQ, RyIsI , RyIsQ , RyQsI and RyQsQ

are (M + 1)× 1 vectors defined as follows

gII =[gII [0] gII [1] · · · gII [M ]]T , (16a)

gIQ =[gIQ[0] gIQ[1] · · · gIQ[M ]]T , (16b)

gQI =[gQI [0] gQI [1] · · · gQI [M ]]T , (16c)

gQQ =[gQQ[0] gQQ[1] · · · gQQ[M ]]T , (16d)

RyIsI =[RyIsI [0] RyIsI [1] · · · RyIsI [M ]]T , (16e)

RyIsQ =[RyIsQ [0] RyIsQ [1] · · · RyIsQ [M ]]T , (16f)

RyQsI =[RyQsI [0] RyQsI [1] · · · RyQsI [M ]]T , (16g)

RyQsQ =[RyQsQ [0] RyQsQ [1] · · · RyQsQ [M ]]T , (16h)

and ΛsI and ΛsQ are (M + 1) × (M + 1) matrices whose
elements are ΛsI (i, j) = RsIsI [i − j] and ΛsQ(i, j) =
RsQsQ [i − j], respectively, for i = 1, 2, · · · , (M + 1) and
j = 1, 2, · · · , (M+1). After calculating gII , gIQ, gQI and gQQ
filters in (15), it would be possible to represent the equations
in (13) in the frequency domain as

YI(f) = GII(f)SI(f) +GIQ(f)SQ(f) + D̃I(f), (17a)

YQ(f) = GQI(f)SI(f) +GQQ(f)SQ(f) + D̃Q(f), (17b)

where GII(f), GIQ(f), GQI(f) and GQQ(f) are the Fourier
transforms of gII [n], gIQ[n], gQI [n] and gQQ[n] filters, respec-
tively. Since the LO signal is ideally a single tone signal at
the carrier frequency, its baseband equivalent is also a single
tone at f = 0, which means that in equations in (17) the terms
SI(f) and SQ(f) are zero at f ̸= 0. Therefore, equations in
(17) can be simplified as

YI(f) = GII(0)SI(f) +GIQ(0)SQ(f) + D̃I(f), (18a)

YQ(f) = GQI(0)SI(f) +GQQ(0)SQ(f) + D̃Q(f), (18b)

where GII(0), GIQ(0), GQI(0) and GQQ(0) can be defined as
follows

GII(0) = GII(f)
∣∣∣
f=0

=

M∑
k=0

gII [k], (19a)

GIQ(0) = GIQ(f)
∣∣∣
f=0

=

M∑
k=0

gIQ[k], (19b)

GQI(0) = GQI(f)
∣∣∣
f=0

=

M∑
k=0

gQI [k], (19c)

GQQ(0) = GQQ(f)
∣∣∣
f=0

=

M∑
k=0

gQQ[k]. (19d)

TABLE II
MEASURED AND ESTIMATED VALUES OF CARRIER FEED-THROUGH.

Measured carrier feed-through Estimated carrier feed-through

-53.92 dBm -54.28 dBm

Finally, by expressing the equations in (17) in time domain,
it can be stated that,

yI [n] = GII(0)sI [n] +GIQ(0)sQ[n] + d̃I [n], (20a)

yQ[n] = GQI(0)sI [n] +GQQ(0)sQ[n] + d̃Q[n]. (20b)

Consequently, the amount of power of the LO term that is
leaked into the I output is G2

II(0)PsI + G2
IQ(0)PsQ , and the

power of the LO term that is leaked into the Q output is
G2

QI(0)PsI +G2
QQ(0)PsQ , where PsI and PsQ are the power

of sI [n] and sQ[n], respectively.
The values of measured and estimated carrier feed-through

are reported in Table II. The measured carrier feed-through in
Table II is obtained by passing an all zero input data signal
through the measured I/Q modulator in Figure 2, whereas
the estimated carrier feed-through is calculated based on the
expressions given in (20).

C. Third Order Intermodulation Intercept Point (IIP3)

IIP3 is a parameter for describing the non-linear behavior
of any non-linear device. In practice, IIP3 can be defined
as the ratio between the power of the desired linear term
to the power of 3rd order intermodulation term (IM3) [5], [28].

Based on [27], for measuring IIP3 of an I/Q modulator the
Q input port needs to be terminated first and then a two-tone
waveform, which is called xt[n], is loaded to the I input port.
By doing this, all the terms that depend on Q input are removed
in the memory polynomial expression of the outputs in (1) and
(2) as follows

yI [n] =

MI∑
m=0

P r
x,I∑

p1=0

P r
s,I∑

p3=0

P i
s,I∑

p4=0

a (m, p1, 0, p3, p4)×(
xp1

t [n−m]sp3

I [n−m]sp4

Q [n−m]
)
, (21a)

yQ[n] =

MQ∑
m=0

P r
x,Q∑

p1=0

P r
s,Q∑

p3=0

P i
s,Q∑

p4=0

b (m, p1, 0, p3, p4)×(
xp1

t [n−m]sp3

I [n−m]sp4

Q [n−m]
)
. (21b)

The basis functions in (21) that depend on the real or imag-
inary parts of LO signal (the basis functions with p3 > 0
or p4 > 0) have a very small portion of the total power in
yI [n] and yQ[n]. For instance, based on the 4D-Mp model
trained based on the measurement setup in Figure 2, less than
0.01 percent of the power in yI [n] and yQ[n] comes from
the terms that depend on the LO signal when the Q input
is terminated. Therefore, for estimating the IIP3 it is more
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reasonable to neglect the terms that depend on LO signal in
(21), and simplify the expressions for yI [n] and yQ[n] as

yI [n] ≈
MI∑
m=0

P r
x,I∑

p1=0

a (m, p1, 0, 0, 0)x
p1

t [n−m], (22a)

yQ[n] ≈
MQ∑
m=0

P r
x,Q∑

p1=0

b (m, p1, 0, 0, 0)x
p1

t [n−m]. (22b)

Moreover, xt[n] in (21) and (22) is a two-tone signal defined
as follows

xt[n] = A cos (2πf1n) +A cos (2πf2n) , (23)

where f1 and f2 should be chosen close enough so that the
3rd order inter-modulation (IM3) terms, located at frequencies
(2f1 − f2) and (2f2 − f1), are inside the desired output
frequency band. For measuring the IIP3, it would be enough
to extract the linear term and the IM3 term from the baseband
equivalent of the output signal, by applying suitable filters
[5]. However, due to the memory effect, different tones and
different IM3 terms would have different powers. It can be
shown that the exponential term resulted from the first tone,
located at frequency f1, and the exponential term resulted from
the first IM3 term, located at frequency (2f1 − f2), are as
follows

TLow =ej2πf1n

(
A

2

M∑
m=0

(am1000 + jbm1000)e
−j2πf1m

+
9A3

8

M∑
m=0

(am3000 + jbm3000)e
−j2πf1m

)
,

(24a)

IM3Low =ej2π(2f1−f2)n×(
3A3

8

M∑
m=0

(am3000 + jbm3000)e
−j2π(2f1−f2)m

)
.

(24b)

In equations of (24), the terms TLow and IM3Low refer to
the lower tone, located at frequency f1, and the lower IM3
component, located at frequency (2f1 − f2), in the spectrum
of y[n] = yI [n] + jyQ[n] (since without loss of generality it
has been assumed that f1 < f2). Next, in order to measure
IIP3, it is more common to first assume a small value for A
to make sure that the I/Q modulator is working in the linear
region, then by changing the value of A it will be possible to
find 2 lines for the power variations of TLow and IM3Low in dB
versus the value of A [5]. For small values of A the term that
depends on A3 in (24a) is negligible, compared with the term
that depends on A, so it will be enough to consider only the
linear part of (24a) for calculating IIP3. Finally, according to
the fact that these 2 lines will have different slopes, the value
of IIP3 will be equal to the value of A at the intercept point of
the 2 lines [5]. So, in the case of the proposed 4D-MP model
for mixers, it is enough to find A in equations in (24) in a

way that the linear part of TLow and the IM3Low term have the
same power. Therefore, the IIP3 is equal to

IIP3Low =

∣∣∣∣∣∣∣∣
4

M∑
m=0

γm1e
−j2πf1m

3
M∑

m=0
γm3

[
e−j2π(2f1−f2)m

]
∣∣∣∣∣∣∣∣
1
2

, (25)

where γm1 = am1000+ jbm1000 and γm3 = am3000+ jbm3000

are defined for simplicity in notation. With following the same
procedure, it will be possible to compute higher IIP3 based on
the linear term from the higher tone, located at frequency f2,
and the higher IM3 term, located at frequency (2f2 − f1), as
follows

THigh =ej2πf2n

(
A

2

M∑
m=0

γm1e
−j2πf2m

+
9A3

8

M∑
m=0

γm3e
−j2πf2m

)
, (26a)

IM3High =ej2π(2f2−f1)n

(
3A3

8

M∑
m=0

γm3e
−j2π(2f2−f1)m

)
,

(26b)

IIP3High =

∣∣∣∣∣∣∣∣
4

M∑
m=0

γm1e
−j2πf2m

3
M∑

m=0
γm3

[
e−j2π(2f2−f1)m

]
∣∣∣∣∣∣∣∣
1
2

. (26c)

It is obvious that in general the two IIP3 values defined in
(25) and (26c) are not equal, which is a result of the presence
of memory effects in the I/Q modulator. In other words, for a
memoryless I/Q modulator, M should be replaced by 0 in (25)
and (26c), which will result in IIP3Low = IIP3High =

√
4γ01

3γ03
.

The values of measured IIP3 over the measurement setup,
illustrated in Figure 2, and the estimated IIP3 based on the
4D-MP model are reported in Table III. In order to measure
the lower IIP3 and the upper IIP3 in Table III, a real two-tone
input signal, with tones located at frequencies f1 = 3.5 MHz
and f2 = 4.5 MHz, is applied to the I input port of the I/Q
modulator. Then by measuring the baseband equivalent of the
RF output signal and extracting its components at frequencies
f1 and f2, and also by extracting the lower intermodulation
term at frequency 2f1 − f2 = 2.5 MHz and the upper
intermodulation term at frequency 2f2 − f1 = 5.5 MHz, it
would be possible to compute the lower and the upper IIP3
terms. As it can be seen in Table III, the estimated value of
IIP3 follows its measured value for both upper and lower
IIP3 values. Moreover, as was expected, there is a small

TABLE III
MEASURED AND ESTIMATED VALUES OF THE LOWER IIP3 AND THE

HIGHER IIP3.

Measured lower
IIP3

Estimated
lower IIP3

Measured higher
IIP3

Estimated
higher IIP3

12.42 dBm 12.39 dBm 12.36 dBm 12.33 dBm
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difference between the values of upper IIP3 and lower IIP3,
where the lower IIP3 is a bit larger than the upper IIP3.

D. Quadrature Phase Error and I/Q Amplitude Balance

These parameters are defined to measure the amount of
leaked signals from the I branch to the Q branch and vice
versa. These parameters’ effects are mainly recognized as I/Q
imbalance (IQI). In a memory-less I/Q imbalanced system, the
output signal, y[n], can be expressed based on the input signal,
x[n], as [29]

y[n] = αx[n] + βx∗[n] + w[n]. (27)

In (27), α and β are IQI coefficients and w[n] is the additive
noise term.

In an ideal scenario where there are no leakages between
the in-phase and quadrature branches, the in-phase output
and quadrature output exhibit balanced amplitudes and no
phase mismatch. However, the presence of leakages between
these branches introduces an amplitude mismatch and phase
mismatch between the in-phase and quadrature outputs. In
literature, the term “I/Q amplitude balance” is commonly used
to describe the amplitude mismatch, while “quadrature phase
error” refers to the phase mismatch. If the quadrature phase
error is equal to θ and the I/Q amplitude balance is a, then
based on the discussion in [30] it can be stated that

yRF
I [n] = γxI [n] cos (2πfLOn+ ϕLO) , (28a)

yRF
Q [n] = a γxQ[n] sin (2πfLOn+ ϕLO + θ) . (28b)

In equations of (28), yRF
I [n] and yRF

Q [n] are the in-phase and
the quadrature RF outputs, respectively, γ is the total gain of
the in-phase branch, and ϕLO is the initial phase of the LO
signal. It can be proved that the following relationship holds
between (α, β) and (a, θ) [31],

α =
1 + aejθ

2
, β =

1− aejθ

2
. (29)

However, based on the proposed 4D-MP model and Bussgang
analysis for memory polynomials, the input-output relationship
of an I/Q modulator can be expressed as in (4), which will
result in

y[n] = h[n] ∗ x[n] + h̃[n] ∗ x∗[n] + d[n], (30)

where y[n] = yI [n] + jyQ[n], x[n] = xI [n] + jxQ[n] and

h[n] =
hII [n] + hQQ[n]

2
+ j

(
hQI [n]− hIQ[n]

2

)
, (31a)

h̃[n] =
hII [n]− hQQ[n]

2
+ j

(
hQI [n] + hIQ[n]

2

)
. (31b)

The terms hII [n] and hQI [n] can be computed based on
equations given in (12), likewise hIQ[n] and hQQ[n] can be
computed as follows

hIQ = Λ−1
xQ

RyIxQ
, (32a)

hQQ = Λ−1
xQ

RyQxQ
, (32b)

where

hIQ = [hIQ[0] hIQ[1] · · · hIQ[M ]]T , (33a)

hQQ = [hQQ[0] hQQ[1] · · · hQQ[M ]]T , (33b)

RyIxQ
= [RyIxQ

[0] RyIxQ
[1] · · · RyIxQ

[M ]]T , (33c)

RyQxQ
= [RyQxQ

[0] RyQxQ
[1] · · · RyQxQ

[M ]]T , (33d)

and ΛxQ
is an (M + 1) × (M + 1) matrix, whose elements

are ΛxQ
(i, j) = RxQxQ

[i − j] for i = 1, 2, · · · ,M + 1 and
j = 1, 2, · · · ,M+1. Therefore, since there are memory effects
in the modeled I/Q modulator, it will not be possible to express
its input-output relationship in the form of (27), which means
that it is not possible to define a single pair of parameters
as quadrature phase error and I/Q amplitude balance based
on the developed 4D-MP model. However, according to the
input-output relationship given in (30), if x[n] be a single tone
complex signal centered at frequency f0, then equation (30)
can be simplified as

y[n] = H(f0)x[n] + H̃(−f0)x
∗[n] + d[n], (34)

where H(f0) and H̃(f0) are Fourier transforms of h[n] and
h̃[n], respectively, computed at frequency f = f0,

H(f0) =

M∑
n=0

h[n]e−j2πf0n, (35a)

H̃(−f0) =

M∑
n=0

h̃[n]ej2πf0n. (35b)

Now since the input-output relationship given in (34) is in
the form of (27), it would be possible to compute quadrature
phase error and I/Q amplitude balance as follows[

Quadrature Phase Error at f0
]
=∡

(
H(f0)− H̃(−f0)

)
≜ Θ(f0), (36a)

[
I/Q Amplitude Balance at f0

]
=
∣∣∣H(f0)− H̃(−f0)

∣∣∣
≜ A(f0). (36b)

Consequently, quadrature phase error and I/Q amplitude
balance parameters will depend on the frequency at which
the input signal is located, so they should be considered as
frequency-dependent parameters, instead of fixed parameters
as introduced for memory-less systems in (29). Accordingly,
quadrature phase error and I/Q amplitude balance can be
defined as frequency-dependant functions represented by Θ(f)
and A(f), respectively. The defined Θ(f) and A(f) in (36),
should be computed in the whole frequency band of the
I/Q modulator data input signal. The predicted I/Q amplitude
balance and quadrature phase error for the I/Q modulator
under test are given in Figures 6 and 7, respectively, where
similar to Figure 5 the solid black lines represent the estimated
I/Q amplitude balance expressed in (36b) and the estimated
quadrature phase error in (36a), the dotted red lines represent
the measured I/Q amplitude balance and quadrature phase
error over the measurement setup illustrated in Figure 2, and
the dashed blue lines represent the measured I/Q amplitude
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Fig. 6. Predicted and measured I/Q amplitude balance over the measured
frequency band.
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Fig. 7. Predicted and measured quadrature phase error in radians over the
measured frequency band.

balance and quadrature phase error over an I/Q modulator
simulator which is developed based on the 4D-MP model
expressed in (1) and (2). It should be noted that in order
to measure the I/Q amplitude balance and the quadrature
phase error (over the measurement setup or the simulator) at
a specific frequency, f0, a complex valued single tone input
signal, x(n) = ej2πf0n, is applied to the input ports of the I/Q
modulator. However, for predicting the I/Q amplitude balance
and the quadrature phase error in the desired frequency band
based on the Bussgang analysis, a wideband QAM modulated
signal has been employed as the input signal to the I/Q
modulator, to estimate h[n] and h̃[n] filters.

As illustrated in Figure 6, the measured I/Q amplitude
balance over the developed I/Q modulator simulator follows
the I/Q amplitude balance measured over the laboratory setup
given in Figure 2, however, there are some small differences
between the two measured values of I/Q amplitude balance
(less than 3 percent). Furthermore, a small gap exists between
the Bussgang-based predicted I/Q amplitude balance, as ex-
pressed in (36b), and the measured I/Q amplitude balance,
where the gap is less than 2 percent of the measured I/Q
amplitude balance. This discrepancy primarily stems from the
distinct structures of the input signals employed. In the case of
calculating the predicted I/Q amplitude balance, a wideband
signal is utilized, resulting in in-band distortion within the I/Q
modulator due to the presence of higher-order nonlinearities
within the mixers. Conversely, the measured I/Q amplitude
balance is obtained using a single-tone input signal, which
lacks any in-band distortions.

It is obvious from Figure 7 that the measured quadra-
ture phase error over the developed I/Q modulator simulator
follows the quadrature phase error measured through the
laboratory measurement setup. In addition, as depicted in
Figure 7, there is a gap between the predicted quadrature phase
error based on Bussgang analysis, expressed in (36a), and the
measured quadrature phase error, where the gap is less than
0.1 radian. Similar to the case of I/Q amplitude balance, the
primary factor contributing to this gap is the distinct structure
of the input signals utilized for deriving the measured and the
estimated quadrature phase error.

Hence, the experimental validation demonstrates that the
marginal discrepancy observed in the I/Q amplitude balance
plots in Figure 6 and the disparity in the quadrature phase
error plots in Figure 7 are predominantly attributed to the
introduction of additional in-band distortion when utilizing
a wideband input signal, in contrast to the employment of
a single tone input signal. Consequently, one can conclude
that the predicted I/Q amplitude balance and quadrature phase
error, as expressed in (36), offer improved estimations of
the performance of a practical communication link, as they
account for the influence of existing in-band distortion.

V. CONCLUSION

This study introduces a novel 4D-MP-based algorithm to
effectively model the non-ideal behavior of mixers within
the context of I/Q modulators. The proposed 4D-MP model
incorporates a memory polynomial algorithm, enabling the
inclusion of both linear and non-linear leakages between the
in-phase and quadrature branches of an I/Q modulator. The ex-
perimental measurement results obtained from the developed
measurement setup confirm the high precision of the proposed
4D-MP model in predicting the non-ideal behavior of both
mixers and I/Q modulators. The model successfully captures
the intricate characteristics and performance deviations with
a remarkable level of accuracy. The 4D-MP model can also
extract the key parameters associated with I/Q modulators
such as conversion gain, carrier feed-through, IIP3, quadrature
phase error, and I/Q amplitude balance. Derivation of these
parameters offers valuable insights into the behavior and per-
formance of I/Q modulators. Additionally, the 4D-MP model
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serves as a highly reliable simulator for mixers, making it
suitable for design and measurement purposes. In future work,
the proposed 4D-MP model can be further employed to design
a digital pre-distortion unit to compensate for the non-ideal
behaviors of mixers and I/Q modulators at the transmitter side
of a communication link. This would contribute to enhancing
overall system performance and mitigating signal distortions.
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