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Abstract

In the quest for weight efficient energy storage solutions, the structural battery is an
emerging technology under development. It is a multifunctional composite material that
can carry mechanical loads, and simultaneously store and release energy. This is made
possible due to carbon fibers’ ability to act not only as structural reinforcement materials,
but also as electrode components. While conventional batteries rely solely on liquid
electrolyte to allow for ion transfer between the electrodes, structural batteries exploit the
so-called structural battery electrolyte (SBE). The SBE consists of two continuous phases;
a solid polymer skeleton and a liquid electrolyte. The role of the liquid electrolyte is to
allow for ion transfer, while the solid polymer skeleton provides load-bearing functionality.
In short, the structural battery consists of carbon fibers (acting as electrodes) embedded
in a porous SBE (electrolyte/matrix).

The first part of the thesis studies the multifunctional performance of various SBE
microstructures by performing virtual material testing on numerically generated artificial
Representative Volume Elements (RVEs). In particular, the effective ionic conductivity
is obtained by solving a diffusion equation with Fick’s law, and the effective stiffness
by assuming linear elasticity. As a direct extension of this framework, coupled diffusion
and large deformation in the SBE is also considered; i.e., ionic transport in an SBE
subjected to mechanical loads using finite strain theory. Here, the aim is to compute the
deformation-dependent effective mobility.

The second part covers the development of a multi-scale modeling framework for electro-
chemically coupled ion transport in SBEs. After establishing the governing equations,
Variationally Consistent Homogenization (VCH) is employed to obtain a two-scale model.
If the sub-scale RVE problem exhibits negligible transient effects for length scales relevant
to the studied application, then the assumption of micro-stationarity can be introduced.
This opens up for the possibility to devise a numerically efficient solution scheme for the
macro-scale problem that is based on a priori upscaling of the effective response.

Lastly, Numerical Model Reduction (NMR) is exploited to enable solution of fully tran-
sient electro-chemically coupled two-scale problems without assuming micro-stationarity.
The goal is to exploit NMR by training a surrogate model, via Proper Orthogonal Decom-
position (POD), that replaces the RVE simulations. The surrogate model takes the form
of a system of Ordinary Differential Equations (ODE). The final NMR framework leads to
a computationally efficient solution scheme for solving fully transient two-scale problems.

Keywords: FEM, Multi-scale Modeling, Computational Homogenization, Numerical Model
Reduction, Multiphysics Modeling, Multifunctional Materials
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May you be strengthened by yesterday’s rain, walk straight in tomorrow’s wind and
cherish each moment of the sun today.
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Part I

Extended Summary

1 Introduction

Recent years have seen an upsurge in the vehicle electrification of road-based transportation
[1]. The electric vehicle (EV) sales reached an all-time high of 14 million in 2023,
representing nearly 18% of the global car sales [2]. There are various factors (demographic,
technical, cost, governmental, psychological etc.) influencing consumers’ willingness to
purchase battery electric vehicles (BEVs) [3]. In the context of technical features, one
of the largest technological barriers that is preventing consumers from purchasing BEVs
is the limited driving range [3, 4]. Current solutions for battery packs face challenges
with scalability as they are already heavy and bulky [5]. One way to improve this is by
increasing the specific energy (Wh kg−1) stored in the vehicle. Hence, there is a need
for energy storage solutions that can provide significant system mass and volume savings
in order to not only extend the driving range of EVs, but also improve other forms of
sustainable transportation such as electric aviation [6].

1.1 Structural battery

Aside from further advancing existing electro-chemical energy storage technologies, an
alternative strategy is to develop the so-called ”structural battery”. In contrast to
conventional monofunctional batteries, the structural battery is multifunctional, enabling
it to carry mechanical loads and simultaneously store and release energy [7, 8]. This
technology relies on the carbon fiber’s reversible lithium insertion capability [9] and its
intrinsic ability to conduct current and carry tensile loads. Indeed, by fully utilizing all of
the carbon fibers’ capabilities, it becomes possible to exploit them as structural battery
electrodes [10, 11]. Note here that it is only the negative electrodes that the carbon
fibers can directly replace. One viable way to make the carbon fibers function as positive
electrodes is to coat the fibers with lithium metal oxide or olivine based particles, e.g.
LiFePO4, binder and conductive additives [12–14].

While most conventional batteries1 rely solely on liquid/gel electrolyte to allow for
ion transfer between the electrodes, the structural battery exploits the so-called struc-
tural battery electrolyte (SBE) [15–17]. The SBE consists of two continuous phases; a
nanoporous polymer skeleton and a liquid electrolyte. The role of the liquid electrolyte is
to allow for ion transfer, while the porous polymer skeleton has load-bearing capability.
In short, each constituent of the structural battery is designed to be multifunctional and
utilized to its fullest potential; hence, ensuring that significant weight and volume savings
are achieved [7, 8, 18].

1The only exception applies to solid-state batteries, which have solid electrolytes. However, large scale
commercial solid-state batteries have yet to reach the market. Honda stated in 2022 that all-solid-state
batteries might be deployed in 2024 [19], and Nissan also had a similar announcement targeting 2028 [20].
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Figure 1.1: Schematic illustration of the laminated structural battery (left image). Numer-
ically generated artificial RVE (right image) representing the microstructure of the SBE
that consists of a polymer skeleton and a liquid electrolyte. From Carlstedt et al. [32].

So far, the most widespread structural battery architecture is the laminated version [7,
8], see Figure 1.1.

The complexity of structural batteries gives rise to numerous challenges that need to
be overcome. A major challenge in producing high-performing structural batteries lies
in the design and performance prediction of SBEs [7, 8]. In order to truly optimize the
design w.r.t. the multifunctional performance, there is a need for modeling tools that can
contribute to advancing SBE research.

Regarding research that has been performed in modeling of electro-chemical systems;
Newman et al. was one of the first groups to develop numerical models of coupled
electro-chemical reaction-diffusion in conventional batteries [21–23]. Additionally, we note
the works by Samson et al. [24], Danilov and Notten [25], Dickinson et al. [26], and Bauer
et al. [27] to name a few. Regarding multi-scale modeling of electro-chemical systems, we
note that Salvadori and co-workers worked on the multi-scale analysis of electro-chemical
systems [28, 29]. During recent years, modeling works related to structural batteries
emerged. Xu et al. [30] performed multi-physics modeling of a single carbon fiber
micro-battery. Carlstedt et al. [31–33] investigated structural battery modeling with
emphasis on the multi-physics couplings, e.g. thermo–electro–chemo–mechanical and even
accounted for stress-assisted convection in the SBE.

1.2 Research scope

Some of the existing battery research focuses on 1D single scale modeling, where the
consideration of underlying microstructure effects are limited. Due to multi-physics
phenomena (ion transport in nanoporous materials, electrode kinetics etc.) taking place
several orders of magnitude below the battery cell size, it is clear that computational
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modeling of batteries is inherently multi-scale in space and time [34]. As part of the
long term goal of developing numerical models for structural batteries, this thesis aims at
developing a multi-scale modeling2 framework for Structural Battery Electrolytes (SBE).
In order to achieve this, the following sub-goals are identified:

(i) Develop methods to numerically generate 3D Representative Volume Elements
(RVEs) representing the SBE microstructures. This is addressed in Paper A.

(ii) Use virtual material tests to assess the performance of various SBE microstructures
under different conditions. This topic is investigated in Paper A and Paper D.

(iii) Develop a multi-scale modeling framework for electro-chemically coupled ion trans-
port in SBEs. Devise numerically efficient solution schemes to solve for two-scale
problems. Paper B and Paper C are dedicated to this topic.

1.3 Limitations

The overarching theme in this thesis will be on the multi-scale modeling of SBEs. Here,
we treat the SBE as a generic porous media in an electro-chemically coupled framework.
The focus is put on method development and numerical modeling techniques. Hence,
access to experimental validation will be limited. For studies focused on full battery
modeling, see the related works on structural batteries by Carlstedt et al. [31–33] and
Larsson et al. [35].

The artificial RVE generation in Paper A is performed with limited ability to enforce
and predetermine certain microstructure features such as pore size distribution and
tortuosity. Due to technical difficulties related to watertight geometry creation using the
STL format, the artificial RVEs can in practice not be arbitrarily large. Moreover, the
ion transport is modeled using Fick’s law; hence, the more elaborate electro-chemical
formulation involving both migration (caused by electric field) and diffusion of ions is not
considered.

In Paper B, a rigorous treatment of electromagnetism (to properly resolve the
electric field) would require involving Maxwell’s equations, but by making the critical
assumption that the magnetic field is assumed to vary slowly, the formulation is simplified
to electrostatics. Additionally, the assumption of micro-stationarity is introduced in
Paper B as a means to enable efficient two-scale modeling. However, this assumption
hinges entirely on the fact that the transient effects are sufficiently small on the fine-scale.

The Numerical Model Reduction (NMR) in Paper C relies on POD to identify relevant
modes to construct a surrogate model, which allows for numerically efficient solution of
RVE problems. However, selecting optimal training data, training strategy and POD
modes for maximum accuracy is challenging.

In Paper D, the empty pore space domain is modeled as a solid with a small
fictitious stiffness to prevent self-penetration as the pore space is deformed. However, this
assumption induces unwanted reaction forces between the solid and liquid domains.

2Although the mechanical (equilibrium) problem is scarcely treated in this thesis, the focus is still
put on generic numerical methods and modeling techniques that are relevant for solid and structural
mechanics.
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1.4 Outline of thesis

Chapter 2 provides some additional background to Structural Electrolytes; it covers
the manufacturing process and also existing experimental data. Based on the observed
properties of real microstructures, a numerical RVE generation framework is developed.
Chapter 3 focuses on virtual material testing via homogenization; in particular, the
effective elastic stiffness and effective ionic conductivity are of interest. The chapter
concludes with a study on the effective deformation-dependent mobility. Chapter 4 treats
the topic of multi-scale modeling of electro-chemically coupled ionic transport in SBEs.
Chapter 5 introduces the concept of Numerical Model Reduction (NMR) and applies it to
RVE problems (direct continuation of Chapter 4) in order to decrease computational cost.
Chapter 6 contains a brief summary of all appended papers. Finally, the conclusions from
the research are presented in Chapter 7, together with an outlook for future developments.
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2 Structural electrolytes

The structural battery is a type of structural power composite. Another innovation
that also falls into this category is the structural supercapacitor, which shares the same
challenges when it comes to the structural electrolyte; i.e. it is required to have high ionic
conductivity while providing mechanical integrity [7]. In this section, we will consider
structural electrolyte morphologies made for structural batteries as well as structural
supercapacitors.

2.1 Synthesis

The two main methods for synthesis of (in-situ liquid filled) structural electrolytes are
high internal phase emulsion (HIPE) templating [15] and polymerization induced phase
separation (PIPS) [16, 17]. The HIPE templating approach mixes two immiscible phases
to form an emulsion. Polymerization around emulsion droplets result in the formation of
highly porous polymers. The PIPS method exploits components with specific solubility
parameters. Initially, they might be fully miscible, but later on, they become immiscible
as the monomers transform into polymers. Scanning electron microscope (SEM) images
of several electrolyte systems based on both methods are shown in Figure 2.1.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.1: SEM images of various structural electrolytes (solid polymer matrix); (a)
60DGEBA, (b) 50MTM57/2.3M 1PC, (c) AB/0.65, (d) polyHIPE, (e) 50VTM266/2.3M,
(f) 30MVR444/2.3M, (g) 40MVR444/2.3M, and (h) polyMIPE. The names of the samples
refer to their chemical composition and manufacturing method. Subfigure (c) from [16],
rest from Paper A.
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: Solid polymer matrix of various artificially generated microstructures; (a)
bead, (b) trabecular, (c) imperfect trabecular, (d) inverse bead, (e) inverse trabecular, and
(f) inverse imperfect trabecular.

2.2 Artificial RVE generation

The Representative Volume Element (RVE) is a vital part of multi-scale modeling since
it contains information of the underlying microstructure [36]. In a two-scale model,
effective properties required for the macro-scale problem relies on the homogenization of
the sub-scale RVE problem. Due to the complexity in obtaining and working with real 3D
data of SBEs (e.g. from combined focused ion beam and SEM), an alternative approach
is to numerically generate artificial RVEs for numerical analysis. This strategy is pursued
in Paper A.

In this section, we attempt to generate some classes of periodic and bicontinuous
microstructures that seem reasonable based on the collection of SEM images in Figure
2.1. Most of the generation techniques involve tampering with various Boundary Value
Problems (BVP) to obtain solution fields that can be converted to meshable solids.
An extensive overview on generation of random microstructures, with emphasis on
bicontinuous mixtures, is available in Bargmann et al. [37, 38].

In this project, the following microstructure classes are generated:

(i) Bead structures: A dense sphere packing, with uniform particle size, is obtained by
exploiting the Lubachevsky-Stillinger algorithm [39, 40]. In the next step, the radius
is increased until the spheres overlap. The amount of overlap controls the porosity
of the resulting structure within certain limits. The resulting 3D microstructures
are porous and bicontinuous; resembling a structure built of sintered beads, see
Figure 2.2a.
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(ii) Trabecular structures: A periodic 3D Voronoi tesselation [41] with uniform cells is
inserted into a smooth cube. The intersection of the Voronoi tesselation and the
smooth cube results in periodic Voronoi cells enclosed in the cube. This is used as
the input geometry for solving a fictitious linear stationary heat equation (in fact,
any generic Poisson’s equation) in the form as follows

∆ϕ = f in Ω, (2.1)

where ϕ is a scalar field and f is a source term. Here, the edges of the Voronoi
cells are constrained as heat sources, while the centers of the cells (seed points) are
constrained as heat sinks. Additionally, periodic boundary conditions are exploited.

From the resulting 3D temperature distribution, isosurfaces at fixed temperature
levels can (together with corresponding ”isovolumes”) be extracted and converted
into meshable 3D solid structures, see Figure 2.2b. The final structures, denoted
trabecular, are bicontinuous with interconnected pore channels. The porosity of
the structure is controlled by varying the temperature level. The microstructure
generation procedure is outlined in Figure 2.3.

(iii) Imperfect trabecular structures: This type of microstructure is obtained by solving
the Cahn-Hilliard equation [42, 43] in the form as follows

∂tφ+ qµ ·∇ = 0 in Ω, (2.2)

(φ3 − φ− µ) + qφ ·∇ = 0 in Ω, (2.3)

with the constitutive relations

qµ := −M∇µ, (2.4)

qφ := −γ∇φ. (2.5)

where φ is the concentration difference between different phases, µ is the chemical
potential, M is the mobility, and γ is related to the thickness of transition regions.
Periodic boundary conditions are used.

These microstructures tend to be more irregular with pore channels that are not
fully connected; the microstructure is only partly bicontinuous. There are both
dead-end channels as well as some unconnected pores. Hence, we coin the name
imperfect trabecular structures. The porosity of the imperfect trabecular structures
is controlled by adjusting the magnitude of the initial condition to the Cahn-Hilliard
equation. See Figure 2.4 for the microstructure generation procedure.

(iv) Inverted microstructures: Although this is not a truly distinct microstructure class,
we reuse all microstructures by inverting them, see Figure 2.2d-2.2f. This results
in the inverted bead structure, the inverted trabecular structure and the inverted
imperfect trabecular structure.
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(a) (b) (c)

(d) (e)
(f)

Figure 2.3: Sequential steps for generation of trabecular structures; (a) periodic Voronoi
tessellation, (b) embedding Voronoi tessellation in a cube, (c) constraints on a periodic net-
work inside a cube, (d) temperature field of fictitious heat equation, (e) filtered temperature
field, and (f) conversion to meshable solid.

(a) (b) (c)
(d)

Figure 2.4: Sequential steps for generation of imperfect trabecular structures; (a) noise
distribution as initial condition, (b) solution field φ of Cahn-Hilliard equation, (c) filtered
solution field, (d) conversion to meshable solid.
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3 Virtual material testing

In this section, virtual testing is exploited on the generated artificial microstructures
to derive the effective material properties that characterize the macroscopic response.
Here, we employ Computational Homogenization (CH), where the finite element method
is used to solve for an RVE problem, see e.g. Geers et al. [44] and Miehe et al. [45].
For classical homogenization methods; see the works by Hill [36], Zohdi and Wriggers
[46], and Nemat-Nasser and Hori [47] for mean-field and homogenization theories. While
deriving effective material properties is a recurring method in Paper A–D; Paper A
specifically focuses on linear and uncoupled problems, in particular linear elasticity and
linear diffusion. Sub-scale quantities in the RVE domain Ω� are homogenized via the
RVE volume averaging operator as follows

〈•〉� :=
1

|Ω�|

∫

Ω�
• dΩ. (3.1)

3.1 Elastic stiffness

In the simplest possible approach, the absence of pore pressure is assumed together with
linear constitutive relations. This corresponds to characterizing mechanical properties of
a drained microstructure (only solid phase Ω�,S). In the absence of body forces, linear
elasticity on the sub-scale (with suitable boundary conditions) is defined as

−σ ·∇ = 0 in Ω�,S, (3.2a)

σ = E : ε, (3.2b)

with the stress σ, the strain ε, and the isotropic stiffness tensor E representing the
(intrinsic) stiffness of the solid polymer phase. The elastic parameters in E are chosen as
Young’s modulus E and Poisson’s ratio ν.

The goal is to compute the effective stiffness tensor Ē of the porous solid phase via
the macroscopic relation

σ̄ = Ē : ε̄, (3.3)

with the effective strain ε̄, and the (post-processed) effective stress σ̄ := 〈σ〉� revealing
the overall stiffness of the porous RVE.

Clearly, the sub-scale RVE problem needs to be solved in order to compute Ē. The
first step is to introduce the classical assumption of first order homogenization as

u(x) = ε̄ · x+ uS(x). (3.4)

where x is the position in the RVE domain, u is the sub-scale displacement field, and uS

is a periodic fluctuation field (from prescribing periodic boundary conditions) in the RVE.
The macroscopic strain ε̄ allows the macro-scale problem to interact with the sub-scale
problem, and serves as the ”input loading” to the RVE. Furthermore, note that a centered
RVE is assumed, and that ū = 0 since it simply represents a rigid body motion.
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From here on, the sub-scale is solved by imposing the six independent loading cases of
the symmetric macroscopic strain tensor (ε̄)kl with k, l = 1, 2, 3. Finally, the components
(Ē)ijkl (with i, j, k, l = 1, 2, 3) of the macroscopic elasticity tensor can be computed from
the macroscopic response 〈(σ)ij〉� of the RVE under the macroscopic unit strain (ε̄)kl = 1
via the relation

(Ē)ijkl =
∂〈(σ)ij〉�
∂(ε̄)kl

:= 〈(σ)ij〉�
∣∣∣∣
(ε̄)kl=1

. (3.5)

3.2 Ionic conductivity

Under the assumption that chemical diffusion only occurs in the liquid electrolyte phase
of the SBE Ω�,E, and that convection can be neglected; the linear stationary Fickian
diffusion on the sub-scale (with suitable boundary conditions) is defined as

−j ·∇ = 0 in Ω�,E, (3.6a)

j := −M g, (3.6b)

where j is the ion mass flux, g := ∇µ is the gradient of the chemical potential µ, and M
is the intrinsic isotropic ionic conductivity of the liquid electrolyte.

In the same fashion as the elastic problem, the aim is to compute the effective ionic
conductivity tensor M̄ via the macroscopic relation

j̄ := −M̄ · ḡ, (3.7)

where ḡ := ∇µ̄ and the effective (post-processed) ionic mass flux j̄ := 〈j〉�. Due to the
heterogeneous distribution of the pore space in the RVE, M̄ might be anisotropic in
contrast to the isotropic conductivity M of the liquid electrolyte.

Once again, first order homogenization is introduced as

µ(x) = ḡ · x+ µS(x). (3.8)

Finally, the sub-scale problem is solved by imposing the three independent loading cases
of the gradient vector (ḡ)n with n = 1, 2, 3. The components (M̄)mn (with m,n = 1, 2, 3)
of the overall conductivity tensor can be computed from the RVE response 〈(j)m〉� of
the RVE under the macroscopic unit gradient (ḡ)n = 1 of the chemical potential via the
relation

(M̄)mn = −∂〈(j)m〉�
∂(ḡ)n

:= −〈(j)m〉�
∣∣∣∣
(ḡ)n=1

. (3.9)

Remark. The effective ionic conductivity computation can trivially be extended to
include both chemical diffusion and ionic migration due to an electric field. The variable
µ can simply be reinterpreted as the electro-chemical potential µ := µ̂+ Fzϕ, where µ̂ is
now the chemical potential and ϕ is the electric potential. Additionally, F is Faraday’s
constant and z is the charge number for e.g. Li-ions (z = +1). In fact, this holds even for
the simplified balance equation (Fickian diffusion) since the effective ionic conductivity
only depends on the sub-scale ionic flux j := −M g. Obviously, this holds true only upon
making the critical model assumption that the electric potential does not need to be
resolved in all domains. �
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Quasi-isotropic properties

A limitation of the proposed artificial RVE generation technique lies in the limited
RVE size and, therefore, the statistical representation of microstructure features. The
computed effective stiffness tensors Ē and ionic conductivity tensors M̄ might contain
some anisotropy; hence, we compute quasi-isotropic scalar values for Ē and M̄ .

There are several ways to do this; however, in Paper A, the effective bulk modulus
K̄ and the effective shear modulus Ḡ are computed as follows

Ḡ :=
1

3
[(Ē)1212 + (Ē)1313 + (Ē)2323], (3.10)

K̄ :=
1

3
[(Ē)1122 + (Ē)1133 + (Ē)2233] +

2

3
Ḡ. (3.11)

In the next step, the quasi-isotropic Young’s modulus is obtained as

Ē =
9K̄Ḡ

3K̄ + Ḡ
. (3.12)

Finally, the quasi-isotropic ionic conductivity is computed as

M̄ :=
1

3
[(M̄)11 + (M̄)22 + (M̄)33]. (3.13)

3.3 Deformation-dependent ionic transport in SBE

Up to this point, we have only considered linear and uncoupled problems (Paper A).
While this approach provides a simple and fast framework for evaluating and comparing
the performance of various microstructures, it does not fully reflect the real operating
conditions of an SBE. Under normal conditions, the structural battery is subjected to
mechanical loads that will deform the pore space of the SBE, and potentially even cause
blockages that might reduce the ionic transport. Hence, it is imperative to account for
the pore space deformation during ionic transport in a non-linear and coupled fashion.
Although no such numerical investigation has been performed specifically for SBEs, the
problem at hand has many similarities to the broader topic of deformation-dependent
diffusion.

Klepach and Zohdi [48] analyzed strongly-coupled deformation-dependent diffusion
in composite media assuming finite strains. They considered the effects of deformation
and accounted for it by incorporating it in the diffusivity tensor. More specifically, they
formulated a diffusivity tensor that depends on the volumetric strain via J = det(F ).
For elasticity, they employed a Kirchhoff–Saint Venant material. Voges et al. [49]
investigated deformation dependency of the (local/fine-scale) diffusion flux in solids at
large deformations. In particular, they compared the assumption of isotropy of the
mobility tensor in (i) the current configuration vs. (ii) the reference configuration.

These were a few examples of similar works, but none of them address the deformation-
dependency of ionic transport that stems from deforming microstructures with complex
morphology. In other words, there is a lack of understanding of how the effective ionic
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transport properties are affected by microstructure deformation. In Paper D, we consider
the coupled and geometrically non-linear extension; i.e. we model the ionic transport in
an SBE subjected to mechanical loads using finite strain theory. Exploiting the same
computational homogenization framework and artificial microstructures as before, we are
now interested in computing the deformation-dependent effective mobility1.

In the first step, we solve the the mechanical (equilibrium) problem under macro-scale
deformation control, while adopting Neo-Hooke hyperelasticity for the fine-scale modeling
of the solid skeleton. Assuming that experimental data for the effective mechanical
response are available, the fine-scale elastic material parameters can be calibrated against
macro-scale data.

With the pore space displacement field at hand, we can now compute the deformation-
dependent effective mobility. The is achieved by solving for mass balance/diffusion with
a Fickian constitutive relation and a constant mobility in the deformed configuration.
Pull-back to the undeformed configuration then gives the pertinent deformation dependent
mobility for the fine-scale model. In the final step, we apply computational homogenization
to obtain the effective mobility pertaining to the macro-scale chemical potential gradient.

Balance equations

The mechanical problem reads: Find u : Ω → R3 that solves the equilibrium equation
with boundary conditions

−P ·∇X = 0 in Ω, (3.14a)

u = up on Γ
(u)
D , (3.14b)

tX = P ·N = tpX on Γ
(u)
N , (3.14c)

which represents a solvable system when complemented with suitable constitutive relations.
Here, P is the first Piola–Kirchhoff stress tensor. The equilibrium equation is valid on
the entire domain Ω = ΩS ∪ ΩE.

We assume that the SBE is drained during mechanical loading, indicating that liquid
pressure inside the pore system ΩE can be ignored. In other words, the liquid electrolyte
does not contribute to the mechanical response of the microstructure in this model.
However, in order to compute the deformation-dependent mobility (via an ionic transport
problem in Lagrangian formulation), it is crucial to know how much the pore space
deforms. This can be achieved by modeling the liquid electrolyte domain ΩE as a solid
with a small fictitious stiffness, whereby mechanically loading the microstructure will
lead to deformations in ΩE without introducing any significant reaction forces acting on
ΩS. Additionally, we also do this as a way to enable ”contact” by requiring the volume
of the pore space to be non-negative during compression; in other words, we prevent
self-penetration of the solid polymer phase.

1The previous property of interest for ionic transport (in the previous section) was the ionic conductivity,
but we shall now consider the ionic mobility. Both are modeled in the same fashion using a linear Fickian
type of constitutive relation; the only difference now is that their effective properties depend on respective
intrinsic parameter. In practice, the distinction lies only in the terminology used.
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The next step is to analyze the ionic transport, which is modeled as a ”diffusion
problem”. Mass balance, in the deformed format, for a single diffusing species in the
deformed pore space ωE reads

j ·∇ = 0 in ωE. (3.15)

Next, performing pull-back, the material format leads to the following problem: Find the
chemical potential µ : ΩE → R, such that

J ·∇X = 0 in ΩE. (3.16a)

µ = µp on Γ
(µ)
D , (3.16b)

JN := J ·N = Jp on Γ
(µ)
N , (3.16c)

JN = 0 on ΓS/E, (3.16d)

when complemented with the constitutive relations defined below. Here, J is the molar
(ionic) flux. Eq. (3.16a) is valid only in the electrolyte domain ΩE, whose boundary is

decomposed as ∂ΩE = Γ
(µ)
D ∪ Γ

(µ)
N ∪ ΓS/E. This means that the ionic transport process

inside the solid domain ΩS is assumed to be negligible. Additionally, Eq. (3.16d) is used
to prohibit ion transport through the solid-electrolyte interface ΓS/E = ∂ΩS ∩ ∂ΩE.

Constitutive relations

A compressible version Neo-Hooke hyperelasticity [50] is assumed for the fine-scale
modeling of the solid skeleton. The volume specific strain energy density Ψ reads as
follows

Ψ(C) =
G

2
[tr(C)− 3]−G ln(J) +

λ

2
ln(J)2, (3.17a)

S(C) = 2
∂Ψ

∂C
= G [I −C−1] + λ ln(J)C−1, (3.17b)

where λ and G are the elastic Lamé parameters. Further, C = F T · F is the right
Cauchy-Green deformation tensor. Here, F = I+u⊗∇X is the deformation gradient, and
J = det(F ) is the relative volume change. Lastly, S is the 2nd Piola-Kirchhoff stress that
is used to compute the 1st Piola-Kirchhoff stress as an explicit function of the deformation
gradient: P (F ) = F · S(F T · F ).

As previously mentioned, we need to model the liquid electrolyte phase as a solid with
a small fictitious stiffness in order to define a deformation map in the pore space ΩE.
Hence, we assume Neo-Hooke hyperelasticity also in the liquid domain. Note that for any
finite value of λ, the Neo-Hooke model in (3.17a) will enforce J > 0. Hence, even for a
small fictitious stiffness, the pore space will prevent penetration of the solid constituents.

For ionic transport, we assume mass balance/diffusion with a Fickian constitutive
relation and a constant mobility. In the deformed configuration, the constitutive model
reads

j = −m · g, (3.18)
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where m is the intrinsic fine-scale mobility tensor of the considered ionic species and
g := ∇µ. A pull-back to the undeformed configuration gives the ionic Piola-flux

J(F ,G) = JF−1 · j = −M(F ) ·G, (3.19)

with

M(F ) = JF−1 ·m · F−T , (3.20)

representing the fine-scale mobility in Lagrangian setting and G := ∇Xµ.

Weak form of fine-scale problem

Having established the balance equations and constitutive relations, we can now derive
the weak form. The standard space-variational format corresponding to Eqs. (3.14) and
(3.16) reads: Find u ∈ U and µ ∈M in the appropriately defined spaces that solve

∫

Ω

[δu⊗∇X ] : P (F ) dΩ =

∫

Γ
(u)
N

tPX · δudΓ ∀δu ∈ U0, (3.21a)

−
∫

ΩE

∇Xδµ · J(F ,G) dΩ = −
∫

Γ
(µ)
N

δµ JP dΓ ∀δµ ∈M0, (3.21b)

where U0 and M0 are the appropriately defined test spaces.

Computational homogenization

Now that the fine-scale problem is defined, we can set up the RVE problem in a multi-
scale framework. The first step is to extend the existing RVE volume averaging operator
defined in (3.1) to allow for computation of effective properties and effective fluxes via
homogenization

〈•〉�,E :=
1

|Ω�,E|

∫

Ω�,E
• dΩ, (3.22a)

φ0 :=
|Ω�,E|
|Ω�|

. (3.22b)

The macro-scale solution must be transmitted to the sub-scale during the prolongation
step; this information (loading data) acts as the driving force for the RVE problem. Hence,
in the second step, we define the standard prolongation (first order homogenization) rules
as follows

u = uM[ū] + uS, (3.23a)

µ = µM[µ̄] + µS, (3.23b)

where

uM[ū](X̄;X) := ū(X̄) + H̄[ū](X̄) · [X − X̄], H̄ := ū⊗∇X = F̄ − I, (3.24a)

µM[µ̄](X̄;X) := µ̄(X̄) + Ḡ[µ̄](X̄) · [X − X̄], Ḡ := ∇X µ̄. (3.24b)
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Here, the sub-scale fields u and µ are decomposed into macro-scale parts, uM and µM,
and micro-scale/fluctuating parts, uS and µS.

Using the fine-scale problem (4.9) as a starting point, we can deduce the corresponding
macro-scale problem via VCH. The weak form of the macro-scale problem is formulated
as follows: Find ū ∈ Ū and µ̄ ∈ Ū× M̄ that solve2

∫

Ω̄

[δū⊗∇X ] : P̄ {F̄ } dΩ =

∫

Γ̄
(u)
N

t̄PX · δūdΓ ∀δū ∈ Ū0, (3.25a)

−
∫

Ω̄

∇Xδµ̄ · J̄{F̄ , Ḡ} dΩ = −
∫

Γ̄
(µ)
N

δµ̄ J̄P dΓ ∀δµ̄ ∈ M̄0. (3.25b)

The homogenized constitutive quantities are defined as

P̄ = 〈P 〉� , (3.26a)

J̄ = φ0 〈J〉�,E , (3.26b)

and become implicit functions of F̄ and Ḡ through the RVE problem.

RVE problem

The approach for this RVE problem is to solve the equilibrium and diffusion equations
sequentially, as they are only one-way coupled. First, we solve for u{F̄ } from the
equilibrium equation to obtain F = F {F̄ } = I +u{F̄ } ⊗∇X . In the second step, we use
the local deformation gradient F = F {F̄ } in the RVE to solve for µ = µ{F̄ , Ḡ} from the
diffusion equation.

The weak form of the RVE problem is formulated as follows:

(i) Equilibrium equation for RVE
For given F̄ , find u{F̄ } = u ∈ U� and λ(F̄ ) = λ ∈ Lu� that solve

1

|Ω�|

∫

Ω�
P (I + u⊗∇X) : [δu⊗∇X ] dΩ− 1

|Ω�|

∫

Γ+

�

λ · JδuK dΓ = 0

∀δu ∈ U�, (3.27a)

− 1

|Ω�|

∫

Γ+

�

δλ · JuK dΓ = − 1

|Ω�|

∫

Γ+

�

δλ⊗ JXK dΓ : [F̄ − I]

∀δλ ∈ Lu�. (3.27b)

2Here, the {•} notation is introduced to denote an implicit dependence.
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(ii) Diffusion equation for RVE
For given (F̄ , Ḡ) and local deformation gradient F {F̄ }, find µ{F̄ , Ḡ} = µ ∈ M�
and (λ, λ̂) ∈ Lµ� × R that solve

− 1

|Ω�|

∫

Ω�,E
[∇Xδµ] · J(F {F̄ },G) dΩ

+
1

|Ω�|

∫

Γ+

�,E

λ JδµK dΓ− 1

|Ω�|

∫

Ω�,E
δµdΩ λ̂ = 0

∀δµ ∈M�, (3.28a)

1

|Ω�|

∫

Γ+

�,E

δλ · JµK dΓ =
1

|Ω�|

∫

Γ+

�,E

δλ JXK dΓ · Ḡ

∀δλ ∈ Lµ�, (3.28b)

− 1

|Ω�|

∫

Ω�,E
µdΩ δλ̂ = 0

∀δλ̂ ∈ R. (3.28c)

The difference operator J•K�(x) := •(x)− •(x−(x)) is introduced when enforcing weakly
periodic boundary conditions (WPBC), cf. [51]. In this context, x ∈ Γ+

� represents an
image point, while x−(x) ∈ Γ− = Γ� \ Γ+

� is the corresponding mirror point.
For a fixed F̄ , we see that the linearity of the diffusion problem allows for the

decomposition

µ{F̄ , Ḡ} =

3∑

i=1

µ̂i{F̄ } Ḡi, (3.29)

in terms of sensitivity fields µ̂i{F̄ } for each Cartesian component Gi := G ·Ei.
For pre-computed local deformation F {F̄ }, the sensitivity field µ̂i{F̄ } = µ̂i ∈ M�

together with auxiliary Lagrange multipliers (λ, λ̂) ∈ Lµ� × R solve

− 1

|Ω�|

∫

Ω�,E
[∇Xδµ̂] ·M(F {F̄ }) · [∇X µ̂i] dΩ

+
1

|Ω�|

∫

Γ+

�,E

λJδµ̂K dΓ− 1

|Ω�|

∫

Ω�,E
δµ̂i dΩ λ̂ = 0

∀δµ̂ ∈M�, (3.30a)

1

|Ω�|

∫

Γ+

�,E

δλ · Jµ̂iK dΓ =
1

|Ω�|

∫

Γ+

�,E

δλ JXK dΓ ·Ei

∀δλ ∈ Lµ�, (3.30b)

− 1

|Ω�|

∫

Ω�,E
µ̂i dΩ δλ̂ = 0

∀δλ̂ ∈ R. (3.30c)
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Consequently, this gives the local flux J{F̄ , Ḡ} =
∑3
i=1−M(F {F̄ }) · [∇X µ̂i] Ḡi, resulting

in the homogenized flux
J̄{F̄ , Ḡ} = −M̄{F̄ } · Ḡ, (3.31)

with

M̄{F̄ } =

3∑

i=1

[
1

|Ω�|

∫

Ω�
M(F {F̄ }) · [∇X µ̂i] dΩ

]
⊗Ei, (3.32)

being the explicit expression for the effective deformation-dependent mobility. As a
direct consequence of (3.31), we note that the macro-scale problem of finding µ̄ for a
pre-computed solution ū will, in fact, be linear.

For a coupled boundary value problem, it is natural to consider the Lagrangian form
of the transport problem in (3.25b). However, we may also consider the (strong form)
macro-scale diffusion equation in the deformed configuration

−j̄ ·∇ = 0 in ω̄. (3.33)

For this problem, we consider µ̄ = µ̄(x), and the effective flux j is given as

j̄ = −m̄{F̄ } · ḡ, (3.34a)

m̄{F̄ } =
1

J̄
F̄ · M̄{F̄ } · F̄ T , (3.34b)

where m̄{F̄ } is the effective deformation-dependent mobility in the deformed configuration,
and ḡ = F̄−T · Ḡ = ∇µ̄.

Ion transport during compression of SBE

We shall now consider mixed control of the mechanical problem, pertinent to a virtual
compression test in z-direction with stress free in-plane expansion. To this end, we
restate Eq. (3.27) for the special case that we parametrize the load in F̄33 while setting
F̄12 = F̄23 = F̄31 = F̄13 = F̄21 = F̄32 = 0 and P̄11 = P̄22 = 0.

As a first step, we revisit the decomposition in (3.23a) and seek to solve for the
(sub-scale) fluctuation uS. The macro-scale part of the displacement field becomes3

uM = F̂ (F̄11, F̄22, F̄33) · [X − X̄], (3.35)

where we introduce the expression F̂ (F̄11, F̄22, F̄33) =
∑3
i=1 F̄iiEi ⊗Ei for the diagonal

deformation gradient. Here, F̄11 and F̄22 become global unknowns.

3We note that the solution is invariant to an arbitrary translation ū, which is omitted here.
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The RVE problem can now be stated as: Find (uS{F̄33}, F̄11{F̄33}, F̄22{F̄33}) =
(uS, F̄11, F̄22) ∈ U0 × R× R, and λ ∈ Lu� that solves

1

|Ω�|

∫

Ω�
P (F̂ (F̄11, F̄22, F̄33) + uS ⊗∇X) : [δuS ⊗∇X ] dΩ

− 1

|Ω�|

∫

Γ+

�

λ · JδuSK dΓ = 0

∀δuS ∈ U�, (3.36a)

δF̄11
1

|Ω�|

∫

Ω�
P (F̂ (F̄11, F̄22, F̄33) + uS ⊗∇X) : [E1 ⊗E1] dΩ = 0

∀δF̄11 ∈ R, (3.36b)

δF̄22
1

|Ω�|

∫

Ω�
P (F̂ (F̄11, F̄22, F̄33) + uS ⊗∇X) : [E2 ⊗E2] dΩ = 0

∀δF̄22 ∈ R, (3.36c)

− 1

|Ω�|

∫

Γ+

�

δλ · JuSK dΓ = 0

∀δλ ∈ Lu�, (3.36d)

As a result, the macroscopic deformation gradient becomes F̄ {F̄33} = F̂ (F̄11{F̄33},
F̄22{F̄33}, F̄33), and the local deformation gradient needed for the subsequent diffusion
problem in (3.30) becomes

F {F̄ {F̄33}} = F̄ {F̄33}+ uS{F̄33} ⊗∇X . (3.37)

For illustrative purposes, Figure 3.1 is included to show the ionic flux pathways as the
liquid pore space is deforming; it exemplifies how this framework addresses the coupled
effects of effective ionic transport and microstructure deformations.
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(a) (b)

Figure 3.1: Initial undeformed RVE domain in (a), and corresponding de-
formed/compressed RVE with ionic flux vectors in (b). The solid polymer is highlighted in
dark gray, while the liquid electrolyte is highlighted in light gray.

3.4 Related collaborative works

In this section, we showcase various collaborative efforts on SBE modeling. The methods
outlined in this thesis have led to significant contributions to the computational results of
these co-authored papers; in particular, we exploit the same overarching framework of
virtual material testing of SBEs based on Paper A and Paper D.

3D RVE reconstruction based on FIB-SEM data

In our joint research with Duan et al. [52], we employ combined focused ion beam and
scanning electron microscopy (FIB-SEM) to obtain high-resolution 3D data of the SBE
microstructure. Initially, serial milling with FIB is carried out at the nanometer scale
to reveal the underlying microstructure morphology. Subsequently, high-resolution 2D
images are captured using SEM. The acquired 2D image sequences are then assembled
into a 3D structure. In a post-processing step, the solid and liquid phase are identified,
respectively. Finally, voxel-based 3D RVE meshes are generated for the different phases.
See Figure 3.2 for an overview of the 3D RVE reconstruction process.

In generating the RVEs from 2D FIB-SEM images, the procedure involves extruding
pixels to form voxels. The extrusion depth corresponds to the gap distance between each
FIB-SEM image, i.e., 20 nm. The advantage of using a voxel based geometry in this
case is that an accurate and well-defined geometry, from experimental data, can easily
be prepared for FEM simulation. In fact, each voxel of the geometry is represented by a
hexahedron element in the RVE mesh.

For illustrative purposes, Figure 3.3 is included to show the size of the experimentally
acquired RVEs. Just like in Paper A, c.f. Section 3.1 and 3.2, the goal is to compute
effective stiffness and ionic conductivity for the voxel-based 3D RVEs.

It should be noted that the issue with voxel based geometries is that they tend to
scale in complexity with respect to the imaging resolution, resulting in computationally
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Figure 3.2: Overview of the FIB-SEM process to reconstruct 3D SBE microstructures.
From Duan et al. [52].

(a) (b)

Figure 3.3: Voxel-based RVE of solid polymer domain in (a) and liquid electrolyte domain
in (b). Geometric dimensions of the RVEs are 1.180 x 1.220 x 1.180 µm3.

expensive RVEs. In this case, the RVEs are discretized with up to 400k elements with
some of the problems solving up to 12 million dofs. The simulations are performed
in COMSOL Multiphysics, see Figure 3.4 for the results. Figure 3.4 clearly shows the
trade-off between effective stiffness and effective ionic conductivity depending on the ratio
between the solid phase and liquid phase. As expected, the effective stiffness increases with
increasing volume fraction of solid phase, while the effective ionic conductivity increases
with increasing volume fraction of liquid phase. However, the unexpected part about the
simulation results in Figure 3.4 is the fact that the volume fraction varies within a range
of 10%. This indicates that the volume fraction is not constant throughout the whole
SBE sample, and that the simulation results are slightly sensitive to where the RVEs are
sampled from on the (large) 2D FIB-SEM images.

Based on experimental data, the solid polymer is assumed to have the intrinsic stiffness
2.167 GPa and intrinsic Poisson’s ratio of 0.33, while the neat liquid electrolyte is assumed
to have an intrinsic ionic conductivity of 4.35 mS/cm. Upon averaging the RVE data
points, we obtain the average effective stiffness Ē = 738.1725 MPa with a standard
deviation of 85.6112 MPa, and average effective ionic conductivity D̄ = 0.6328 mS/cm
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(a) (b)

Figure 3.4: RVE simulations assuming (a) linear elasticity for effective stiffness, (b) linear
Fickian diffusion for effective ionic conductivity. Each sample is denoted as a Statistical
Volume Element (SVE) since they are sampled from different locations of the (large) 2D
FIB-SEM images.

with standard deviation of 0.1069 mS/cm. It should be noted that the ensemble average
is properly performed only if all RVE samples have the same volume fraction, but this
is not the case here. Since there is a small spread in the volume fraction, the ensemble
average is not the most suitable choice of average metric.

Lastly, it should be mentioned that the simulation results on the average effective
stiffness Ē = 738.1725 MPa and average effective ionic conductivity D̄ = 0.6328 mS/cm
act as upper bounds for the effective properties. The reason is because Dirichlet boundary
conditions, which produce slightly stiffer simulation results, are enforced on the fluctuation
fields. While periodic boundary conditions would be the preferred option, this choice is
based on the fact that periodic boundary conditions cannot be used for non-periodic RVE
geometries.

Effective permeability based on Stokes flow

In collaboration with Carlstedt et al. [32], we analyze the structural battery assuming
poroelasticity for the SBE. In particular, we derive the effective permeability for (macro-
scale) Darcy’s law by homogenizing the fluid flow velocity solved from (sub-scale) Stokes
flow [53]. The governing equations for stationary Stokes flow are

−µ∇2v + ∇p = 0 in ΩE, (3.38a)

v ·∇ = 0 in ΩE, (3.38b)

v = 0 on ΓS/E, (3.38c)

where µ is the dynamic viscosity, v is the velocity field and p is the pressure. This problem
is solved in COMSOL Multiphysics using quadratic shape functions for the velocity field
and linear basis functions for the pressure field, in order to satisfy the LBB condition
arising from the saddle-point problem in the variational formulation.
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Figure 3.5: The fluid pressure and velocity vectors are shown in (a), while the scalar
effective permeability is shown in (b).

Assuming the linear macro-scale relation for Darcy’s law

w̄ = −K̄ · ḡ(p), (3.39)

where w̄ is the seepage velocity and ḡ(p) is the pressure gradient ∇p, we compute the
effective permeability as

K̄ = −
3∑

i=1

φ
〈
v(i)
〉
�
⊗ ei. (3.40)

The homogenized permeability from RVEs can be used to calibrate the Kozeny-Carman
rule, which predicts the effective isotropic permeability as a function of porosity

k = d2
p

φ3

180 (1− φ)2
. (3.41)

Here, φ is the porosity, and dp (diameter of the volume equivalent spherical particle)
corresponds to the only unknown material parameter that is calibrated against the
homogenized permeability values from RVE computations. The effective permeability
tensor is assumed to be isotropic; hence, scalar quasi-isotropic permeability values are
computed according to Section 3.2. See Figure 3.5 for the results.
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4 Multi-scale modeling of electro-chemical

systems

So far, the effective ionic conductivity of SBEs has been treated in a simplified fashion
where the combined electro-chemical potential µEC := µ+ Fzϕ is assumed to exist only
in the liquid electrolyte domain (Paper A and Paper D). This assumption is reasonable
if the electric potential field is trivial, making it sensible to combine both potentials
for an electro-chemical potential gradient ∇µEC, which serves as the driving force in a
Fickian constitutive model for ionic flux. However, it is important to note that the electric
potential ϕ will in reality also permeate the solid domain. Thus, if the microstructure
morphology is highly complex and the porosity is low, the chemical potential field µ will
be significantly different from the electric potential field ϕ.

In Paper B, the electric potential field is properly resolved to obtain the true
electro-chemical potential. Therefore, we formulate the balance equations for the electro-
chemically coupled transient transport of electro-active species in the SBE. Additionally,
the relevant constitutive relations in the liquid electrolyte domain ΩE and the solid
polymer domain ΩS are defined. Although all equations pertaining to ion transport are
valid for any number of ions α = 1, 2, . . . , N , the considered electro-chemical system will
in practice consist of Li-ions (Li+) and a corresponding companion anion (e.g. PF−6 ) that
is simply denoted X−.

4.1 Governing equations

A rigorous treatment of electro-chemically coupled ion transport would require resolving
the electric potential field via Maxwell’s equations to model ionic migration, but by
making the critical assumption that the magnetic field is assumed to vary slowly, the
formulation is simplified to electrostatics where the electric field conveniently depends
solely on the electric potential gradient. For electro-chemical systems that involve N mass
balance equations (one for each species), the number of unknowns becomes N + 1 due to
N chemical potentials and one electric potential. Therefore, an additional equation is
required; the most common choice in the battery modeling community is the assumption
of electroneutrality [34].

Balance equations

Assuming once again a biphasic material such as the SBE, and exploiting the assumption
of electroneutrality results in the following formulation

∑

α

zαcα = 0, in ΩE × (0, T ], (4.1a)

∂tcα + jα ·∇ = 0 in ΩE × (0, T ], (4.1b)

with suitable boundary conditions, constitutive relations, and initial conditions. Here,
the first equation represents the electroneutrality assumption while the second equation
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expresses mass conservation for species α. The quantity i is the current density, cα the
molar concentration, and jα the ion mass flux.

However, since electroneutrality is not a fundamental law, it can lead to paradoxes in
certain situations. Dickinson et al. [26] showed that electroneutrality is not automatically
consistent with Maxwell’s equations; especially the electric field can become erroneous
[25]. A more correct formulation is to replace the electroneutrality condition with Gauss’
law [54]; this will not only give a better prediction of the electric field, but also be able to
resolve the electric potential in the solid phase of a biphasic material.

Hence, restricting to electrostatics, we seek the electric potential ϕ(x, t) and the
chemical potentials µα(x, t), α = 1, 2, . . . , N , that solve the system

ρ− d ·∇ = 0 in Ω× (0, T ], (4.2a)

∂tcα + jα ·∇ = 0 in ΩE × (0, T ], (4.2b)

with suitable boundary conditions, constitutive relations, and the initial condition

cα(•, 0) = cα,0 in ΩE. (4.3)

Here, the first equation represents Gauss’ law which (unlike electroneutrality) properly
resolves the electric field. The quantity ρ is the free charge density (per unit volume) and
d is the electric flux density (electric displacement field).

Constitutive relations

The electric flux density d and the ion mass flux jα are defined as

d := ε ·E, E[ϕ] := −∇ϕ, (4.4a)

jα := −Mα · [∇µα + z′α∇ϕ], (4.4b)

where ϕ is the electric potential and µα the chemical potential of a mobile species
(α = 1, 2, . . . , N) with the ionic charge z′α = Fzα. Here, F corresponds to the Faraday
constant and zα is the valancy of species α. The material properties are given as the
electric permittivity ε and the ionic mobility Mα of species α. In the simple case of
material isotropy, they can be condensed to the scalar electric permittivity ε and the
scalar ionic mobility Mα.

Additionally, the free charge density ρ and the molar concentration cα are defined as

ρ :=

{∑N
α=1 z

′
αcα in ΩE,

0 in ΩS,
(4.5a)

cα := cα(µα) in ΩE. (4.5b)

In the simplest approach, we assume a dilute distribution of charged ions in the
electrolyte. Thus, the concentration cα is related to the chemical potential µα as follows

µα = µα,0 +RT ln (γαcα), (4.6)
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where µα,0 is the reference chemical potential of species α, R the gas constant, T the
temperature and γα the activity coefficient of species α. If the concentration is assumed
to have small fluctuations around the concentration level cα = cα,0, then the relation
(4.6) can be linearized. Linearization of (4.6) around cα = cα,0 with the assumption
µα,0 = −RT ln (γαcα,0) results in the relation

cα = kαµα + cα,0, (4.7)

where kα depends on the choice of γα. Choosing γα such that it is constant results in the
simple relation kα =

cα,0
RT .

Finally, the current density in the electro-chemical system can be computed via
Faraday’s rule of electrolysis as a post-processing quantity as

i :=

N∑

α=1

z′αjα. (4.8a)

Weak formulation of fine-scale problem

With the governing equations established, the corresponding weak formulation at every
time instance reads: find (ϕ, µα) ∈ P×Mα that solve

∫

Ω

δϕ ρ dΩ +

∫

Ω

∇δϕ · d dΩ =

∫

Γ
(ϕ)
N

δϕ dp dΓ

∀δϕ ∈ P0, (4.9a)∫

ΩE

δµα ∂tcα dΩ−
∫

ΩE

∇δµα · jα dΩ = −
∫

Γ
(α)
N

δµα j
p
α dΓ

∀δµα ∈M0
α, (4.9b)

for α = 1, 2, . . . , N and appropriately defined initial conditions. Here, Neumann boundary

conditions d ·n := dp and jα ·n := jp
α are prescribed on Γ

(ϕ)
N and Γ

(α)
N respectively. Exact

definitions of the trial and test spaces are left out for brevity.

4.2 Variationally consistent homogenization

So far, only the fine-scale (single-scale) problem has been established. However, performing
Direct Numerical Simulations (DNS) to account for microstructure features (e.g. SBE
pores) that are several orders of magnitude smaller than the component level (e.g. battery
scale) is computationally infeasible. As a consequence, numerous multi-scale methods
that provide more efficient solution strategies have been developed; see Multiscale Finite
Element Method (MsFEM) [55], Heterogeneous Multiscale Methods (HMM) [56], and
Variational MultiScale (VMS) [57] to name a few.

Here, the concept of Variationally Consistent Homogenization (VCH) [58] is adopted.
As a result, a smooth macro-scale problem and a sub-scale RVE problem can be deduced
solely from the fine-scale problem. The steps required in order to achieve this are as
follows:
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(i) Introduce the running average approximation

∫

Ω

• dΩ ≈
∫

Ω

〈•〉�(x̄) dΩ x̄ ∈ Ω, (4.10)

where all fine-scale quantities (∀ x̄ ∈ Ω) are approximated as the volume average
(over Ω�) in the RVE. Here, the RVE domain is assumed to be centered at x̄.

(ii) Assume scale separation via first order homogenization

ϕ(x̄;x, t) = ϕ̄(x̄, t) + ∇ϕ̄(x̄, t) · [x− x̄] + ϕS(x̄;x, t) (4.11a)

µα(x̄;x, t) = µ̄α(x̄, t) + ∇µ̄α(x̄, t) · [x− x̄] + µS
α(x̄;x, t) (4.11b)

where the decomposition corresponds to a first order Taylor expansion •̄(x̄, t) +
∇•̄(x̄, t) · [x − x̄] around x̄ and a fluctuation field •S(x̄;x, t). Henceforth, the
notation on the explicit choice of RVE at macro-scale position x̄ is left out for
brevity. Moreover, the gradients are shortened as ḡϕ := ∇ϕ̄ and ḡµα := ∇µ̄α.

Macro-scale problem

The macro-scale problem is obtained upon testing with only the macroscopic test functions.
Hence, the weak formulation at every time instance reads: find (ϕ̄, µ̄α) ∈ P̄× M̄α that
solve

∫

Ω

δϕ̄ ρ̄+ ∇δϕ̄ · ρ̄(2) + ∇δϕ̄ · d̄ dΩ = −
∫

Γ
(ϕ)
N

δϕ̄ d̄p dΓ

∀δϕ̄ ∈ P̄0, (4.12a)∫

Ω

δµ̄α ∂tc̄α + ∇δµ̄α · ∂tc̄
(2)
α −∇δµ̄α · j̄α dΩ = −

∫

Γ̄
(µ)
N,α

δµ̄α j̄
p
α dΓ

∀δµ̄α ∈ M̄0
α, (4.12b)

for α = 1, 2, . . . , N and appropriately defined initial conditions. As a result of VCH, we

obtain ρ̄(2) and c̄
(2)
α that represent higher order non-standard conservation terms, while

the rest are classical averages. Exact definitions of the trial and test spaces are left out
for brevity.

Sub-scale RVE problem

The sub-scale RVE problem can be obtained upon testing with only the microscopic test
functions. However, since the macroscopic parts of the solutions are treated as known
loading data to the sub-scale RVE problem, we may instead seek the full solution as
follows: for the given loading histories ϕ̄(t), ḡϕ(t), µ̄α(t), ḡµα(t) at every time instance;
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find ϕ ∈ P�, µα ∈M�,α, λ(ϕ) ∈ T(ϕ)
� , λ

(µ)
α ∈ T(µ)

� , λ̂(ϕ) ∈ R, λ̂
(µ)
α ∈ R that solve

〈δϕ ρ〉� + 〈∇δϕ · d〉� −
1

|Ω�|

∫

Γ+

�

JδϕK� λ(ϕ) dΓ− 〈δϕ〉� λ̂(ϕ) = 0

∀δϕ ∈ P�, (4.13a)

− 1

|Ω�|

∫

Γ+

�

JϕK� δλ(ϕ) dΓ = − 1

|Ω�|

∫

Γ+

�

JxK� δλ(ϕ) dΓ · ḡϕ

∀δλ(ϕ) ∈ T(ϕ)
� , (4.13b)

−〈ϕ〉� δλ̂(ϕ) = −ϕ̄ δλ̂(ϕ)

∀δλ̂(ϕ) ∈ R, (4.13c)

φ 〈δµα ∂tcα〉�,E − φ 〈∇δµα · jα〉�,E
+

1

|Ω�|

∫

Γ+

�,E

JδµαK� λ(µ)
α dΓ− φ〈δµα〉�,E λ̂(µ)

α = 0

∀δµα ∈M�,α, (4.13d)

1

|Ω�|

∫

Γ+

�,E

JµαK� δλ(µ)
α dΓ =

1

|Ω�|

∫

Γ+

�,E

JxK� δλ(µ)
α dΓ · ḡµα

∀δλ(µ)
α ∈ T(µ)

� , (4.13e)

−φ〈µα〉�,E δλ̂(µ)
α = −φ(µ̄α + ḡµα · [x̄E − x̄]) δλ̂(µ)

α

∀δλ̂(µ)
α ∈ R, (4.13f)

for α = 1, 2, . . . , N and appropriately defined initial conditions. Upon enforcing weakly
periodic boundary conditions (WPBC) [51], we use the difference operator J•K�(x) :=
•(x)− •(x−(x)). Here, x ∈ Γ+

� is an image point whereas x−(x) ∈ Γ− = Γ� \ Γ+
� is the

corresponding ”mirror point”. Additionally, while 〈•〉� is the RVE volume average operator
over the full RVE domain, the operator 〈•〉�,E is restricted to the liquid phase of the
SBE. Note that (4.13a) and (4.13d) correspond to Gauss’ law and ion mass conservation,
respectively. The rest are constraint equations; (4.13b) and (4.13e) represent WPBCs,
while (4.13c) and (4.13f) represent RVE volume average constraints pertaining to proper
scale-bridging. Details on the RVE constraints, and exact definitions of the trial and test
spaces are left out for brevity.

Solving two-scale models

Two-scale models are often solved via the Finite Element squared (FE2) method. In this
procedure, the macro-scale and the sub-scale RVE problem are solved in a nested fashion
with information passing between the scales in both directions. The macro-scale solution
is sent to the sub-scale RVE (prolongation), and serves as the driving force (”loading
data”) to the problem. After solving the sub-scale RVE problem, effective properties
(effective fluxes in VCH) are computed and sent back to the macro-scale (homogenization).

In practice, numerical integration is carried out only at quadrature points; hence, only
one sub-scale RVE computation per macroscopic quadrature point is needed. However,
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for complex 3D macro-scale domains, the number of quadrature points rapidly increases;
thus, requiring a large number of sub-scale RVE computations. Together with the fact
that the sub-scale RVE itself might also be complex, the FE2 procedure quickly becomes
computationally infeasible.

For certain problems, a viable approach is to exploit the assumption of micro-
stationarity to enable a priori upscaling. In such a case, the two-scale model is condensed
to a macro-scale problem with precomputed expressions for effective quantities. This
circumvents the need for performing RVE computations at every macroscopic quadrature
point for all time steps; instead, the homogenization of the (stationary) RVE is performed
once and for all.

4.3 Two-scale model with a priori upscaling

Upon introducing the assumption of micro-stationarity, we may pre-compute expressions
for effective fluxes. This allows us to solve a macro-scale problem that accounts for the
underlying sub-scale RVE through a priori upscaling. Consider the following split of the
sub-scale RVE solution fields

ϕ(x, t) = ϕstat(x, t) + ϕtrans(x, t), (4.14a)

µα(x, t) = µstat
α (x, t) + µtrans

α (x, t), (4.14b)

where the (unconventional) notation ”stationary” refers to the steady-state response due
to sustained loading, while ”transient” refers to the response that contains relaxation
processes when the loading is applied quickly as compared to the relaxation time.

The stationary solutions can be obtained upon removing all time derivatives from
(4.13); the exact formulation of the stationary problem is left out for brevity. However,
the stationary solutions can also be computed as a linear combination of sensitivity
fields with time-dependent coefficients corresponding to macroscopic load histories. The
decomposition of the stationary solutions is performed as follows

ϕstat(x, t) = ϕϕ̄(x) ϕ̄(t) +ϕḡϕ(x) · ḡϕ(t)

+

N∑

α=1

(
ϕµ̄α(x)µ̄α(t) +ϕḡµα(x) · ḡµα(t)

)
, (4.15a)

µstat
α (x, t) = µα,ϕ̄(x) ϕ̄(t) + µα,ḡϕ(x) · ḡϕ(t)

+

N∑

β=1

(
µα,µ̄β (x)µ̄β(t) + µα,ḡµβ (x) · ḡµβ (t)

)
, (4.15b)

where each sensitivity field [ϕϕ̄,ϕḡϕ , ϕµ̄α ,ϕḡµα , µα,ϕ̄,µα,ḡϕ , µα,µ̄β ,µα,ḡµβ ] is given by each

corresponding time-independent unit sensitivity problem; the exact formulations of the
unit sensitivity problems are left out for brevity, see Paper B. Based on (4.15), the
effective constitutive quantities can be explicitly defined as function of macro-scale data.
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For illustration, the effective current density under assumption of micro-stationarity is
defined as

d̄stat(x, t) =− 〈ε · (∇⊗ϕḡϕ)〉� · ḡϕ(t)−
N∑

α=1

〈ε ·∇ρµ̄α〉� µ̄α(t)

−
N∑

α=1

〈ε · (∇⊗ϕḡµα)〉� · ḡµα(t), (4.16)

where ḡϕ(t), µ̄α(t) and ḡµα(t) correspond to known loading data that stem from the
macro-scale solution. Therefore, the effective quantities simply scale linearly with the
”input signals” from the macro-scale problem. Remaining effective fluxes, based on
micro-stationarity, are left out for brevity.

With all of this, the homogenization of the (stationary) RVE can now be performed
once and for all; resulting in an efficient solution scheme of the, otherwise expensive,
two-scale model. This strategy is pursued in Paper B.
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5 Numerical Model Reduction

Until now, we have not been able to perform fully transient two-scale simulations. The
approach taken in Paper B relies on the micro-transients to be small. When large
micro-transients occur, the micro-stationarity assumption leads to a poor approximation.

To overcome the limitations of the micro-stationarity assumption, Paper C focuses
on the development of a Numerical Model Reduction (NMR) framework for multi-scale
modeling of electro-chemically coupled ion transport, where micro-transients are accounted
for. Upon introducing the governing equations and employing Variationally Consistent
Homogenization (VCH), a two-scale model consisting of a macro-scale and a sub-scale
problem is obtained. Instead of solving for the computationally expensive1 FE2 problem
where the macro-scale and sub-scale problems are solved in a nested fashion, we exploit
NMR for the RVE problem by training a surrogate model that replaces the sub-scale finite
element simulations. The surrogate model is trained by performing Proper Orthogonal
Decomposition (POD) on snapshots of the primary fields. Each macro-scale quadrature
point is no longer occupied by a Representative Volume Element (RVE) simulation;
instead, it is replaced by a surrogate model which consists of a system of Ordinary
Differential Equations (ODEs). In this way, a computationally efficient solution scheme
for solving two-scale problems is obtained. This strategy is henceforth denoted NMR-FE2.
The procedure is split into two stages: the off-line stage, where the surrogate model is
constructed prior to the solution of the macro-scale problem, and the on-line stage, where
the surrogate model is used to solve the macro-scale problem efficiently.

5.1 Transient split of RVE problem

As a starting point for the NMR framework for solving the RVE problems efficiently,
we use the same governing equations established in (4.13). Additionally, we recall the
stationary and transient split according to (4.14). Due to linearity, the time-dependent
”stationary” parts •stat(x, t) can be decomposed into linear combinations that depend
explicitly on the macroscopic loading histories as noted in (4.15). Next, we turn to solving
the transient part of the solution by using substitution in the original equations (4.13).
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For brevity, the following RVE forms are introduced

m
(ϕ)
�,α(µα, δϕ) :=

1

|Ω�|

∫

Ω�
z′αkαµα δϕdΩ, (5.1a)

a
(ϕ)
� (ϕ, δϕ) :=

1

|Ω�|

∫

Ω�
∇δϕ · ε ·∇ϕdΩ, (5.1b)

m
(µ)
�,α(µα, δµα) :=

1

|Ω�|

∫

Ω�,E
µαkα δµα dΩ, (5.1c)

a
(µ)
�,α(µα, δµα) :=

1

|Ω�|

∫

Ω�,E
∇δµα ·Mα ·∇µα dΩ, (5.1d)

a
(µ,ϕ)
�,α (ϕ, δµα) :=

1

|Ω�|

∫

Ω�,E
∇δµα ·Mα · z′α∇ϕdΩ. (5.1e)

Exploiting the linearity and time-transience of Eqs. (4.13a)–(4.13c), we see that we can

compute ϕtrans{{µα}Nα=1} = ϕtrans ∈ P0 together with Lagrange multipliers (λ̂ϕ, λϕ) ∈
R× P(ϕ)

� such that

−a(ϕ)
� (ϕ, δϕ)−

〈〈
λ(ϕ) JδϕK�

〉〉
�
− λ̂(ϕ) 〈δϕ〉� = −

∑

α

m
(ϕ)
�,α(µtrans

α , δϕ)

∀δϕ ∈ P�, (5.2a)

−
〈〈
δλ(ϕ) JϕαK�

〉〉
�

= 0

∀δλ(ϕ) ∈ T(ϕ)
� , (5.2b)

−δλ̂(ϕ) 〈ϕa〉� = 0

∀δλ̂(ϕ) ∈ R. (5.2c)

This problem follows directly by insertion of ϕ = ϕstat + ϕtrans and µα = µstat
α + µtrans

α ,
while utilizing the corresponding stationary relations.

Furthermore, we note that for a high dimension of {M�,α}Nα=1, or even worse, for the
continuous case, the computation of ϕtrans{{µtrans

α }Nα=1} is intractable in practice. How-
ever, as part of the reduced order model, this limitation will be alleviated by introducing
low dimensional approximation spaces M�,R,α.
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Assuming that we have the implicit relations ϕtrans{{µtrans
α }Nα=1} at hand, we can

solve for the transient parts µtrans
a together with the Lagrange multipliers such that

m
(µ)
�,α(∂tµ

trans
α , δµα) + a

(µ)
�,α(µtrans

α , δµα) + a
(µϕ)
�,α (ϕ{{µtrans

β }Nα=1}, δµα)

+φ
〈〈
λ(µ)
α JδµαK�

〉〉
�,E
− λ̂(µ)

α φ 〈δµα〉�,E = −m(µ)
�,α(∂tµ

stat
α , δµα)

∀δµα ∈M�,α, (5.3a)

φ
〈〈
δλ(µ)

α Jµtrans
α K�

〉〉
�,E

= 0

∀δλ(µ)
α ∈ T(µ)

� , (5.3b)

−δλ̂(µ)
α φ

〈
µtrans
α

〉
�,E = 0

∀δλ̂(µ)
α ∈ R. (5.3c)

In what follows, we shall introduce a reduced order approximation µtrans ≈ µtrans
R . This

will allow for (i) the explicit computation of the low dimensional mapping ϕ{{µtrans
α,R }Nα=1}

from (5.2), and (ii) Galerkin scheme for the reduced problem corresponding to (5.3).

5.2 Generation of POD modes: Chemical potential

The core of the surrogate model is the adoption of a reduced basis for the chemical

potential field. Here, we introduce the low dimensional spaces M�,R,α = span{µ̂α,a}MR,α

a=1

and seek approximation of the transient fields on the form

µtrans
α (x, t) ≈ µtrans

α,R (x, t) :=

M
(µ)
R,α∑

a=1

µ̂α,a(x)ξ(µ)
α,a(t) ∈M0

�,α,R. (5.4)

Here, {µ̂αa}
Mα,a

a=1 are a set of suitable basis functions for species α, and M�,a is the
number of these modes (typically much smaller than the dimension of the underlying
FE-discretization.)

As a first step, full (FE) simulations of Eqs. (4.13a)–(4.13f) for selected time histories
(ḡφ, µ̄a, ḡµ) are carried out. These simulations are referred to as training simulations.
Extracting spatial snapshots µtrans

α = µα − µstat at selected time instances2 (a = 1, ..., S)
from these simulations, we use Proper Orthogonal Decomposition (POD) to extract the
most important modes and use them as basis.

The chemical potential modes µ̂α,a are obtained upon performing POD on the snapshot
correlation matrices for all chemical species α = 1, 2, . . . , N . The snapshot correlation
matrix is defined as follows

gα,ab = 〈µtrans
α,a (x)µtrans

α,b (x)〉� , a, b = 1, 2, ..., S. (5.5)

2Here, each snapshot is indicated by a given time instance from one solution µα. In practice, the
snapshots are typically extracted from different simulations.
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Here, µtrans
α,a (x) corresponds to one of the S snapshots that are directly sampled from the

transient solution µtrans
α (x, t). In the next step, the snapshot correlation matrices are

used to solve the eigenvalue problem

(gα,ab − λ δab) vα,b = 0, (5.6)

whereby the identified (orthonormal) eigenvectors vα,k and the chemical potential snap-
shots µtrans

α,k (x) are used to compute the chemical potential modes as follows

µ̂α,a(x) =

S∑

k=1

v
(a)
α,k µ

trans
α,k (x). (5.7)

Here, the entries in v
(a)
α,k take the role of mixture coefficients in a linear combination of all

transient snapshots to form each mode. By construction, the resulting chemical potential
modes are orthogonal in a way such that

〈µ̂α,a(x) µ̂α,b(x)〉� =

{
λα,a, if a = b,

0, otherwise.
(5.8)

In practice, the implementation of POD is performed using matrices, where Gα is the
snapshot correlation (square) matrix and the eigenvalue problem (Gα−λ I)vα = 0 results
in a rectangular matrix Vα of column eigenvectors vα. Finally, the chemical potential
mode matrix is simply computed as µ̂α = µtrans

α Vα, given that the snapshot vectors are
stacked as column vectors in the rectangular snapshot matrix µtrans

α .

5.3 Identification of modes: Electric potential

In the spirit of the Nonuniform Transformation Field Analysis (NTFA) [59], we shall now
compute the pertinent modes for the electric potential. Using the fact that (5.2) is time
invariant and linear, we may express

ϕtrans{{µtrans
α,R }} =

N∑

α=1

MR,α∑

a=1

ϕ̂α,a(x)ξα,a(t) (5.9)

where the modes ϕ̂α,a ∈ P� together with Lagrange multipliers λ(ϕ), λ̄(ϕ) ∈ T(ϕ)
� × R are

solved such that

−a(ϕ)(ϕ̂α,a, δϕ)−
〈〈
λ(ϕ) JδϕK

〉〉
�
− λ̂(ϕ) 〈δϕ〉� = −m(ϕ)

�,α(µ̂α,a, δϕ)

∀δϕ ∈ P�, (5.10a)

−
〈〈
δλ(ϕ) Jϕ̂α,aK

〉〉
�

= 0

∀δλ(ϕ) ∈ T(ϕ)
� , (5.10b)

−〈ϕ̂α,a〉� δλ̂(ϕ) = 0

∀δλ̂(ϕ) ∈ R, (5.10c)
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for a = 1, 2, . . . ,MR,α and α = 1, 2, . . . , N . Hence, the reduced approximation

ϕR(x, t) = ϕstat(x, t) +
∑

α

∑

a

ϕ̂α,aξα,a(t), (5.11a)

µα,R(x, t) = µstat
α (x, t) +

∑

a

µ̂α,aξα,a(t), α = 1, ..., N, (5.11b)

will satisfy Eqs. (4.13a)–(4.13c) exactly (up to the chosen FE-discretization).

5.4 Surrogate model

The next step is to insert the appropriate NMR-approximations into the transient problem

and choosing test functions according to δµα = µ̂α,a in (5.3a), δλ
(µ)
α = λ

(µ)
α,a in (5.3b) and

δλ̂
(µ)
α = λ̂

(µ)
α,a in (5.3c):

M
(µ)
R,α∑

b=1

m
(µ)
�,α(µ̂α,b, µ̂α,a) ξ̇

(µ)
α,b +

M
(µ)
R,α∑

b=1

a
(µ)
�α(µ̂α,b, µ̂α,a) ξ

(µ)
α,b

+

N∑

β=1



M

(µ)
R,α∑

b=1

a
(µϕ)
�,α (ϕ̂β,b, µ̂α,a) ξ

(µ)
β,b


+

M
(µ)
R,α∑

b=1

φ
〈〈
λ

(µ)
α,b Jµ̂α,aK

〉〉
�,E

ξ
(µ)
α,b

−
M

(µ)
R,α∑

b=1

λ̂
(µ)
α,bφ 〈µ̂α,a〉�,E ξ

(µ)
α,b = −m(µ)

� (∂tµ
stat
α , µ̂α,a), (5.12a)

M
(µ)
R,α∑

b=1

φ
〈〈
λ

(µ)
α,b Jµ̂α,aK

〉〉
�,E

ξ
(µ)
α,b = 0, (5.12b)

−
M

(µ)
R,α∑

b=1

λ̂
(µ)
α,bφ 〈µ̂α,a〉�,E ξ

(µ)
α,b = 0, (5.12c)

for test functions a = 1, 2, ...,M
(µ)
R,α and α = 1, 2, . . . , N . Here, it is clear that (5.12b) and

(5.12c) can be eliminated upon insertion into (5.12a).
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As a final step, the stationary part µstat
α is decomposed according to (4.14) and the

system of equations takes the following form

M
(µ)
R,α∑

b=1

m
(µ)
�,α(µ̂α,b, µ̂α,a)ξ̇

(µ)
α,b +

M
(µ)
R,α∑

b=1

a
(µ)
�α(µ̂α,b, µ̂α,a)ξ

(µ)
α,b

+
N∑

β=1



M

(µ)
R,α∑

b=1

a
(µϕ)
�,α (ϕ̂β,b, µ̂α,a)ξ

(µ)
β,b


 = −m(µ)

�,α(µα,ϕ̄, µ̂α,a) ˙̄ϕ(t)

−m(µ)
�,α(µα,ḡϕ , µ̂α,a) · ˙̄gϕ(t)−

N∑

β=1

m
(µ)
�,α(µα,µ̄β , µ̂α,a) ˙̄µβ(t)

−
N∑

β=1

m
(µ)
�,α(µα,ḡµβ , µ̂α,a) · ˙̄gµβ (t), (5.13)

for test functions a = 1, 2, ...,M
(µ)
R,α and α = 1, 2, . . . , N .

Here, only Li-ions (Li+) and the corresponding anion (X−) are considered; the explicit
matrix format becomes as follows

M
Li,Li

ξ̇
Li

+K
Li,Li

ξ
Li

+K
Li,X

ξ
X

= f
Li,ϕ̄

˙̄ϕ(t) + f
Li,ḡϕ

· ġϕ(t)

+f
Li,µ̄Li

˙̄µLi(t) + f
Li,ḡµLi

· ġµ
Li

(t)

+f
Li,µ̄X

˙̄µX(t) + f
Li,ḡµX

· ġµ
X

(t), (5.14a)

M
X,X

ξ̇
X

+K
X,Li

ξ
Li

+K
X,X

ξ
X

= f
X,ϕ̄

˙̄ϕ(t) + f
X,ḡϕ

· ġϕ(t)

+f
X,µ̄Li

˙̄µLi(t) + f
X,ḡµLi

· ġµ
Li

(t)

+f
X,µ̄X

˙̄µX(t) + f
X,ḡµX

· ġµ
X

(t). (5.14b)

In condensed matrix form, the surrogate model becomes

[
M

Li,Li
0

0 M
X,X

][
ξ̇

Li

ξ̇
X

]
+

[
K

Li,Li
K

Li,X

K
X,Li

K
X,X

] [
ξ

Li
ξ

X

]
=

[
f

Li
f

X

]
. (5.15)
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With the surrogate model in hand, we can now define the approximate effective fluxes
directly as a function of macro-scale data and activity coefficients. This is achieved upon
inserting ϕ = ϕstat + ϕtrans and µα = µstat

α + µtrans
α from (4.15) and (5.4). Repeating

this for all the effective fluxes related to (4.12) results in constitutive relations that can
be used in the NMR-FE2 framework. For illustration, the effective electric flux density
required for NMR-FE2 is formulated as follows

d̄ ≈− 〈ε[∇⊗ϕḡϕ ]〉� · ḡϕ −
N∑

α=1

(
〈ε∇ϕµ̄α〉� µ̄α +

〈
ε∇⊗ϕḡµα

〉
� · ḡ

µ
α

)

−
N∑

α



MR,α∑

a

〈ε∇ϕ̂α,a〉� ξ(µ)
α,a


 , (5.16a)

where ḡϕ(t), µ̄α(t) and ḡµα(t) are known macro-scale data, and ξ
(µ)
α,a are activity coefficients

related to the surrogate model. Remaining effective fluxes, required for NMR-FE2, are
left out for brevity.

With these relations established, we now have everything necessary to utilize the
surrogate model for efficient fully transient two-scale simulations. This strategy is pursued
in Paper C.
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6 Summary of included papers

Paper A

V. Tu, L.E. Asp, N. Shirshova, F. Larsson, K. Runesson, R. Jänicke
Multifunctional Materials, vol. 3, 2020, 025001
Performance of bicontinuous structural electrolytes

In this paper, we study the multifunctional performance of various SBE microstructures
by performing virtual material testing on numerically generated artificial representative
volume elements (RVE). We attempt to generate some classes of periodic and bicontinuous
microstructures that seem to resemble real structural electrolytes. Most of the generation
techniques involve tampering with various boundary value problems to obtain solution
fields that can be converted to meshable solids. The generated microstructure classes are
denoted (i) bead structures, (ii) trabecular structures, (iii) imperfect trabecular structures,
and (iv) inverted microstructures.

In the next step, virtual material testing is exploited to compute effective material
properties. More specifically, the multifunctional performance of artificial RVEs is evalu-
ated in terms of the elastic stiffness and ionic conductivity. The effective elastic stiffness
is computed by homogenizing the sub-scale RVE problem based on linear elasticity. Here,
we make the assumption that the pore pressure in the SBE can be neglected. The effective
ionic conductivity is obtained upon homogenizing the sub-scale RVE problem based on
linear stationary Fickian diffusion.

Upon comparing the multifunctional performance of various artificial RVEs, we identify
that the trabecular structures and imperfect trabecular structures perform better than
the bead structures.

Paper B

V. Tu, F. Larsson, K. Runesson, R. Jänicke
European Journal of Mechanics - A/Solids 98 (2023), 104901
Variationally consistent homogenization of electrochemical ion transport in a porous
structural battery electrolyte

This paper covers the development of a multi-scale modeling framework for electro-
chemically coupled ion transport in SBEs. Unlike classical battery modeling, we avoid
the so-called electroneutrality assumption and instead properly resolve the electric field
by coupling Gauss’ law with mass conservation of chemical species. After establishing
the governing equations, we exploit Variationally Consistent Homogenization (VCH) to
obtain a two-scale model. Upon formulating the macro-scale problem, we are able to
reveal higher order non-standard conservation terms due to the VCH approach.

Numerical investigations of the sub-scale RVE problem show that the micro-transient
effects, for length scales relevant to the studied application, are negligible. Therefore, we
propose the assumption of micro-stationarity; this opens up for the possibility to devise
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a numerically efficient two-scale solution scheme based on a priori upscaling. Finally,
the paper concludes with computational results for a 2D macro-scale problem based on
precomputed effective fluxes from a bicontinuous 3D RVE. Here, we are able to provoke
effects of net charge accumulation, which would not be captured upon adopting the
classical electroneutrality assumption.

Paper C

V. Tu, F. Larsson, K. Runesson, R. Jänicke
To be submitted
Numerical model reduction of multi-scale electrochemical ion transport

Paper C focuses on the development of a Numerical Model Reduction (NMR) framework
for multi-scale modeling of electro-chemically coupled ion transport. Applying Variation-
ally Consistent Homogenization (VCH) on the governing equations results in a two-scale
model consisting of a macro-scale and a sub-scale problem. A standard strategy to solve
for two-scale problems is to use the FE2 approach, where the macro-scale and sub-scale
problems are solved concurrently in a nested fashion. However, this method is computa-
tionally expensive. As an alternative approach, we exploit NMR by training a surrogate
model that replaces the sub-scale RVE simulations. The training consist of performing
Proper Orthogonal Decomposition (POD) on snapshots of the primary fields. The end
result is a surrogate model that consists of a system of Ordinary Differential Equations
(ODEs). The approach of replacing RVE computations with ODE computations leads to
a computationally efficient solution scheme for solving two-scale problems. The procedure
is split into two stages: the off-line stage, where the surrogate model is constructed prior
to the solution of the macro-scale problem, and the on-line stage, where the surrogate
model is used to solve the macro-scale problem efficiently. To demonstrate the efficacy of
this framework, we conclude the paper with a numerical example on a two-scale problem
consisting of a 2D RVE and a 2D macro-scale domain.

Paper D

V. Tu, F. Larsson, K. Runesson, R. Jänicke
To be submitted
Deformation-dependent ionic transport in Structural Battery Electrolytes

In this paper, we consider ionic transport in a Structural Battery Electrolyte (SBE)
subjected to large deformations. The SBE is a porous bicontinuous microstructure
consisting of a solid (polymer) skeleton, and pores filled with a liquid electrolyte. Upon
applying mechanical loads on the SBE, the pore space changes and affects the effective
mobility. Hence, computational homogenization and 3D RVEs are used to compute
the deformation-dependent effective mobility via direct upscaling. We first solve the
RVE-problem for the mechanical (equilibrium) problem under macro-scale deformation
control, while employing Neo-Hooke hyperelasticity for the fine-scale modeling of the solid
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skeleton. In the subsequent step, we model ionic transport by assuming standard diffusion
with a Fickian constitutive relation and a constant mobility in the deformed setting. Pull-
back to the undeformed configuration then gives the pertinent deformation-dependent
mobility for the fine-scale model. Finally, we apply computational homogenization to
obtain the effective mobility pertaining to the macro-scale chemical potential gradient.
The numerical results show that when a compressive macro-scale loading is applied, then
the pore volume is reduced. This in turn leads to a smaller effective mobility. In this
numerical investigation, upon compressing the RVE macroscopically by 20% strain, the
effective mobility reduces by approximately 26%.
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7 Conclusions and outlook

The goal of this thesis was to develop a multi-scale and multi-physics modeling framework
for Structural Battery Electrolytes (SBE). In order to achieve this, three sub-goals were
identified in Section 1.2. These sub-goals have all been fulfilled to varying degrees of
success. In this section, the sub-goals are revisited.

Sub-goal 1: Develop methods to numerically generate 3D Representative
Volume Elements (RVEs) representing the SBE microstructures.

Paper A covers artificial Representative Volume Element (RVE) generation. By tamper-
ing with various boundary value problems (heat equation and Cahn-Hilliard equation),
we were able to manipulate the solution fields to resemble SEM images of real structural
electrolytes. The solution fields were in turn converted into meshable solids for virtual
material testing. Upon assessing multifunctional performance of the artificial RVEs, we
concluded that trabecular structures and imperfect trabecular structures perform better
than the bead structures. Surprisingly, the imperfect trabecular structures performed
as well as the trabecular structures. Generation of the trabecular structures is based
on prescribing heat sources and heat sinks on a periodic network stemming from a 3D
Voronoi tessellation; hence, their microstructures are inherently slightly more controlled
and idealized. However, the imperfect trabecular structures were generated by exploiting
random noise distributions as initial conditions to the Cahn-Hilliard equation. Owing to
the stochastic nature of this method, the imperfect trabecular structures have been seen
to contain dead-end channels as well as unconnected pores. Currently, the RVEs are only
enforced to be bicontinuous and periodic; additionally, the porosity of the microstructure
can only be controlled to a certain degree. Hence, in future work on Paper A related
to this sub-goal, the priority will be on improving the RVE generation technique with
respect to microstructural descriptors.

Sub-goal 2: Use virtual material tests to assess the performance of various
SBE microstructures under different conditions.

Paper A concluded with virtual material testing, where the effective properties were
computed via computational homogenization for numerically generated artificial RVEs.
For each RVE, we computed the effective elastic stiffness and the effective ionic conductivity.
Using these metrics, we could draw conclusions about the multifunctional performance of
each RVE. These numerically predicted results were then compared to experimental data
of real structural electrolytes. Unsurprisingly, there was a significant discrepancy between
the numerical results and the experimental measurements. One explanation could be that
the experimental data was extracted from structural electrolytes that contained ionic
liquids (supercapacitor application) instead of organic electrolytes (battery application).
Furthermore, the virtual material testing of mechanical and transport properties was
performed using the simplest possible approach of assuming linear elasticity and Fick’s
law, respectively. In particular, using Fick’s law (i.e. dilute solution theory) for ionic
liquids is a significant simplification. While Fickian diffusion models are often used to

40



predict the transport of Li-ions in binary solutions (organic electrolyte), they can not
be used to model ion transport in ionic liquids. An example of an organic liquid based
binary electrolyte is LiPF6, which contains the ions Li+ and PF−6 . However, the ionic
liquid used in the experimental data is a mixture of LiTFSI (Li-cation and TFSI-anion)
and EMIM-TFSI (EMIM-cation and TFSI-anion), i.e. a so-called ternary system. It has
been proposed that such systems are suitably modeled via the Maxwell-Stefan equation
which describes the mutual diffusion for a multi-component system [60], and introduces
the notion of molecular friction between ions [61]. Nevertheless, the experimental results
were kept in Paper A for comparison. Due to the idealized modeling approach of the
artificial RVEs, they may serve as an upper-bound for real structural electrolytes in terms
of multifunctional performance. With everything considered, future work on Paper A
pertaining to this sub-goal consists of extending the diffusion formulation with multi-
component couplings (ion interactions). Most likely, this approach will allow for more
realistic numerical predictions in view of experimental validation.

The topic of effective deformation-dependent mobility was investigated in Paper D.
Finite strain theory and Neo-Hooke hyperelasticity were assumed for the solid polymer
phase of the SBE microstructure. Linear Fickian diffusion was assumed for the deformed
pore (liquid electrolyte) domain. In order to prevent penetration as the pore space
was deformed, the pore domain was modeled as a solid with a small fictitious stiffness.
However, this assumption leads to artificial stiffening. In the first step, we solved
the mechanical RVE problem. In the second step, the pore space displacement was
used to simulated the deformation dependent ionic transport. Finally, the effective
deformation-dependent mobility was computed using computational homogenization.
This framework was demonstrated in a numerical example where the SBE was subjected
to a compressive load. Numerical results showed that a 20% macro-scale compression
resulted in approximately 26% reduction in effective mobility. Although the framework
developed in Paper D properly handles large deformations in conjunction with ionic
transport, a few uncertainties regarding the model assumptions still remain. The following
issues need to be addressed in future work pertaining to Paper D: (i) implement a proper
contact formulation to allow for fully collapsed pore channels, and (ii) utilize experimental
data for validation to evaluate the performance of the framework.

Sub-goal 3: Develop a multi-scale modeling framework for electro-chemically
coupled ion transport in SBEs. Devise numerically efficient solution schemes
to solve for two-scale problems.

In Paper B, the focus was shifted toward multi-scale modeling of electro-chemically
coupled ion transport processes in SBEs. The ion transport formulation was extended
from Paper A to include both migration and diffusion. Instead of involving Maxwell’s
equations, the magnetic field was assumed to vary slowly, which simplified the formulation
to electrostatics. Hence, the electro-chemical ion transport could be established by
coupling Gauss’ law with a mass conservation law for each chemical species. Moreover,
Variationally Consistent Homogenization (VCH) was exploited and a two-scale model
was obtained. An efficient two-scale solution scheme was proposed for the special case
of micro-stationarity. Numerical studies were performed to show that the assumption of
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micro-stationarity holds true for time and length scales relevant to the studied application.
Finally, the paper concluded with computational results for a 2D macro-scale problem
based on precomputed effective fluxes from a bicontinuous 3D RVE. While we were able
to provoke net charge accumulation effects using Gauss’ law, it should be noted that the
employed macro-scale boundary conditions do not correspond to a battery application due
to numerous simplifications, e.g. the lacking description of the electrodes and interfaces.
In order to properly trace the ions inside the electrodes, a law that describes electrode
kinetics such as the Butler-Volmer equation is needed. Possible future research related to
Paper B are as follows: (i) include a FE2 framework for numerical validation, and (ii)
perform analysis of the full structural battery.

Paper C extended the multi-scale and multi-physics framework from Paper B
by exploiting Numerical Model Reduction (NMR). Primary RVE fields were used as
training data for identifying POD modes to form a surrogate model that replaces RVE
computations. This resulted in a new type of framework, denoted NMR-FE2, which is a
computationally efficient solution scheme for two-scale problems. A numerical example
of applying NMR-FE2 on a two-scale problem was provided. However, the numerical
example (taken from Paper B) contained small micro-transients, which poorly highlights
the performance of the NMR-FE2 framework. Lastly, it was also demonstrated that a
speed-up factor of up to 110 could be achieved by exploiting NMR. As a part of the
conclusion, a major obstacle with NMR was identified; selecting optimal training data,
training strategy and POD modes for optimal accuracy (w.r.t. computational cost) is
challenging. Hence, future work related to Paper C are summarized as follows: (i)
investigate numerical examples with large micro-transients to properly showcase the
NMR-FE2 framework, and (ii) exploit error control to enable adaptive mode selection for
optimal accuracy w.r.t. computational cost.
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