
Progressive and efficient verification for digital signatures: extensions and
experimental results

Downloaded from: https://research.chalmers.se, 2024-11-08 14:24 UTC

Citation for the original published paper (version of record):
Boschini, C., Fiore, D., Pagnin, E. et al (2024). Progressive and efficient verification for digital
signatures: extensions and experimental
results. Journal of Cryptographic Engineering, 14(3): 551-575.
http://dx.doi.org/10.1007/s13389-024-00358-0

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Journal of Cryptographic Engineering (2024) 14:551–575
https://doi.org/10.1007/s13389-024-00358-0

RESEARCH ART ICLE

Progressive and efficient verification for digital signatures: extensions
and experimental results

Cecilia Boschini1 · Dario Fiore2 · Elena Pagnin3 · Luca Torresetti4 · Andrea Visconti5

Received: 22 June 2023 / Accepted: 25 June 2024 / Published online: 5 August 2024
© The Author(s) 2024

Abstract
Digital signatures are widely deployed to authenticate the source of incoming information, or to certify data integrity. Common
signature verification procedures return a decision (accept/reject) only at the very end of the execution. If interrupted prema-
turely, however, the verification process cannot infer anymeaningful information about the validity of the given signature. This
limitation is due to the algorithm design solely, and it is not inherent to signature verification. In this work, we provide a formal
framework to extract information from prematurely interrupted signature verification, independently of why the process halts:
we propose a generic verification procedure that progressively builds confidence on the final decision. Our transformation
builds on a simple but powerful intuition and applies to a wide range of existing schemes considered to be post-quantum
secure, including some lattice-based and multivariate equations based constructions. We demonstrate the feasibility of our
approach through an implementation on off-the-shelf resource-constrained devices. In particular, an intensive testing activity
has been conductedmeasuring the increase of performance on three IoT boards—i.e., Arduino, Raspberry, and Espressif—and
a consumer-grade laptop. While the primary motivation of progressive verification is to mitigate unexpected interruptions, we
show that verifiers can leverage it in two innovative ways. First, progressive verification can be used to intentionally adjust the
soundness of the verification process. Second, our transformation splits verification into a computationally intensive offline
set-up (run once), and an efficient online verification that is faster than the original algorithm. We conclude showing how to
tweak our compiler for progressive verification to work on a wide range of signatures with properties, on three real-life use
cases, and in combination with efficient verification.

Keywords Digital signatures · Efficient verification · IoT · Provable security

CeciliaBoschini,DarioFiore andElenaPagninhave contributed equally
to this work.

B Elena Pagnin
elenap@chalmers.se

Cecilia Boschini
cecilia.boschini@inf.ethz.ch

Dario Fiore
dario.fiore@imdea.org

Luca Torresetti
luca.torresetti@ait.ac.at

Andrea Visconti
andrea.visconti@unimi.it

1 ETH - Zurich, Zurich, Switzerland

2 IMDEA Software Institute, Madrid, Spain

3 Chalmers University of Technology and University of
Gothenburg, Göteborg, Sweden

1 Introduction

Digital signatures allow one party (the signer) to use her
secret key to authenticate a message in such a way that, at
any later point in time, anyone holding the corresponding
public key (the verifiers) can check its validity. The typical
nature of signature verification procedures is monolithic: the
validity of a signature is determined only after a sequence
of tests is completed. In particular, if the execution is inter-
rupted in media res (Latin for “in the midst of things”), no
conclusive answer can be drawn from the outcomes of the
partial tests. Although this monolithic nature is not a bur-
den in many application scenarios, e.g., validating financial
transactions (Bitcoin protocol), installing certified software

4 AIT - Austrian Institute of Technology, Vienna, Austria

5 Computer Science Department, Università degli Studi di
Milano, Milan, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-024-00358-0&domain=pdf
http://orcid.org/0000-0003-0956-1616
http://orcid.org/0000-0001-7274-6600
http://orcid.org/0000-0002-7804-6696
http://orcid.org/0009-0002-1257-061X
http://orcid.org/0000-0001-5689-8575

552 Journal of Cryptographic Engineering (2024) 14:551–575

updates (Android OS), or delivering e-services (e-Health,
electronic tax systems), it is amajor limitation to the adoption
of digital signatures in cyber-physical systems [39] and in
secure eager or speculative executions [30], where the speed
at which verification is performed plays a crucial role.

Le et al. [29] proposed to address unexpected interruptions
using a new cryptographic primitive called signatures with
flexible verification. In a nutshell, such schemes admit a ver-
ification algorithm that increasingly builds confidence on the
validity of the signature while it performs more steps. In this
way, at the moment of an interrupt, the verifier is left with a
valueα ∈ [0, 1]∪⊥ that probabilistically quantifies the valid-
ity of the signature, or rejects it.While the primarymotivation
of flexible verifications is to mitigate unexpected interrup-
tions, we observe that the overarching idea of progressive
verification has further impacts. In particular, progressive
verification can be used to customize the soundness of the
verification process. For example, a smart device may decide
to verify at a 30-bit security level, if the signatures come from
specific sources or the battery is below 30%. From a theo-
retical perspective, progressive verification (as introduced in
this work later on) draws interesting connections between
classical, information-theoretic and post-quantum security
notions.

1.1 Our contribution

This work sets out to dismantle the monolithic nature of sig-
nature verification by designing new verification methods
for existing signature schemes. Concretely, we investigate
two approaches. The first one is to speed-up the verifica-
tion process for polynomially many signatures by the same
signer leveraging a one-time computation on the public key
(efficient verification). The second approach is to re-design
the verification process so that it allows one to extract sen-
sible information even when the algorithm is executed only
partially (progressive verification). In this setting it is of par-
ticular interest to investigate the security implications of this
new model and what additional features it may bring.

In detail, we introduce formal definitions and security
models for both efficient (Sect. 2) and progressive (Sect. 3)
verification. In terms of realizations, we focus on a specific
family of schemes that we call with Mv-style verification
(in brief, the verification includes matrix–vector multiplica-
tions). For schemes in this class, we propose two compil-
ers, i.e., two information-theoretic transformations that turn
monolithic Mv-style verifications into provably-secure effi-
cient or progressive ones (Sect. 4). We emphasize that our
compilers leave the signing algorithm and the signatures as
they are; they only provide an alternative, probabilistic, veri-
ficationmethod for them.Our compilers apply tomultivariate
polynomials based schemes including MAYO [7], Rainbow
[18, 19] and LUOV [8]; and lattice-based schemes including

GPV [24] (hash & sign), MP [32] (Boyen/BonsaiTree), and
GVW [25] (homomorphic) (details in Sect. 5). A large part
of the security proof is devoted to a detailed analysis of the
leakage due to verification queries (that now involve secret
randomness). We consider this leakage analysis a result of
independent interest as it can be used to estimate leakage in
similar information-theoretic approaches to provably secure
algorithmic speed-ups or eager executions.

This extended version of [10] includes additional details
on the aforementioned contributions, as well as newmaterial
containing the following contributions. We extend our mod-
els for efficient and progressive verification to include sig-
natures with advanced properties: ring, threshold, homomor-
phic multi-key, attribute-based and constrained (Sect. 7.1).
We also show how to combine efficient and progressive ver-
ification in a secure manner (Sect. 8). To analyze the impact
of our technique on constrained devices, we developed a
library for Mv-style efficient and progressive verification,
and tested it against the Rainbow signature scheme. The
testing activities were performed on three IoT boards and
a consumer-grade laptop, and we show the gathered results
in our experimental evaluations (Sect. 6).

Rainbow was chosen because, among the NIST final-
ists, it is the only proposal on which our technique applies
directly with interesting efficiency boosts, and has an avail-
able, ready-for-use implementation. In spite of the recent
attacks against Rainbow [6], we believe that the results of our
work can still be useful to showcase the performance boost
obtainable by applying efficient verification to existing con-
structions. In particular, we emphasize that our technique is
rather general and applies to any scheme withMv-style veri-
fication. Therefore we believe that understanding the benefit
of our approach, even from an experimental perspective, can
be useful for futurework, including future attempts to counter
the recent attacks, e.g., [13].

1.2 Related work

The problem of trading security for less computation during
a verification has been considered first by Fischlin [21] and
Armknecht et al. [2] in the context of message authentication
codes (MACs). Le et al. [29] and by Taleb and Vergnaud [36]
consider the same question for digital signatures.

Le et al. [29] introduce the notion of flexible signatures and
a construction based on the Lamport–Diffie one-time signa-
ture [28]withMerkle trees. Taleb andVergnaud [36] put forth
realizations of progressive verification for three specific sig-
nature schemes (RSA, ECDSA and GPV). Differently from
us, both works demand a modification of the signing or key
generation algorithm of the original signature scheme and
also a time variable be input to the progressive or flexible
verification.

123

Journal of Cryptographic Engineering (2024) 14:551–575 553

One main difference between our model and those of [21,
29, 36] is that we aim to capture progressive verification as
an independent feature that can enhance existing schemes,
rather than a standalone primitive that requires one to change
some of the core algorithms of a signature scheme. This is in
awaymore challenging as it leaves less design freedomwhen
crafting these algorithms. In addition, we define progressive
verification as a stateful algorithm in contrast to stateless
[21, 29, 36]: although this makes our model slightly more
involved, it is comparablymore general and can capturemore
(existing) schemes.

Our model for efficient verification is close the offline-
online paradigm used in homomorphic authentication [3,
15] and verifiable computation [23]; where a preprocessing
is done with respect to a function f , and its result can be
used to verify computation results involving the same f . An
early instantiation of this technique for speeding up the ver-
ification of Rabin-Williams signatures appears in [5]. More
recently, Sipasseuth et al. [35] investigate how to speed up
lattice-based signature verification while reducing the mem-
ory (storage) requirements. The overall idea in [35] is similar
to ours (and inspired to Freivalds’ Algorithm): to replace
the inefficient matrix multiplication in the verification with a
probabilistic check via an inner product computation. How-
ever, [35] focuses on theDRS signature [34], and investigates
the trade-off between pre-computation time for verification
andmemory storage for this schemeonly.Moreover, thework
lacks a formal, abstract analysis of the security impact of such
a shift in the verification procedure. In contrast, we devise a
general framework to model ‘more efficient’ and ‘partial’
signature verification. Albeit we developed our approach
independently of [35], our techniques can be seen as a gen-
eralization of what presented in [35].

1.3 Notation

We denote the set of real values by R, integers by Z, natu-
ral numbers by N, and finite fields of integers by Zq , where
q is a (power of a) prime number. Throughout the paper,
λ ∈ Z≥0 denotes the parameter for computational security
of a cryptographic scheme. A function ε : Z≥0 → [0, 1]
is negligible if ε(λ) < 1/poly(λ) for every univariate poly-
nomial poly ∈ R[X] and a large enough integer λ ∈ Z≥0.
The abbreviation PPT refers to algorithms that are proba-
bilistic and run in polynomial time. We denote vectors by
bold, lower-case letters, and matrices by bold, upper-case
letters. We use v[i] to identify the i-th entry of a vector v,
and A[i, j] to identify the entry in the i-th row and j-th col-
umn of a matrix A. The norm of a vector is denoted as ‖v‖
and unless otherwise specified, it is assumed to be the infinity
norm, i.e., ‖v‖ = maxi {v[i]}. AT denotes the transposed of
a matrix. We use rows(A), cols(A), and rk(A) to respec-
tively refer to the number of rows, the number of columns,

and the rank of a matrix A; 11×n (resp. 01×n) denotes the
row vector of length n that has all entries equal to 1 (resp.
0), while In denotes the n by n identity matrix of dimen-
sion n. We omit the explicit dimensions when they are clear
from the context. We denote the span (linear space) gen-
erated by a set of vectors z1, . . . , zi in the discrete vector
space Z

m
q as 〈z1, . . . , zi 〉q = {z ∈ Z

m
q : z = ∑i

j=1 a jz j
mod q, ∃a1, . . . , ai ∈ Zq}. We denote by L1‖L2 the result
of appending a list of elements L2 to L1. Given two values
a < b, we denote a continuous interval as [a, b] ⊆ R, and
a discrete interval as {a, . . . , b} ⊆ Z. A signature scheme
� = (KeyGen, Sign,Ver) with message space M includes
a key generation algorithm (sk,pk) ← KeyGen(1λ), a sign
algorithm σ ← Sign(sk, μ) that outputs a signature σ on a
message μ, and a verification algorithm Ver(pk, μ, σ) that
outputs 1 (accept) or 0 (reject). Throughout the paper, �

satisfies the properties of correctness and existential unforge-
ability as defined in [36].

2 Efficient verification for digital signatures

The core idea of efficient signature verification is to split
the verification process into two steps. The first step is a
one-time and signature-independent setup called ‘offline ver-
ification’. Its purpose is to produce randomness to derive a
(short, secret) verification key svk from the signer’s public
key pk. Note that the offline verification does not change
the signature, which remains publicly verifiable; instead it
‘randomizes’ pk to obtain a concise verification key svk that
essentially enables one to verify signatures with (almost) the
same precision as the standard verification, but in amore effi-
cient way.We remark that for secure efficient verification svk
should be hidden to the adversary, yet, the knowledge of svk
gives no advantage in forging signatures verified in the stan-
dard way using just pk. The second verification step consists
of an ‘online verification’ procedure. It takes as input svk
and can verify an unbounded number of message-signature
pairs performing significantly less computation than the stan-
dard verification algorithm. For security, it is fundamental
svk remains unknown to the adversary. We remark that gen-
erating svk during the offline phase achieves efficient online
verification with no impact on the original signing or key
generation algorithms, which was a drawback of previous
work [29, 36].

2.1 Syntax for efficient verification

Our definition of efficient verification lets the verifier set
the confidence level k at which she wishes to carry out the
signature verification. Notably k determines the amount of
computation to be performed and thus plays a central role in
the security and the efficiency of the new verification.

123

554 Journal of Cryptographic Engineering (2024) 14:551–575

Definition 1 (Efficient verification) A signature scheme �

admits efficient verification if there exist two PPT algorithms
(offVer, onVer) with the following syntax1:

offVer(pk, k): this is a randomized algorithm that on
input a public verification key pk, and a
positive integer k ∈ {1, . . . , λ} (where λ

is the security parameter of �), returns a
secret verification key svk.

onVer(svk, μ, σ): on input a secret verification key svk, a
message μ, and a signature σ , the effi-
cient online verification algorithm out-
puts 0 (reject) or 1 (accept).

For convenience we will refer to the signature scheme
augmentedwith the efficient verification algorithms as�E =
(�, offVer, onVer), and to the integer value k as confidence
level.

To be meaningful, a realization of efficient verification
needs to satisfy the properties of correctness, concrete atom-
ized efficiency and security.

Definition 2 (Correctness of efficient verification) A scheme
�E = (�, offVer, onVer) realizes efficient verification
correctly if the following conditions hold. For a given
security parameter λ, for any honestly generated key pair
(sk,pk) ← KeyGen(λ), for any message μ ∈ M,
for any signature σ such that Ver(pk, μ, σ) = 1, and
for any confidence level k ∈ {1, . . . , λ}; it holds that
Pr
[
onVer(svk, μ, σ) = 1 svk ← offVer(pk, k)

] = 1 for
any choice of randomness used in offVer.

Amortized efficiency relies on the fact that running
offVer once and reusing its output r times to run onVer is
computationally less demanding than running the standard
verification Ver r times. To formalize this, we will use the
function cost(·) that given as input an algorithm returns its
computational cost (in some desired computational model).
In addition, we parameterize concrete amortized efficiency
with two intertwined variables: r0 (number of instances of
verification), and e0 (ratio between the cost of r0 efficient
verifications over r0 standard verifications). The lower the
value of r0 the sooner �E amortizes the computational cost
of offVer. The lower the value of e0 the more efficient �E is
with respect to the standard verification.

Definition 3 (Concrete Amortized Efficiency) Let r0 be a
non-negative integer and 0 < e0 < 1 be a real constant.
A scheme �E realizes (r0, e0)-concrete amortized efficient
verification for � if given a security parameter λ and a con-
fidence level k; for any key pair (sk,pk) ← KeyGen(λ), for

1 Here pk denotes a public verification key output by KeyGen.

any pair (μ, σ)withμ ∈ M andσ such thatVer(pk, μ, σ) =
1; we have that ∀ r ≥ r0:

cost
(
offVer(pk, k)

)+ r · cost(onVer(svk, μ, σ)
)

r · cost(Ver(pk, μ, σ)
) < e0 (1)

2.2 Security model for efficient verification

Intuitively, �E realizes efficient verification in a secure way
if onVer accepts a signature that would be rejected by Ver
only with negligible probability. In the security game (see
Fig. 1), the adversary A has access to the signing oracle
OSign as well as the efficient verification oracle OonVer.
The goal of the adversary is to produce a signature σ ∗ for a
message μ∗ that was never queried to OSign and for which
Ver returns 0 (reject) and onVer returns 1 (accept).

Definition 4 (Security of efficient verification) A scheme�E

realizes a secure efficient verification for� if for a given secu-
rity parameter λ and for any confidence level k ∈ {1, . . . , λ},
for all PPT adversaries A the success probability in the
cmvEUF experiment reported in Fig. 1 is negligible, i.e.:

AdvcmvEUF
A,� (λ, k) = Pr

[
ExpcmvEUF

A,� (λ, k) = 1
]

≤ ε(λ, k).

Line 7 of the cmvEUF experiment excludes forgeries
against the original signature scheme. This is justified by
the correctness of efficient verification and by the fact that
� is existentially unforgeable. Notably, both the security
game and the advantage depend on the confidence level k
and assume all algorithms are entirely executed.

3 Progressive verification for digital
signatures

The goal of progressive verification is to incrementally
increase the confidence on the validity of a signature, for
a given message against a public key. Intuitively, the “confi-
dence” should be proportional to the amount of computation
invested: the further in the execution we go, the higher the
accuracy of the decision, and thus the confidence of the final
outcome (accept/reject).

3.1 Existing approaches to progressive verification
of signatures

Taleb and Vergnaud give a very intuitive definition of pro-
gressive verification for digital signatures [36]. They model
digital signatures with progressive verification as a 4-tuple
of PPT algorithms (KeyGen, Sign,Ver, ProgVer) such that:
� = (KeyGen, Sign,Ver) is a correct digital signature
scheme; and ProgVer takes in input a public verification key
pk, a messageμ, a signature σ , and some timing parameter t ,

123

Journal of Cryptographic Engineering (2024) 14:551–575 555

Fig. 1 Security model for
efficient verification of
signatures: existential
unforgeability under adaptive
chosen message and verification
attack (security game,
experiment and oracles). A is a
PPT algorithm that can query
the oracles in an adaptive and
parallel way. LS is the list of
messages queried to the signing
oracle

and outputs α ∈ {[0, 1]∩R}∪{⊥}, interpreted as an estimate
on the accuracy of its decisionwhether the signature be valid.
Moreover, the scheme satisfies the following properties:

Correctness If for some tuple of inputsProgVer(pk,μ,σ ,t)
outputs ⊥, then Ver(pk, μ, σ) = 0.

Security If for some tuple of inputs ProgVer(pk, μ, σ , t)
outputsα ∈ [0, 1], then this impliesPr

[
Ver(pk, μ, σ)= 0

]≤
1 − α (where the probability is taken over the random coins
of ProgVer).

In a nutshell, if α = ⊥, the progressive verification
deems the signature to be invalid (with 100% accuracy). If
α ∈ [0, 1], the algorithm considers the signature valid, and α

tells how accurate this statement is. Since progressive verifi-
cation may be interrupted at any arbitrary point t during its
execution, in practice α is (the output of) a function αprog(t)
that “converts” the progress in the verification process into a
value representing the accuracy of a positive outcome.

Shortcomings First, similarly to [29], also [36] sees signa-
tures with progressive verification as a stand-alone primitive.
In contrast we view progressive verification as a feature that
can augment existing schemes without requiring change to
the core algorithms. Second, the definition lacks a precise
notion of time complexity and does not model how unex-
pected interrupts are handled. The model we introduce in
the remainder of this section takes care of these aspects. In
addition, we generalize progressive verification to be (possi-
bly) stateful, which can capture more signature schemes as
well as reuse the same syntax to model both efficient and
progressive verification (cf. Sect. 8).

3.2 Syntax for progressive verification

In order to model progressive verification as an add-on algo-
rithm we need to derive from Ver an alternative algorithm
ProgVer (as introduced in Sect. 3.1), that builds confidence
on the final verification outcome in an increasing way. With-
out loss of generality, this task boils down to identifying a
sequence of T + 1 atomic instructions that we call ProgStep
with the following properties. Each ProgStep performs a
check of some sort on the input it receives. If one step fails,

the progressive verification returns α = ⊥. If none of the
initial t steps fails, the progressive verification returns the
output of a function αprog(t) ∈ [0, 1] that measures the
probability the input will be accepted by Ver. The fact of
increasingly building confidence is reflected by functions
αprog that are non-decreasing in t , the number of instruc-
tions checked before returning the answer. Figure 1 in [36]
provides an intuitive and graphical representation of this
statement.

Definition 5 (Stateful ProgressiveVerification) Let T ∈ Z>0

and αprog : {0, . . . , T } → [0, 1] be an efficiently com-
putable function. A signature scheme � admits (T , αprog)-
progressive verification if there exists a stateful PPT algo-
rithm ProgVer that takes in input pk, μ, σ and some inter-
ruption parameter t ∈ Z>0, outputs α ∈ {[0, 1] ∩ R} ∪ {⊥},
and satisfies the following syntax:

ProgVer(st,pk, μ, σ , t)
1: α ← ⊥
2: if t < 0 : return ⊥
3: if t > T : set t ← T
4: for j = 0, . . . , t

(b, st) ←
ProgStep j (st,pk, μ, σ)

if (b = 0) : return ⊥
else (b = 1) : α ← αprog(j)

5: return α

For convenience we will refer to the signature scheme
augmented with progressive verification as �P =
(�, ProgVer, T , αprog).

Concretely, ProgVer is made of T + 1 algorithms
ProgStep j , for j = 0 to T , that progressively update the
state st.We remark that the formalization into steps iswithout
loss of generality: Ver realizes a trivial progressive verifica-
tion for T = 0 where the only step is Ver itself. Finally, the
interruption value t is input to ProgVer only, and it is not
given to each ProgStep j . Thus our syntax models the fact
that the steps are agnostic of the interruption value and must

123

556 Journal of Cryptographic Engineering (2024) 14:551–575

work without knowing when to stop, which is essential to
capture arbitrary interruptions.

Correctness essentially states that signatures accepted by
the standard verification should also be accepted by the pro-
gressive one, with the highest confidence allowed by the
number of steps performed.

Definition 6 (Progressive Verification Correctness) Let �P

be a signature scheme with progressive verification; ProgVer
satisfies progressive verification correctness if, for any value
t ∈ {0, . . . , T }, for any given security parameter λ, for any
key pair (sk,pk) ← KeyGen(λ), for any admissible state st
generated by ProgVer, for any admissible message, given
a signature σ such that Ver(pk, μ, σ) = 1 it holds that:
Pr
[
ProgVer(st,pk, μ, σ , t) = αprog(t)

] = 1.

We follow the approach of [29] and let the progressive
verification algorithm output a value α that either rejects the
signature (α = ⊥), or accepts it with certainty α in the real
interval [0, 1]. We use the same interruption variable t as in
[29] to model runtime interruptions of the algorithm execu-
tion.2

Efficient versus progressive verificationAt a first glance, effi-
cient verification and progressive verification seem to have
the common goal of reducing the computational cost of a
signature verification. However the way this objective is
achieved in the two models is quite different.

In progressive verification, the verifier (and thus each
ProgVeri) is unaware of when the computation will be inter-
rupted, and its execution is independent of t . In contrast, in
efficient verification the verifier (running offVer) determines
the confidence level k prior to any actual verification (running
onVer).

In the latter, the (online) verification is aware of the con-
fidence level k (seen as interruption value), and adapts its
execution to k.

Stateful versus stateless verification We define progressive
verification as stateful. This allows us to keep the framework
as general as possible. Stateless progressive verification, á la
[29, 36], can be obtained setting st to ∅, this also removes
the need for analyzing any cross-query leakage due to state
reuse.

3.3 Security model for progressive verification

Our notion of unforgeability states that signatures rejected
by the standard verification should also be rejected by the
progressive one, except for an inaccuracy factor due to inter-
ruptions. More formally, Ver and ProgVer should have the

2 Our αprog(·) is essentially the inverse of the function iExtract�(·) in
[29].

same behavior (accept/reject) with discrepancies happening
with probability negligibly close to αprog(t).
Our security game has three main differences compared to
[29]:

State: in order to take into account that ProgVer main-
tains a possibly non-trivial state we allow the adversary A
to interact with the progressive verification oracle OProgVer
during the query phase, as well as the signing oracle OSign,
in a concurrent manner.

Interruption:queries toOProgVer have the form (μ,σ , t ′),
where t ′ is the desired interruption value submitted byA (and
chosen adaptively).

Output: instead of a single bit, our experiment returns a
pair (b, t∗). The bit b ∈ {0, 1} flags the absence or the poten-
tial presence of a forgery, while t∗ ∈ {0, . . . , T } reports the
interruption position used in the final progressive verifica-
tion. Including t∗ in the output of the experiment allows us
to measure security in terms of how close the probability of
Awining the experiment is from the expected accuracy value
1 − αprog(t∗).

Definition 7 (Security of progressive verification (progEUF))
Let � be a signature scheme that admits a progressive ver-
ification realization �P . �P realizes a secure progressive
verification for � if for any given security parameter λ, for
all PPT adversariesA the success probability in the progEUF
experiment in Fig. 2 is negligible, i.e.,:

Adv
progEUF
A,�P (λ) = Pr

[
ExpprogEUFA,�P (λ) = (1, t∗)

]

−(1 − αprog(t
∗)) ≤ ε(λ).

Intuitively, Definition 7 states that an adversary has only neg-
ligible probability tomakeProgVer output a confidence value
α∗ higher than the expected one. Let bad(t) denote the prob-
ability of accepting a forgery after t verification steps. Then
by setting αprog(t) = 1 − bad(t), we get Adv

progEUF
A,�P (λ) =

Pr
[
ExpprogEUFA,�P (λ) = (1, t∗)

]
− bad(t∗) ≤ ε(λ).

In this work, we prove security in the strongest model
where t ′ = t , i.e., A has the power to choose when to stop
the verification. Since we put no restriction on the values
t queried by A to OProgVer during the game, we will see
that by running OProgVer on ‘too few’ steps, A may learn
information about the internal state st.

Modelling interruptions
In [29], unexpected interruptions aremodeled via an inter-

ruption oracle iOracle(λ) that returns a value t ∈{0, . . . , T }
used by the progressive verification.
However, it is not clear whetherAmay control iOracle or

not.
We overcome these ambiguities by letting A output t ′

with every progressive verification query. For the purpose

123

Journal of Cryptographic Engineering (2024) 14:551–575 557

Fig. 2 Security model for
progressive verification of
signatures: existential
unforgeability under adaptive
chosen message and progressive
verification attack (security
game, experiment and oracles).
A can query the oracles
adaptively, in parallel and
polynomially many times in λ.
LS is the list of messages
queried to the signing oracle

of this work, we consider the strongest security model in
which the interruption oracle returns the adversary’s value,
i.e., t ← O Int(t ′) with t = t ′. This resembles side-channel
attack settings, where A may try to freeze the execution of
the verification.

It is possible to relax and generalize our model by set-
ting a different interruption oracle O Int, programmed at the
beginning of the game. At each verification query, O Int takes
as input the adversary’s suggestion for an interruption posi-
tion t ′ and outputs the value t to be used by the progressive
verification. In case t = t ′, we are modelling side channel
attacks, but we can also let t be independent of t ′. A realistic
definition of O Int is outside the scope of this work.

4 Generic compilers

In this section, we present generic transformations (compil-
ers) that augment a signature scheme � with either efficient
(Sect. 4.1) or progressive verification (Sect. 4.2).

Our technique works for a specific class of signature
schemes that we call with Mv -style verification. In such
schemes, Ver can be seen as the combination of two types of
verification checks: a matrix–vector multiplication (referred
to as Mv = 0, for appropriate matrix M and vector v) and
other generic checks (collected in the Check subroutine), see
Fig. 3 for details and an explanatory example. Among the
schemes withMv-style verification we highlight some of the
seminal lattice-based signatures [11, 14, 24, 32], homomor-
phic signatures [9, 20, 25], and multivariate signatures [8,
19].

4.1 A compiler for efficient Mv-style verifications

We present a generic way to realize efficient verification for
signatures withMv-style verification, whenever the compu-

tational complexity of Ver is dominated by the matrix–vector
multiplication, i.e., cost(Check) � cost(Mv) ∼ mn field
multiplications (for M ∈ Z

n×m
q).

Our compiler for efficient verification is detailed in Fig. 4
with a sketch of instantiation for the lattice-based scheme
GPV08 [24] as a running example. Further details on this
scheme as well as instantiations and details on the concrete
efficiency estimates forMP12 [32], Rainbow [19] and LUOV
[8], are deferred to Sect. 5. Table 1 summarizes the efficiency
results. We obtain secure efficient online verification using
as little as 0.4% (resp. 50%) of the computational cost of the
standard verification for lattice-based signatures on exponen-
tially large fields (resp. for Rainbow).

Overview of our techniqueOur transformation takes as input
�, a signature scheme with Mv-style verification; and it
returns �E = (�, offVer, onVer) that securely instantiates
efficient verification for �. The heart of our compiler lever-
ages the fact that for any pair of vectorsσ andu (often derived
from the message μ), and for any matrix A (of opportune
dimensions) if A · σ = u then for any random vector c (of
opportune dimension) it holds that c · (A ·σ) = c ·u. Collect-
ing variables on the left hand yields (c · [A| − In])·

[
σ

u

]

= 0.

Thus one can precompute the vector z ← c · [A| − In] and
run the efficient online verification check z · v =? 0, where
v ← (σ ,u). In a nutshell the idea is to replace the matrix–
vector multiplication with a vector-vector multiplication in a
soundway.Correctness and efficiency are immediate. Sound-
ness essentially comes from the fact that if z · v = 0, then
with all but negligible probability the original systemof linear
equations A · σ = u is satisfied too, as proven in Theorem 1.

We emphasize that our compiler leaves the signing algo-
rithm and the signatures as in the original scheme. It only
provides an alternative, probabilistic, verification algorithm.

123

558 Journal of Cryptographic Engineering (2024) 14:551–575

Fig. 3 General structure of a signature with Mv-style verification (on the left); an instructive example: the GPV08 [24] signature verification (on
the right)

Fig. 4 Our compiler for efficient verification of signatures with Mv-style verification. The four scheme-dependent subroutines are: parse pk and
GetZ (in onVer)[and Check and GetZV (in offVer). The computational complexity of onVer is linear in k, the chosen confidence level

4.1.1 Security analysis

Despite the construction being intuitive, analysing the leak-
age due to verification queries that reuse the same svk is not
trivial and is one main technical contribution of this result.

Theorem 1 Let � be an existentially unforgeable signa-
ture scheme with Mv-style verification (as in Fig.3). The
scheme �E = (�, offVer, onVer) obtained via our com-
piler depicted in Fig.4 is existentially unforgeable under
adaptive chosen message and efficient verification attacks.
Concretely, the advantage is AdvCMV A

A,� (λ, k) ≤ qV +1
qk−qV

where k ∈ {1, . . . , rk(M)} denotes the chosen confidence
level that grows up to the rank of the matrix M, qV =

poly(λ) << qk is a bound on the total number of verifi-
cation queries and q is the modulo of the algebraic structure
on which � is built.

Remark 1 For simplicity, Theorem 1 considers only existen-
tial unforgeability. The statement and the proof adapt with
ease to other security models such as strong and selective
unforgeability.

Proof of Theorem 1 In the cmvEUF security experiment
(Fig. 1), the winning conditions require A to produce a
message-signature pair (μ∗, σ ∗) such that μ∗ has not been
queried to the signing oracle during the game (existential
unforgeability); σ ∗ is invalid under the standard verification,
i.e., Ver(pk, μ∗, σ ∗) = 0; and the pair is accepted by the

123

Journal of Cryptographic Engineering (2024) 14:551–575 559

online verification, i.e., onVer(svk, μ∗, σ ∗) = 1. The goal
of the proof is to bound the probability this event occurs.

LetWin be the event {ExpcmvEUF
A,� (λ, k) = 1}. Let i = 1 to

qV be the index of the queries (μi , σ i) submitted byA to the
OonVer oracle. Define the family of events badi (for i = 1
to qV + 1) as:

badi := {Ver(pk, μi , σ i) = 0 ∧ onVer(svk, μi , σ i) = 1}

where badqV +1 corresponds to A returning a valid forgery
(μ∗, σ ∗) := (μqV +1, σ qV +1) at the end of the experiment.
We can rewrite the winning condition of the security exper-
iment as Win = {badqV +1 ∧ μ∗ /∈ LS} (recall that LS is
the list of messages queried to the signing oracle in the game
execution). Consider the event Bad defined as “there exists
at least one query index i in the game execution for which
badi occurs”. Formally:

Bad :=
⎧
⎨

⎩
∃ i ∈ {1, . . . , qV } :

Ver(pk, μi , σ i) = 0
∧

onVer(svk, μi , σ i) = 1

⎫
⎬

⎭
.

Hence,

AdvCMV A
A,� (λ, k) = Pr

[
Win ∧ Bad

]+ Pr
[
Win ∧ ¬Bad

]

≤ Pr
[
Bad
]+ Pr

[
Win | ¬Bad

]

where the inequality comes from applying the definition
of conditional probability and upperbounding Pr

[
Win Bad

]

and Pr
[¬Bad

]
by 1.

We notice that Pr
[
Win ¬Bad

]
is essentially the probabil-

ity that the event badi occurs only for i = qV + 1 and never
before, i.e.,

Pr
[
Win ¬Bad

] ≤ Pr

[

badqV +1 |
qV∧

i=1

¬badi

]

In order to bound Pr
[
Bad
]
, we define events Bad∗

i (for
i = 1 to qV) as “badi occurs for the first time at query i”,

namely Bad∗
i = badi ∧

(∧i−1
j=1 ¬bad j

)
. Then we have

Pr
[
Bad
] = Pr

[∨qV
i=1 Bad

∗
i

] =∑qV
i=1 Pr

[
Bad∗

i

]

≤∑qV
i=1 Pr

[
badi | ∧i−1

j=1 ¬bad j

]

where the second equality holds because the events Bad∗
i

are all disjoint, and the inequality follows from applying
the definition of conditional probability and upperbounding

Pr
[∧i−1

j=1 ¬bad j

]
by 1, for all i . Thus:

AdvCMV A
A,� (λ, k) ≤

qV +1∑

i=1

Pr

⎡

⎣badi |
i−1∧

j=1

¬bad j

⎤

⎦ . (2)

The final steps of the proof rely on the following lemma.

Lemma 1 For every i = 1 to qV + 1, it holds that

Pr
[
badi = 1 |∧i−1

j=1 ¬bad j

]
≤ 1

qk−(i−1)
.

The proof of Lemma 1 is deferred momentarily to let us
complete the reasoning that proves the theorem. Using the
inequality provided by Lemma 1, it is easy to see that
∑qV +1

i=1 Pr
[
badi = 1 |∧i−1

j=1 ¬bad j

]
≤ ∑qV +1

i=1
1

qk−(i−1)
.

Indeed, 1
qk−(i−1)

≤ 1
qk−qV

for all integers i in [1, qV + 1]
and for all qV , q, k ∈ N satisfying

qV < qk . Thus
∑qV +1

i=1
1

qk−(i−1)
≤ qV +1

qk−qV
, which proves

the bound on the advantage. ��
Proof of Lemma 1 ToupperboundPr

[
badi=1|∧i−1

j=1¬bad j

]

we need to analyze the information leakage due to verifica-
tion queries. First of all, by correctnessonVer(svk, μi , σ i) =
0 ⇒ Ver(pk, μi , σ i) = 0 and Ver(pk, μi , σ i) = 1 ⇒
onVer(svk, μi , σ i) = 1 for every possible svk generated
by offVer from pk. Leakage about svk happens in two cases:
when an event badi occurs (OonVer accepts where the stan-
dard verification would reject); and when OonVer rejects a
query (here A may learn that some combination of rows of
pk must appear in svk). Equation (2) gives us a way to bound
the adversary’s advantage (and thus, the magnitude of this
leakage) in terms of the events badi and ¬badi .

Consider the i-th query (μi , σ i) to OonVer. If the oracle
returns 0, the adversary learns thatC · (Mi ·vi) �= 0 mod q.
In other words, there is at least one row of C ∈ C := {C ∈
Z
k×n
q : rk(C) = k}, say c j , that is not in the hyperplane

orthogonal to wi := Mi · vi , i.e., c j · wi �= 0 mod q. Note
that A knows wi since (Mi , vi) can be computed from the
pk, μi and σ i .

Let us introduce the sets Hi ⊆ C of full-rank matrices
C ∈ C whose rows are all orthogonal to wi , formally:

Hi :=
⎧
⎨

⎩
C ∈ C : C =

⎡

⎣
c1
. . .

ck

⎤

⎦ ∧ c j · wi = 0 mod q
∀ j = 1, . . . , k

⎫
⎬

⎭
.

We assume A be able to pick the vectors wi ∈ Z
n
q � {0}

of her choosing (e.g., by generating suitable pairs (μi , σ i)).
This assumption is generous as it gives the adversary a large
amount of power and freedom in the game. The restriction
w1 �= 0 is technical, as otherwise Ver(pk, μ1, σ 1) = 0,
which is a necessary condition for OonVer leaking informa-
tion about svk.

At the first verification query (μ1, σ 1),A has no informa-
tion about C beyond the fact that it was uniformly sampled
from the set C := {C ∈ Z

k×n
q : rk(C) = k}. There-

fore, for any choice of w1 �= 0, if the event bad1 occurs,

123

560 Journal of Cryptographic Engineering (2024) 14:551–575

then bad1 = {C · w1 = 0 mod q ∧ C ←$ C}, thus
Pr[bad1] = Pr

[
C · w1 = 0 mod q ∧ C ←$ C

]
= H1

C .

The first (rejected) verification query leaks the fact that
C ∈ C \ H1.

For the second verification query, without loss of general-
ity let w2 be linearly independent from w1, i.e., w2 /∈ 〈w1〉q .
In this case, we have

Pr[bad2 ¬bad1] =
= Pr[C · w2 = 0 mod q | C ←$ C ∧ C ∈ (C \ H1)]

=
Pr
[
C · w2 = 0 mod q ∧ C ←$ C ∧ C ∈ (C \ H1)

]

Pr
[
C ←$ C ∧ C ∈ (C \ H1)

]

≤
Pr
[
C · w2 = 0 mod q ∧ C ←$ C

]

Pr
[
C ←$ C ∧ C ∈ (C \ H1)

]

=
|H2||C|

|C\H1|
|C|

= |H1|
|C \ H1|

where the inequality follows from the fact that, given three
events E1, E2, E3, it always holds that Pr[E1 ∧ E2 ∧ E3] ≤
min{Pr[E1 ∧ E2], Pr[E1 ∧ E3], Pr[E2 ∧ E3]}; and the
last equality follows since the hyperplanes H1 and H2 have
the same dimension.

The same reasoning applies to the generic i-th verification
query, where, w.l.o.g., A chooses wi outside the space gen-
erated by the previous w j ’s, i.e., wi /∈ 〈w1, . . . ,wi−1〉q . At
such query,A knows thatC ∈ C\

(⋃i−1
j=1H j

)
. Analogously

as before we get that

Pr

⎡

⎣badi = 1 |
i−1∧

j=1

¬bad j

⎤

⎦

≤
Pr
[
C · wi = 0 mod q ∧ C ←$ C

]

Pr
[
C ∈ C \

(⋃i−1
j=1H j

)
∧ C ←$ C

]

= | H1|
C \
(⋃i−1

j=1H j

) . (3)

Lemma 2 (stated and proven next) concludes the proof
showing that ∀ i = 2, . . . , qV + 1:

C \
(⋃i−1

j=1H j

)
≥ |H1| ·

(
qn−q
qn−k−1

− (i − 1)
)

.

Substituting this value into Eq. (3) returns:

Pr[badi = 1 |
i−1∧

j=1

¬bad j] ≤ 1

qk · 1−q1−n

1−qk−n − (i − 1)

≤ 1

qk − (i − 1)

where the last bound follows from the chain:

qn−1 > qn−k ⇔ 1

qn−1 <
1

qn−k

⇔ 1 − 1

qn−1 > 1 − 1

qn−k
⇔

1 − 1
qn−1

1 − 1
qn−k

> 1 ,

as 1 < k < n and q > 1. ��
Lemma 2 Let C := {C ∈ Z

k×n
q : rk(C) = k} be the set of

k × n matrices that are full rank and have entries in Zq (as
introduced in the proof of Lemma 1).

For any given set of vectors {w1, . . . ,wqV +1} ⊆ Z
n
q such

that wi /∈ 〈w j 〉q for every i �= j , define the collection of sets

{Hi := {C ∈ C : C · wi = 0 mod q}}qV +1
i=0 ⊆ C contain-

ing the matrices having the corresponding wi in their right
kernel and H0 = {∅}. It holds that ∀ i = 1, . . . , qV :

C \
⎛

⎝
i−1⋃

j=0

H j

⎞

⎠ ≥ |H1| ·
(

qn − 1

qn−k − 1
− (i − 1)

)

. (4)

Proof of Lemma 2 It is easy to see that the cardinality of C is:

|C| = (qn − 1) · (qn − q) · . . . · (qn − qk−1)

= q
k(k−1)

2 ·
k−1∏

j=0

(qn− j − 1).

as we have full freedom for how to pick the first row of
C (except for c1 �= 0); for the second row, we can pick any
vector c2 that is inZ

n
q but not in the span of the previous rowof

C (to keep the matrix full rank), and so on. The formula after
the final equality follows from decomposing each (qn − q j)

factor asq j (qn− j−1) and observing that
∏k−1

j=1 q
j = q

k(k−1)
2 .

The same reasoning applies to computing the cardinality of
a generic Hi (for i > 0), after noticing that the rows of the
matrices C ∈ Hi must be picked (as linearly independent
vectors) from the (n−1)-dimensional hyperplane orthogonal
to wi ; thus

|Hi | =
k−1∏

j=0

(qn−1 − q j) = q
k(k−1)

2 ·
k−1∏

j=0

(q(n−1)− j − 1)

= q
k(k−1)

2 ·
k∏

j=1

(qn− j − 1)

This proves the base case (i = 1) of the bound in (4):
|C � ∅| = |H1| · qn−1

qn−k−1
, since, compared to |H|, |C| has

the additional factor j = 0 and the missing factor j = k.

123

Journal of Cryptographic Engineering (2024) 14:551–575 561

Concretely this means that: Pr[bad1] ≤ qn−k−1
qn−1 . For i = 2,

again we get |C\H1| = |C|−|H1| = |H1|
(

qn−1
qn−k−1

− 1
)
. For

i = 3, we remove from the pool of eligibleC all those matri-
ces in H1 ∪ H2, i.e., that have either w1 or w2 in their right
kernel.3 In other words, matrices composed by only rows
orthogonal tow1 or tow2. The hyperplanesw⊥

1 andw⊥
2 both

have dimension n − 1, and since we are in a space of dimen-
sion n, they must intersect in a subspace of dimension n− 2.
For a tighter bound we use: H2 \H1 = H2 − H1 ∩H2 and
recall that 0 ≤ H2 −H1∩H2 ≤ H1 . Hence after the second
rejected query the number of possible C becomes:

|C \ (H1 ∪ H2) | = |C| − |H1| − |H2| + |H1 ∩ H2|
= |H1| · (

qn − 1

qn−k − 1
− 2) + |H(n−2)|

= |H1| · (
qn − 1

qn−k − 1
− 2) + qk(k−1)/2

k−1∏

j=2

(qn− j − 1)

= |H1| · (
qn − 1

qn−k − 1
− 2 + 1

(qn−1 − 1)(qn−k − 1)
)

≥ |H1| · (
qn − 1

qn−k − 1
− 2).

Remark that C could be still composed by some elements
of H1 and some of H2 \ H1; this would be consistent with
A’s view at this point.

We can now proceed by induction, assuming (4) holds for
the query index i , prove it for i + 1.

C \
i⋃

j=0

H j = C \
⎛

⎝(

i−1⋃

j=0

H j) ∪ Hi

⎞

⎠

= |C| −
i−1⋃

j=0

H j − |Hi | +
⎛

⎝
i−1⋃

j=0

H j

⎞

⎠ ∩ H j

= C \
i−1⋃

j=0

H j − |H1| +
⎛

⎝
i−1⋃

j=0

H j

⎞

⎠ ∩ H j

≥ C \
i−1⋃

j=0

H j − |H1|

≥ |H1| ·
(

qn − 1

qn−k − 1
− i + 1

)

− |H1|

= |H1| ·
(

qn − 1

qn−k − 1
− i

)

.

��

3 The vectors wi are assumed not to be multiples of one another. Oth-
erwise, A does not extract new information from a rejection, i.e., there
is no additional leakage.

4.2 A compiler for progressive Mv-style verification

Our compiler for progressive verification builds on the result
presented in Sect. 4.1. Given a signature scheme� withMv-
style verification, we define the T steps of a progressive
verification �P for � as shown in Fig. 5.

The value T sets the upper bound on the number of linear
constraints the verifier wants to check, hence T = rows(M),
whereM is thematrix employed in the original signature ver-
ification of �. The set of admissible states S includes ∅ and
any possible state output by some ProgVeri , specifically S =
{0, 1}×Z

rows(Z′)×cols(Z′)
q ×Z

rows(v)×cols(v)
q ×{0, 1}λ ∪∅.We

extract the confidence level from the probability of a progres-
sive forgery (as motivated by the proof of security given in
Theorem 1). It is easy to see that the probability that an adver-
sary creates a progressive forgery for an interruption step t

is at most qn−t−1
qn−1 , this follows from the same reasoning as in

the proof of Theorem 1 for efficient verification. Concretely,
the bound is derived from the proof of Lemma 2, where we
only consider Pr[bad1] as svk is refreshed with every new
efficient verification query, and so there is no useful cross-
query leakage, and we replace the confidence level k of the
efficient verification with the interruption parameter t . If the
size of the underlying algebraic structure is q = 2poly(λ) this
probability is negligible already for t = 1. In other words,
for signatures with Mv-style verification defined on expo-
nentially large algebraic structures efficient verification and
progressive verification coincide, trivially. The interesting
case is q = poly(λ), as the adversary could create a progres-
sive forgery with non-negligible probability. We remark that
in this sectionwe are not targeting efficiency, and our instanti-
ations of progressive verification refresh the svk produced by
offVer at every verification query. This way,A cannot exploit
the information possibly leaked by a progressive forgery in
future forgery attempts.

Finally, we note that, as in the case of efficient verification,
our compiler leaves the signing algorithm and the signatures
as in the original scheme, and only provides an alternative
verification algorithm which achieves the progressive verifi-
cation property.

4.2.1 Security analysis

Theorem 2 Let � be an existentially unforgeable signature
scheme with Mv-style verification (as of Fig.3). Then the
scheme �P obtained via our compiler (in Fig.5) is a secure
realization of progressive verification for �.

Proof Recall that an adversary A wins the security experi-
ment in Definition 7 if it outputs a message-signature pair
(μ∗, σ ∗) and an interruption t ′ such that:

(1) (μ∗, σ ∗) is rejected byVer, but acceptedProgVerwhen
it is interrupted at step t∗ ← O Int(t ′); and

123

562 Journal of Cryptographic Engineering (2024) 14:551–575

(2) the progressive verification algorithm outputs a too
high confidence level αprog(t∗).

Following Definition 7, we can realize secure
progressive verification by setting αprog(t) =
1−Pr

[
ExpprogEUFA,� (λ) = (1, t)

]
+ ε(λ) for all t = 0, . . . , T .

The core part of the proof is to estimate this probability.
Recall that our compiler for efficient Mv-style verifica-

tion (in Fig. 5) runs offVer at every verification query (line
1 in ProgVer0). This means that every verification query is
answered using a freshly generated svk. In particular, the
final verification (line 4 in the ExpprogEUFA,�P (λ) in Fig. 2) checks
A’s output using independent randomness from the previous
queries. So, whatever information the adversary may have
collected from previous queries is useless to win the exper-
iment. As a consequence, the probability that the adversary
wins the game equals the probability that the adversary out-
puts a valid forgery without querying OProgVer. The latter
is precisely the probability of the event bad1 defined in the
proof of Theorem 1, where now we consider the matrix C to
have t∗ rows instead of k. Hence from Lemma 1 it follows
that Pr

[
ExpprogEUFA,� (λ) ≤ (1, t∗)

]
= 1

qt∗ and:

Adv
progEUF
A,� (λ)

= Pr
[
ExpprogEUFA,� (λ) = (1, t∗)

]
− (1 − αprog(t

∗))

≤ 1

qt∗
−
(

1 −
(

1 − 1

qt∗

))

= 0 .

��

5 Examples of efficient verification

Because any instantiation of our compiler is completely
determined by the four subroutines parse pk, GetM, Check,
and GetZV, in what follows we explain only how these four
algorithms work. The complete descriptions of offVer and
onVer are derived using the general structure given in Fig. 4.

5.1 From lattices

We present concrete instantiations of our compiler for two
categories of LBS: ‘hash & sign’ with representative the
GPV08 signature [24], and ‘Boyen/BonsaiTree’ style with
representative MP12 [32].

Efficient verification for GPV08 [24]. The parse pk proce-
dure splits the public key into PK = A ∈ Z

n×m
q (the matrix

identifying the signer’s public key), and the auxiliary public
information PK .aux = (H, β), i.e., a description of a full-
domain hash functionH : {0, 1}∗ → Z

n
q and the norm bound

β ∈ R. The Check procedure is exactly as in the original ver-

ification (enforcing the norm bound β on the signature). The
GetM algorithm takes in input the public matrix PK = A,
and tails to it the identity matrix:M = [A|− In]. The GetZV
routine returns the matrix Z′ (explained momentarily) and
the vector v = [σ |H(μ) · 11×n]. The matrix Z′ is made up of
the same ‘randomized key’ vectors produced by GetZ during
the offline verification, i.e., z′

j = z j ← c jM = [c jA| − c j].
Thus the core verification check (line 7 in onVer) is actually
ensuring that z′

jv j = 0, i.e., c j · A · σ = c jH(μ) which is
the probabilistic check of the original verification equality.

Efficient Verification for MP12 [32].
The parse pk procedure assigns PK ← A = [Ã|A0 | . . .

| A�] ∈ Z
n×(m̄+n�log q��)
q (the matrix identifying the signer’s

public key),where m̄ = O(n�log q�), and � denotes the num-
ber of bits in the message, i.e., μ ∈ {0, 1}�. The auxiliary
public information is PK .aux = (u, β). The Check proce-
dure is exactly as in the original verification (enforcing the
norm bound β on the signature). The GetM algorithm takes
in input the public matrix PK = A, and appends to it the
identity matrix to obtainM = [A| − In]. The GetZV routine
returns the matrix Z′ and the vector v. The matrix Z′ is made
up of vectors of the form z′

j = [z̃ j | z0j +∑�
i=1 μ[i]zij |c j]

that identify a message-dependent lattice (calledAμ in [32]).
The vector v is the concatenation of the signature with the
auxiliary vector, i.e., v = [σ |u]. Note that u is the same for
all messages; thus, one could further optimize the online ver-
ification by computing (once and for all) the k inner products
z j [m̄ + n�log q� + 1] = c j · u during the offline phase. To
conclude we notice that the online verification ensures that
z′
jv j = 0, i.e., c j ·Aμ · σ = c j · u which is the probabilistic

check of the original verification equality.

5.2 Frommultivariate equations

For signatures based on multivariate equations we take Rain-
bow,MAYO, and LUOVas examples.We consider Rainbow,
despite it being broken, as it allows us to anayze the impact of
our technique in practice, thanks to its implementation made
available for the NIST standardization process.

Efficient Verification for Rainbow [18]. In the description
belowwe consider the standard Rainbow verification. A sim-
ilar approach can be used to speed up the verification also
in the “cyclic” and the “compressed” Rainbow variants as
in those cases the verification includes an additional initial
phase to reconstruct the full public key. We recall that in
this scheme the public key contains a system of m multivari-
ate quadratic polynomials in n variables. For convenience,
let N = n(n + 1)/2 and consider the field F = F2r .
Using a Macaulay matrix representation we can visualize
this system as a wide matrix composed of a quadratic term
Q (actually a m × N submatrix), a linear term L (m × n

123

Journal of Cryptographic Engineering (2024) 14:551–575 563

Table 1 A summary of the concrete efficiency achieved by various instatiations of our compiler for efficient verification

Ring or Field Size (representative schemes) Min. Accuracy Level for
128-bit security

Concrete Amortized
Efficiency (see Defi-
nition 3)

Online Efficiency
cost(onVer)
cost(Ver) = k0

n

exponential: q = 2128 (FMNP [20]; GVW [25]) k0 = 1 (r0 = 2, e0 = 0.51) 1
256 < 0.4%

large poly.: q = 230 (Boyen [11]; GPV [24]; MP [32]) k0 = 5 (r0 = 6, e0 = 0.86) 5
256 < 2%

small poly.: q = 16 (Rainbow [19] F24 -(36, 32, 32)) k0 = 32 (r0 = 65, e0 = 0.99) 32
64 = 50%

In the table, k0 denotes the minimum accuracy level that ralizes efficient verification with 128 bits of security, i.e., for which Pr
[
Bad
] ≤ 2−128 is

negligible (cf. proof of Theorem 1, with qV = 230); r0 is the smallest positive integer for which cost(offVer(pk,k0))+r·cost(onVer)
r·cost(Ver) < 1, and e0 is a (tight)

upperbound on this ratio

Fig. 5 Our compiler for progressive verification of signatures with
Mv-style verification. The algorithms offVer,Check and GetZV are
precisely as defined in Sect. 4.1, Fig. 4, and T = rows(M). The nota-
tion Z′[i, ∗] describes the i-th row of the matrix Z′, similarly v[∗, i]
describes the i-th column of v (which is usually a vector v, but may be
a matrix in some constructions)

submatrix) and a constant term C (a m × 1 vector). The
parse pk procedure extracts from the public key PK this
matrix pk = [Q|L|C] ∈ F

m×(N+n+1) and a description
of a full-domain hash function H : {0, 1}∗ → F

m as the
auxiliary public information PK .aux = H. The Check pro-
cedure is trivial and always returns 1. This is because the
whole verification can be written as a matrix–vector multi-
plication. The GetM algorithm extracts from PK the matrix
representing the system of quadratic multivariate equations
[Q|L|C]. Finally, it appends to this the identity matrix, so
M ← [Q|L|C| − Im]. We remark that M can be seen as a
matrix of blocks, where any block has the same height (m =
number of rows), but different length (number of columns).
The GetZV routine reads the matrix Z′ = Z made up of
the rows z′

j = z j ← c jM = [c j · Q|c j · L|c j · C| − c j] ∈
F
1×N+n+1. In addition, this algorithm parses the signature as

σ = (s, salt), computes the (salted) hash of the message d as

h ← H(H(d)‖salt) and outputs the vector v = [s̃|s|1|h],
where s is part of the signature and s̃ is the ‘quadratic
vector’ obtained by computing all products of pairs of ele-
ments in s (with monomials ordered lexicographically),
i.e., s̃ ← [s[1]2, s[1]s[2], . . . , s[n − 1]s[n], s[n]2]. Clearly
z′
j · v = 0 if and only if c j · (Qs̃ + Ls + C) = c j · h, which

is a probabilistic check of the original system of verification
equations in Rainbow.

Efficient Verification for MAYO [7]. MAYO signatures are a
“whipped up” version of unbalanced oil and vinegar (UOV)
signatures. The public key is a trapdoored multivariate map
P : F

n
q → F

m
q , which consists of a system of m multivariate

quadratic polynomials in n variables, where all polynomials
share a common vanishing linear space O ⊆ F

n
q (the oil

space). Beullens optimizes the public key generation so that
each polynomial pi can be represented by a matrix of the

form Pi =
(
P(1)
i P(2)

i

0 P(3)
i

)

∈ F
n×n
q and the evaluation of an

input x ∈ F
n
q is done in the natural way: pi (x) = xTPix.

MAYO signatures also employ a full-domain hash function
H, and �2 “emulsifier” matrices Ei, j ∈ F

m×m
q that are part

of the public parameters, that are the same for all signers.
The parse pk procedure extracts from the public key the

matrices PK = (P1, . . . ,Pm) and other public parameters
PK .aux = (H, {Ei, j }�i, j=1).

The GetM algorithm extracts the emulsifier matrices Ei, j

from PK .aux and combines them in the matrixM = (E1,1,

E2,2, . . . ,E�,�,E1,2, . . . ,E�−1,�,−Im) ∈ F
k×m(L+1)
q ,where

L = �(� + 1)/2 is the total number of emulsifier matrices.
In this case svk consists of: k the confidence level; Z the
compressed version of the train of emulsifier matrices with
the final block being the randomness used for compression;
H the hash function; and PK the polynomials of the signers’
public key. Notably, in MAYO we do not apply our trans-
formation to PK , but rather to the emulsifier contained in
PK .aux. Thus Z is general and can be used to efficiently
verify signatures by any signer using the same MAYO set-
ting (the public parameters).

The Check algorithm is trivial and always returns 1.

123

564 Journal of Cryptographic Engineering (2024) 14:551–575

The GetZV algorithm parses σ as (salt, s1, . . . s�). It uses
Z′ = Z ∈ F

k×m(L+1)
q and v = (s̃, ṽ), where ṽ = H(μ‖salt)

and s̃ = (P(s1), . . . ,P(s�), P ′(s1, s2), . . .P′(s�−1, s�)) ∈
(Fm

q)
�(�+1)

2 , here P′ is the polar form of P.
Efficient Verification for LUOV [8]. The parse pk proce-
dure splits the public key into PK = (public.seed,Q2) (the
concise information needed to retrieve the full signer’s public
key), and the auxiliary public information PK .aux = H, i.e.,
a description of a full-domain hash function H : {0, 1}∗ →
F
m , where m = rows(Q2) and F = F2r . The Check pro-

cedure is trivial and always returns 1. This is because the
whole LUOV verification can be written as a matrix–vector
multiplication The GetM algorithm takes in input PK =
(public.seed,Q2) and derives the full public key as done in
the original verification: it runs [C|L|Q1] ← G(public.seed)

to get the constant constant (vector), the linear (matrix) and
the first quadratic (matrix) parts of the verification equation;
and then it reconstructs the full quadratic term as Q ←
[Q1|Q2]. Finally it appends to the public key the identity
matrix M ← (C,L,Q,−Irows(Q)), we remark that M can
be seen as a matrix of blocks, where any block has the same
height (number of rows), but different length (number of
columns). The GetZV routine reads the matrix Z′ = Z made
up of the rows z′

j = z j ← c jM = (c j ·C, c j ·L, c j ·Q,−c j).
It also outputs the vector v = [1|s|s̃|h], where s is part of the
signature σ = (s, salt), s̃ is the ‘quadratic vector’ obtained
by computing all products of pairs of elements in s, i.e.,
s̃ ← [s[1]2, s[1]s[2], . . . , s[n−1]s[n], s[n]2], finally h is the
hash of the message and the salt, i.e., h ← H(μ‖0x0‖salt).
Clearly z′

j · v = 0 if and only if c j · (C+Ls+Qs̃) = c j · h,
which is a probabilistic check of the original verification
equation in LUOV.

5.3 Efficiency estimates

In what follows, we evaluate the efficiency gains provided
by our compiler using the (r0, e0)-concrete efficiency notion
of Eq. (1). In brief, a �E achieves (r0, e0)-concrete amor-
tized efficiency if r0 is the smallest, non-negative integer for
which it holds that e0 < 1, where e0 is an upperbound on
the ratio between the cost of running the offline verification
once and using its outcome in r0 online verifications, over the
cost of running r0 standard signature verifications. For con-
venience, we estimate only the cost of the most expensive
‘steps’ in the verification, namely the ones involving several
field element multiplications (e.g., matrix–vector products),
and disregard the cost of adding elements, generating random
values, reading algorithm inputs or evaluating hash func-
tions. Moreover, we do not consider ad-hoc optimizations
of matrix multiplication due to probabilistic checks using,
e.g., Freivalds’ Algorithm or its variant [35]. Table 2 collects
the common notation, while Table 1 displays a summary of

our findings, that we motivate below. Observe that we only
compute concrete parameters forRainbow, so that they canbe
compared with the results of our implementation. The analy-
sis ofMAYOandLUOVcan be conducted analogouslywhen
optimized implementations will be available.

The computational complexity of Ver for signature with
Mv-style verification, e.g., [8, 18, 19, 24, 25, 32], is domi-
nated by a matrix–vector multiplication. Let n = rows(M)

andm = cols(M), withm ≥ n. The cost of computingM ·v
is, in the worst case, nm filedmultiplications. Our offline ver-
ification algorithm executes k vector–matrix multiplications
(one for each z′

j in Z′), resulting in knm multiplications in
the worst case. The computational complexity of our online
verification is dominated by the k vector-vector (inner) prod-
ucts zi · v, resulting in km multiplications in the worst case.
Thus, the compiler presented in Sect. 4.1 outputs an efficient
verification for signature withMv-style verification that has
the following concrete amortized efficiency:

cost(offVer) + r · cost(onVer)
r · cost(Ver) = knm + rkm

rnm

= k

r
+ k

n
. (5)

Clearly the first addend in Eq. (5) comes from amortizing the
cost of offVer (over verifying r signatures), while the second
term is the fix trade-off between the computational costs of
onVer and Ver (at each and every verification). Table 1 col-
lects the figures for three representative classes of signature
schemes, if we apply our compiler for efficient verification at
128 bit of security. The values are extrapolated as explained
in the reminder of the section. In detail, k0 depends on the
signature� as it is theminimal value of the confidence level k
for which �E is existentially unforgeable; k0 determines the
length of the svk. The value r0 is theminimumnumber of ver-
ifications to run in order to achieve a concrete efficiency gain
of e0. Thus, lower values of e0 and r0 correspond to better
efficiency gains. The last column in Table 1 displays the ratio
k0/n that essentially tells how much cheaper onVer is com-
pared to the original verification Ver (ignoring the one-time
cost of running offVer). Again, lower values in this column
correspond to better efficiency; for instance, a ratio of 0.4%
means that the computational cost of Ver is 99.6× higher
than the one of onVer (i.e., onVer is expected to be about
99× faster).

For conveniencewe categorize signatures according to the
size of their underlying algebraic structure.

The modulo q is exponential in λ: To the best of our knowl-
edge, the only LBS constructions that fall in this category
are the homomorphic signatures by Gorbunov et al. [25]
and by Fiore et al. [20]. In this case, using our compiler
(with some caveats, as we show in the next section) yields

123

Journal of Cryptographic Engineering (2024) 14:551–575 565

Table 2 Parameters involved in
the performance analysis of our
compiler for efficient
verification

q Modulus of the lattice or size of the field

n Number of rows in the public key

m ∈ �(n log q) Number of columns in the public key

β Bound on the noise / size of signatures

σ or U Vector or matrix signatures

k Number of steps in the online verification (confidence level)

r Number of signatures verified (repetitions of onVer)

cost(alg) Number of field multiplications needed to compute alg

Table 3 Details about IoT
boards adopted

Board CPU SRAM Flash

Arduino Due ARM Cortex-M3 (single-core @84MHz) 96KB 512KB

Espressif ESP32 Tensilica Xtensa LX6 (dual-core @240MHz) 520KB 4MB

Raspberry Pi Pico Arm Cortex-M0+ (dual-core @133MHz) 264KB 2MB

that the advantage in the cmvEUF experiment (as per Def-
inition 4) is negligible in the security parameter λ for any
confidence level k ≥ k0 = 1. However, in [20, 25] the
complexity of Ver is dominated by the matrix-matrix mul-
tiplication AU where A ∈ Z

n×m
q is the fixed public key,

and U ∈ Z
m×m
q is the signature.4 We computed parame-

ters for this family of schemes according to Albrecht et al.’s
methodology [1]. Setting λ = 128, q = 2λ and n = 256
yields that reduction algorithms (in particular, the optimized
BKZ algorithm) would have runtime 2128 and would solve
at most SIS256,2128,65536,280 , while the security of the scheme
relies on a SIS instance with norm bound β = 249d , where
d is the depth of the circuit. We can now use this set of
parameters to determine the concrete amortized efficiency
reached by our compiler for [20, 25]. Setting k = k0 = 1
and n = 256 in Eq. (5), we want to extract the mini-
mum r0 for which 1/r0 + 1/256 is smaller than 1, formally
r0 = min{r ∈ Z>0 1/r + 1/256 < 1}. It is easy to see that
r0 = 2 suffices and we get 1 > e0 = 0.504 > 1/2+ 1/256.
In other words, the cost of setting up the online verification
(running offVer) plus performing r = 2 online verifications
is about half of the cost of running 2 standard verifications,
while preserving the security level. Moreover, for this set of
parameters cost(onVer)

cost(Ver) = k0
n = 1

256 < 0.004, i.e., our online
verification requires about 0.4% of the computational cost of
running the standard verification algorithm; alternatively, we
can read this results as our onVer is 99× faster than Ver.

The modulo q is a large polynomial in λ : This is the most
common setting given the ‘small’ size of q. In this category
fall the standard signature schemes by Gentry et al. [24],

4 In [20] the dimensionm additionally depends on the number t ≥ 1 of
distinct identities (users) involved in labeled program. For simplicity,
in what follows we consider t = 1.

Boyen [11], and its improved version by Micciancio and
Peikert [32]; as well as the linearly homomorphic scheme by
Boneh and Franklin [9]. For the lattice-based constructions,
in order to guarantee a negligible advantage in the cmvEUF
experiment (see Definition 4) we need to set an appropriate
value of k ≥ k0 > 1. We argue that ‘appropriate’ values of k
are still ‘small’ in comparison to n and lead to a ‘good’ amor-
tized efficiency even for ‘few’ verifications. We recall that
for these constructions Ver computes a product Aσ where
A ∈ Z

n×m
q and the signature is just a vector σ ∈ Z

m
q . To

guarantee the security of our efficient verification, the value
k should be set so that q−k be negligible. In other words,
for the cmvEUF advantage to be negligible it must hold that
q−k ≤ 2−λ. Hence, to estimate k, one needs to first fix the
value of λ, compute the corresponding q that can guarantee
such level of security, and then extract the minimum value
k0 for which the above relation holds.

Computing parameters for lattice-based schemes is not
straightforward, as so far there is no unique way to derive the
parameters from a given λ. However, a good measure of the
security of a set of parameters can be extracted computing
a the root Hermite factor δ introduced in [22]. Concretely, δ
provides an indication of how reduction algorithms would
perform against the hardness assumption underlying the
lattice-based construction. Generally, the ‘smaller’ the δ, the
‘more secure’ the scheme.

For Boyen’s signature [11] and its variant by Micciancio
and Peikert [32], we use the parameters provided in [32, Fig.
2]. Since in [32] they set δ = 1.007, to ensure a fair com-
parison, we compute the parameters Gentry et al.’s signature
[24] for the same value of δ. As a result, we observed that
for this δ all of the schemes require about the same mod-
ulo q = 230 (for n = 256). For this set of parameters,
our efficient verification provides 80 (resp. 128; 250) bits

123

566 Journal of Cryptographic Engineering (2024) 14:551–575

of security with just k0 = 3 (resp. k0 = 5; k0 = 9). Thus our
compiler achieves a (4, 0.77)-concrete amortized efficiency
(resp.(6, 0.86); (10, 0.94)), and a concrete tradeoff between
onVer and Ver of k0/n < 0.02 (resp. 0.02; 0.04). In partic-
ular, for the lower security settings this means that onVer is
about 98× faster than Ver.

The modulo q is a sub-polynomial in n: The only signature
schemes in this category are the ones based on multivariate
quadratic polynomial equations and stem from the (unbal-
anced) oil and vinegar approach. As a case of study we
consider Rainbowwith the parameters given for its last NIST
submission and available on the the official website.5 For
Level I we have F = F24 and (v1, o1, o2) = (36, 32, 32),
which lead to m = 100 and n = 64 (for consistency in this
paper we set n to be the number of rows of a matrix and m
to denote the number of columns, classically the variables
are swapped for multivariate signatures). Setting k0 = 32
is suitable for good security since q−k0 = 2−4·32 = 2−128.
Thus, theminimumnumber of repetitions r0 to achieve amor-
tized efficiency (i.e., for which we have k0/r + k0/n < 1)
is r0 = 65, the corresponding amortization factor is e0 =
0.9923 = 32/65 + 32/64. For this set of parameters we
have cost(onVer)

cost(Ver) = k0
n = 32

64 = 0.5, in other words, our
compiler produces an online verification that is 2× faster
than the standard verification. For Level III, F = F28 and
(v1, o1, o2) = (68, 32, 48), we havem = 148 and a suitable k
in this case would be k0 = 16, since q−k0 = 2−8·16 = 2−128.
For Level V, F = F28 and (v1, o1, o2) = (96, 36, 64). As a
result we havem = 196, n = 100 and again k0 = 16 but a bet-
ter amortize efficiency factor e0 = 0, 96 already for r0 = 20.
We remark that for this set of parameters cost(onVer)

cost(Ver) < 0.16,
i.e., our compiler produces an online verification procedure
that is 6× faster than the standard verification.

6 Experimental evaluations with rainbow

In order to test the feasibility of our verification frame-
works, we developed a library called BLEP [37] that offers a
rather straightforwardAPI inC andC++ to perform standard,
efficient, and progressive verification for signature schemes
withMv-style verification. BLEP has been developed with a
strong orientation towards performance and portability.

We benchmarked our library using three IoT boards:
Arduino Due, Espressif ESP32, and Raspberry Pi Pico.
Central Processing Unit (CPU), Random Access Memory
(RAM), flash memory and other details about these devices
can be found in Table 3. The Zephyr Real-Time Operating
System (RTOS) version 3.2.0 has been selected to build our

5 https://www.pqcrainbow.org/ (accessed on 20/02/2023).

Table 4 Mv-style verification details regarding Rainbow classic ver-
sions

Version Field used PK matrix size

Rainbow I GF(16) (64 × 5050)/2 bytes

Rainbow III GF(256) 80 × 11026 bytes

Rainbow V GF(256) 100 × 19306 bytes

Table 5 Look-up configurations offered by BLEP

Config. Type of Optimization

0 No look-up table

1 compressed look-up tables

(for roughly half possible inputs)

2 Complete look-up tables

(for all possible inputs)

test bed since it supports a variety of boards and several
C/C++ language features.

We used a consumer-grade laptop as a reference platform,
more precisely, a MSI Prestige 14 A10SC equipped with an
Intel i5-10210UCPU@1.60GHz and 16GBLPDDR4RAM.
On this laptop we installed Linux Mint 20.3.

For our implementation we focus on Rainbow since,
among all the Mv-style signatures, this is the only one
designed with practical constrains in mind and has an
available, ready-for-use implementation. Albeit Rainbow’s
security has been recently challenged [6], we consider our
implementation insightful and a useful blueprint for the
analysis of other schemes based on multivariate polynomial
equations. We believe that the results of our testing activ-
ity can still be useful to showcase the performance boost
obtainable by applying efficient verification to existing con-
structions. Table 4 shows the parameters used for testing.

In order to shorten verification times, our library BLEP
allows the use of look-up tables to speed up addition and
multiplication over finite fields. More precisely, BLEP offers
three possible configurations—i.e., complete, compressed,
or no look-up tables—as shown in Table 5. Users can select
the appropriate type of optimization based on the desired
performance criteria and the availability of storage space.
Since we are dealing with IoT devices, we have to deal with
tight storage constraints, thus the usage of look-up tables
and the choice of the storage medium has to be consid-
ered carefully. Usually, RAM allows for faster access times,
while flash memory has way more space to work with.
Certainly better performance is desirable, but the random
access memory can easily fill up, drastically reducing the
space available for the program stack. On the other hand,
relying entirely on flash memory can drastically limit the
space available for storing the “short” verification key (svk).
This would inevitably affect the maximum security level
achievablewhen implementing efficient, andprogressive ver-
ification on specific constrained devices.

123

https://www.pqcrainbow.org/

Journal of Cryptographic Engineering (2024) 14:551–575 567

Table 6 Reference device: Avg efficient verification times (in microsecs) for Rainbow I, III and V

svk size / pk size (%) Language Configuration Rainbow I (µs) Rainbow III (µs) Rainbow V (µs)

10% C Conf. 0 364 2984 6390

Conf. 1 320 1152 2290

Conf. 2 83 352 780

C++ Conf. 0 390 2152 4550

Conf. 1 262 1192 2570

Conf. 2 83 351 760

20% C Conf. 0 729 5698 12780

Conf. 1 640 2304 4580

Conf. 2 166 704 1560

C++ Conf. 0 780 4304 9100

Conf. 1 524 2384 5140

Conf. 2 166 703 1520

30% C Conf. 0 1094 8952 19170

Conf. 1 960 3456 6870

Conf. 2 249 1056 2340

C++ Conf. 0 1171 6456 13650

Conf. 1 787 3576 7710

Conf. 2 249 1055 2280

40% C Conf. 0 1459 11936 25560

Conf. 1 1280 4608 9160

Conf. 2 332 1408 3120

C++ Conf. 0 1561 8608 18200

Conf. 1 1049 4768 10280

Conf. 2 332 1407 3040

50% C Conf. 0 1824 14920 31950

Conf. 1 1600 5760 11450

Conf. 2 416 1760 3900

C++ Conf. 0 1952 10760 22750

Conf. 1 1312 5960 12850

Conf. 2 412 1759 3800

100% C Conf. 0 3648 29840 63900

Conf. 1 3200 11520 22900

Conf. 2 832 3520 7800

C++ Conf. 0 3904 21520 45500

Conf. 1 2624 11921 25700

Conf. 2 830 3519 7600

With the aim of evaluating the verification times on differ-
ent devices, and since the Mv-style verification time scales
linearly in the number of rows present in the svk, we simply
collected the cost for a single row-vector product. To do so,
we wrote two benchmark programs in C and C++ using the
API offered by BLEP. These programs have been compiled
with gcc and g++, both version 11.3.0, and with the -O3
optimization flag enabled. Results of our testing activity are
shown in Table 6 and in Figs. 6, 7 and 8.

In Table 6, we present the average efficient verification
times collected on our reference platform with the different
versions of Rainbow, and with various svk sizes (here shown
as percentages with respect to the number of rows of the
corresponding public key). This data shows the remarkable
impact of lookup tables on the experimental results (config-
uraration 1 and 2) even on a standard laptop. This increase
in performance is even more evident when analyzing verifi-
cation times of Rainbow III and V.

123

568 Journal of Cryptographic Engineering (2024) 14:551–575

Fig. 6 Rainbow I: Avg
row-vector product times (in
microsecs) obtained on our IoT
devices

Fig. 7 Rainbow III: Avg
row-vector product times (in
microsecs) obtained on our IoT
devices

In Figs. 6, 7 and 8, we summarize data related to Rainbow
I, III and V, respectively. More precisely, we store the look-
up tables in flash memory (unless otherwise indicated), run
our benchmark on the three versions of Rainbow, and then
collect computation times on our IoT boards (see Table 3).
Testing activity executed with Rainbow I (see Fig. 6) shows
that using look-up tables can reduce the verification times
by more than 50% on all IoT boards. On the other hand, by
storing the look-up tables in RAMwe gain an additional per-
formance improvement of about 8% and 18% on the Arduino
Due board, for the Configuration 1 and 2 respectively. No
significant improvement has been observed on the Espressif
ESP32 and the Raspberry Pi Pico.

The behaviour of Rainbow III and V is similar to that
of Rainbow I, except for the ESP32 (see Figs. 7 and 8). In
fact, if we use this board with large look-up tables stored in
flash memory, performance deteriorates considerably. This
abnormal behaviour does not happen with the Arduino Due,
norwith theRaspberry Pi Pico.We suppose that the hardware
constraints of ESP32 negatively affect the performance of
our testing activities. On the other hand, if we store look-
up tables in RAM only the Raspberry Pi Pico is capable of
holding them completely. The finite field used by Rainbow

III and V is GF(256) and the look-up tables are larger than
those used by Rainbow I overGF(16). Therefore, Raspberry
is able to get additional timing improvements of about 62%
and 76% for Configuration 1 and 2, respectively.

7 Extensions

7.1 Signatures with properties

Efficient verification can be easily generalized to the case of
signatures with different security notions, such as strong or
selective unforgeability, or with advanced properties. This is
of particular interest for LBS, where the versatility of well-
established hardness assumptions has already given life to a
variety of constructions under different security models and
realizing advanced properties, including homomorphic [25],
threshold [4], constrained [38] and indexed attribute based
signatures [27]; and yet relying on an Mv-style verification
(as introduced in the beginning of the section, and displayed
in Fig. 3).

Signatures with properties require more complex secu-
rity definitions than plain existential unforgeability. Figure9

123

Journal of Cryptographic Engineering (2024) 14:551–575 569

Fig. 8 Rainbow V: Avg
row-vector product times (in
microsecs) obtained on our IoT
devices

Fig. 9 Generic description of the unforgeability under adaptive chosen
message attacks experiment for signatures with properties

provides a generic formalism to unify the description of the
unforgeability experiments for signatures with properties.
In a nutshell the common requirements are:

1. If the signature guarantees selective unforgeability, the
first step in the experiment is for A to declare the target
messages for the forgery; in Fig. 9 this is handled via the
val variable. If unforgeability is adaptive, val is set to ⊥.

2. A setup phase, where a probabilistic routine (denoted
Setup in Fig. 9) generates a set of secret values sval –
handed over to the oracles– and other public auxiliary
values pval, that include verification keys, delivered to
the adversary.

3. A challenge phase, where the adversary is given access to
some, possibly stateful, oracles (usually, at least an oracle
that returns signatures by honest users), and has to output
a message and a forged signature on it. We model this by
defining two oracles:

• OK (·; sval, stK): Returns signing/secret keys (of
users or other entities that A may corrupt).

• O(·; st): Encompasses all the other possible oracles
(signing, opening for group signatures, etc.).

4. A check phase, where the experiment checks whether the
signature output by A is valid and if A won the experi-
ment. The former requires an execution of the verification
algorithm; the latter includes avariety of additional checks
to ensure the signature is actually a forgery (and is not triv-
ially derivable from the adversary’s view, e.g., because it
was output by the signing oracle). We model this second
check with the WinCond predicate. Clearly, the specifi-
cation of WinCond depends on each primitive, and on
the type of unforgeability: If selective, it checks that the
queries and the forgery are consistent with the values val
declared at the beginning of the game. If existential, it
checks that μ∗ was not queried to the signing oracle. If
strong, it checks that the queries to the signing oracle are
all distinct.

Adapting the syntax and security experiment of efficient
verification to signatures with properties is rather straight-
forward. Similarly, our compiler of Sect. 4.1 can be easily
adjusted to work on signatures with properties and with
Mv-style verification, as we discuss momentarily. Regard-
ing security, the core part of the proof of Theorem 1 is
information-theoretical, and therefore it does not signifi-
cantly change when considering signatures that are only
selectively unforgeable, or strongly unforgeable. In the fol-
lowing we analyze the impact of our compiler on the
efficiency of some schemes whose verification is structured
as in Fig. 3: the constrained LBS in [38], the (indexed)
attribute-based LBS in [27], the homomorphic LBS in [20],
the threshold LBS in [4], and the multivariate-based ring
signature RingRainbow [33]. This list is by no means an
exhaustive list. Indeed, in this work we decided to ignore
lattice-based signatures with properties that are obtained
using the Fiat-Shamirwith abort technique from [31], despite
the fact that wherever the result of Chen et al. [16] is appli-
cable, our compiler is too. The reason is that signatures with
properties that rely on such technique are many, and the effi-

123

570 Journal of Cryptographic Engineering (2024) 14:551–575

ciency gain computation is similar to the one performed in
Sect. 5
Constrained Signatures (CS). CS allow a signer to sign a
message only if either the message or the key satisfies cer-
tain preset constraints. The verification algorithm of the
lattice-based instantiation of CS by Tsabary [38] includes
anMv-style check (where the matrix has n rows) and a norm
check. Hence, our compiler applies directly to this scheme.
Unforgeability requires that n ≥ λ and q ≤ 2λ, so for an
average value q ∼ 232, we can set k = 9 � λ so that the
advantage of A in Theorem 1 is qV +1

qk−qV
< 1/2256. Remark

that larger values of q (that could be required to have higher
security guarantees) imply smaller values of k. Therefore,
for this less conservative choice of parameters the efficiency
gain is cost(onVer)

cost(Ver) = k
n = 9

256 < 0.036, i.e., the online ver-
ification requires about 3.6% of the computational cost of
running the standard verification algorithm.

Indexed Attribute-based Signatures (iABS), and Homomor-
phic Signatures (HS). iABS allow a signer to generate a
valid signature on a message only if the signer holds a set
of attributes that satisfy some policy (represented by a cir-
cuit C). HS allow a signer to sign messages μi so that it is
possible to publicly derive a valid signature for a message μ

that corresponds to the output of a computation on the orig-
inal messages, i.e., μ = C(μ1, . . . , μr). According to the
type of homomorphism supported by the scheme, the circuit
C can encode only linear functions, polynomial functions, or
any function of bounded multiplicative degree. In both iABS
in [27] and HS in [20] the signature verification is composed
by three steps:

1. Computation of the public matrix M from the circuit C
(either the policy, or the homomorphic computation spec-
ified by the labelled program);

2. An ‘Mv’-style check;
3. A norm check on the signature.

The first step is critical because the public matrix M can be
generated through a non-linear transformation, i.e., it might
include multiplications of the public matrix by itself (or by
a gadget matrix). This would not allow to compute the first
step online from the zi ’s, but the verifier would have to use
M and the ci ’s instead, defying the purpose of our compiler.
Hence, our compiler can be applied to these signatures in an
efficient way only if either (1) C involves solely linear opera-
tions on the public matrix, or (2) C is fixed, or (3) C is known
before running verification.6 In these cases, we achieve effi-

6 The construction of group signature in [27] has this iABS as building
block, but it does not satisfy any of these conditions, as the verification
circuit depends strongly on the signature. The authors did not find a
straightforward way to modify this construction to have efficient veri-
fication without significantly impacting the signature length.

cient verification by letting offVer take as (additional) input
C and compute M using the algorithm PubEval from [26].
The vectors (Z′, v) used in the verification might (as in [20])
or might not (as in [27]) depend on the message. In the latter
case the subroutine GetZV in onVer simply returns the input.
The impact of the compiler on the efficiency of HS was
already analyzed in Sect. 5. Regarding the iABS, the sug-
gested value of the modulo q is such that q ≥ n8. The
standard requirement n ≥ 2 already implies that 1/qk ≤
1/(28)k = 1/256k . However, to guarantee the hardness
of lattice-based problems usually n needs to be at least
n = 128. In this case q ≥ 256, hence already k = 6
guarantees that qV +1

qk−qV
< 1/2305, thus the unforgeability

of this iABS. As n = O(d log d) (where d is the depth
of C) and the efficiency gain can be bounded as follows:
cost(onVer)
cost(Ver) ≤ k

O(d log d)
= 6

O(d log d)
. From this inequality is

clear that already for a circuit of depth 4 the online veri-
fication only requires 75% of the computation required by
standard verification; the impact of our compiler increases
for larger size of the circuit.

Threshold Signatures (TS). TS allow h out of � parties to pro-
duce a signature on a message. Unforgeability is guaranteed
for up to t colluding parties. Bendlin, Krehbiel, and Peikert
[4] introduced a compiler that allows to distribute the signa-
ture generation step of the GPV08 signature, and convert it
into a TS. The idea is to share the signing trapdoor among
the parties using a h-out-of-� secret sharing scheme. Signing
requires at least h parties to come together to generate a sig-
nature satisfying aMv-type equation (whereM is the public
verification key). Verification is composed by the standard
Mv equation and norm checks. Therefore, the thresholdiz-
ing compiler is composable with our compiler for efficient
verification. As neither of them change the parameters of the
underlying GPV08 scheme, the efficiency gain is the same
(Sect. 5).

RingRainbow [33]. RingRainbow is a ring signature scheme
—i.e., a signature that allows a user to sign a message
anonymously on behalf of a group – based on multivariate
equations. This scheme is a hash-and-sign type of signature
built as a modification of Rainbow. As thus, it is affected by
the recent attacks, but we believe its analysis is still impor-
tant, as it can serve as a blueprint for the analysis of future
variants avoiding such attacks. Verification requires to check
whether the signature satisfies a multivariate quadratic sys-
tem, and can be converted in aMv-style verification with the
same technique used for Rainbow (cf. Sect. 5). Therefore, our
compiler can be applied to RingRainbow as well. To evalu-
ate the efficiency gain due to our compiler, we consider the
efficient version of RingRainbow, (whose parameters can be
found in Table 2 in [33]). For λ = 128 and a group of 5 users
the authors set F = F28 and (v1, o1, o2) = (36, 21, 22),

123

Journal of Cryptographic Engineering (2024) 14:551–575 571

which yield m = 5 ∗ (v1 + o1 + o2) = 395 and n = 43.
Theorem 1 requires at least qV +1

qk−qV
= 1/2256 for 128 bits of

post-quantum security, which is ensured by k ≥ k0 = 36.
Plugging these values in our amortized efficiency formula
k0
r + k0

n (that is the formula derived fromDefinition 3 for sig-
natures withMv-style verification) yields that the minimum
number of repetitions r0 to achieve meaningful amortized
efficiency is r0 = 580, and the corresponding amortized effi-
ciency factor is e0 = 0.8992 > 36/580 + 36/43. In this
case, our compiler produces an online verification such that
cost(onVer)
cost(Ver) = k0

n = 36
43 < 0.86, in other words, our compiler

produces an online verification that requires only 86% of the
computation required by the standard verification.

7.2 Applications

Optimistic Verification.Speculative execution is an optimiza-
tion technique that relies on pre-computing some tasks so
that the information be ready when the user prompts for it.
This technique is increasingly used to in a wide range of
commodity devices to boost performance. In these settings,
progressive verification is a valuable candidates for early
rejection of incorrect inputs. In particular, with ‘little’ com-
putations the CPU can identify the most ‘promising’ branch
and further optimize its performance. Another concrete use
case is smart vehicle updates, where multiple software need
to be installed ‘at the same time’ to have compatible ver-
sions. Thus, a successful upgrade of a number of components
entails checking, say, N signatures (to verify the authentic-
ity of each new piece of software). There are two standard
approaches to face this task: the conservative one, where the
user verifies all of the N signatures before launching the soft-
ware update; and the lazy one, where the user verifies each
signature before launching the corresponding update. In the
first case, one may incur into long waiting time (since the
signatures have high security level, given the threats that rise
from installing malware on smart vehicles). In the second
case, one may have to interrupt the update and revert some
components to previous versions. In contrast, using progres-
sive verification with an optimistic approach lets the verifier
start the N verifications at the same time and interrupt them
after a number t of steps to check the ‘partial’ results. If one
signature is invalid, the user should not even bother to start
with the installation. If all signature appear valid (until step
t), the user can proceed with the lazy approach, checking the
remaining constraints while updating its vehicle, knowing
there is a low chance the process fails ‘at the very end’.

Sidestepping Boundaries The offline/online verification
approach allows bypassing known algorithmic barriers by
changing the task performed by the signature verification.
Instead of performing a multiplication between a (public)
matrix and a (public) vector—in the worst case, a multipli-

cation has complexity O(n2) but it can be easily improved
by dividing the polynomials of size n into smaller pieces and
performing the multiplication on such pieces [12, 17],—our
efficient verification employs a (secret) vector and a (public)
vector, which obviously reduces the complexity to O(n), and
does not necessarily sacrifice security (verification sound-
ness).

8 Combining progressive and efficient
verification

Progressive verifications obtained with our transformation
(Sect. 4.2) can be split into two parts: a one-time, computa-
tionally intensive, setup (ProgStep0); and an efficient online
verification (ProgStep1 to ProgStepT , for some opportune
integer T ≥ 1). This gives rise to custom, i.e., intentionally
adjustable, verification soundness. This propertymakes post-
quantum-secure verification accessible to a larger range of
devices, and at the same time draws interesting connections
between classical, information-theoretic, and post-quantum
security notions.

The security guarantees discussed thus far hold as long
as the employed svk is fresh. In what follows, we investi-
gate sound ways to amortize the setup cost by reusing (and
refreshing) the svk produced by ProgStep0 for several online
efficient verifications. We remark that naïvely reusing svk
makes the confidence function degrade with every new ver-
ification, since progressive verification allows for premature
verification outcomes that may leak a substantial amount of
information about svk, unless the modulo q is exponential,
as shown in the following theorem.

Theorem 3 For signatures withMv-style verification relying
on algebraic structures of size q = 2poly(λ) our compiler
for efficient and progressive verification outlined above is
unforgeable according toDefinition 7 and achieves (2, 1/2+
1/rows(M))-concrete amortized efficiency as per Definition
3.

Proof The proof relies on the same argument used in the
proof of Theorem 1. The security experiment is essentially
the experiment ExpcmvEUF

A,� (λ, k) with a few changes: (1) any
appearance of onVer is replaced by ProgVer, (2) svk is not
refreshed at every verification query, and (3) the number k of
rows ofC is replaced by the interruption parameters t output
by O Int at each verification query. Since q is exponential in
the security parameter,C can be a single row vector. In other
words T = 1, thus we can set all interruption values t to 1.
The advantage of an attacker is bounded through Lemma 1
as in the proof of Theorem 1.

In this setting, a concrete efficiency gain is achieved
already with r0 = 2 repetitions. The corresponding amor-

123

572 Journal of Cryptographic Engineering (2024) 14:551–575

tized efficiency value is

e0 = cost(offVer(pk, 1))
r0 · cost(Ver(pk, μ, σ))

+ r0 · cost(onVer(svk, 1, μ, σ))

r0 · cost(Ver(pk, μ, σ))

= 1

2
+ 1

rows(M)
.

��
Nextwe focus on the trickier andmore interesting casewhere
q is polynomial.

8.1 Efficient & progressive signature verification
with r-bounded randomness reuse

We introduce the concept of progressive and efficient (pref)
verification with r-bounded randomness reuse. Similarly to
Definition 5 (progressive signatures), this sustainable variant
is defined for a given value k, that determines the maximum
desired confidence level achievable by the verification. In
addition to k, we need a second parameter, r, that determines
the maximum number of times svk can be reused while guar-
anteeing verification soundness. For correctness and security,
both k and r are input to the confidence function, which now
is named αpref .

Definition 8 (Progressive and Efficient Verification) A sig-
nature scheme � = (KeyGen, Sign,Ver) admits a (r, k)-
efficient and (T , αpref)-progressive verification realization
�F+E = (�,prefVer) if there exist

- two positive integers: r (number of reuses of the secret
randomness) and k (interruption step);

- an efficiently computable confidence function αpref :
{0, . . . , k} × {0, . . . , r} → [0, 1];

- a set of admissible sequences of states S = {st (1),
st (2), . . .} (each sequence st (j) contains r + 1 states sti , i.e.,
st (j) = (sti)ri=0, st0 = ∅);

and
- a progressive verification algorithm prefVer consisting

of k + 1 steps prefVer0, . . ., prefVerk with the same syntax
as in Definition 5.

Definition 9 (r-Reuse k-Progressive Correctness)Let � be a
signature scheme that admits progressive and efficient ver-
ification realized by the tuple (r, k, αpref ,prefVer,S). Then
�F+E = (�,prefVer) satisfies (r, k)-correctness if, for a
given security parameter λ, for any key pair (sk,pk) ←
KeyGen(λ), for any one sequence of admissible states st ←
S, st = (sti)ri=0, for any choice of r message-signature pairs
(μi , σ i)

r
i=1 withμi ∈ M andσ i such thatVer(pk, μi , σ i) =

1 and for any sequence of interruption values (ti)ri=1 ⊆
{1, . . . , k}, it holds that, for all i = 1, . . . , r:

Pr
[
prefVer(sti ,pk, μi , σ i , ti) = αpref(ti , i)

] = 1

Definition 10 (Concrete Amortized Efficiency) Let r0 > 0
be an integer, and 0 < e0 < 1 a small, real constant.
A scheme �F+E = (�,prefVer) realizes (r0, e0)-concrete
amortized efficiency if, for a given security parameter λ, for
any key pair (sk,pk) ← KeyGen(λ), for any tuple of pairs
(μi , σ i)withμi ∈ M and σ i such that Ver(pk, μi , σ i) = 1,
for any sequence of admissible states (sti)ri=0 ⊆ S, we have
that for every r ≥ r0 the following holds true:

∑r−1
i=0 cost

(
prefVer(sti ,pk, μi , σ i , k)

)

r · cost(Ver(pk, μ, σ)
) < e0 (6)

8.2 Security model for pref verification

Figure10 collects a description of our security game and
experiment for existential unforgeability under adaptive cho-
sen message attack for signatures with progressive and
efficient verification (r-prefEUF).

Definition 11 (r-Bounded Progressive Security (r-prefEUF))
Let � be a signature scheme that admits a non-trivial real-
ization of (r,k)-efficient and progressive verification �F+E .
Then, for a given security parameter λ, �F+E is existen-
tially unforgeable under adaptive chosenmessage attackwith
progressive and efficient verification (r-prefEUF) if for all
efficient PPT adversaries A the success probability in the
r-prefEUF experiment is:

Pr

[
Expr-prefEUFA,�,r (λ, k, r) = (ctr∗, t∗)

∧ (ctr∗, t∗) �= (0, 0)

]

≤ (1 − αpref(t
∗, ctr∗)) + ε(λ).

8.3 A compiler for pref Mv-style verification with
polynomial q

We now present a compiler for signatures withMv-style ver-
ification and q = poly(λ) that realizes efficient bounded
progressive verification. This compiler builds on top of the
two compilers presented in Sect. 4.1. Intuitively, the problem
with progressive verification is that if interrupted after t < k
steps the process may erroneously accept an invalid signa-
ture with a non-negligible probability ≈ 1/qt . In Sect. 4.2
we mitigate this leakage of information between queries by
refreshing the vectors in svk after every verification. This
conservative approach clearly impacts efficiency. Here we
want to prioritize efficiency at the cost of accuracy, and inves-
tigate how the confidence function degrades when the same
set of vectors zi is used to perform r progressive verifications
(Fig. 11).

Our compiler works essentially as the efficient verifica-
tion compiler in Fig. 5, except that the offVer algorithm (that
generates a fresh svk) is run only once every r verifications.

123

Journal of Cryptographic Engineering (2024) 14:551–575 573

Fig. 10 Security model for existential unforgability under chosen message and progressive verification for signatures with stateful, (k, r)-efficient
and progressive verification: queries security game, experiment and oracles

To further optimize the scheme, we replace the GetZV algo-
rithm by k algorithms GetZVi each of which is run by the
corresponding prefVeri . The behavior of GetZVi depends on
the signature scheme and in what follows we define it for
each of the three major classes we identified in this paper.
Each algorithm takes as input the corresponding i-th vec-
tors ((ci , zi), PK .aux, μ) and returns (z′

i , vi) that are defined
according to the scheme considered:

GPV08 [24]: the GetZVi routine returns z′
i = zi = ciM,

and vi = [σ |H(μ)].
MP12 [32]: the GetZVi routine outputs z′

i = [z̃i | z0i +
∑�

j=1 μ[j]z ji |ci] and vi = [σ |u].
Rainbow [18]: the GetZVi routine outputs z′

i = zi =
ciM, and vi = [s̃|s|1|h].

Finally, the confidence function αpref(·, ·) is defined as:

αpref(t, ctr) =
{(

1 − 1
qt−ctr − ctr

q−(ctr−1)

)
if t > 0

0 if t = 0
(7)

8.3.1 r0-concrete amortized efficiency estimates

The cost of prefVeri varies depending on whether i = 0 or
i > 0. When prefVer is run the first time (or with an empty
state), the step prefVer0 generates the state. This includes
computing (knm) multiplications, in the worst case. After
that, every step prefVeri computes at most (n+m) multipli-
cations (the first term represents the cost of running GetZVi).
Therefore,

cost
(
prefVer(st0, μ0, σ 0, k)

) = knm + k(n + m) .

However, this is true only for the first execution of prefVer,
as when executing the verification 1 < r0 < r times, the

algorithm prefVer0 does not refresh the multipliers. Hence,
for i > 0

cost
(
prefVer(sti , μi , σ i , k)

) = k(n + m) .

This yields
∑r0−1

i=0 cost
(
prefVer(sti ,pk, μi , σ i , k)

)

= knm + r0k(n + m). The cost of a verification is domi-
nated by cost

(
Ver(pk, μ, σ)

) = nm multiplications, in the
worst case. Therefore, Eq. (6) yields knm + r0k(n + m) <

r0nm ⇒ r0 > knm
nm−k(n+m)

. From the above formula
we can derive a lower bound on values of r that yield effi-
ciency (recall that by definition r0 ≤ r). A concrete security
approach should lead to a meaningful upper bound on the
value r that can be safely used in realistic applications.
Intuitively, lower values of r yield higher accuracy (and unfo-
geability), higher ones guarantee better amortized efficiency.

9 Conclusions and future work

We presented a study on how to achieve efficient and pro-
gressive verification for digital signatures. In addition to
putting forth these notions and formal models for them, we
presented two compilers that allow one to realize efficient
(resp. progressive) verification for a wide class of existing
constructions including lattice-based andmultivariate-based.
We demonstrated the feasibility of our approach through
an implementation on off-the-shelf resource-constrained
devices. Finally, we showed how to extend our compiler to
work with digital signatures with advanced properties, such
as ring, threshold, homomorphic multi-key, attribute-based
and constrained signatures.While our constructions show the
feasibility of the desired properties, they also raise somenatu-
ral follow up questions. For instance, is it possible to realize a
compiler for LBSwith q ∼ poly(λ) that simultaneously pro-

123

574 Journal of Cryptographic Engineering (2024) 14:551–575

Fig. 11 Generic compiler to
obtain efficient and progressive
verification of signature
schemes withMv-style
verification and q polynomial in
the security parameter

vides efficient and progressive verification? We address this
question in a positive way in Sect. 8, albeit in weaker secu-
rity model. A solution with full fledged progressive security
remains an interesting open problem. Another question is,
is it possible to generalize our approach to other classes of
digital signatures, e.g., code-based or LBS obtained through
the Fiat-Shamir heuristic or from ideal lattices?

Finally, it would be worth to explore more applica-
tions of progressive and efficient verification. On top of the
alreadymentioned applications to real-time systems, another
possible avenue is parallel and distributed verification of dig-
ital signatures. Consider a public bulletin board that stores
authenticated (signed) data. For security reasons, one may be
tempted to use post quantum signature schemes such as LBS.
However, the large sizes of the public keys and signatures and
the slow speed of the verification are notorious bottlenecks
to deploy them in such scenarios. Using our approach, a pool
of parties –acting as verifiers– can be made in charge of run-
ning each a single verification check (i.e., ProgVer includes
only ProgVer0 and ProgVer1). In terms of security, although
a single verifier may be wrong with non-negligible probabil-
ity 1/q, the probability that k honest verifiers are all wrong
becomes negligible already for k = 5. Finally, we think that it
would be interesting to explore the study of efficient and pro-
gressive verification also for more cryptographic primitives,
such as commitments and zero-knowledge proofs.

Acknowledgements This work was partly funded by: VR Project
Number 2022-04684, the Swiss National Science Foundation under
the SNSF Project Number 182452 and the Postdoc.Mobility Grant
Number 203075, theEuropeanResearchCouncil (ERC)under theEuro-
pean Union’s Horizon 2020 research and innovation program under
project PICOCRYPT (grant agreement No. 101001283), by the Span-
ish Government under projects SCUM (ref. RTI2018-102043-B-I00),
CRYPTOEPIC (ref. EUR2019-103816), and RED2018-102321-T and
by the Madrid Regional Government under project BLOQUES (ref.
S2018/TCS-4339). This work was partially supported by: project SER-
ICS (PE00000014) under the NRRP MUR program funded by the
EU—NextGenerationEU, and by project QCI-CAT.

Author Contributions C.B., D.F, and E.P wrote Sections 1–5, 8 and 9.
L.T. and A.V. wrote Section 6, L.T. developed the BLEP library and
run the experiments that produced Figs 6, 7, 8 and Table 6. C.B. wrote
Section 7.1. E.P wrote section 7.2. All authors reviewed the submitted
Manuscript.

Funding Open access funding provided by Chalmers University of
Technology.

Declarations

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Albrecht, M.R., Curtis, B.R., Deo, A., Davidson, A., Player, R.,
Postlethwaite, E.W.,Virdia, F.,Wunderer, T.: Estimate all the LWE,
NTRU schemes! in security and cryptography for networks SCN,
LNCS (2018)

2. Armknecht, F., Walther, P., Tsudik, G., Beck, M., Strufe, T.:
ProMACs: Progressive and resynchronizing macs for continuous
efficient authentication of message streams. In: Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communica-
tions Security, pp. 211–223 (2020)

3. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of
computation on outsourced data. In: 2013 ACM SIGSAC CCS,
pp. 863–874. ACM (2013)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Cryptographic Engineering (2024) 14:551–575 575

4. Bendlin, R., Krehbiel, S., Peikert, C.: How to share a lattice trap-
door: threshold protocols for signatures and (H)IBE. In: ACNS
(2013)

5. Bernstein, D.J.: A secure public-key signature system with
extremely fast verification

6. Beullens, W.: Breaking rainbow takes a weekend on a laptop. In:
Advances in Cryptology—CRYPTO 2022, pp. 464–479. Springer,
Switzerland (2022)

7. Beullens, W.: Mayo: Practical post-quantum signatures from oil-
and-vinegar maps. In: International Conference on Selected Areas
in Cryptography, pp. 355–376. Springer, New York (2022)

8. Beullens, W., Szepieniec, A., Vercauteren, F., Preneel, B.: LUOV:
Signature scheme proposal for NIST PQC project (2019)

9. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over
binary fields and new tools for lattice-based signatures. In: PKC,
pp. 1–16. Springer, New York (2011)

10. Boschini, C., Fiore, D., Pagnin, E.: Progressive and efficient ver-
ification for digital signatures. In: Ateniese, G., Venturi, D. (eds.)
Applied Cryptography and Network Security–20th International
Conference, ACNS 2022, Rome, Italy, Proceedings. Lecture Notes
inComputer Science, vol. 13269, pp. 440–458. Springer, NewYork
(2022)

11. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework
for fully secure short signatures and more. In: PKC, pp. 499–517.
Springer, New York (2010)

12. Çalık, Ç., Dworkin, M., Dykas, N., Peralta, R.: Searching for best
karatsuba recurrences. In: Analysis of Experimental Algorithms:
Special Event. SEA2 2019, Kalamata, Greece, Revised Selected
Papers, pp. 332–342. Springer, New York (2019)

13. Cartor, R., Cartor, M., Lewis, M., Smith-Tone, D.: Iprainbow. In:
Proceedings of Post-Quantum Cryptography: 13th International
Workshop, PQCrypto 2022, Virtual Event, pp. 170–184. Springer,
New York (2022)

14. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how
to delegate a lattice basis. In: EUROCRYPT, Springer, New York
(2010)

15. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures
with efficient verification for polynomial functions. In: Advances
in Cryptology—CRYPTO (2014)

16. Chen, Y., Lombardi, A., Ma, F., Quach, W.: Does fiat-Shamir
require a cryptographic hash function? In: Malkin, T., Peikert, C.
(eds.) CRYPTO (2021)

17. De Piccoli, A., Visconti, A., Rizzo, O.G.: Polynomial multiplica-
tion over binary finite fields: new upper bounds. J. Cryptogr. Eng.
10(3), 197–210 (2020)

18. Ding, J., Chen,M.-S., Petzoldt, A., Schmidt, D., Yang, B.-Y.: Rain-
bow. Available at https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions. Accessed 21 Sept 2020

19. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial
signature scheme. In ACNS, LNCS (2005)

20. Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key
homomorphic authenticators. In: ASIACRYPT (2016)

21. Fischlin,M.: Progressive verification: The case of message authen-
tication. In: International Conference on Cryptology in India, pp.
416–429. Springer, New York (2003)

22. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart,
N.P. (ed.) Proceedings on Advances in Cryptology–EUROCRYPT.
LectureNotes inComputer Science, vol. 4965, pp. 31–51. Springer,
New York (2008)

23. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In:
CRYPTO (2010)

24. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard
lattices and new cryptographic constructions. In: Dwork, C. (ed.)
ACM STOC. ACM, New York (2008)

25. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homo-
morphic signatures from standard lattices. In: STOC, pp. 469–477.
ACM (2015)

26. Gorbunov, S., Vinayagamurthy,D.: Riding on asymmetry: Efficient
ABE for branching programs. In: ASIACRYPT, LNCS (2015)

27. Katsumata, S., Yamada, S.: Group signatures without NIZK: from
lattices in the standard model. In: Advances in Cryptology—
EUROCRYPT (2019)

28. Lamport, L.: Constructing digital signatures from a one-way func-
tion. In: Technical report, CSL-98, SRI International (1979)

29. Le, D.V., Kelkar, M., Kate, A.: Flexible signatures: making
authentication suitable for real-time environments. In: ESORICS.
Springer, New York (2019)

30. Loveless, A., Dreslinski, R., Kasikci, B., Phan, L.T.X.: Igor: Accel-
erating byzantine fault tolerance for real-time systems with eager
execution. In: IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS) (2021)

31. Lyubashevsky, V.: Lattice signatures without trapdoors. In: EURO-
CRYPT (2012)

32. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter,
faster, smaller. In: EUROCRYPT (2012)

33. Mohamed, M.S.E., Petzoldt, A.: RingRainbow—An efficient mul-
tivariate ring signature scheme. In: Progress in Cryptology—
AFRICACRYPT, LNCS (2017)

34. Plantard, T., Sipasseuth, A., Dumondelle, C., Susilo, W.: DRS:
diagonal dominant reduction for lattice-based signature. In: PQC
Standardization Conference (2018)

35. Sipasseuth, A., Plantard, T., Susilo, W.: Using Freivalds’ Algo-
rithm to accelerate lattice-based signature verifications. In: ISPEC.
Springer, New York (2019)

36. Taleb, A.R., Vergnaud, D.: Speeding-up verification of digital sig-
natures. J. Comput. Syst. Sci. 116, 22–39 (2020)

37. Torresetti, L.: BLEP: a barebone library for efficient and progres-
sive verification. https://github.com/torres98/BLEP (2022)

38. Tsabary, R.: An equivalence between attribute-based signatures
and homomorphic signatures, and new constructions for both. In:
Theory of Cryptography TCC (2017)

39. Wang, Q., Khurana, H., Huang, Y., Nahrstedt, K.: Time valid one-
time signature for time-critical multicast data authentication. In:
IEEE INFOCOM (2009)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://github.com/torres98/BLEP

	Progressive and efficient verification for digital signatures: extensions and experimental results
	Abstract
	1 Introduction
	1.1 Our contribution
	1.2 Related work
	1.3 Notation

	2 Efficient verification for digital signatures
	2.1 Syntax for efficient verification
	2.2 Security model for efficient verification

	3 Progressive verification for digital signatures
	3.1 Existing approaches to progressive verification of signatures
	3.2 Syntax for progressive verification
	3.3 Security model for progressive verification

	4 Generic compilers
	4.1 A compiler for efficient Mv-style verifications
	4.1.1 Security analysis

	4.2 A compiler for progressive Mv-style verification
	4.2.1 Security analysis

	5 Examples of efficient verification
	5.1 From lattices
	5.2 From multivariate equations
	5.3 Efficiency estimates

	6 Experimental evaluations with rainbow
	7 Extensions
	7.1 Signatures with properties
	7.2 Applications

	8 Combining progressive and efficient verification
	8.1 Efficient & progressive signature verification with r -bounded randomness reuse
	8.2 Security model for pref verification
	8.3 A compiler for pref Mv-style verification with polynomial q
	8.3.1 r 0-concrete amortized efficiency estimates

	9 Conclusions and future work
	Acknowledgements
	References

