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Abstract— This article investigates the joint detection and lo-
calization (JDL) problem of unknown number multiple moving
targets in a distributed radar system. Upon formulating this
problem as a composite multiple hypothesis testing problem, we
derive a generalized information criterion (GIC)-based detector
to simultaneously extract targets and estimate their unknown
parameters, including their number, amplitudes, locations, and
velocities. Although this solution theoretically achieves impres-
sive performance by using raw echoes data to jointly detect
and estimate multiple targets at the fusion center (FC), it also
requires an unbearable computational load in practice. It is
because multiple targets are expected to be simultaneously
extracted by realizing a joint maximization task and making
an enormous search. To reduce the computational burden, we
propose a low-complexity solution to decompose the high-dimensional problem into several low-dimensional optimization
problems. For local radars to undertake a portion of the calculations, the log-likelihood ratio (LLR) data are generated at
each local station and then completely transmitted to the FC. Different from extracting multiple targets simultaneously
using a GIC-based detector, we devise an extended successive-interference-cancellation (SIC) algorithm to detect targets
one by one at the FC, and meanwhile, the parameters of targets can be simultaneously estimated at each iteration. Finally,
the effectiveness of the proposed algorithm is demonstrated by the provided simulations.

Index Terms— Distributed radar system, joint detection and localization, generalized likelihood ratio test, iterative
cancellation, generalized information criterion.

I. INTRODUCTION

With the rapid advancements in radar technology, there
has been significant interest in distributed radar systems [1]–
[3], spanning both military and civilian domains [4], [5].
Compared with a single monostatic radar, a distributed radar
system offers several advantages: it exhibits greater immunity
to jamming owing to the distributed placement of multiple
radar sensor nodes [6]; it provides additional stability, reli-
ability, and degrees of freedom [7]; it offers a wide field of
view by observing targets from different angles, thereby intro-
ducing spatial diversity and effectively mitigating the effects
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of target radar cross-section (RCS) fading [8]. Therefore, a
distributed radar system can achieve enhanced performance
of target imaging [9], detection [10], [11], localization [12],
[13], classification [14], and tracking [15], [16]. Among them,
target detection and localization are the fundamental functions
of radar sensors [17]–[19]. In general, there are two primary
approaches for achieving target detection and/or localization
in the broad array of applications involving distributed radar
systems [20].

The first category of approaches involves a two-step process
for detection and localization [21]–[24]. Initially, each radar
node performs preliminary detection and estimation. Subse-
quently, the local detection decisions, represented as ‘0/1’
to denote not detected or detected, as well as the estimated
position measurements such as angle of arrival (AOA) [22] and
time of arrival (TOA) [23], [24], are transmitted to a fusion
center (FC). Finally, the FC performs global decision-making
utilizing detection rules such as ‘AND’, ‘OR’, or ‘M out of N’
[25] for detection and employs pairing and triangulation of the
extracted parameters for localization [26], [27]. Besides, the
works in [28] and [29] investigate joint detection and tracking
algorithms for distributed radars. These algorithms transmit
the estimated range, Doppler, and AOA measurements to the
FC and utilize the resulting tracking results to adjust local



2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

radar thresholds, thereby enhancing detection and tracking
performance. In summary, this category entails a relatively low
computational burden and transmission bandwidth between
local nodes and the FC. However, it may lead to a significant
drop in detection and localization performance due to the
simplified extraction of the information of the raw echoes data,
particularly the occurrence of missed detections, false alarms,
and/or estimation errors at certain local stations.

The second category, primarily considered in this paper,
involves the direct and joint processing of raw local echoes or
log-likelihood ratio (LLR) data at the FC for target detection
[30], [31] and/or localization [32]–[34]. This approach offers
superior performance as it avoids making preliminary deci-
sions locally at each radar, which corresponds to the former
category. It also leads to enhanced robustness in detection and
localization performance, especially in scenarios characterized
by low signal-to-noise ratio (SNR). The existing literature on
this topic can be categorized into two cases, as follows.

1) Case 1: Separate detection or localization: The studies
in [35]–[39] implement target detection based on the
generalized likelihood ratio test (GLRT) considering
different problems in distributed multiple-input multiple-
output (MIMO) radar systems. Meanwhile, [32]–[34]
realize localization without detection by utilizing maxi-
mum likelihood estimations (MLEs) of the unknown pa-
rameters. Low-bit quantization algorithms are proposed
in [40] and [41] for addressing hybrid quantized signal
detection and direct localization, respectively. Besides,
geometric matching and spatial mapping algorithms are
introduced in [42] and [43] to address the detection
problems of multiple stationary and moving targets,
respectively.

2) Case 2: Joint detection and localization (JDL): Differ-
ing from the former case realizing individual function,
implementing simultaneous detection and localization in
distributed radar systems when probing multiple targets
has gained significant traction recently [44]–[49]. This
case aims to directly estimate unknown target locations
in the state space while utilizing detection thresholds to
ensure the reliability of the estimates. Once a detection is
declared, the target location in the Cartesian coordinate
system will be output. As a foundational work in the
JDL for distributed radars, [44] introduces a novel
framework for jointly detecting the presence of a single
stationary target and estimating its unknown parameters.
In [45], a JDL algorithm is proposed to localize a single
stationary target once its presence is declared. In [46]
and [47], different iterative cancellation algorithms are
proposed to achieve the JDL of multiple stationary
targets, utilizing ideal and imperfect auto- and cross-
correlation waveform functions, respectively. An energy-
guided framework is also proposed in [48] to address
the JDL of stationary targets. Besides, a compressed
sensing-based framework achieves the enumeration and
localization of stationary targets with reduced commu-
nication load in [49].

However, the JDL works discussed in Case 2 predominantly

focus on stationary targets in distributed radar systems. In
reality, targets are often in motion, resulting in Doppler shifts
across multiple pulses. Efficiently detecting multiple moving
targets and directly estimating their parameters utilizing raw
echoes or LLR data at the FC remains a complex and unsolved
problem. It should be noted that, there are also joint detection
and estimation works (e.g., [50]–[53]) that investigate different
problems in single radar systems, such as phase-array radar
[50]–[52] or colocated MIMO radar [53]. As noted in [53],
the paper [50] is seminal in this field. These works focus
on detecting targets and outputting the corresponding ranges,
angles, and Doppler shifts as by-products [53]. Due to the
characteristics of single radar systems, further calculations
are required to determine corresponding target locations and
velocities in the Cartesian coordinate system.

In this paper, a low-complexity solution is introduced to
realize the JDL of multiple moving targets in distributed
radar systems. Consistent with the design principles of our
previous works on multiple stationary targets [46], [47], an
iterative algorithm is developed to detect multiple moving
targets sequentially. At each iteration, upon the LLR data of
the previously detected targets being eliminated, this algorithm
directly and simultaneously outputs the corresponding loca-
tions and velocities in the Cartesian coordinate system once the
next target is declared. The main contributions are summarized
as follows:

• We first formulate a novel JDL problem for multiple
moving targets as a composite multiple-hypothesis testing
problem. We then derive a detector based on generalized
information criterion (GIC) to simultaneously detect the
targets and estimate their number, amplitudes, locations,
and velocities at the FC.

• Considering the high computational burden of the derived
detector due to simultaneously extracting multiple targets
by realizing a joint maximization task and making the
enormous search. We then propose a low-complexity
solution to decompose the high-dimensional joint max-
imization task into several low-dimensional optimization
steps. At the FC, an extended successive-interference-
cancellation (SIC) algorithm is devised to extract one
target per time and eliminate its LLR data. Meanwhile,
the parameters of targets can be simultaneously obtained
at each iteration.

• We conduct a numerical study to validate the efficacy
of the proposed algorithm. The results confirm that our
procedure can correctly detect targets one by one and
simultaneously estimate the location and velocity of a
target at each iteration, upon eliminating the LLR data of
the previously detected targets.

This paper is organized as follows. Section II presents
the system and signal model. Section III formulates the
JDL problem of multiple moving targets. The proposed low-
complexity solution is described in Section IV. Section V
provides the simulation results to demonstrate the effectiveness
of the proposed algorithm. Finally, conclusions are provided
in Section VI.

Notations: Lowercase and uppercase boldface letters de-
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Fig. 1. Illustration of a distributed radar system with N local stations
and P moving targets. There exists a communication system without
distortion, enabling the FC to flawlessly gather the complete raw data
from each local station.

note Column vectors and matrices, respectively, whereas the
conjugate, transpose, and conjugate-transpose operations are
denoted by ( · )∗, ( · )⊤, and ( · )H , respectively. Furthermore,
∥a∥ is the Euclidean norm of the vector a. Additionally,
cat{a1, . . . ,aY } forms an MY -dimensional vector by con-
catenating the M -dimensional vectors {an}Yn=1, and the M×
M identity matrix is represented by IM . Finally, ȷ, ⊗, and +
denote the imaginary unit, Kronecker product, and the pseu-
doinverse operator, respectively, while ⌈·⌉ and E{·} represent
the function rounding upwards and the statistical expectation.

II. SYSTEM AND SIGNAL MODEL

Consider a distributed radar system with N local stations
located at {xn}Nn=1 ∈ R2 and P point-like [50] moving targets
initially located at θp ∈ R2 with constant velocities vp ∈ R2

(p = 1, ..., P , and P is an a-priori unknown variable), in a
two dimensional Cartesian coordinate system. It is assumed
that all stations can observe all the targets, share a common
time reference and operate within the same spectrum, and there
exists a communication system without distortion, enabling the
FC to flawlessly gather the complete raw data from each local
station, as illustrated in Fig. 1.

A. Transmit Signal Model

Firstly, the transmitted baseband signal of each local station
for a pulse repetition interval (PRI) is denoted by

sn (t) =
√
E/Nxn (t)W (t) (1)

where n = 1, . . . , N , 0 < t ≤ Tpri, Tpri represents the duration
of a PRI, and E is the total transmitted energy; W (t) is a
rectangular window, i.e.,

W (t) =

{
1, 0 < t ≤ Tpri

0, otherwise.
(2)

Then, the lowpass-equivalent waveforms {xn (t)}Nn=1 are
assumed to be time-limited to (0, Td] and essentially frequency
limited to [−B/2, B/2] [47], [54], where Td ≤ Tpri denotes
the duration of the waveform. An assumption is made that

the orthogonality of the transmitted signals is approximately
maintained for any time delay τ of interest, i.e.,∫

Td

xn1
(t)x∗n2

(t− τ)dt =

{
1, n1 = n2

ϵ, otherwise
(3)

where ϵ is the cross-correlation value (n1 ̸= n2, n1, n2 =
1, ..., N ) which can be assumed as ϵ ≈ 0 when suitable
waveform design techniques are applied in practice [46].

B. Received Signal Model

We assume all transmitted signals are observed and ignore
range migration in a single coherent processing interval (CPI)
which contains Y PRIs, i.e., the duration of a CPI is Tcpi =
Y Tpri. Then, the received y-th signal (y = 1, . . . , Y ), which
is reflected upon P moving targets, observed, downconverted,
and matched-filtered by the n-th station, can be accurately
represented as

rn,y(t) =

P∑
p=1

αn,psn (t− τn,p) e
ȷ2πfn,p(y−1)Tpri + wn,y(t)

(4)
where p = 1, . . . , P , and αn,p is the complex reflection
coefficient of the p-th target at the n-th station; the term
sn(t) denotes the matched filtering output signal of sn(t)
by employing the n-th transmitted waveform xn(t), it has
a narrow-pulse property in time domain and the auto-terms
sn(t−τn,p) and sn(t−τn,q) are orthogonal if (τn,p ̸= τn,q) [46,
eq. (27) and footnote 4]1. The noise term wn,y(t) is modeled
as complex circularly symmetric Gaussian noise with the
independent zero-mean property and intensity σ2

w. The time
delay is τn,p = τn(θp) = 2 ∥xn − θp∥ /c, where c is the
speed of light, and fn,p denotes the observed Doppler shift,
i.e.,

fn,p = fn(θp,vp) =
2 (xn − θp)

⊤
vp

c/fc ∥xn − θp∥
(5)

where fc is the carrier frequency. We assume there are no
targets falling into the same delay and Doppler resolution bins
at each local station, i.e.,

min
(p,q)∈{1,...,P}2

p ̸=q

min
n∈{1,...,N}

∣∣τn(θp)− τn(θq)
∣∣ > 1

B
, (6)

and

min
(p,q)∈{1,...,P}2

p ̸=q

min
n∈{1,...,N}

∣∣fn(θp,vp)− fn(θq,vq)
∣∣ > 1

Y Tpri
,

(7)
and this assumption is called fully-separable in this work.

In the following, we sample the received y-th signal
rn,y(t), y = 1, ..., Y in (4) by a sampling interval Ts, thus

1Same with [46], this amounts to requiring that each radiated waveform
has a thumb-tack auto-correlation function. It should be noted that perfectly
orthogonal waveforms may not be feasible solely through waveform design
techniques. We aim to obtain closed-form mathematical results, and possible
localization performance degradation due to the nonnegligible sidelobes is
expected but will not be investigated in this work.



4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

obtaining M = ⌈Tpri/Ts⌉ samples in one PRI, which yields

rn,y =

P∑
p=1

αn,pdn,p,ysn,p +wn,y, (8)

where dn,p,y = eȷ2πfn,p(y−1)Tpri ,

rn,y = [rn,y(Ts), . . . , rn,y(MTs)]
⊤ ∈ CM , (9)

sn,p = [sn (Ts − τn,p) , . . . , sn (MTs − τn,p)]
⊤ ∈ CM ,

(10)

wn,y = [wn,y(Ts), . . . , wn,y(MTs)]
⊤ ∈ CM , (11)

and wn,y [m] ∼ CN
(
0, σ2

w

)
, m = 1, . . . ,M .

C. Reassembling of Received Signals
Finally, we reassemble the discrete signals {rn,y}Yy=1 in a

CPI together to construct a new vector, we have

rn =

P∑
p=1

αn,pdn,p ⊗ sn,p +wn, (12)

where

rn =
[
r⊤n,1 . . . r⊤n,y . . . r

⊤
n,Y

]⊤ ∈ CMY , (13)

wn =
[
w⊤

n,1 . . . w⊤
n,y . . . w⊤

n,Y

]⊤ ∈ CMY , (14)

and

dn,p =
[
1, . . . , eȷ2πfn,p(y−1)Tpri , . . . , eȷ2πfn,p(Y−1)Tpri

]⊤
∈ CY .

(15)
It should be noted that dn,p = dn(θp,vp), sn,p = sn(θp),
and wn is assumed to be a complex circularly-symmetric
Gaussian vector with a known diagonal covariance matrix
Cn = σ2

wIMY ∈ CMY×MY . This assumption is particularly
suitable for homogeneous environments like air-search mode.
In practical implements, the unknown noise covariance matrix
can be estimated using secondary data [35], [55].

III. JOINT DETECTION AND LOCALIZATION OF MULTIPLE
MOVING TARGETS

In this section, we formulate the JDL of unknown number
multiple moving targets problem in a distributed radar system.
The goal is to detect the existing unknown number of multiple
moving targets and estimate their locations and velocities in
location and velocity regions under inspection at the FC,
relying on the radar geometry, the transmitted waveforms, and
the raw measurements rn transmitted from each local station.

A. Problem Formulation
Corresponding to (12), a composite multiple hypothesis

testing problem can be formulated, namely,
H0 : rn = wn, ∀ n
H1 : rn = αn,1dn,1 ⊗ sn,1 +wn, ∀ n

...
HPmax

: rn =
∑Pmax

p=1 αn,pdn,p ⊗ sn,p +wn, ∀ n,
(16)

where H0 is the null hypothesis, HP is the hypothesis that P
targets are present at the unknown locations θ1, . . . ,θP with
unknown gain vectors αn,1:P = [αn,1, . . . , αn,P ]

⊤, for n =
1, . . . , N , P = 1, . . . , Pmax, and the value of Pmax ≥ 1 serves
as an upper bound on the number of potential targets. In line
with convention, we consider the locations and velocities of
the prospective targets to be situated on discrete grids G and R
in location and velocity regions under inspection, respectively.
These grids consist of uniformly spaced points with an inter-
element location spacing ∆G ≤ c/2B and velocity spacing
∆R ≤ c/(2fcY Tpri) within the examined location and velocity
area, denoted as θp ∈ G and vp ∈ R, p = 1, . . . , P .

Then, the negative log-likelihood functions of different
hypotheses can be written as follows. Under H0, we have

− ln fn,0(rn) = ln
(
πMY detCn

)
+
∥∥∥C−1/2

n rn

∥∥∥2. (17)

Under HP , for P = 1, . . . , Pmax, we have

− ln fn,P
(
rn;θ1:P ,v1:P ,αn,1:P

)
= ln

(
πMY detCn

)
+
∥∥∥C−1/2

n

(
rn −Σn(θ1:P ,v1:P )αn,1:P

)∥∥∥2 (18)

where

Σn(θ1:P ,v1:P )

=
[
dn,1 ⊗ sn,1 . . . dn,P ⊗ sn,P

]
∈ CMY×P (19)

represents the mode matrix comprising the signatures of the
targets,

αn,1:P =
[
αn,1, . . . , αn,P

]⊤ ∈ CP (20)

is the gain vector, θ1:P and v1:P are the vectors specifying
the locations and velocities of the targets, i.e.,

θ1:P = cat{θ1, . . . ,θP } ∈ G1:P , (21)

and

v1:P = cat{v1, . . . ,vP } ∈ R1:P , (22)

respectively, where

G1:P =
{

cat{θ1, . . . ,θP } ∈ GP :

min
(p,q)∈{1,...,P}2

p ̸=q

min
n∈{1,...,N}

∣∣τn(θp)− τn(θq)
∣∣ > 1/B

}
(23)

and

R1:P =
{

cat{v1, . . . ,vP } ∈ RP :

min
(p,q)∈{1,...,P}2

p ̸=q

min
n∈{1,...,N}

∣∣fn(θp,vp)−fn(θq,vq)
∣∣ > 1

Y Tpri

}
(24)

are the sets specifying all possible positions and velocities of
the moving targets.
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B. GIC-based Detection and Estimation
At the FC, here we derive a GIC-based detector [56], [57] to

solve the JDL problem. An estimate of the number of targets,
denoted as P̂ , can be obtained as

P̂ = arg max
P∈{0,...,Pmax}

GIC(P ) (25)

where

GIC(P ) =

N∑
n=1

ln fn,0 (rn) , P = 0

max
θ1:P∈G1:P ,v1:P∈R1:P

N∑
n=1

F(θ1:P ,v1:P , α̂n,1:P )

−ηNP, P ≥ 1,

(26)

where

F(θ1:P ,v1:P , α̂n,1:P ) = ln
fn,P

(
rn;θ1:P ,v1:P , α̂n,1:P

)
fn,0 (rn)

(27)
is the LLR function, α̂n,1:P (θ1:P ,v1:P ) is the MLE of the
gain vector when the prospective targets are located in θ1:P
with velocities v1:P ; the penalty factor η is set to have a given
probability of false alarm Pfa = Pr(reject H0|H0). Notice that
α̂n,1:P (θ1:P ,v1:P ) is available in closed-form, i.e.,

α̂n,1:P (θ1:P ,v1:P )

= arg min
αn,1:P∈CP

∥∥∥C−1/2
n

(
rn −Σn(θ1:P ,v1:P )αn,1:P

)∥∥∥2
=
(
C−1/2

n Σn(θ1:P ,v1:P )
)+

C−1/2
n rn.

(28)

Therefore, by substituting (28) into (25) and disregarding
irrelevant constant terms, the decision rule based on GIC can
be reformulated as

P̂ = arg max
P∈{0,...,Pmax}

J(P ) (29)

where

J(P ) = max
θ1:P∈G1:P ,v1:P∈R1:P

N∑
n=1

(∥∥∥Πn(θ1:P ,v1:P )

C−1/2
n rn

∥∥∥2)− ηNP (30)

for P ≥ 1, J(0) = 0, and

Πn(θ1:P ,v1:P ) = C−1/2
n Σn(θ1:P ,v1:P )(

C−1/2
n Σn(θ1:P ,v1:P )

)+
. (31)

It is important to emphasize that the scoring metric in (30)
incorporates the penalized energies computed independently
by each local station, considering the candidate target sig-
natures indexed by θ1:P and v1:P . Then, it compares the
maximum over G1:P and R1:P with a preset threshold; the
arguments of the maximum θ̂1:P = cat{θ̂1, . . . , θ̂P } and
v̂1:P = cat{v̂1, . . . , v̂P } are the estimated locations and
velocities of targets under HP . Eventually, the rule in (29)

determines the detection decision regarding the number of
targets P̂ , simultaneously the relative estimates θ̂1:P̂ and v̂1:P̂

are output. Thus the JDL of multiple moving targets was
theoretically implemented.

Remark 1: In practice, this approach is computationally
prohibitive. From (30), we can see there is no closed-form
solution for θ1:P and v1:P . Instead, we need to employ numer-
ical methods: we assume there are QG and QR grids in G and
R, respectively, then we should make an enormous search of
(QGQR)P grid points for each assumed P (P = 1, . . . , Pmax).
Therefore, the overall complexity grows exponentially with
the number of targets P , surpassing the capabilities of current
computing resources.

Remark 2: The computation of J(P ) in (30) involves
a search over the sets G1:P and R1:P whose cardinality
scales exponentially with P . More specifically, assume that
the whitened mode matrix C

−1/2
n Σn(θ1:P ,v1:P ) and the

whitened measurement C
−1/2
n rn is precomputed and stored

into a dedicated memory for any grid point θ ∈ G,v ∈ R and
n = 1, . . . , N . Then, the computation of the Πn(θ1:P ,v1:P )
requires a pseudoinverse, which costs at most O

(
MY P 2

)
floating point operations (flops), and a matrix multiplication,
which costs O

(
M2Y 2P

)
flops; also, the computation of∥∥∥Πn(θ1:P ,v1:P )C

−1/2
n rn

∥∥∥2 costs O
(
M2Y 2

)
flops. Hence,

the total cost for computing (30) is at most O
(
(M2Y 2P +

MY P 2)N(QGQR)P
)

flops.

IV. THE PROPOSED LOW-COMPLEXITY SOLUTION

In this section, a low-complexity solution is proposed to
solve the previously formulated JDL of multiple moving
targets problem. Firstly, a problem decomposition is made to
partition the joint maximization task of (QGQR)P grids into
P separate optimization problems of (QGQR) grids. Then, we
illustrate how to generate the delay- and Doppler-dimensional
LLR data which will be transmitted from each radar to the
FC for global fusion in practical implementation2. Finally, an
extended SIC algorithm is devised to extract multiple targets
and estimate their locations/velocities step by step.

A. Problem Decomposition

Proposition 1: Following the approximately orthogonality
and the fully-separable targets assumptions in (3), (4), (6),
and (7), (28) can be simplified as

α̂n,p(θp,vp) =
(
C−1/2

n (dn,p ⊗ sn,p)
)+

C−1/2
n rn. (32)

The proof of Proposition 1 is given in the Appendix I.
Upon plugging (32) into (25), we can obtain the new

2It’s worth noting that the GIC-based detector necessitates local stations
to transmit raw echoes data rn, whereas the proposed solution involves
transmitting LLR data instead. Although the data transmitting costs remain
constant, the proposed solution enables local stations to undertake a portion
of the calculations.
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expression of the GIC-based rule as

{θ̂1:P , v̂1:P } = arg max
θ1:P∈G1:P ,v1:P∈R1:P

N∑
n=1

P∑
p=1

ℓn(θp,vp)− ηNP

= arg max
θ1:P∈G1:P ,v1:P∈R1:P

P∑
p=1

T (θp,vp)− ηNP,

(33)
subject to the targets are fully-separable, i.e., the target lo-
cations θ1:P ∈ G1:P and velocities v1:P ∈ R1:P follow the
relationships presented in (6), (7), (23), and (24). Then,

T (θp,vp) =

N∑
n=1

ℓn(θp,vp) (34)

and

ℓn(θp,vp) =
∥∥∥C−1/2

n (dn,p ⊗ sn,p)(
C−1/2

n (dn,p ⊗ sn,p)
)+

C−1/2
n rn

∥∥∥2 (35)

are the objective LLR functions of the p-th target location and
velocity, i.e., θp and vp, regarding all stations and the n-th
station, respectively.

In practical implementation, the parameters of targets (num-
ber, amplitudes, locations, velocities) are unknown and we
need to extract them from the objective LLR function regard-
ing N stations and all points within the inspected location and
velocity regions G and R, i.e.,

T (θ,v) =

N∑
n=1

ℓn(θ,v) =

N∑
n=1

∥∥∥C−1/2
n (dn (θ,v)⊗ sn (θ))(

C−1/2
n (dn (θ,v)⊗ sn (θ))

)+
C−1/2

n rn

∥∥∥2,θ ∈ G,v ∈ R.
(36)

Because of the fully-separable assumption, where no targets
are assumed to fall into the same resolution bin of any
stations, an effective way to circumvent extensive searching
is to determine the maximum of LLR associated with each
target regarding all stations while mitigating LLR data from
other targets (since rn contains the signals of P targets).
Hence, the joint maximization task of (QGQR)P grids will
be decomposed into P separate optimization problems of
(QGQR) grids, i.e.,

{θ̂1:P , v̂1:P }
with {θ̂p, v̂p} = argmax

θ∈G,v∈R
Tp (θ,v)− η′N, (37)

where Tp (θ,v) represents the updated function specific to the
p-th target and η′ is a new penalty factor. This updated function
will be further elucidated in the proposed extended SIC
algorithm. Before generating the updated function Tp (θ,v)
at the FC, we will calculate the practical LLR data matrices
at each station, which are shown in Section IV-B.

B. Practical LLR-data Generation
For local radars to undertake a portion of the calculations,

the LLR data ℓn(θ,v) of the n-th local station can be

practically calculated in a standardized and discrete manner,
without considering θ and v. We denote this data matrix as
Ln ∈ CM×Y , i.e.,

Ln =


Ln[1, 1] · · · Ln[1, y

′] · · · Ln[1, Y ]
...

. . .
...

. . .
...

Ln[m
′, 1] · · · Ln[m

′, y′] · · · Ln[m
′, Y ]

...
. . .

...
. . .

...
Ln[M, 1] · · · Ln[M,y′] · · · Ln[M,Y ]

 ,
(38)

where m′ = 1, 2, ...,M , y′ = 1, 2, ..., Y , and

Ln[m
′, y′] = ℓn

(
θ,v | τm

′

n , fy
′

n

)
=
∥∥∥C−1/2

n (dn(f
y′

n )⊗ sn(τ
m′

n ))(
C−1/2

n (dn(f
y′

n )⊗ sn(τ
m′

n ))
)+

C−1/2
n rn

∥∥∥2. (39)

It should be noted that the value of τm
′

n and fy
′

n is discrete,
i.e., τm

′

n = m′Ts and fy
′

n = y′/(TpriY ). In the calculation
of each element of Ln, e.g., Ln[m

′, y′], we directly substitute
the corresponding τm

′

n and fy
′

n to sn and dn in (10) and (15),
respectively. Then a delay- and Doppler-dimensional LLR data
matrix will be generated at each local station and is assumed
to be completely transmitted to the FC for global data fusion.

Remark 3: The complete transmission of the LLR data
matrix will impose a large load, as all matrix elements
need to be quantized and transmitted while maintaining the
real-time nature of information processing. For instance, the
data matrix obtained from a CPI must be transmitted to
the FC within at least the following Tcpi period. When the
communication bandwidth between each radar and the fusion
center is constrained (e.g., using wireless communication
links in a communication-constrained environment), this load
will become unaffordable, and transmitting complete LLR
data will be unrealistic. Current methods, such as low-bit
quantization [40] or censoring [58], make it possible to reduce
the transmission load. However, this problem is not the focus
of this paper and will be explored in our future works.

Hence, in practice, the FC will utilize the received LLR data
matrices Ln ∈ CM×Y , n = 1, . . . , N to make data fusion.
Then, (36) can be rewritten as

T (θ,v) =

N∑
n=1

ℓn(θ,v)

=

N∑
n=1

Ln[⌈τn(θ)/Ts⌉, ⌈fn(θ,v)TpriY ⌉],θ ∈ G,v ∈ R.

(40)
Remark 4: In (40), the FC receives different LLR data

matrices Ln ∈ CM×Y , n = 1, . . . , N and proceeds to perform
data association. Given that the FC possesses knowledge about
the locations of local stations, we traverse different positions
and velocities θ ∈ G,v ∈ R by calculating ⌈τn(θ)/Ts⌉ and
⌈fn(θ,v)TpriY ⌉ to determine the values in Ln ∈ CM×Y , n =
1, . . . , N corresponding to the pair (θ,v). Thus the data
association in the FC has been implemented.
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Fig. 2. The structure of the proposed low-complexity solution.

C. Extended SIC Algorithm

At the FC, the challenge we currently face is how to extract
the targets from T (θ,v) in (40) while mitigating influences
among them, thus realizing high-performance joint detection
and localization of every moving target. Leveraging the design
methodology of the SIC algorithm proposed in [46], in this
subsection we devise an extended SIC algorithm to extract
multiple moving targets and estimate their number, locations,
and velocities in multiple iterations. Each iteration extracts
one and simultaneously output its estimated location θ̂p and
velocity v̂p, p = 1, . . . , P̂ , and the estimated target number
P̂ will be finally determined. For a clearer illustration, the
structure of the proposed solution is shown in Fig. 2.

Here we elaborate the devised algorithm by multiple steps:
1) Step 1: At the p-th iteration, traverse Tp (θ,v) (p =

1, . . . , Pmax and T1 (θ,v) = T (θ,v)) with different
θ ∈ G and v ∈ R at the p-th iteration. One iteration
will generate a location data plane including QG grids,
and each location grid will generate a velocity data
plane including QR grids (e.g., Fig. 4 in the simulation
section);

2) Step 2: Find the maximum value of all of the data
planes. If it exceeds the preset threshold ψ, the p-th
target is declared and the corresponding location θp
and velocity vp will be extracted as its estimations
{θ̂p, v̂p}. Therefore, the detector at the p-th iteration
can be computed as

{θ̂p, v̂p} = argmax
θ∈G,v∈R

Tp (θ,v)

s.t. max
θ∈G,v∈R

Tp (θ,v) ≥ ψ, p ≤ Pmax
(41)

where ψ is the detection threshold that can be numeri-
cally set3 given a constant global false alarm probability

Pfa = Pr( max
θ∈G,v∈R

T (θ,v) > ψ
∣∣ H0). (42)

3In simulations or realistic implements, given a set Pfa and following (42),
the threshold ψ can be determined numerically by generating the functions
T (i)(θ,v) under the H0 hypothesis and using target-free noise data for
i = 1, . . . , ⌈z/Pfa⌉ independent trials, where z is a set positive integer,
θ ∈ G, and v ∈ R. The noise data at each trial are randomly generated
or recorded in target-free realistic scenarios. Then the maximum values
ψ̂(i) = maxθ∈G,v∈R T (i)(θ,v) will be extracted for each trial and sorted
in descending order to form a vector F ∈ C⌈z/Pfa⌉. Finally, the detection
threshold is output as ψ = F[z].

Algorithm 1 Implementation of the proposed algorithm
1: provide Finite grids G and R in location and velocity

regions under inspection, respectively, detection threshold
ψ, the assumed upper bound of the prospective targets
number Pmax, the discrete LLR values Ln (n = 1, . . . , N ),
and the number of detected targets P̂ = 0.

2: for p = 1, . . . , Pmax do
3: Compute Tp (θ,v) from (45)
4: if max

θ∈G,v∈R
Tp (θ,v) ≥ ψ then

5: Compute {θ̂p, v̂p} = argmax
θ∈G,v∈R

Tp (θ,v)

6: Compute P̂ = P̂ + 1
7: else
8: break
9: end if

10: end for
11: return The estimated target number P̂ , locations Θ̂ML =

θ̂1:P̂ , and velocities V̂ML = v̂1:P̂ .

3) Step 3: Eliminate the data of the extracted target within
a delay and Doppler resolution bin from the p-th LLR
matrix Ln,p to obtain a new matrix Ln,p+1 (n =
1, . . . , N, p = 1, . . . , Pmax and Ln,1 = Ln), i.e.,

Ln,p+1[⌈τn(θ)/Ts⌉, ⌈fn(θ,v)TpriY ⌉] ={
0, {θ,v} ∈ Dn

(
{θ,v}; {θ̂p, v̂p}

)
Ln,p[⌈τn(θ)/Ts⌉, ⌈fn(θ,v)Y Tpri⌉], others,

(43)

where

Dn

(
{θ,v}; {θ̂p, v̂p}

)
=
{
{θ,v}

∣∣ | τn(θ)− τn(θ̂p) |

≤ 1

B
, | fn(θ,v)− fn(θ̂p, v̂p) |≤

1

Y Tpri
,θ ∈ G,v ∈ R

}
.

(44)
Then we can obtain a new objective LLR function

Tp+1(θ,v) =

N∑
n=1

Ln,p+1[⌈τn(θ)/Ts⌉, ⌈fn(θ,v)TpriY ⌉]

(45)
for the (p+ 1)-th iteration;

4) Step 4: Repeat the previous steps until the maximum
value of the updated objective LLR function cannot
exceed the threshold or p > Pmax. Finally, output the
estimated target number P̂ = p − 1 and all estimated
locations Θ̂ML = θ̂1:P̂ and velocities V̂ML = v̂1:P̂ .

To summarize, the proposed extended SIC algorithm oper-
ates iteratively, with each iteration focusing on the detection
and localization of one target. When a target is extracted and
its location and velocity are estimated by maximizing its LLR
function in (41), the LLR data matrix and the LLR function
will be updated by (43)–(45) to clear the LLR data of this
target and prepare for the next iteration. The overall procedure
is summarized in Algorithm 1.

Remark 5: From the previous summary of the extended SIC
algorithm, it can be seen that the primary factor driving the
computational expenses is the computation of the objective
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TABLE I
SIMULATION PARAMETERS

Parameter Value

Number of Radars, N 3

Carrier Frequency, fc 10 GHz

Bandwidth, B 5 MHz

Sampling Interval, Ts 0.1 us

PRI, Tpri 75 us

Samples in a PRI, M 750

The Number of PRIs in a CPI, Y 256

CPI, Tcpi 19.2 ms

Range Bin, cTs/2 15 m

Noise Variance, σ2
w 1

Global False Alarm Probability, Pfa 2.5× 10−3

Fig. 3. The 18 km × 18 km plane which involves three distributed
radars and three moving targets.

LLR function T (θ,v) in (40). For a specific sample point in
the LLR data matrix Ln ∈ CM×Y of (38), its computational
load is bounded by O

(
M2Y 2+MY

)
flops. Then, for the total

MY points and N stations, its computational load is bounded
by O

(
NM3Y 3

)
flops. At the FC, since there are QG and QR

grids in the inspected location and velocity regions G and R,
the cost for computing the T (θ,v) regarding all stations and
all inspected grids is O

(
NQGQR

)
flops. Besides, the updating

of the new objective LLR function at each iteration costs
O
(
NQGQR

)
flops. Finally, considering there are P times of

potential loops, the total costs for computing the extended SIC
algorithm is at least O

(
NM3Y 3 + PNQGQR

)
flops.

V. NUMERICAL RESULTS

In this section, we illustrate the effectiveness of the proposed
algorithm by considering a distributed radar system, comprised
of three radars, monitoring three targets. The parameters and
geometry of the radars and moving targets are shown in Table
I and Fig. 3, respectively. The radars are placed at x1 =
(15, 2.5) km, x2 = (20, 0) km, and x3 = (25, 2.5) km. The
targets are placed at θ1 = (20, 5) km, θ2 = (20, 4.85) km,
and θ3 = (20, 5.15) km with velocities v1 = (6, 6) m/s,
v2 = (−7, 4) m/s, and v3 = (0, 7) m/s, respectively. The
ratio of the modulus of the complex amplitudes between
different targets is given by |αn,1| : |αn,2| : |αn,3| = 1 :

0.8 : 0.6. We use ⌈100/Pfa⌉ and 3000 Monte Carlo (MC)
trials to set the detection threshold and obtain the performance
results, respectively. All results were obtained using MATLAB
2021a on a machine with 256 GB of memory and two 2.5
GHz Intel Xeon E5-2678V3 CPUs, each containing 12 cores
and 24 threads. Besides, the probability of target detection
(Pd) and the root mean square error (RMSE) of estimation
serve as metrics for evaluating the performance of detection,
localization, and velocity estimation. In particular, under H̄0,
we say that Target q (q = 1, . . . , P and P = 3) is detected
if the event Ẽq = { min

p∈{1,...,P̂}
∥θ̂p − θq∥ ≤ c/2B} is true.

Accordingly, the probability of detecting Target q is

Pd = Pr
(
Ẽq

∣∣H̄0

)
. (46)

Once the event Ẽq occurs, the exact estimated location of
Target q can be output as

θ̂q = argmin
θ̂∈{θ̂1,...,θ̂P̂ }

∥θ̂ − θq∥. (47)

Then, its corresponding estimated velocity v̂q will be obtained
since the procedure in (41) outputs an estimated location
and velocity simultaneously. Therefore, the RMSEs in the
estimation of location, velocity, and velocity direction of
Target q are calculated by

RMSElocation =

√
E
[
∥θ̂q − θq∥2

∣∣Ẽq, H̄0

]
, (48)

RMSEvelocity =

√
E
[
(∥v̂q∥ − ∥vq∥)2

∣∣Ẽq, H̄0

]
, (49)

and

RMSEdirection =

√√√√E

[(
180◦

π
arccos(

v̂q · vq

∥v̂q∥∥vq∥
)

)2 ∣∣Ẽq, H̄0

]
,

(50)
respectively. In the following, two benchmarks are considered
for comparison:
(a) The GLRT detector with cleaned data (GLRT-CD) [46],

[47], which ideally removes the received echoes of other
targets. It should be noted that the GLRT-CD benchmark
is equivalent to the computationally-prohibitive GIC-
based detector when only one target exists.

(b) The original GLRT detector (O-GLRT), proposed in [43],
achieves the highest detection performance for multiple
moving targets among the algorithms proposed in that
state-of-the-art work.

We first show the output data planes of the proposed algo-
rithm over three iterations in a single trial, which are reported
in Fig. 4. It is verified that during the three iterations, the
proposed algorithm was able to correctly detect a target each
time and simultaneously estimate its corresponding location
and velocity. The detection of weaker targets will not be
influenced by the strong target since our designed iterative
cancellation steps can effectively mitigate the LLR data of the
previously detected targets.

Then, the detection performance outcomes of the proposed
algorithm and the utilized benchmarks are presented in Fig.
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Fig. 4. Output data planes of the proposed algorithm (Tp (θ, v) in (45), p = 1, 2, 3: the top three are the location data planes where each value of
the location grid is the maximum of its corresponding velocity data plane; the bottom three are the velocity data planes corresponding to the location
grid (θ = θ̂p) in three consecutive iterations when SNR = 15 dB. The triangle markers are the true target locations/velocities; the circle marker is
the estimated location/velocity of the detected target at each iteration; all estimated results in this single trial closely match the ground truth.
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Fig. 5. Pd and RMSE results of all targets versus SNR: (a) Pd; (b) RMSE in the location estimate; (c) RMSE in the velocity estimate; (d) RMSE in
the velocity direction estimate.



10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

5(a). It is evident that the detection performance of the
proposed algorithm is close to the single-target benchmark
GLRT-CD for all targets, which demonstrates the accuracy of
target extraction regardless of the influences from other targets.
Compared with our proposed solution, the O-GLRT detector
performs a detection performance gap because it makes the
data fusion of the maximum of the Doppler shifts (as seen in
[43, eq. (26)]), which will result in ineffective accumulation
of target energy when the noise points are selected, especially
in the low-SNR environment.

Finally, we also investigate the RMSEs in the estimates
of location, velocity, and velocity direction. Here, we treat
the angle between the estimated and the true velocity as
the velocity direction metric, as illustrated in (50). These
investigations are presented in Figs. 5(b), (c), and (d). From
these figures, it is evident that the RMSEs for all estimation
metrics of the targets are well within acceptable limits, indi-
cating high accuracy in our estimates. Specifically, the figures
show that the proposed algorithm achieves precise localization
and velocity estimation, even in challenging scenarios with
multiple targets. The consistency and accuracy of these es-
timations further highlight the robustness and reliability of
our approach. Therefore, the effectiveness of the proposed
algorithm is clearly demonstrated.

VI. CONCLUSION

This paper has addressed the JDL of multiple moving targets
in a distributed radar system. We first formulated the JDL
problem as a composite multiple hypothesis testing problem
and derived a GIC-based detector to simultaneously detect
the targets and estimate their unknown parameters. However,
the overall complexity grows exponentially with the unknown
number of targets. Then we proposed a low-complexity algo-
rithm, utilizing the devised several iterative steps to efficiently
realize the JDL of multiple moving targets. Finally, com-
prehensive simulations including three moving targets have
been conducted to showcase the effectiveness of the proposed
algorithm. Future works may explore distributed radars with
partial/no knowledge of the noise covariance matrices; the
case of cooperative-communicating targets; and the strategies
to attain achievable detection and localization performance of
moving targets when the communication bandwidth between
each local station and the fusion center is constrained.

APPENDIX I
PROOF OF PROPOSITION 1

Given (19) and (20), (28) can be further formulated as

α̂n,1:P (θ1:P ,v1:P )

=
[
α̂n,1(θ1,v1), . . . , α̂n,P (θP ,vP )

]⊤
=
(
C−1/2

n Σn(θ1:P ,v1:P )
)+

C−1/2
n rn

=
(
C−1/2

n

[
dn,1 ⊗ sn,1 . . . dn,P ⊗ sn,P

] )+
C−1/2

n rn

=
[
C

−1/2
n dn,1 ⊗ sn,1 . . . C

−1/2
n dn,P ⊗ sn,P

]+
C−1/2

n rn

= H+C−1/2
n rn ∈ CP ,

(51)

where

H =
[
h1 . . . hP

]
=
[
C

−1/2
n dn,1 ⊗ sn,1 . . . C

−1/2
n dn,P ⊗ sn,P

]
∈ CMY×P .

(52)
Following the approximately orthogonality in (3) and (4), i.e.,
the term sn(t) in sn has a narrow-pulse property in time
domain and the auto-terms sn(t − τn,p) and sn(t − τn,q) are
orthogonal if (τn,p ̸= τn,q) [46, eq. (27) and footnote 4], and
the fully-separable targets assumptions in (6) and (7), then
we can obtain that the P terms dn,p ⊗ sn,p, p = 1, . . . , P
are orthogonal with each other. Since Cn = σ2

wIMY ∈
CMY×MY , the P terms hp = C

−1/2
n dn,p⊗sn,p, p = 1, . . . , P

are still orthogonal with each other.
To calculate the expansion of H+, we first present the

following theorem.
Theorem 1: Let A be an MY × P matrix with orthogonal

column vectors a1,a2, . . . ,aP , i.e.,

a⊤i aj = 0 for i ̸= j. (53)

Then the pseudoinverse of A is given by

A+ =


aH1 /∥a1∥2
aH2 /∥a2∥2

· · ·
aHP /∥aP ∥2

 =


a+1
a+2
· · ·
a+P

 . (54)

Proof:
The pseudoinverse of A is expressed as

A+ = (AHA)−1AH . (55)

Since the column vectors are orthogonal, the matrix AHA is
a diagonal matrix with diagonal elements being the squared
norms of each column vector:

AHA = diag(∥a1∥2, ∥a2∥2, . . . , ∥aP ∥2). (56)

Therefore, (AHA)−1 is also a diagonal matrix which can
be represented as

(AHA)−1 = diag
(

1

∥a1∥2
,

1

∥a2∥2
, . . . ,

1

∥aP ∥2

)
. (57)

Consequently, by substituting (57) into (55), A+ can be
written as:

A+ = diag
(

1

∥a1∥2
,

1

∥a2∥2
, . . . ,

1

∥aP ∥2

)
AH

=


aH1 /∥a1∥2
aH2 /∥a2∥2

· · ·
aHP /∥aP ∥2

 =


a+1
a+2
· · ·
a+P

 , (58)

which is the desired form.
Following Theorem 1, we can obtain

H+ =


h+
1

· · ·
h+
p

· · ·
h+
P

 =


(C

−1/2
n dn,1 ⊗ sn,1)

+

· · ·
(C

−1/2
n dn,p ⊗ sn,p)

+

· · ·
(C

−1/2
n dn,P ⊗ sn,P )

+

 ∈ CP×MY .

(59)
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Finally, by substituting (59) into (51), the equation can be
rewritten as

α̂n,1(θ1,v1)
· · ·

α̂n,p(θp,vp)
· · ·

α̂n,P (θP ,vP )

 =


(C

−1/2
n dn,1 ⊗ sn,1)

+C
−1/2
n rn

· · ·
(C

−1/2
n dn,p ⊗ sn,p)

+C
−1/2
n rn

· · ·
(C

−1/2
n dn,P ⊗ sn,P )

+C
−1/2
n rn

 .
(60)

Therefore

α̂n,p(θp,vp) = (C−1/2
n (dn,p ⊗ sn,p))

+C−1/2
n rn, (61)

and Proposition 1 is proved.
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