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Robustness quantification of a mutant 
library screen revealed key genetic markers 
in yeast
Cecilia Trivellin1, Luca Torello Pianale1 and Lisbeth Olsson1* 

Abstract 

Background Microbial robustness is crucial for developing cell factories that maintain consistent performance 
in a challenging environment such as large-scale bioreactors. Although tools exist to assess and understand robust-
ness at a phenotypic level, the underlying metabolic and genetic mechanisms are not well defined, which limits our 
ability to engineer more strains with robust functions.

Results This study encompassed four steps. (I) Fitness and robustness were analyzed from a published dataset 
of yeast mutants grown in multiple environments. (II) Genes and metabolic processes affecting robustness or fit-
ness were identified, and 14 of these genes were deleted in Saccharomyces cerevisiae CEN.PK113-7D. (III) The mutants 
bearing gene deletions were cultivated in three perturbation spaces mimicking typical industrial processes. (IV) 
Fitness and robustness were determined for each mutant in each perturbation space. We report that robustness 
varied according to the perturbation space. We identified genes associated with increased robustness such as MET28, 
linked to sulfur metabolism; as well as genes associated with decreased robustness, including TIR3 and WWM1, 
both involved in stress response and apoptosis.

Conclusion The present study demonstrates how phenomics datasets can be analyzed to reveal the relationship 
between phenotypic response and associated genes. Specifically, robustness analysis makes it possible to study 
the influence of single genes and metabolic processes on stable microbial performance in different perturbation 
spaces. Ultimately, this information can be used to enhance robustness in targeted strains.

Keywords Perturbations, Bioprocesses, MET28, High-throughput, Microbial robustness

Background
Robustness denotes the ability of a system to maintain a 
stable performance even in the face of internal or exter-
nal challenges [51, 60, 64]. In biology, robustness is gen-
erally referred to a specific phenotype, such as ethanol 
productivity in yeast or the maximum specific growth 
rate. However, it can be considered also as a holistic 

property, whereby the stability of various phenotypes is 
considered simultaneously under multiple perturbations 
[70]. It should be noted that robustness is different from 
fitness (i.e., performance), which refers to the specific 
value of  a phenotype in a given environment. Robust-
ness can be defined in relation to the mean performance 
across a range of perturbations [90, 99] or as a perfor-
mance ratio when a perturbation is applied compared to 
a control condition [52]. Given that perturbations and 
environments vary depending on the context (e.g., a sub-
strate containing organic acids or an environment with 
elevated temperature), selecting a specific control condi-
tion becomes an arbitrary choice. Therefore, calculating 
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robustness as the mean phenotype across perturbations 
[39, 99] has broader applicability compared to determin-
ing robustness by referencing the phenotypic state in a 
control condition [13, 52].

Previously, we described a robustness quantification 
method based on the Fano factor, which is free from arbi-
trary controls, frequency-independent, and dimension-
less [90]. It can be applied to phenotypic values collected 
in a perturbation space (a set of relevant conditions) 
for one or multiple systems (such as microorganisms). 
A significant advantage of employing this method is its 
compatibility with existing datasets containing pheno-
typic information. Over the last 30  years, advances in 
screening technologies and data analysis have enabled 
high-throughput phenotyping and phenomics mapping 
[65, 95, 100]. Phenomics datasets are an important tool 
for unravelling complex biological patterns. For exam-
ple, extensive phenotypic datasets can be used to under-
stand genotype-to-phenotype maps [71], gene expression 
patterns under different conditions [40] or correlations 
among distinct traits [75]. Gene deletion libraries are 
instrumental in assessing the role of genes in specific cel-
lular processes by observing phenotypic changes [5, 81, 
86]. Here, we show for the first time how fitness data 
from a yeast deletion collection screen [22] can be used 
as input for microbial robustness quantification across 
different environments to identify genetic and metabolic 
markers of robustness.

Phenotypic stability under different conditions in vari-
ous perturbation spaces (e.g., lignocellulose hydrolysate 
fermentation) points to strains with robust phenotypes. 
However, unravelling the mechanism responsible for the 
robustness of specific traits is challenging [38, 63] and 
limits the ability to perform rational strain engineer-
ing. The primary difficulty in understanding robustness 
mechanisms lies in linking phenotypes with genetic 
architecture, regulatory networks, and post-translational 
modifications [47, 67, 78]. While the role of single/multi-
ple genes in mediating tolerance towards specific pertur-
bations has been explored [8, 46, 81], they have not been 
investigated as overall robustness markers. Exploring the 
role of single genes will improve our understanding of 
robustness mechanisms.

The overall aim of the present study was to identify 
genetic markers of microbial robustness. First, we per-
formed robustness analysis on a reference dataset [22] 
containing fitness data (i.e., colony size) in 14 conditions 
for more than 4000 Saccharomyces cerevisiae mutants 
(BY4741 or Y7092 background) carrying non-essential 
gene deletions as well as temperature-sensitive essential 
alleles. Second, we identified mutants with the best and 
worst robustness using percentile scores and replicated 
14 of the corresponding non-essential gene deletions 

in the laboratory CEN.PK113-7D strain. To test the 
phenotype-perturbation space specificity of robustness 
[39, 64], the 14 single-gene mutants, the parental CEN.
PK113-7D strain, and the Ethanol Red industrial strain 
were cultivated in three different perturbation spaces. 
Finally, we calculated the robustness of the 14 mutants 
to reveal genetic targets that could enhance their stable 
performance. Application of the same strategy to larger 
libraries and more perturbation spaces will boost our 
understanding of the mechanisms underlying robustness.

Results
The workflow in the present study encompassed four 
main steps (Fig. 1). In the first two steps, fitness data for 
over 4000 mutants with non-essential gene deletions and 
temperature-sensitive alleles of essential genes [22] were 
employed to quantify robustness using our previously 
published method [90]. Mutants were ranked based on 
their fitness and robustness scores, and specific non-
essential genes from the top and bottom ten strains were 
chosen (Material and Methods). In steps 3 and 4, the 14 
single-gene deletions were introduced into S. cerevisiae 
CEN.PK113-7D, a strain with favorable growth charac-
teristics under industrially relevant conditions and ease 
of manipulation [36, 68]. Mutants carrying the gene dele-
tions plus the control  and Ethanol Red were cultivated 
in three distinct perturbation spaces (second-generation 
biomass fermentation, beer fermentation, and conditions 
from the reference dataset) to investigate the impact of 
non-essential gene deletions on fitness and robustness.

Robustness analysis of fitness data identifies relevant 
genes and metabolic processes
Robustness was calculated from a dataset containing fit-
ness data of 4429 mutants (BY4741 or Y7092) bearing 
deletions in non-essential genes, as well as temperature-
sensitive alleles corresponding to 553 essential genes [10, 
22, 23]. In the reference dataset, mutants were grown 
under 14 conditions (combination of sugars and antifun-
gal agents) and fitness was reported as normalized colony 
size [10]. Robustness analysis using the reference dataset 
identified 67 mutants with maximal robustness (R = 0). 
Of these, seven carried mutations in temperature-sensi-
tive alleles and 60 carried non-essential gene deletions.

To examine the link between fitness and robustness, 
we selected the top and bottom mutants (90th and 10th 
percentiles, respectively) from our dataset (distribution 
of fitness and robustness are shown in Figure S1). The 
four resulting datasets represented approximately one-
eighth of all mutants. Percentiles were chosen to achieve 
a balance between statistical significance and the ability 
to effectively showcase strains with the desired character-
istics (Fig.  2a). Mutants with either high fitness or high 
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Fig. 1 Workflow of the study divided into four steps. 1. Calculation of robustness from the reference dataset. 2. Identification of genes 
and metabolic processes related to high/low fitness or robustness, followed by their transfer to S. cerevisiae CEN.PK113-7D for further 
characterization. 3. Cultivation of mutants bearing gene deletions in three perturbation spaces each composed of 16 single conditions. 4. 
Calculation of fitness and robustness for each strain and perturbation space

Fig. 2 Overlap of mutants and metabolic processes in the reference dataset. a Venn diagram presenting logical connections among the four 
data sets (10th and 90th percentiles) representing mutants with the highest and lowest values of fitness and robustness. For each set, the number 
of mutants and overall percentage of mutants found in the respective categories are reported. b Treemap illustrating the top five SAFE network 
regions most prevalent in the mutants exhibiting the highest and lowest values of robustness and fitness. Larger squares indicate a higher number 
of strains associated with each specific metabolic process
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robustness were the most prevalent (27.9% and 27.1% 
respectively), while those exhibiting high values for both 
parameters were much less abundant (2.5%). A good per-
centage of mutants (18.4%) exhibited both low fitness and 
low robustness. Finally, mutants with either low robust-
ness or low fitness amounted to 12.0% and 11.3% of the 
total, respectively. The divergence between fitness and 
robustness, whereby strains exhibit a high value of one 
parameter but a low value of the other could suggests a 
trade-off [50]. However, only 0.1% of mutants displayed 
high fitness and low robustness, while 0.8% did the oppo-
site, indicating that trade-offs were uncommon in this 
analyzed context.

The global genetic profile similarity network was pre-
viously annotated for yeast using spatial analysis of 
functional enrichment (SAFE). This method allowed 
the identification of metabolic processes linked to most 
non-essential and essential genes [9, 22]. After extract-
ing mutants according to either the 10th or 90th percen-
tiles of robustness and fitness, the ID of each mutant was 
merged with the SAFE network region (Table S1). Most 
genes with elevated robustness were associated with “cell 
polarity”, “mitosis” or “unknown” regions (Fig.  2b). The 
same processes came up also when considering strains 
with high fitness, although fewer fell into the “unknown” 
regions category. Overlapping SAFE regions appeared in 
the low robustness and low fitness sets in almost the same 
proportion, and with “rRNA processing” emerging exclu-
sively in these sets. Instead, “Mitochondria” appeared 
only in the high fitness set. When counting mutants 
in each SAFE region, categories such as cell polarity, 

glycosylation, mitochondria, mitosis, and "unknown" 
were notably the most frequent. As a result, any subset 
of data containing these regions might appear to have 
inflated numbers simply due to their higher prevalence in 
the reference dataset. To assess whether the fitness and 
robustness of each SAFE region deviated significantly 
from that of the overall distribution including all SAFE 
regions, we employed a Wilcoxon test (Figure S2). We 
found that several SAFE regions, such as "unknown" and 
"cell polarity," significantly differed from the background 
population in both fitness and robustness. Additionally, 
we observed that "peroxisome" and "transcription" were 
significantly different only in robustness compared to the 
reference dataset, while "glycosylation and cell wall bio-
synthesis" showed significance only in fitness.

Experimental setup for the identification of robustness 
genetic markers
Among the mutants with either the highest or lowest 
robustness (10th and 90th percentiles) in the reference 
dataset, a total of 14 genes (Table  1) were individually 
deleted from S. cerevisiae CEN.PK113-7D using CRISPR-
Cas9 genome editing technology. Three genes were 
picked among the ten with the highest robustness (differ-
ent from zero) in the reference dataset: QDR1, MET28, 
and MRP31 (group HR). Six genes were picked among 
the ten with robustness equal to zero and the highest fit-
ness: HCM1, GBP2, RPS14A, RPS14B, OCA4, and MSH3 
(group R0HD). Finally, five genes were chosen among 
the ten genes with the lowest robustness in the reference 
dataset: BCH1, WWM1, HLJ1, TIR3, and SMA2 (group 

Table 1 List of deleted genes in the CEN.PK113-7D strain

a Highest R (HR)
b R = 0 and highest fitness (R0HF)
c Lowest R (LR)

Gene SAFE network region Description

QDR1a NA Multidrug transporter

MET28a Transcription Regulation of sulfur metabolism

MRP13a Mitochondria Mitochondrial ribosomal protein

HCM1b Mitosis Forkhead transcription factor, suppressor of calmodulin

GBP2b Nuclear transport RNA-binding protein involved in translation repression

RPS14ab rRNA processing Ribosomal protein of the small subunit

RPS14bb rRNA processing Ribosomal protein of the small subunit

OCA4b Glycosylation, cell wall biosynthesis Oxidant-induced cell-cycle arrest

MSH3b DNA replication/repair Mismatch repair protein

BCH1c Peroxisome Member of the chaps family

WWM1c Cell polarity Protein interacting with metacaspase

HLJ1c Protein turnover Co-chaperone for Hsp40p

TIR3c Mitosis Cell wall mannoprotein

SMA2c DNA replication/repair Spore membrane assembly
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LR). The 14 selected genes represented a wide range of 
metabolic activities and cell processes, based on the 
SAFE regions reported in the reference dataset (Table 1). 
The parental CEN.PK113-7D strain and Ethanol Red, an 
industrial strain commonly used in first-generation etha-
nol production, were included as controls [48].

The 14 deletion mutants were cultivated in three dis-
tinct perturbation spaces. The first perturbation space 
included a set of conditions similar to those tested in the 
reference dataset [22], which encompassed mainly anti-
fungal compounds and sugars dissolved in chemically 
defined medium. The second perturbation space included 
different combinations of malts, hops, aromas, and fining 
agents used in beer fermentation. The third perturbation 
space included conditions relevant to the fermentation 
of lignocellulose hydrolysates, namely acids, phenolics, 
aldehydes, salts, and sugars (as outlined in Material and 
methods). The beer fermentation space was included 
because, in general, the materials used to make beer are 
less likely to inhibit yeast metabolism compared to lig-
nocellulose hydrolysates. However, compounds released 
during heat treatment of malt, the malts used in the pro-
duction of dark beer, and the melanoidins released from 
Maillard reactions can inhibit yeast metabolism [73]. The 
three perturbation spaces were intentionally designed to 
encompass different bioprocesses, each affecting yeast 
metabolism in distinct ways. This approach allowed us to 
calculate robustness within a broader and more varied 
environment.

The Costanzo perturbation space (CPS): in silico robustness 
quantification of the reference dataset does not match 
experimental robustness
The selected 14 mutants plus controls were cultivated 
in the 16 perturbations similar to the ones in the refer-
ence dataset (Table 2). The perturbation set is hereafter 
referred to as CPS. Notably, there were three key dis-
tinctions between the present CPS and the original one 
(CPSo) employed by Costanzo and colleagues: (I) fitness 
was quantified by specific growth rate in liquid medium 
instead of normalized colony size, (II) all perturbations 
were replicated using chemically defined Delft medium 
instead of YEPD plates [10], and (III) only eight of the 14 
antifungal agents matched those in CPSo (e.g., Benomyl), 
while the rest were similar (e.g., Thapsigargin in place of 
Tunicamycin). The set that included only the eight per-
turbations containing the same antifungal agent as the 
CPSo is hereafter referred to as CPS reduced (CPSr).

Within the CPS, most mutants showed fitness distri-
butions analogous to those of the parental strain, except 
for met28 and oca4 (Fig.  3). The gbp2 mutant exhibited 
the highest average fitness, although its distribution did 
not differ significantly from that of the parental strain. 
In contrast, the met28 mutant displayed the lowest aver-
age fitness, even though its normalized colony size in 
the CPSo was comparable to that of the control strain. 
Consequently, deletion of MET28 led to contrasting 
behaviors between the CPS and CPSo. This distinction 
persisted even in CPSr (Figure S3). The tir3 mutant was 
among the ten candidates with the lowest fitness based 

Table 2 List of sugars and antifungal agents (with relative concentrations and medium code) added to delft minimal medium in the 
CPS

a CPS_3 did not contain delft minimal medium as a base, but was made with YPD (20 g/L Peptone, 10 g/L yeast extract, and 20 g/L glucose)

Perturbation code Carbon source Antifungal agent References

CPS_1 Glucose (20 g/L) /

CPS_2 Sucrose (20 g/L) /

CPS_3* Glucose (20 g/L) /

CPS_4 Galactose (20 g/L) /

CPS_5 Sorbitol (1 M) /

CPS_6 Glucose (20 g/L) Actinomycin D [50–76-0] (20 μM) [96]

CPS_7 Glucose (20 g/L) Benomyl [17804-35-2] (30 μg/mL) [19, 20, 35, 54]

CPS_8 Glucose (20 g/L) Geneticin [108321-42-2] (200 μg/mL) [42]

CPS_9 Glucose (20 g/L) Caspofungin diacetate [179463-17-3] (0.1 μg/mL) [15]

CPS_10 Glucose (20 g/L) Bafilomycin [88899-55-2] (100 nM) [33]

CPS_11 Glucose (20 g/L) Puromycin dihydrochloride [58–58-2] (0.1 μg/mL) [17]

CPS_12 Glucose (20 g/L) Fluconazole [86386-73-4] (16 μg/mL) [1]

CPS_13 Glucose (20 g/L) Geldanamycin [30562-34-6] (10 μM) [85]

CPS_14 Glucose (20 g/L) Nigericin sodium salt [28643-80-3] (50 μg/mL) [57]

CPS_15 Glucose (20 g/L) Rapamycin [53123-88-9] (100 nM) [53]

CPS_16 Glucose (20 g/L) Thapsigargin [67526-95-8] (1 mg/mL) [82]
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on CPSo data; however, here, its mean specific growth 
rate was comparable to that of the parental strain.

Overall robustness calculated using the complete set 
of 16 conditions had a mean of -0.16 and a standard 
deviation of 0.02. Nearly all mutants showed a higher 
robustness than the parental strain (Fig.  3), with sma2 
exhibiting the highest value (R = −  0.12). Only wwm1 
and tir3 displayed a reduced robustness (R = − 0.22 and 
R = −  0.21, respectively). In the CPSr, a distinct pattern 
emerged, with met28 displaying the highest robust-
ness (R = −  0.03) and the parental strain a very low one 
(R = − 0.22) (Figure S3).

A comparison of CPS and CPSr results (Fig. 3 and Fig-
ure S3) with the normalized colony size in CPSo (Fig-
ure S4) failed to reveal a distinct and consistent pattern 
among the groups defined by high or low fitness and 
robustness (Table  1, HR; R0HF; LR). Although not all 
mutants matched the robustness values derived from 
CPSo analysis, it is noteworthy that those with the lowest 
and highest robustness (wwm1, tir3, and met28, respec-
tively) did align, especially when restricting the analysis 
to CPSr.

The beer perturbation space (BPS) has an overall negative 
impact on robustness
Next, we subjected the yeast mutants to 16 distinct condi-
tions intended to simulate beer fermentation, collectively 

referred to as BPS. These conditions encompassed vari-
ous combinations of malts, hops, aromas, and finings. 
None of the conditions tested inhibited growth entirely 
(Fig.  4, all data > 0); however, amber malt significantly 
affected the specific growth rate in all strains, probably 
due to inhibitory effects by Maillard compounds [21]. 
Instead, specific aromas, hops or fining agents did not 
cause a significant change in the maximal specific growth 
rate with respect to the control strain. In line with its 
performance in the CPS (Fig.  3), met28 exhibited a sig-
nificant drop in fitness also in the BPS (Fig. 4). A similar 
decrease was observed for rps14b, highlighting a trend 
common to several mutants in terms of reduced mean 
specific growth rate.

Robustness of the specific growth rate differed between 
the BPS and CPS. In the former, most gene deletions led 
to a minor reduction in robustness, with hcm1 achiev-
ing the lowest score. Interestingly, deletion of rps14b 
resulted in the highest robustness, in contrast to its par-
alog rps14a, whose robustness was as low as that of hcm1 
(R = −  0.11). Both msh3 and bch1 mutants displayed a 
slight increase in robustness compared to the parental 
strain. Robustness values expected from CPSo analysis 
were not reproduced in this space (Figure S4).

Fig. 3 Fitness and robustness in the CPS (Delft medium + antifungal agents). The y-axis (0;0.3) represents the maximum specific growth rate 
(1/h) across all strains (controls and mutants with single gene deletions) and perturbations (n = 48, 16 conditions, 3 replicates), with the black 
line in the boxplot indicating the median of the distribution and the white dot indicating the mean. Significant difference between the parental 
strain and the mutants is denoted by p-values obtained from Wilcox tests (*p < 0.05, ****p < 0.0001, not significant scores are omitted). Robustness 
of the maximum specific growth rate is shown by dots on the y-axis (− 0.2;0), while the horizontal black line denotes robustness and fitness 
of the CEN.PK113-7D parental strain. Groups are colored differently based on analysis of the reference dataset (HR: highest robustness score 
different from zero; R0HF: robustness equal to zero and highest fitness score; LR: lowest robustness score; controls: CEN.PK113-7D parental 
and Ethanol Red)
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Fig. 4 Fitness and robustness in the BPS (beer perturbation space). The y-axis (0;0.2) represents the maximum specific growth rate (1/h) across all 
strains (controls and mutants with single gene deletions) and perturbations (n = 48), with the black line in the boxplot indicating the median 
of the distribution and the white dot indicating the mean. Significant difference between the parental strain and the mutants is denoted 
by p-values obtained from Wilcox tests (*p < 0.05, ***p < 0.001, not significant scores are omitted). Robustness of the maximum growth rate is shown 
by dots on the y-axis (− 0.2;0), while the horizontal black line marks robustness and fitness of the CEN.PK113-7D parental strain. Groups are colored 
differently based on analysis of the reference dataset (HR: highest robustness score different from zero; R0HF: robustness equal to zero and highest 
fitness score; LR: lowest robustness score; controls: CEN.PK113-7D parental and Ethanol Red)

Fig. 5 Fitness and robustness in LHPS (lignocellulose hydrolysate perturbation space). The y-axis (0;0.2) represents the maximum specific growth 
rate (1/h) across all strains (controls and mutants with single gene deletions) and perturbations (n = 48), with the black line in the boxplot indicating 
the median of the distribution and the white dot indicating the mean. Significant difference between the parental strain and the mutants 
is denoted by p-values obtained from Wilcox tests (*p < 0.05, ****p < 0.0001, not significant scores are omitted). Robustness of the maximum growth 
rate is shown by dots on the y-axis (− 0.2;0), while the horizontal black line denotes robustness and fitness of the CEN.PK113-7D parental strain. 
Groups are colored differently based on analysis of the reference dataset (HR: highest robustness score different from zero; R0HF: robustness equal 
to zero and highest fitness score; LR: lowest robustness score; controls: CEN.PK113-7D parental and Ethanol Red)
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The lignocellulose hydrolysate perturbation space (LHPS) 
has an overall positive impact on robustness
The third perturbation space tested mimicked ligno-
cellulosic hydrolysates and is referred here as LHPS. Its 
content of acids, aldehydes, alcohols, salts, sugars, and 
synthetic hydrolysates simulated the fermentation of lig-
nocellulosic hydrolysates into ethanol. Mutants with the 
highest robustness and fitness  (R0HF) showed an over-
all lower mean fitness compared to the parental strain 
(Fig.  5). Two conditions stood out as particularly chal-
lenging: Delft with 100 g/L ethanol and Delft with pH 3. 
None of the mutants were able to grow in these extreme 
environments. Indeed, there were significantly more 
mutants whose specific growth rate was equal to zero in 
the LHPS than in the BPS or CPS, likely due to the harsh 
conditions above.

Ethanol Red exhibited the highest specific growth 
rate, while met28 showed the lowest (0.16 and 0.06 1/h 
respectively). Only four mutants (msh3, oca4, rps14b, 
and met28) displayed a notably different fitness distribu-
tion in the LHPS when compared to the CEN.PK113-7D 
parent (Fig. 5). While msh3, oca4, and rps14b presented 
a strong fitness in the CPSo (Figure S4), their fitness in 
the LHPS was significantly lower compared to the paren-
tal strain. In contrast, the low mean fitness of met28 was 
consistent across perturbation spaces.

All tested mutants displayed higher robustness com-
pared to the parental strain (Fig. 5). In particular, met28 
and msh3 were among the mutants with the highest 
robustness; whereas bch1, sma2, wwm1, hlj1, and tir3 
had relatively low robustness. On the one hand, met28 
exhibited a similar trend in the CPS but an opposite one 
in the BPS. On the other hand, sma2 achieved the highest 

robustness in the CPS, but ranked among the lowest in 
the LHPS. Generally, the outcome from the reference 
dataset was confirmed in the LHPS.

Ethanol red, sma2, and met28 present the highest 
robustness in all perturbation spaces
After calculating the specific robustness and fitness 
for each of the tested perturbation spaces, we derived 
an overall fitness and robustness value, with which to 
determine the combined response to these different 
environments.

Several conditions resulted in the lowest spe-
cific growth rate, including Delft pH 3 (LHPS_5), 
Delft + 100  g/L ethanol (LHPS_10), Delft + 80  g/L NaCl 
(LHPS_8; except for Ethanol Red, which had a slightly 
higher value), and Delft + 50 μg/mL Nigericin sodium salt 
(CPS_14) (Fig. 6). The met28 mutant displayed the low-
est maximum specific growth rate under all conditions 
except CPS_3 (YPD), whereby its growth was compa-
rable to that of other strains. Hence, the reduced fitness 
of met28 may be related to the composition of Delft 
minimal medium rather than the specific perturbations 
applied. CPS_2 (Delft + 20 g/L sucrose) prevented growth 
of msh3, and CPS_7 (Delft + 30 μg/mL Benomyl) that of 
wwm1. CPS_5 (Delft + 1 M sorbitol) impacted primarily 
the control strains, tir3, rps14a, and rps14b.

Overall, the BPS led to a lower maximum specific 
growth rate compared to the other two perturbation 
spaces. This difference can be attributed to the high 
concentration of less accessible sugars in malt. On the 
contrary, the BPS resulted in some of the highest robust-
ness values; whereas the combination of all three spaces 

Fig. 6 Fitness and robustness of the maximum specific growth rate (1/h) for all tested strains (controls and mutants with single gene 
deletions) (y-axis) and perturbations (x- axis). Colors of the tiles are assigned based on the minimum and maximum value (legend on the right). 
The three perturbation spaces are shown on the x-axis divided by a vertical black line: lignocellulose perturbation space (LHPS), beer perturbation 
space (BPS), and the reference perturbation space (CPS). The four columns on the right denote the robustness of each strain in each perturbation 
space (x-axis). The color code on the left is representative of the strain listed on the y-axis (HR: highest robustness score different from zero; R0HF: 
robustness equal to zero and highest fitness score; LR: lowest robustness score; C: CEN.PK113-7D parental and Ethanol Red)
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exhibited the opposite trend (Fig. 6). The met28 mutant 
showed the highest robustness in all perturbation spaces, 
while wwm1 and tir3 the lowest.

The fitness distribution of the tested strains resembled 
that of the parental strain. Only met28 presented a sig-
nificantly different distribution and mean, in line with 
results from single perturbation spaces (Fig.  7). Ethanol 
Red exhibited the highest fitness, but it did not vary sig-
nificantly compared to CEN.PK113-7D, despite its prior 
benchmarking for ethanol production from various sub-
strates, including molasses and corn [32]. The elevated 
robustness of met28 (Fig.  7) could be attributed to its 
overall lower fitness. A correlation between lower fitness 
and higher robustness has been consistently observed in 
previous studies [88, 91]. Whereas sma2 displayed one 
of the highest values of robustness, followed by mrp13 
and rps14a; the robustness of tir3 was lower than in the 
parental strain. Except for met28 or tir3, the robustness 
outcome expected from the reference dataset was not 
fully replicated across the three perturbation spaces or 
upon their combination.

Discussion
In the present study, a previously published dataset 
containing fitness data of thousands of yeast mutants 
was analyzed to extract information on genes and 
metabolic processes associated with robustness. Non-
essential gene deletions connected with high or low 

robustness scores in the reference dataset were rep-
licated in the laboratory CEN.PK113-7D strain. The 
mutants bearing single non-essential gene deletions 
were tested in three perturbation spaces simulating 
relevant industrial processes and robustness of the 
maximum specific growth rate was investigated. Only 
some of the non-essential gene deletions (e.g., met28 
or tir3) exhibited the same outcome in the tested per-
turbation spaces as in the reference dataset. The differ-
ences observed in comparison to the reference dataset 
encompasses multiple factors, among which the differ-
ent strain background (CEN.PK 113-7D versus BY4741) 
and the different cultivation methodology (solid ver-
sus liquid). Furthermore, the perturbation space plays 
a fundamental role when quantifying the robustness of 
a system, as different robustness patterns may arise for 
each space. Nevertheless, we were able to identify four 
non-essential genes with a consistent impact on robust-
ness across perturbation spaces.

Here, we show for the first time how a dataset contain-
ing phenotypic data can be used as input for microbial 
robustness quantification across different environments. 
Specifically, the dataset used in this study had two impor-
tant features that were attractive for robustness quanti-
fication [22]. First, it contained fitness data from many 
different conditions, which is an important requirement 
when evaluating the significance of the robustness score. 
Second, the candidates employed in the study featured 

Fig. 7 Fitness and robustness in the three perturbation spaces combined together (CPS, BPS, and LHPS). The y-axis (0;0.2) represents the maximum 
specific growth rate (1/h) across all strains (controls and mutants with single gene deletions) and perturbations (n = 144), with the black line 
in the boxplot indicating the median of the distribution and the white dot indicating the mean. Significant difference between the parental strain 
and the mutants is denoted by p-values obtained from Wilcox tests (****p < 0.0001, not significant scores are omitted). Robustness of the maximum 
growth rate is shown by dots on the y-axis (− 0.2;0), while the horizontal black line denotes robustness and fitness of the CEN.PK113-7D parental 
strain. Groups are colored differently based on analysis of the reference dataset (HR: highest robustness score different from zero; R0HF: robustness 
equal to zero and highest fitness score; LR: lowest robustness score; controls: CEN.PK113-7D parental and Ethanol Red)
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either essential gene mutations or non-essential gene 
deletions, thus allowing us to relate the computed robust-
ness to a wide range of individual genes. By calculating 
robustness from a genetic screen, it is possible to single 
out robust strains, whose fitness may not be generally as 
high. Currently, the preferred strategy is to engineer a 
strain for increased fitness rather than to enhance robust-
ness, both due to lacking methods for enhancing robust-
ness and to a higher priory put to enhancing microbial 
performance.

Yeast knockout collections have found extensive use 
in diverse applications, including investigating stress 
response mechanisms, drug effects, and functional 
genomics [41, 43, 44, 66, 93]. Here, we identified growth 
defects associated with specific conditions. For exam-
ple, Delft medium mixed with 20  g/L sucrose (CPS_2) 
severely hindered growth of the msh3 mutant. MSH3 
is involved primarily in repairing large insertion/dele-
tion mismatches and no records point to its involve-
ment in sugar or sucrose metabolism. However, a study 
by VanderSluis et  al. [93] indicated an inhibitory effect 
of galactose on growth of msh3 mutants, suggesting that 
a similar mechanism might be at play here. In the case 
of sorbitol supplementation (CPS_5), twelve out of four-
teen gene deletions (e.g.,  gbp2  and sma2) resulted in a 
higher specific growth rate than the parental strain. How-
ever, no known interactions were found between any of 
those genes and the enzymes involved in sorbitol catab-
olism. These examples point to possible links between 
metabolic processes and the response to environmental 
conditions.

Analysis of SAFE network regions associated with fit-
ness and robustness failed to identify any processes 
strictly related to either of these two properties. How-
ever, some non-essential gene deletions stood out 
for their ability to increase robustness: met28, sma2, 
rps14a,  rps14b,  bch1 and mrp13. Among these, met28 
caused the highest increase in robustness, but it also 
resulted in a substantial drop in fitness. In contrast, the 
bch1 mutant did not show any significant changes in fit-
ness, but it displayed an increased robustness. Met28 is 
part of a transcription factor complex (CBF1-MET4-
MET28) that regulates sulfur metabolism [58, 77]. Sul-
fur metabolism underscores many cellular processes: 
the sulfur metabolic flux correlates positively with spe-
cific growth rate [18, 92], it is essential for the synthesis 
of the stress response factor glutathione [7, 34, 69, 84], 
and in DNA replication [14]. As Met28 is correlated with 
specific growth rate, its gene deletion might consistently 
inhibit the growth of the strain across different cultiva-
tion media. Such consistent inhibition could result in a 
reduced but similar maximum specific growth rate for 
many perturbations, leading to an elevated robustness 

value across perturbation spaces. Therefore, the observed 
elevated robustness might be due to growth inhibition 
rather than inherent robustness mechanisms. BCH1 
belongs to the ChAPs family, which participates in the 
transport of specific cargo proteins from the Golgi to the 
plasma membrane [6, 72, 89].

A decrease in robustness was detected upon deletion of 
TIR3 and WWM1. TIR3 encodes a mannoprotein, which 
is required during anaerobic growth [2] and sterol uptake 
[56]. Mannoproteins enable communication with the 
extracellular environment and contribute to the inertness 
of the cell surface by providing an external mannan layer 
[62]. Tir3 belongs to the SRP1/TIP1 protein family, which 
can be induced under various stress conditions, such as 
temperature or glucose shock [55, 94]. The present study 
indicates that mannoproteins might also play a role in 
robustness. The function of Wwm1 remains unclear, 
but evidence points to its involvement in apoptosis and 
metacaspase function [49, 83]. Deletion of WWM1 has 
shown to impact key aspects of lifespan regulation, which 
could explain the observed reduced robustness. Cru-
cially, Wwm1 interacts with metacaspases, which contain 
sulfur ammino acids.

The present work aimed to find specific genetic mark-
ers for microbial robustness by investigating the effect of 
gene deletions on both fitness and robustness in different 
perturbation spaces. Even if the non-essential gene dele-
tions identified in the reference dataset did not influence 
robustness in the same way in the three tested perturba-
tion spaces, we were able to confirm and suggest some of 
the deletions as candidates for further studies on robust-
ness. Mechanistically, our results suggest that sulfur 
metabolism and sulfur-containing ammino-acids might 
be crucial for ensuring robustness in yeast. Deletion or 
overexpression of a single gene might not be sufficient to 
increase robustness; however, future studies on MET28, 
BCH1, WWM1, and TIR3, for example, could reveal a 
synergistic function of these genes impacting robustness. 
Moreover, understanding sulfur metabolism and man-
noproteins will amplify our knowledge of the metabolic 
processes affecting overall cell robustness. Expansion 
of the perturbation space, systems, and most crucially 
measured parameters is necessary to explore processes 
that could not be highlighted in this study. Finally, we 
here demonstrate that phenomics datasets are a key tool 
to investigate complex and understudied mechanisms.

Conclusions
In this study, we show how robustness analysis can be 
applied to phenomics datasets and coupled with meta-
bolic information to obtain an overall map of robustness 
in terms of both, environmental and genetic landscapes. 
This example can guide the integration of robustness in 
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the engineering of cell factories, thus complementing the 
current focus on fitness and production.

Material and methods
Robustness quantification using a previously published 
dataset
A publicly accessible dataset by Costanzo et  al. [22] 
provided the starting point for the present study. In 
particular, we focused on two key sets of data. The ini-
tial set contained single-mutant fitness data in the form 
of normalized colony size, across 14 different condi-
tions. This set covered all non-essential deletion and 
essential temperature-sensitive mutant arrays, totaling 
4429 unique mutants derived from BY4741 or Y7092 
strains [11]. The second set provided insights into 
genes and the related Spatial Analysis of Functional 
Enrichment (SAFE) annotations. First, these data were 
imported and processed in R. Throughout our analy-
sis, we employed specific R libraries to facilitate vari-
ous aspects of data manipulation, visualization, and 
exploration [4, 12, 24–31, 74, 76, 80, 87, 98]. Fitness 
distributions across strains for each condition were 
compared in R using analysis of variance (Alboukadel 
[4]). Robustness of the normalized colony size was cal-
culated across 14 environments using Eq. 1 [90] where 
the index of dispersion ( σ

2

x
 ) calculated with a set of 

phenotypic data is normalized by the mean “m” of the 
data across all strains:

The set of 14 conditions corresponded to the pertur-
bation space, the yeast strains to the system, and the 
normalized colony size to the cellular function (phe-
notype). Yeast strains were ranked based on two cri-
teria: fitness and robustness in response to different 
perturbations. To generate datasets with mutants with 
either low and high robustness and fitness, the mutants 
belonging to 10th and 90th percentiles were extracted 
from the original dataset. Data from the SAFE network 
regions were merged with the first dataset based on 
gene and allele names. Once the metabolic processes 
were associated with each gene and allele, 14 mutants 
with non-essential gene deletions were picked among 
the ten with either high robustness, low robustness or 
robustness equal to zero and highest fitness (Table  1), 
and categorized into three groups: (I) three mutants 
with notably high robustness distinct from zero: HR; 
(II) six mutants with both the highest fitness and a 
robustness value of zero: R0HF; and (III) five mutants 
with the lowest robustness: LR. The 14 genes were 
picked belonging to different SAFE regions. A script 

(1)R = −

σ
2

x

1

m

with in line description is available on Github (https:// 
github. com/ cectri/ rob_ genet ic_ marke rs).

Strains and gene deletions using CRISPR‑Cas9
To test whether robustness calculated from the Cos-
tanzo dataset could be reproduced in other perturbation 
spaces, and if specific gene deletions affected robustness, 
the selected non-essential genes (Table  1) were deleted 
from the laboratory CEN.PK113-7D strain (MATa URA3 
HIS3 LEU2 TRP1 MAL2-8c SUC2) [37]. Gene deletions 
were carried out using the LiAc/salmon sperm carrier 
DNA/polyethylene glycol method [45] in combination 
with CRISPR/Cas9 for improved integration efficiency 
[3]. YN2_1_Cas9 was the backbone Cas9 plasmid used 
in this study (bearing both the Cas9 and single guide 
RNA—sgRNA expression cassettes) and was previously 
developed in our laboratory [16]. In the sgRNA expres-
sion cassette, a GFP-dropout insert was designed to be 
replaced with the gene-specific 20-bp sgRNA.

To design the sgRNAs required for gene deletions and 
the donor DNAs needed for transformations, a script 
in R was developed for automated and fast design. The 
script is available on GitHub (https:// github. com/ lucat 
orep/ sgRNA_ design_ scrip ts).

To determine the sgRNA sequences, the R script com-
pared and found the best sequences in CRISPR-ERA 
[61], Yeast CRISPRi [79], and CHOPCHOP [59]. Briefly, 
sgRNAs were selected using the following parameters: 
(I) an ATAC-seq value above 0.7; (II) a nucleosome pres-
ence value below 0.2; (III) absence of poly-nucleotide 
sequences (more than 4 identical nucleotides in a row) 
and off-targets; (IV) CG content above 25%; (V) sgRNA 
sequence present in multiple databases, and (VI) predic-
tion of sgRNA efficiency above 50%.

To completely remove the coding sequence of the gene 
selected for deletion, an 11-bp sequence comprising 
three stop codons in different frames (TAA CTA GCTGA) 
was flanked by 50-bp homology arms in the promoter 
and terminator regions of the selected gene. Homology 
arms were automatically selected from the R script men-
tioned above. Therefore, the final donor DNA was 111 bp 
long (Table S2).

All oligos for each gene (sgRNAs and donor DNAs) 
were ordered as single-stranded (forward and reverse) 
oligonucleotides from Eurofins. The sgRNAs already 
contained sticky ends suitable for assembly in the 
YN2_1_Cas9 vector (Table  S3). The generation of dou-
ble-stranded oligonucleotides (both sgRNAs and donor 
DNAs), and insertion of sgRNA into YN2_1_Cas9 were 
carried out as described previously (REF). The transfor-
mation (Gietz, 2014) included an 18 min heat shock, as 
well as 1 μg of double-stranded donor DNA plus 300 ng 
of Cas9-sgRNA plasmid for each gene. Transformants 

https://github.com/cectri/rob_genetic_markers
https://github.com/cectri/rob_genetic_markers
https://github.com/lucatorep/sgRNA_design_scripts
https://github.com/lucatorep/sgRNA_design_scripts
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were then plated on YPD + G418 plates and incubated 
for 3 days at 30 °C. Colonies were verified by colony PCR 
using gene-specific oligos (Table  S4). The Cas9 plasmid 
was cured by re-streaking positive clones twice on antibi-
otic-free YPD plates.

Composition of the three perturbation spaces
Three perturbation spaces were tested in the study. The 
first perturbation space, CPS, included conditions similar 
to those used by Costanzo et  al. [22] (Additional mate-
rial). The Delft minimal medium used as base for all 16 
conditions contained 5  g/L  (NH4)2SO4, 3  g/L  KH2PO4, 
1  g/L  MgSO4∙7H2O, 1  mL (in 1  L) of trace metals solu-
tion (Table  S5), and 1  mL (in 1  L) of vitamin solution 
(Table S6). The medium was adjusted to pH 5 with NaOH 
and buffered with 100  mM  C8H5KO4. The medium was 
supplemented with different sugars and antifungal agents 
(Table 2).

The other two perturbation spaces mimicked indus-
trial processes that employ S. cerevisiae as a cell factory 
to produce valuable chemicals or fermentation products. 
First, the BPS was composed of 16 conditions, each cor-
responding to a mixture of malt, hops, an aroma, and a 

fining agent (Tables 3, 4). The malt was dissolved in water 
according to the vendor’s instructions (1  kg liquid or 
solid malt in 8 L water) and mixed with a magnetic stirrer 
for 10 min. To avoid any precipitation in culture plates, 
the dissolved malt was centrifuged at 5000 rpm for 5 min 
and the liquid fraction was filter-sterilized, first through 
a 2.5 µm cellulose filter and then through a 0.2 µm PES 
filter. To prepare the hops (2.6 g/L), we chose the boiling 
time in distilled water based on the suppliers’ recommen-
dations. Hops with a high content of alpha acids (bitter-
ing hops), including Simcoe, Citra, and Sabro HBC 438, 
were boiled for 60  min. Perle, Fuggle, and Nelson Sau-
vin late-hops were boiled for 15 min. Post-boil Amarillo, 
Mosaic, and Cascade hops were added after boiling and 
left for 20 min. Continuous hopping was also used with 
Magnum, East-Kent, and Tettnanger hops, which were 
added in 1/3 proportions every 20 min for a total time of 
1 h. Hops were cooled down, aromas were added to the 
hop mixture (620 μL in 200 mL), and the latter was filter-
sterilized. Enzymes (0.5 g/L) were also dissolved in water 
and filter-sterilized. Malts and hops were mixed with aro-
mas and fining agents in a 1:1 ratio.

Table 3 List of malts, hops, fining agents, and aromas used in the BPS

Malts Spraymalt Extra Light (Muntons), Spraymalt Wheat (Muntons), Coobra liquid malt extract light, TC Malt Extract Amber (Coopers)

Hops pellets Perle (Germany), Fuggle (England), Simcoe Humle (USA), East-Kent Gold (England), Nelson Sauvin Humle (New Zealand), Cascade (USA), 
Magnum Humle (Germany), Citra (USA), Mosaic (USA), Amarillo (USA), Tettnanger (Germany), Sabro Brand HBC 438 (USA)

Aromas Vanilj Vodka (Strands), Pepparmint (Strands), Mia Theresa Essens (Strands), Svartvinbärsbrännvin (Strands), Citron Vodka (Strands), Grappa 
Stravecchia (Strands)

Finings Distiller’s Enzyme Alpha-Amylase (StillSpirits), Distiller’s Enzyme Glucoamylase (StillSpirits)

Table 4 List of conditions in the BPS

Perturbation code Malt Hop Aroma Fining agent

BPS_1 Spraymalt extra light Perle Vanilj vodka /

BPS_2 Spraymalt wheat Fuggle Vanilj vodka /

BPS_3 Coobra light Simcoe Peppermint /

BPS_4 Amber malt East-Kent Gold Peppermint /

BPS_5 Spraymalt extra light Nelson Sauvin Svartvinbärsbrännvin /

BPS_6 Spraymalt wheat Cascade Svartvinbärsbrännvin /

BPS_7 Coobra light Magnum Mia Theresa Essens /

BPS_8 Amber malt Citra Mia Theresa Essens /

BPS_9 Spraymalt extra light Mosaic Citron Vodka /

BPS_10 Spraymalt wheat Amarillo Citron Vodka /

BPS_11 Coobra light Tettnanger Grappa Stravecchia /

BPS_12 Amber malt Sabro brand HBC 438 Grappa Stravecchia /

BPS_13 Spraymalt extra light / / Glucoamylase

BPS_14 Spraymalt wheat / / Glucoamylase

BPS_15 Coobra light / / Alpha-amylase

BPS_16 Amber malt / / Alpha-amylase
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The LHPS included components commonly encountered 
during lignocellulose hydrolysate fermentation. The 16 test 
media were prepared by mixing specific inhibitors or sugars 
with the other Delft ingredients (concentration of Delft com-
ponents as in CPS) (Table 5). Stock solutions of the specific 
inhibitors were adjusted to pH 5 and filter-sterilized sepa-
rately using a 0.2-µm PES filter. Synthetic hydrolysate com-
ponents were also mixed with Delft medium.

Strain cultivation
Briefly, 10 μL of the strain’s glycerol stock was inoculated 
in 5  mL Delft 2% glucose. The pre-culture was incubated 
overnight at 30  °C and 200  rpm shaking. Then, the strains 
were reinoculated in exponential phase in 250 μL medium 
at a starting OD600 of 0.02. Strains were grown in trip-
licates in 96-well plates (CR1496dg, Enzyscreen). Given 
the 16 different conditions in the perturbation space, two 
strains were accommodated on each plate. For LHPS and 
BPS plates, a cover (CR1296, Enzyscreen) was applied to 
minimize oxygen diffusion, effectively creating anaerobic 
conditions. Conversely, for CPS plates, a two-step approach 
was employed. First, a clear polyester adhesive film was 
applied to prevent contamination of the covers with any 
potentially toxic compounds caused by splashing. Second, 
an aerobic cover (CR1396b) was placed on top of the film. 
The cultivation process was monitored by measuring green 
values using a Growth Profiler 960 (Enzyscreen). All experi-
ments were conducted at 30 °C with continuous shaking at 
250 rpm for a duration of 48 h. The green values obtained 
were subsequently utilized for in-depth analysis of fitness 
and robustness.

Fitness and robustness assessment
To evaluate fitness, the maximum specific growth rate 
(1/h) was estimated for each well using the ‘‘ all_splines’’ 
function in R. In the case of no growth, the maximum 
specific growth rate was set to zero. In cases where the 
‘‘all_splines’’ function failed to adequately fit the growth 
curve (with an R-squared value < 0.99), the maximum 
specific growth rate was designated as NA. The calcu-
lation of robustness was carried out using Eq.  1. When 
calculating robustness for each perturbation space, all 
replicates were considered collectively. Consequently, no 
mean robustness or standard error was computed. The 
entire data analysis process and the plots were generated 
using R Studio Version 2023.06.2 + 561. The scripts along 
with in-line descriptions and the raw data are readily 
accessible via GitHub at the following link https:// github. 
com/ cectri/ rob_ genet ic_ marke rs.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12934- 024- 02490-2.

Additional file1. Table S1. SAFE network regions associated with mutants 
characterized by either high or low fitness or robustness. Table S2. Donor 
sequences used in this study. Table S3. Details of sgRNAs used in this 
study. Table S4. Oligos for sgRNAs used in this study. Table S5. Composition 
of the trace metals solution. Table S6. Composition of the vitamin solution. 
Table S7. Composition of spruce and corn synthetic hydrolysates. Figure 
S1. Distribution of fitness and robustness of the 10th and 90th percentiles 
of the original dataset. Figure S2. SAFE regions mean fitness and robust-
ness (reference dataset). Figure S3. Fitness and robustness in the CPSr. 
Figure S4. Fitness and robustness in the CPSo.

Table 5 List of conditions in the LHPS

a Composition of the synthetic hydrolysates can be found in Table S7

Perturbation code Carbon source Antifungal agent

LHPS_1 Glucose 20 g/L /

LHPS_2 Glucose 5 g/L /

LHPS_3 Glucose 100 g/L /

LHPS_4 Glucose 20 g/L no buffer

LHPS_5 Glucose 20 g/L pH = 3

LHPS_6 Glucose 20 g/L Half concentration of vitamins and trace metals

LHPS_7 Glucose 20 g/L NaCl 25 g/L

LHPS_8 Glucose 20 g/L NaCl 80 g/L

LHPS_9 Glucose 20 g/L Ethanol 50 g/L

LHPS_10 Glucose 20 g/L Ethanol 100 g/L

LHPS_11 Glucose 20 g/L Acetic acid 2 g/L

LHPS_12 Glucose 20 g/L Formic acid 2 g/L

LHPS_13 Glucose 20 g/L Lactic acid 10 g/L

LHPS_14 Glucose 20 g/L 5-(hydroxymethyl)furfural 1 g/L

LHPS_15 / Spruce synthetic  hydrolysatea 20%

LHPS_16 / Corn synthetic  hydrolysatea 100%

https://github.com/cectri/rob_genetic_markers
https://github.com/cectri/rob_genetic_markers
https://doi.org/10.1186/s12934-024-02490-2
https://doi.org/10.1186/s12934-024-02490-2
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