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Pair-breaking edges of d-wave superconductors feature Andreev bound states at the Fermi energy. Since these
states are energetically highly unfavorable they are susceptible to effects that shift them to finite energy. We
investigate the free energy of two different mechanisms: spontaneous phase gradients in the superconducting
order parameter and surface ferromagnetism caused by Fermi liquid interaction effects. We find that the surface
magnetization appears at lower temperatures than the spontaneous current flow of the phase-crystal state. The
magnetic state can, however, be energetically favorable at lower temperatures for sufficiently strong Fermi liquid
effects. Thus, first-order transitions between the two states as function of system temperature are possible,
suggesting a rich low-temperature phase diagram in d-wave superconductors.

DOI: 10.1103/PhysRevB.110.064502

I. INTRODUCTION

The rich physics of unconventional superconductors has
been the subject of intense research for many years. A point of
particular interest is the topologically protected surface states
that have a large impact on the physics of such materials [1–4].
In the case of d-wave superconductors, surfaces not aligned
with the main crystallographic a- and b-axes in the plane host
Andreev bound states at the Fermi energy. These states result
from scattering between lobes of the order parameter with
different sign. They carry a substantial spectral weight due to
the large degeneracy with respect to the momentum parallel
to the surface. As a result, the bound states are energetically
unfavorable and any mechanism that can move them away
from the Fermi surface will reduce the ground-state energy
of the system [2,5]. The Andreev states are experimentally
observed as a zero bias tunneling conductance peak (ZBCP)
[6–9] and give rise to a paramagnetic Meissner effect [10].
The ZBCP peak has been observed to split into two sepa-
rate ones in the presence of external magnetic fields but also
spontaneously, i.e., without external field, at low temperatures
[11–13]. Over the years, different models for the underly-
ing physics have been discussed, such as a subdominant
s-wave order parameter at the surface. This leads to a local
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breaking of time-reversal symmetry and shifts the Andreev
bound states away from the Fermi energy [14,15]. As a com-
peting mechanism, the possibility of ferromagnetic ordering
at surfaces was suggested to appear due to electron-electron
interaction [5]. At zero temperature arbitrarily small repulsive
interactions lead to spin splitting of surface states and a result-
ing magnetization. This has been shown to be energetically
favorable compared to subdominant s-wave order [16]. An
underlying assumption in the scenarios above is translational
invariance along the surface. This disallows another possible
mechanism, the spontaneous development of spatially non-
trivial phase gradients in the d-wave order parameter [17].
This phase-crystal state exhibits a periodic modulation of the
phase, characterized by a wave vector q, and associated cur-
rent flow. The surfaces states are then Doppler-shifted away
from the Fermi energy and the resulting free energy gain at
the surface exceeds the cost of the loop currents in the interior
of the sample [18,19]. Strong correlations have been shown
to stabilize the phase crystal, even in the presence of disorder
[20]. In Refs. [17–20] spin degeneracy was assumed which
neglects the possibility of magnetic ordering. It is thus an open
question which of the two scenarios is going to be dominant,
especially at experimentally relevant finite temperatures.

In the present work we thus allow for both spontaneous
phase gradients, as well as magnetic ordering at the surface.
To this end, we consider a thin d-wave film at finite tem-
peratures and for different magnetic interaction strengths to
determine the state with minimal free energy. Our method
of choice is the quasiclassical theory of superconductivity.
This theory provides an appropriate description of phenom-
ena on the length scale of the superconducting coherence
length ξ0 while neglecting variations on the microscopic
length scale of the Fermi wavelength λF. Both the surface
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magnetization and the phase-crystal feature typical struc-
ture sizes of several coherence lengths and a quasiclassical
description is appropriate. A direct comparison between mi-
croscopic and quasiclassical descriptions of the phase crystal
found universal behavior with minor quantitative differences
between the two approaches [19]. Our study shows that the
state with minimal energy is usually a phase-crystal state, with
magnetic ordering dominating for large magnetic interaction
strength and at low temperatures. As function of system tem-
perature, a crossover from one state to the other can occur
at a critical temperature that is determined by the strength of
Fermi liquid interactions. Our results thus give insight into
the competition between the two different orders as well as
fingerprints of the different phases.

II. THEORY

A. Quasiclassical theory

For our study, we use the quasiclassical theory of supercon-
ductivity in the Eilenberger form [21–23]. We only give a brief
overview here, details can be found in our earlier publications
[24,25] and other extensive literature [26–28]. In the equi-
librium situations considered here, all physical observables
of interest can be calculated from the quasiclassical Green’s
function ĝM(pF, R, εn) that depends on the momentum direc-
tion on the Fermi surface pF, spatial coordinate R, and the
Matsubara frequency εn. We obtain ĝM as a solution to the
Eilenberger equation

ih̄vF · ∇ĝM(pF, R, εn)

+ [iεnτ̂3 − ĥM(pF, R, εn), ĝM(pF, R, εn)] = 0, (1)

subject to the normalization condition

ĝM(pF, R, εn)ĝM(pF, R, εn) = −π2. (2)

In Eq. (1), a commutator between matrices A and B is denoted
[A, B] and ˆ indicates a Nambu (particle-hole) space matrix
such as the third Pauli matrix τ̂3. The equation also contains
the Fermi velocity vF and the self-energy matrix ĥM that we
discuss in detail below. The Green’s function ĝM in Eqs. (1)
and (2) is a two-by-two matrix in particle hole space,

ĝM =
(

gM f M

f̃ M g̃M

)
, (3)

with the quasiparticle Green’s function on the diagonal and
anomalous superconducting correlations on the off-diagonal.
Each of the four elements in Eq. (5) is, in turn, a two-by-two
matrix in spin space, for example,

gM =
(

g0+ gz gx −igy

gx +igy g0−gz

)M

=
(

g↑ gx −igy

gx +igy g↓

)M

. (4)

Objects with a tilde are related to nontilde objects via particle-
hole conjugation,

Ã(ε, pF, R) = A∗(−ε∗,−pF, R). (5)

The self-energy matrix ĥM has an identical structure in
particle-hole and spin space. In this work we consider two
self-energy contributions,

ĥM = ĥM
MF + ĥM

FL. (6)

The first contribution is a spin-singlet, mean-field order
parameter

ĥM
MF =

(
0 �siσ2

iσ2�̃s 0

)
. (7)

We consider a singlet order parameter �s with d-wave
orbital symmetry. Assuming a cylindrical Fermi surface, we
parametrize the momentum orientation pF via a scalar angle
φF ∈ [0, 2π ) and can then write

�s(ϕF) = �0ηd (ϕF ) = �0 cos (2ϕF − 2α), (8)

with α being the misalignment angle of the crystallographic
a-b axis and the surface normals, while �0 is the (complex)
value of the order parameter. The latter is found from the self-
consistency equation

�0 = λdNFkBT
∑

|εn|<εc

〈ηd (pF) f M(εn, pF)〉FS, (9)

where λd is the d-wave coupling constant, εc is the Matsubara
sum cutoff, and we use

〈. . . 〉FS =
∫ 2π

0

dϕF

2π
(. . . ), (10)

to denote the Fermi-surface average. The second contribution
in Eq. (6) is a spin-dependent Fermi-liquid interaction

ĥM
FL =

(
ν · σ 0

0 ν · σ∗

)
. (11)

Following Refs. [26,29,30], the element i ∈ {x, y, z} of ν is

νi ≡ A0,ikBT
∑

n

〈Trσ σig
M〉FS. (12)

Here, Trσ is a trace over spin space. While νi has the dimen-
sion of energy, A0,i is a dimensionless scalar parameter that
specifies the strength of the Fermi-liquid interaction along the
spin axis i. It is related to the first spin-antisymmetric Landau
parameter F a

0 as

A0 = F a
0

1 + F a
0

, (13)

and displays a ferromagnetic Stoner instability for F a
0 → −1

[31]. For simplicity, we assume that a nonzero A0,i exists only
along the spin-quantization axis which we label z. Generally,
the interaction is ferromagnetic for negative values of A0,
so we replace A0,z → −|A0| and specify |A0| in the follow-
ing [30]. Assuming an antiferromagnetic interaction (positive
A0,z) results in a vanishing Fermi-liquid self-energy in our
system. In total we thus have a self-energy contribution

νz = −2|A0|kBT
∑

n

〈gz〉FS. (14)

To solve Eq. (1) we use a Riccati parametrization for the
Green’s function ĝM [32–35], and a finite-element method
(FEM) that, compared to previous work [25], is here extended
to systems with full spin structure. Details on this extended
method can be found in the Appendix. To ensure that physical
conservation laws are satisfied we solve for both the self-
energies as well as the Green’s function until self-consistency
[24,36]. These self-consistent solutions all show a suppression
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of the order parameter near pair-breaking surfaces. At low
temperatures a nonzero Fermi liquid self-energy arises in the
vicinity of the surfaces. Once a self-consistent solution has
been found, we calculate the difference in free energy from
the normal state ��LW = �S − �N using the Luttinger-Ward
form of the free energy. Following Refs. [26,37–40], we arrive
at

��LW = �S − �N

= 1

2
kBT

∑
εn

(∫ 1

0
〈Trĥĝλ〉FSdλ− 1

2
〈Trĥĝ〉FS

)
. (15)

Here, ĥ and ĝ are the self-consistently determined self-
energies and Green’s function, respectively. In contrast, ĝλ

is a solution of Eq. (1) for scaled self-energies, �̂ → λ�̂,
meaning a scaling of all self-energies from zero to the original
value. Note that the boundary values of the Green’s function
have to be iteratively found for this scaled problem, while the
self-energies are kept at a fixed scaling of the self-consistent
solution. In the present case, we have a spin-singlet order
parameter �s and a diagonal self-energy that is proportional
to σz, thus

Tr ĥĝ = 2(νzgz + ν̃zg̃z − fs�̃s − f̃s�s), (16)

with a similar expression for the term ĥĝλ.
Last, we calculate the spin-resolved density of states by

solving Eq. (1) for the retarded Green’s function. To this end,
we replace iεn → ε + iη, in this work we use η = 0.01kBTc as
a broadening parameter. From the retarded Green’s function
we obtain the Fermi-surface averaged density of states for spin
component σ = ↑,↓ as

N↑(↓)(R, ε) ≡ −NF

2π
〈Im gR

↑(↓)(pF, R, ε)〉FS, (17)

where ε is the quasiparticle energy, NF is the normal-state
density of states at the Fermi level and g↑(↓) is defined in
Eq. (4). The full density of states is then

N (R, ε) = N↑(R, ε) + N↓(R, ε). (18)

B. Calculational strategy

Our calculations proceed as follows. We initially assume a
uniform order parameter and in-plane magnetic field that en-
ters Eq. (1) as a Zeeman-term �Zeeman = σzhZ = μBBext. This
field serves as a seed for the surface magnetization by creating
a spin splitting everywhere in the system. After ten self-
consistency iterations, we remove the external field by setting
Bext = 0. We now solve Eq. (1) and update the self-energies
via Eqs. (9) and (14) until a self-consistent solution is found.
Depending on the strength of the Fermi liquid interaction,
|A0|, the magnetization at the surface then either disappears, or
remains and is present in the final self-consistent solution. For
fixed |A0|, we then calculate the free energy using Eq. (15).

C. Model

We consider a thin-film d-wave superconductor in two dif-
ferent geometries. First, a strip that is infinite in the y direction
but has a finite length L = 40ξ0 in the x direction, delimited by
two fully reflective interfaces. This system is translationally

FIG. 1. Fermi liquid interaction effects split the zero-energy An-
dreev bound states. The full density of states (dash-dotted blue) is
split as a result of opposite energy shifts of up-spin (solid orange) and
down-spin (dashed green) states. All quantities are shown directly
at the surface of a translationally invariant strip with |A0| = 0.7
at T = 0.15Tc. Inset: Enlarged view of the main plot around zero
energy.

invariant in the y direction and quasi-one-dimensional, hence
we can solve Eq. (1) along a one-dimensional line. Second, we
have a square with sides of length L = 40ξ0 and fully reflec-
tive surfaces. In both systems, we assume specular scattering
at the surfaces and a misalignment of α = π/4 between the
crystal axes and the respective surface normal [41].

III. RESULTS

A. Translationally invariant strip (1D)

In the translationally invariant system we cannot find a so-
lution with spontaneous current flow. For a strip of width L =
40ξ0 we also do not find signs of the spontaneous symmetry-
breaking phases that occur in narrow confined geometries
[42]. The only possible transition is then to a magnetized
state. At a transition temperature TM—that depends on |A0|—
the surface Andreev bound states are shifted away from the
Fermi energy. The spin-resolved density of states for up-
and down-spin quasiparticles in Fig. 1 shows that the two
peaks are spin polarized, this gives rise to a magnetization
at the surface. The energy gained by this bound-state energy
shift is larger then the cost of the induced magnetization that
extends into the interior of the sample. The surface magne-
tization can be either of equal or opposite sign at the two
edges, both configurations have equal free energy ��LW.
The resulting free energy difference is shown in Fig. 2 for
several values of |A0|. Both ��LW and its derivative indicate
a second-order phase transition to the magnetically ordered
state at TM. The inset of Fig. 2 shows the dependence of
TM on the Fermi-liquid parameter |A0|. Clearly, for smaller
|A0| the transition temperature TM is lowered. This connects
to the results of Ref. [16] where, at zero temperature, an
infinitesimally weak interaction is sufficient to create surface
magnetization.
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FIG. 2. Free energy ��LW as function of temperature T in an
infinite strip of length L = 20ξ0 in the x direction. In red triangles, the
free energy in the absence of magnetic interaction, |A0| = 0, and for
finite Fermi-liquid parameter |A0| as indicated in the legend. Inset:
Dependence of TM, the transition temperature to the magnetic state,
for various A0 (orange dots) together with a quadratic fit (blue dashed
line) and T ∗, the temperature of the phase crystal in the absence of
magnetic interaction (red-dotted line).

B. Square geometry (2D)

In a true square geometry we can find two nontrivial and
distinct solutions as ground-state candidates. First, a magnet-
ically ordered state with magnetization on all edges, similar
to the one found in the infinite strip. Second, we find the so-
called phase crystal that features spontaneous phase gradients
and currents along the edges. These currents typically flow
in pairs of loops that have a radius of around five coherence
lengths and carry, per loop-pair, counterflowing current. We
find that self-consistent solutions are always either one or the
other state and do not observe any mixed states. If the solution
is of one or the other type depends on the temperature T and
Fermi-liquid interaction strength |A0|.

We start by discussing the magnetic state, shown for one
choice of parameters in Fig. 3. As seen in Fig. 3(a), the mag-
netization is nonuniform along the edges and suppressed close
to the grain corners due to interference effects. Figure 3(b)
shows that Mz(R) is maximal in the center of each edge
and decays exponentially with distance from the surface on
the scale of the superconducting coherence length. Similar to
the infinite strip, we can find configurations with oppositely
pointing magnetic fields at adjacent edges with no difference
in free energy. We now turn to the phase crystal state. The
main characteristic are spontaneous currents that form loops
along the edges, seen in Fig. 4(a). This spontaneous flow
is the results of an oscillation of the order-parameter phase
shown in Fig. 4(b). For details on the physics of this phase and
how such currents can reduce the free energy, we refer to the
existing literature [17,18,43]. The underlying solver package
for the quasiclassical equations of motion in two dimensions,
SUPERCONGA, has been made publicly available [44]. The
phase crystal is also found in microscopic models and stabi-
lized when including strong correlations [19,20]. To compare
the free energy of the two phases for different temperatures

FIG. 3. Surface magnetization for parameters A0 = 0.52 and
T ≈ 0.093Tc in a square with an area A = (40ξ0 )2. In panel (a), a
filled contour plot of the magnetization Mz(R), which is symmet-
ric around y = 0, in the upper half of the square. In panel (b), in
solid blue Mz(R) along y = 0ξ0–seen as a black line in panel (a)—
showing the exponential decay into the bulk, and in dashed orange
the magnetization along the surface at y = 20ξ0, red line in panel
(a), showing the decrease away from the center and small positive
value close to the corners.

FIG. 4. Example for the phase crystal state in a 2D square with
area A = L2 = (40ξ0 )2 for T = 0.1Tc. In panel (a), the norm of
the current vector j(x, y) in units of j0 = eNFvFkBTc. In panel (b),
the dimensionless phase of the order parameter χ (x, y) = arg(�) in
units of π . Both quantities are symmetric around y = 0 and we show
only the upper half of the square.
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FIG. 5. Free energy ��LW for finite A0 as indicated in the leg-
end. Additionally, the case of vanishing A0 for either a purely real
(complex) order parameter marked with blue dots (orange crosses).
At sufficiently low temperatures and large enough values of |A0| the
free energy of the magnetic state is lower than that of the phase
crystal.

T we consider two sets of parameters. First, we allow for a
complex order parameter while Fermi-liquid effects are ne-
glected, A0 = 0, such that only a phase-crystal solution can
appear below a critical temperature of T ∗ ≈ 0.17Tc [17]. In a
separate set of calculations, we choose a finite |A0| and force
the superconducting order parameter to be real. Depending
on temperature, we then find either a magnetized state or a
pure d-wave state without current loops. For the sake of com-
parison, we also calculated the free energy of a system with
no magnetic interaction and real order parameter. In this case
neither of the two mechanisms shifts the surface bound states
and they stay at zero energy. Figure 5 shows the free energy
for these different sets of calculations. For finite |A0|, the
surface magnetization lowers the free energy below the case of
a purely real order parameter (blue line with crosses in Fig. 5).
From a purely real order parameter, the state with surface
magnetization is reached via a second-order phase transition
at a temperature TM that depends on A0. This behavior is
completely analogous to the infinite strip discussed earlier. In
the two-dimensional square geometry, however, we can also
find the phase crystal state. For a large temperature range
this state with spontaneous current flow has even lower free
energy, and is energetically favorable, compared to the state
with surface magnetization. For sufficiently large |A0| and low
enough temperature, the magnetic state can have a lower free
energy than the phase crystal. In Fig. 5 this is the case for
|A0| = 0.4 and |A0| = 0.5. In comparison, for smaller values
such as |A0| = 0.3 the phase crystal is always the state with
lower free energy. Thus, the prevalence of, e.g., the state with
surface magnetization over the phase crystal depends strongly
on the strength of Fermi liquid effects in a given material. For
conventional superconductors, spin-polarized electron tunnel-
ing has been used to experimentally determine |A0|, e.g., for
dirty aluminum with a value of |A0| = 0.43 ± 0.1 [45–47].
An attempt to use similar experimental techniques on YBCO
has been reported but gave inconclusive results [48]. What
values to expect for typical d-wave materials is thus an open
question to experiment. Recent microscopic calculations have

predicted a large increase in the spin susceptibility close to
pair-breaking surfaces compared to the bulk in such materials
[49]. Since the spin susceptibility is to lowest order given by
χs ∝ μ2

FN ∗/(1 + F a
0 ), this indicates a finite, negative Fermi-

liquid parameter F a
0 [31]. The values of Ref. [49] correspond,

through Eq. (13), to A0 ≈ −0.7 which suggests that a low
temperatures a dominance of the magnetic state over the phase
crystal is likely. Experimentally, materials with strong enough
Fermi liquid interactions should first display a second-order
transition to a phase crystal state at T ≈ 0.17Tc. As tempera-
ture is lowered further, a first-order transition to the state with
surface magnetization occurs. An experimental fingerprint of
the surface-magnetized states is the relatively uniform mag-
netization along pair-breaking edges compared to the phase
crystal that features neighboring circular regions of oppositely
pointing magnetic fields generated by the current loop pattern
[17]. The two phases should thus be experimentally distin-
guishable by the magnetic fields generated in the respective
case.

IV. DISCUSSION AND OUTLOOK

We have studied the free energy of two distinct ground
states in d-wave superconductors. We discussed a state with
surface magnetization and another one with orbital currents
circulating along the surfaces. In both cases, the free energy of
the system is reduced by shifting the surface Andreev bound
states to finite energy. At the same time, both the induced cur-
rents or magnetization cost energy in the interior of the sample
[18]. The balance between the surface and interior free energy
contributions determines the transition temperature to either
of the two states. Both configurations are reached from a pure
d-wave state via second-order phase transitions. For weak
Fermi-liquid interaction, the transition to a magnetic state
happens at a temperature TM that is lower than the transition
temperature of the phase crystal, T ∗ ≈ 0.17Tc. The magnetic
state can, however, end up as the ground state for intermediate
values of the Fermi liquid parameter and at lower temper-
atures. Which of the two states ends up being the ground
state for given external parameters is determined by mate-
rial properties, such as the strength of Fermi-liquid effects
that renormalize the quasiparticle spectrum. The appearance
of a d ± ip-wave state at the surface has been discussed in
Ref. [50], an analysis of this is beyond the scope of the
present work. Additionally, Fermi liquid interaction beyond
the lowest-order s-wave contribution considered here can give
rise to spin-orbit coupling and lead to additional splitting or
broadening of the surface states. Last, an external magnetic
field applied in-plane on a thin film introduces a Zeeman
splitting of the density of states. This would make a surface
magnetization energetically more favorable while suppressing
the phase crystal state. This biasing could thus alter the com-
petition studied in this work and a detailed study would allow
for easier comparison to a corresponding experiment.
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APPENDIX: DISCONTINUOUS GALERKIN METHOD FOR
THE QUASICLASSICAL THEORY

WITH GENERAL SPIN STRUCTURE

We give here an overview of a finite-element-based
solution strategy to the general Eilenberger equation of quasi-
classical theory with the full spin degrees of freedom. This
extends a previously reported method for spin-degenerate
systems [25]. We focus here on the method for the imaginary-
energy, or Matsubara, part of the Green’s function that
determine the equilibrium properties of a superconducting
system. The generalization to nonequilibrum scenarios fol-
lows similar lines.

The starting point is a parametrization of the Green’s func-
tion ĝM in terms of coherence amplitudes γ , γ̃ [33,34]. For
positive Matsubara frequencies, the Green’s function can be
written as

ĝM = −2π i

( G F
−F̃ −G̃

)M

+ iπτ̂3 =
(

gM f M

f̃ M g̃M

)
, (A1)

where GM ≡ (1 − γ Mγ̃ M)−1 and FM ≡ GMγ M [28]. In the
following, we omit the superscript M to simplify notation. In
the previously reported method for spin-degenerate systems,
all elements of ĝ, and hence also the coherence amplitudes, are
scalar quantities. For general spin structure, both the Green’s
function elements and the coherence amplitudes become in-
stead two-by-two matrices in spin space.

We thus obtain a set of four coupled equations that have to
be solved. The convention is to write, e.g.,

g =
(

g0 + gz gx − igy

gx + igy g0 − gz

)
, (A2)

f =
(

f0 + fz fx − i fy

fx + i fy f0 − fz

)
iσ2. (A3)

Similarly, we write for the coherence amplitude

γ =
(

γ0 + γz γx − iγy

γx + iγy γ0 − γz

)
iσ2 =

(
γ1 γ2

γ3 γ4

)
iσ2, (A4)

with an analogous form for γ̃ . In the following, we will use
the latter labeling of the elements of γ in terms of numerical
indices k ∈ {1, 2, 3, 4}. Similarly, we then label the elements
of the self-energy matrices as

� =
(

�1 �2

�3 �4

)
iσ2, � =

(
�1 �2

�3 �4

)
. (A5)

The projections onto singlet (0) or a given triplet (x, y, z) com-
ponent can be obtained via the reverse linear transformation of
Eq. (A4), e.g., for the coherence amplitude(

γ0 γx

γy γz

)
= 1

2

(
γ1 + γ4 γ2 + γ3

i(γ2 − γ3) γ1 − γ4

)
. (A6)

For general complex energies ε, the Riccati equation for the
coherence amplitude γ reads

ih̄vF · ∇γ = γ �̃γ − 2εγ + �γ − γ �̃ − �, (A7)

with an equation for γ̃ that is obtained via Eq. (5). Note that all
objects in Eq. (A7) expect for ε are two-by-two spin matrices.
Clearly, Eq. (A7) is a nonlinear differential equation for the
unknown function γ . We aim to solve it through the itera-
tive solution of a linearized problem using a finite-element
method. One possibility to get such an iterative sequence is to
assume that the nth iterative guess γ (n) is given as a solution
to the linearized problem

ih̄vF · ∇γ (n) = γ (n)�̃γ (n−1) − 2εγ (n)

+ �γ (n) − γ (n)�̃ − �. (A8)

Given a starting guess γ (0) we then hope that the sequence
γ (n) will convergence up to a desired accuracy in a reasonable
amount of iterations. To unburden the notation, we denote
� ≡ γ (n) and γ = γ (n−1) in the following. Using the labeling
of Eqs. (A4) and (A5) and removing factors of iσ2, Eq. (A8)
leads to an equation system of the form

ih̄vF · ∇
(

�1 �2

�3 �4

)
=

(
�1

(−�̃4γ1 + �̃3γ3
) + �2

(
�̃2γ1 − �̃1γ3

)
�1

(−�̃4γ2 + �̃3γ4
) + �2

(
�̃2γ2 − �̃1γ4

)
�4

(−�̃1γ3 + �̃2γ1
) + �3

(
�̃3γ3 − �̃4γ1

)
�4

(−�̃1γ4 + �̃2γ2
) + �3

(
�̃3γ4 − �̃4γ2

))

− 2ε

(
�1 �2

�3 �4

)
+

(
�1�1 + �2�3 �1�2 + �2�4

�3�1 + �4�3 �4�4 + �3�2

)
−

(
�1�̃4 − �̃2�2 �2�̃1 − �1�̃3

�3�̃4 − �̃2�4 �4�̃1 − �3�̃3

)

−
(

�1 �2

�3 �4

)
. (A9)

Schematically, this system is equivalent to

ih̄vF · ∇

⎛
⎜⎜⎝

�1

�2

�3

�4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

r1[�, γ ,�,�]
r2[�, γ ,�,�]
r3[�, γ ,�,�]
r4[�, γ ,�,�]

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

�1

�2

�3

�4

⎞
⎟⎟⎠. (A10)

As specified in Eq. (A9) the four right-hand side functions
rk—with k ∈ {1, 2, 3, 4}—depend on various elements of �,
γ , �, and �, which are in turn spatially dependent. In the
following we only write out an explicit spatial dependence
of rk (R). The “driving term,” �k , is written out explicitly
because it is the only one that is independent of �k . Note also
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that the differential operator vF · ∇ acts on each element of the
four-vector separately. By construction of Eq. (A8) we have a
linear system of equations for the unknown functions �k in
Eqs. (A9) and (A10).

Performing a scalar product of both sides of the equa-
tion with a four-vector of, currently unspecified, test functions

φ = (φ1(R), φ2(R), φ3(R), φ4(R))
T
, and integrating over the

domain � gives

ih̄
4∑

k=1

∫
�

φk (R)[vF · ∇�k (R)] d�

=
4∑

k=1

∫
�

φk (R)[rk (R) − �k (R)]d�. (A11)

The integration over the domain gets now split up into a sum
of integrals over a set of cells Tj that satisfy � = ∪Tj∈T Tj ,
i.e., over a triangulation T of the domain �. For the trans-
port equation in Eq. (A10) it is crucial to use a so-called
discontinuous Galerkin method where neighboring cells have
independent degrees of freedom associated with each geo-
metric node. This means function values can be different
in neighboring cells even at the—geometrically identical—
shared cell corners [52,53].

The splitting of the global integral into a sum of per-cell
integrals gives

ih̄
4∑

k=1

∑
Tj∈T

∫
� j

φk (R)(vF · ∇�k (R)) d� j

=
4∑

k=1

∑
Tj∈T

∫
� j

φk (R)(rk (R) − �k (R))d� j . (A12)

A partial integration of the left-hand side yields

ih̄
4∑

k=1

∑
Tj∈T

[∫
∂� j

φk (R)�k (R)vF · n j ds j

−
∫

� j

�k (R)vF · ∇φk (R) d� j

]

=
4∑

i=1

∑
Tj∈T

∫
� j

φk (R)[rk (R) − �k (R)]d� j, (A13)

where the first integral is now over the boundary ∂� j of a
cell Tj and contains the edge-dependent, outward-pointing
normal vector n j . A given edge of such a cell will either be on
the geometric boundary ∂� or one of the internal edges. We
label the collection of such internal edges τ . The geometric
boundary ∂� is further split into an inflow boundary ∂�− and
an outflow boundary ∂�+, defined via

∂�− ≡ {R ∈ ∂� | vF · n(R) < 0}, (A14)

∂�+ ≡ {R ∈ ∂� | vF · n(R) � 0}. (A15)

The various sets are shown in Fig. 6. The sum over the
cell-edge integration then consists of three different types of
contributions. First, integrals over edges on the inflow bound-
ary where a boundary value �k,B has to be specified. We

FIG. 6. A domain � (gray) with its inflow (outflow) boundary
∂�− (∂�+) in marked in light blue (dark red) for the given transport
direction vF (orange arrow). The collection of internal edges τ is
marked in dark green. The mesh nodes of the underlying trian-
gulation is marked by green circles. Small arrows on the domain
boundary denote outward-pointing surface normals.

refer to the discussion in Ref. [25] on how these boundary
values are found since the procedure is identical to the spin-
degenerate case. Second, we have integrals over the outflow
boundary where the functions �k are unknown and determined
in the later solution procedure. Last, Eq. (A13) features a sum
over internal edges. Each edge is integrated over twice, once
for each of the two cells that share a given edge. The sign
of n j · vF will be different for the two respective cells which
leads to terms proportional to the difference of φk�k in the
two cells. We will just label two cells sharing an edge as cell
1 and cell 2. It has been shown [54,55] that a numerically
stabilized form of rewriting the integral contributions from
internal edges in Eq. (A13) is

4∑
k=1

∑
Tj∈T

∫
∂� j

φk (�kvF) · n j ds j

=
4∑

k=1

(∑
τ j∈τ

∫
τ j

{�k (R)vF}u · [φk (R)] dτ j

+
∑

s j∈∂�+

∫
s j

(n j · vF) �k (R)φk (R) ds j

+
∑

s j∈∂�−

∫
s j

(n j · vF) �k,B(R)φk (R) ds j

)
. (A16)

In Eq. (A16) the first term on the right-hand side originates
from the flow through internal edges, the other two terms
originate from the domain boundary. The first term contains
brackets with a subindex u, {. . . }u, that indicate the so-called
upwind value

{�RvF}u ≡

⎧⎪⎨
⎪⎩

�R
1 vF if vF · n1 > 0,

�R
2 vF if vF · n1 < 0,

{�R}vF if vF · n1 = 0.

(A17)

This definition and Eq. (A16) contain the jump [. . . ] and
average {. . . } of a function along the edge shared by two cells.
These bracket operators are defined for vectors a and scalars
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φ as

[a] ≡ a1 · n1 + a2 · n2, [φ] ≡ φ1n1 + φ2n2, (A18)

{a} ≡ 1
2 (a1 + a2), {φ} ≡ 1

2 (φ1 + φ2), (A19)

with the function value and the outward-pointing normal
vector n j in the respective cell labeled by an index (1,2).
Effectively, this entire stabilization procedure means that
function values are (i) specified on the inflow boundary, (ii)
propagated through internal edges along the given transport
direction vF, and (iii) found on the outflow boundary as
part of the solution step. This propagation is followed for
positive Matsubara poles or the retarded components of the
Green’s function on the real axis. For advanced components,
or negative Matsubara frequencies, the propagation directions
swap. In the latter case boundary values are prescribed on the

outflow boundary and values found on the inflow boundary
while a downwind value, defined analogously to Eq. (A17),
propagates function values through internal edges. In sum-
mary, this treatment mirrors the propagation of function
values from a starting point to an end point along classi-
cal trajectories typically used in finite-difference approaches
[28,44,56].

Last, the linear FEM weak form in Eq. (A13) should be
written such that all terms containing the unknown functions
�k are on the left-hand side while all terms that do not are on
the right-hand side of the equation. For our present problem,
this means that the inflow-boundary term containing �k,B in
Eq. (A16) needs to be moved to the right-hand side, while
the term containing rk is moved to the left when combin-
ing Eqs. (A13) and (A16). Doing so gives the translation of
Eq. (A9) into the corresponding weak form

ih̄
4∑

k=1

⎡
⎣∑

τ j∈τ

∫
τ j

{�k (R)vF}u · [φk (R)] dτ j +
∑

s j∈∂�+

∫
s j

n j · vF �k (R)φk (R) ds j −
∑
Tj∈T

∫
� j

�k (R)vF · ∇φk (R) d� j

⎤
⎦

−
4∑

k=1

∑
Tj∈T

∫
� j

φk (R)rk (R)d� j =
4∑

k=1

⎡
⎣−

∑
Tj∈T

∫
� j

φk (R)�k (R)d� j −
∑

s j∈∂�−

∫
s j

n j · vF �k,B(R)φk (R) ds j

⎤
⎦. (A20)

This weak form can now be treated with textbook methods to
assemble and solve the corresponding matrix equation system
[57]. By solving the resulting system, we obtain a candidate
for a new guess � for the original nonlinear system in Eq. (A7)
under the assumption of previous guess γ = γ (n−1). In some
cases, directly taking the solution � as the next iterative
guess γ (n) is numerically unstable. We observe such instability
in particular when solving the transport equations for real
energies rather than purely imaginary Matsubara or Ozaki
poles [58]. Given a solution �k of the linearized problem,
one way to stabilize the iterative procedure is to update γ

(n)
k

via

γ
(n)

k = γ
(n−1)

k + α
(
�k − γ

(n−1)
k

)
. (A21)

Here, α ∈ (0, 1] is a numerical parameter. We find that for
general complex energies small values of γ � 0.4 are required
which increases the number of iterative guesses. Adaptive
methods that scale α, e.g., based on the difference between �

and γ , can lead to faster convergence. In contrast, for purely
imaginary poles it is stable to choose α = 1, i.e., directly
assigning �k as the next guess for γ

(n)
k .
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