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Energy-optimal trajectory planning for electric vehicles using Model
Predictive Control

Alexandre Rocha†, Anand Ganesan∗†§, Derong Yang§, and Nikolce Murgovski†

Abstract—This paper proposes a space-sampled Economic
Model Predictive Control (EMPC) approach to jointly minimize
total energy consumption of an electric vehicle (EV) and track
both longitudinal velocity and path curvature reference trajec-
tories. We consider a single-track vehicle model constrained to
the range of accelerations ±3 m/s2, and energy consumption is
modelled explicitly including power losses of electric machines.
Simulations with the high-fidelity simulator IPG CarMaker
show the trade-off between energy consumption and reference
tracking. Namely, results show how longitudinal velocity and
acceleration control significantly impact energy consumption,
whereas deviating from the path centerline mainly allows better
velocity tracking.

Index Terms—Economic model predictive control, energy man-
agement, electric vehicle, trajectory planning.

I. INTRODUCTION

The automotive industry is undergoing a disruptive trans-
formation in the last two decades, empowered by economic,
regulatory, and sustainability drivers. From policy makers to
consumers, society in general has created incentives to develop
less polluting and more efficient means of transportation,
and manufacturers are rapidly adapting [1]. Electric vehicles
(EVs) appear as one such solution that reduces air pollution
throughout the energy production and consumption cycle [2].
Although electric motors used in EVs are incomparably more
efficient than internal combustion engines, current state-of-the-
art batteries have a significantly lower energy density than
fossil fuels, leading to reduced driving range. As a solution,
alongside development of battery technology, energy manage-
ment can be embedded in vehicle motion control algorithms
[3], resulting in energy-optimal driving of EVs.

According to the vehicle’s level of control autonomy, en-
ergy consumption optimization occurs at different levels of
the control architecture and is embedded in different types
of algorithms. Cruise control (CC) emerges as one of the
most widely implemented of such algorithms. It consists of
autonomously tracking a reference longitudinal velocity, while
the driver remains responsible for the vehicle’s steering. CC
can be energy-optimal when taking into account an energy
consumption model and information about the surrounding
environment, such as traffic ahead and road slope [4], [5]. If a
vehicle autonomously controls its motion, then the problem
is converted to trajectory tracking or planning. Trajectory
tracking consists of jointly tracking given path and velocity
references [6], [7]. Commonly, these algorithms focus on ac-
curately tracking the references, which can be energy-optimal
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based on route prior knowledge - a problem known as route
planning. Instead, trajectory planning deals with computing the
vehicle’s position and velocity trajectories online, given local
and real-time information, possibly optimizing certain perfor-
mance objectives. The well-known work of [8] is an illustrative
example of when multiple traffic scenarios demand iterative
replanning of trajectories. Other traffic scenarios in which
trajectory planning is applied include obstacle avoidance [9],
[10], as well as overtaking and road merging maneuvers
[11], [12]. Moreover, analogous to CC, trajectory planning
is energy-optimal when energy consumption is modelled and
optimized in the planning problem [13], [14].

Optimizing the trajectory in real-time requires one to solve
numerically and iteratively an Optimal Control Problem (OCP)
as the vehicle moves and acquires new information. In contrast
to low-speed autonomous vehicles, such as in certain indus-
trial applications, road EVs require high-frequency control
updates to meet safety, comfort, and drivability standards,
which has been limiting the research focus of this topic. Until
today, most energy management strategies did not include the
joint problem of trajectory planning and energy consumption
minimization, where instead a subproblem is considered, for
example, energy-optimal cruise control. Moreover, from the
reduced set of works that do include such joint problem,
energy consumption is not always modelled explicitly, where
commonly an approximation of it is considered, thus be-
ing suboptimal. Nevertheless, as the computational power
of vehicle embedded systems increases, energy optimization
problems become feasible to compute in real time [3], with
higher modelling accuracy, and integrated into more complex
vehicle motion control algorithms [15].

In this paper, we address the problem of energy-optimal
trajectory planning of an electric vehicle by explicitly mod-
elling the vehicle powertrain energy consumption. This con-
sumption model includes the power losses of electric motors
and their inverters, which are fitted to measured efficiency
points. The trajectory is then optimized to minimize total
energy consumption while tracking longitudinal velocity and
road curvature references. Furthermore, we study the relative
impact of these tracking objectives on energy consumption by
allowing the vehicle to deviate from the references. From the
control perspective, the MPC framework is chosen due to its
ability to encompass a dynamic model of the vehicle to predict
its future motion, handle constraints, and optimize specific
performance criteria in an integrated feedback loop. To limit
computational complexity, the focus is placed on constrained-
acceleration scenarios, avoiding cumbersome nonlinearities
within the vehicle model that might lead to MPC feasibility
problems and high computational times. Furthermore, inspired



by [9], [10], vehicle kinematics is modelled relative to the
path and the MPC problem is reformulated into the spatial
domain, both of which largely simplify problem formulation.
Path curvature depends implicitly on velocity in the temporal
domain, and thus on the actuators. As a consequence, not only
the integration of the dynamics increase in complexity but also
the constraints on path boundaries become time-dependent.
By changing the sampling domain from time to space, path
boundaries and curvature are defined as functions of the
independent variable, avoiding the intricate dependence on
vehicle velocity. Finally, the proposed algorithm is tested in a
test track on the high-fidelity vehicle simulator IPG CarMaker,
where simulations are conducted for different controller tuning
to illustrate the trade-off between energy consumption and
reference tracking.

II. SYSTEM MODELLING

The vehicle chassis is a rigid body with mass m and rota-
tional inertia Iz and its position is described in the curvilinear
coordinate system, which relates the chassis center of mass
to a reference path. The degree of model accuracy must
be weighted with the complexity arising from nonlinearities
and increase in state-space dimension, in order to achieve a
reasonable trade-off with computational burden. In this paper,
a compromise is found by limiting the vehicle operating range,
constraining vehicle accelerations, which allows for model
simplification. To start with, the chassis model includes only
one wheel per axle. Consequently, roll dynamics are ignored,
whereas pitch, and thus longitudinal load transfer, are assumed
static. Furthermore, the tire traction forces are modelled as
linear, and the wheel dynamics is neglected. The control inputs
are the steering rate δ̇ of the front axle and the total propulsion
torque rate Ṫ , whereas friction brakes are not considered.

Regarding the power consumption model, we consider the
total mechanical output power from the electric motors to-
gether with the power losses of the electric machines, i.e.
motors and inverters, which vary depending on motor speed
and torque. Furthermore, in this paper, the subscript i = {f, r}
indicates the front (f) and rear (r) wheel, and the constant
positive parameters of the vehicle model are denoted using
the symbol C with a suitable subscript.

A. Curvilinear bicycle model

The curvilinear bicycle model (or single-track model) is
illustrated in Fig. 1. Vehicle kinematics is defined relative
to the path centerline, whereas its dynamics follows the
single-track model [16]. Let the kinematic states s, d, and
∆ψ = ψ−ψs(s) denote the distance travelled along the path,
the lateral displacement from the given path centerline, and
the local heading angle, respectively, where ψs(s) denotes the
heading of the path at s. Moreover, let κ(s) be the curvature
of the path centerline at s. Using this coordinate system, there
is no need for the absolute x−y position. Instead, we consider
longitudinal and lateral velocities, vx and vy , and the yaw rate
r. Given a planar road with zero slope and bank angles, the

Fig. 1. Vehicle representation in the curvilinear coordinate system.

resulting vehicle kinematics and dynamics are as in [17] and
[16], respectively:

ṡ =
vx cos(∆ψ)− vy sin(∆ψ)

1− κ(s)d
,

ḋ = vx sin(∆ψ) + vy cos(∆ψ) ,

∆ψ̇ = r − κ(s)ṡ ,

mv̇x = cos(δ)Fx,f − sin(δ)Fy,f + Fx,r +mvyr − Fd ,

mv̇y = cos(δ)Fy,f + sin(δ)Fx,f + Fy,r −mvxr ,

Iz ṙ = lf cos(δ)Fy,f + lf sin(δ)Fx,f − lrFy,r ,

(1)

where Fx,i and Fy,i are the longitudinal and lateral tire forces,
δ is the steering angle, li is the distance from the center of
mass to the wheel i, and Fd are the dissipative forces.

Given the absence of wheel dynamics, the longitudinal
tire forces are linear on motor torque, T : Fx,i = TCT,i,
where CT,i considers the gear ratio, the wheel radius, and
the torque distribution among axles. Whereas, the lateral tire
forces result from a linearization of Pacejka’s tire model [18],
Fy,i = Cyσy,i, where σy,i = − arctan(

vy,i

vx,i
) is the lateral slip

angle of the tires that depends on the longitudinal and lateral
velocities, vx,i and vy,i, in the wheel coordinate frame. The
parameter Cy is the slope of Pacejka’s tire model at zero tire
slip and is scaled according to the normal load on each wheel:
Fz,f = mglr

lf+lr
and Fz,r =

mglf
lf+lr

, where g stands for gravity.
The dissipative forces are the aerodynamic drag force

Faero = Caerov
2
x (wind speed and direction are neglected) and

the tire rolling resistance force Frri = CrrFz,i.

B. Power consumption

Let ω and T stand for motor rotational speed and torque.
The total power consumption at a given time instant is

P = Pmech + Pel.loss = wT + Pel.loss , (2)

where Pmech is the mechanical power output of the motor and
Pel.loss stands for the power losses of the electric machines.

According to the modelled dynamics, the power produced
by the motor to overcome all resistive forces, Pmech, is decom-
posed into inertial power (wheel rotational inertia neglected)
and power losses due to tire resistive forces related to rolling
resistance and lateral slip, and aerodynamic drag. Power losses
in electric motors and their inverters, Pel.loss, are modelled as
a polynomial fit of the efficiency operating points, measured
experimentally. In this work, the polynomial is of 5th and



2nd order in motor rotational speed, ω, and in its torque, T ,
respectively,

Pel.loss(ω, T ) =

5∑
n=0

2∑
m=0

pn,mw
nTm , (3)

where p(·,·) are fitting parameters with p4,2 = p5,1 = p5,2 = 0

C. Optimal Control Problem (OCP)

The problem is formulated as an economic optimal control
problem (OCP), where the main objective is to track a ref-
erence longitudinal velocity trajectory and the path centerline
while minimizing energy consumption.

Let the system state x and input u vectors be:

x =
[
s d ∆ψ vx vy r δ T

]T
, (4)

u =
[
δ̇ Ṫ

]T
. (5)

The respective dynamics f(x(t),u(t), κ(s(t))) are then as in
Eq. (1), with the addition that the steering angle and motor
torque are lifted to match the system input with the controlled
variable of the actuators.

Recall that the validity region of this vehicle model is
limited when compared to a high-fidelity counterpart. For that
reason, ax and ay are constrained to a reduced operating range.
In addition, [δ, δ̇, T, Ṫ , d] are also constrained according to the
physical limitations of both the actuators and the track. These
are modelled as constant-value box constraints except for d,
which is constrained according to the time-dependent bounds.

Given an obstacle-free feasible path, whose curvature and
bounds are known a priori, the problem is formulated as:

min
x(t),u(t)

∫ tf

0

l(x(τ),u(τ)) dτ +m(x(tf ))

s.t. ẋ(t) = f(x(t),u(t), κ(s(t))), ∀t ∈ [0, tf [,

x(t) ∈ [x, x̄], ∀t ∈ [0, tf ],

u(t) ∈ [u, ū], ∀t ∈ [0, tf [,

g(x(t),u(t), κ(s(t))) ≤ 0, ∀t ∈ [0, tf [,

x(0) = x̂0, x(tf ) ∈ X ,

(6)

where l(·) and m(·) are generalized running and target cost
functions, the notation {α, ᾱ} refer to the lower and upper
bound of α, and g(·) denotes additional algebraic constraints
on acceleration. The initial state is set as the path initial state
x̂0 and the final state is constrained to the target set X .

III. NUMERICAL SOLUTION OF OCP

The optimal control problem (6) is solved numerically, in
a receding horizon fashion. The problem is first reformulated
in the spatial domain and then transcribed into a nonlinear
finite-dimension optimization problem, which is then solved
by a state-of-the-art numerical solver at every control iteration.
We use the software acados [19] for problem formulation,
and the solver numerical method is the Sequential Quadratic
Programming, which uses an interior-point method solver,
HPIPM [20], to solve each sub-quadratic program.

A. Spatial reformulation of system dynamics
By changing the sampling domain, the system dynamics

becomes a function of track progress s instead of time t.
Subsequently, s becomes both the independent variable and
a state, being thus possible to reduce the state vector to

ξ =
[
d ∆ψ vx vy r δ T

]T
, (7)

whose dynamics fs(ξ(s),u(s), κ(s)) in the spatial domain are
defined ∀ṡ ̸= 0 as follows:

∂ξ(t)

∂s
=
∂ξ(t)

∂t

∂t

∂s(t)
= f(ξ(t),u(t), κ(s(t)))

1

ṡ(t)

= fs(ξ(s),u(s), κ(s)).

(8)

There are a set of advantages inherent to this sampling
domain. Firstly, reducing the dimension of the state-space for-
mulation reduces problem dimensionality and, consequently,
its computational expenditure. Secondly, path curvature be-
comes a function of the independent variable, avoiding an
intricate dependency on time and, in turn, numerical instability
when integrating dynamics. Lastly, formulation of constraints
on d is simplified. Whereas in the temporal domain, the
nearest boundary depends on velocity, in the spatial domain
it is constant at every sampling instant. As disadvantages, the
spatial domain introduces a singularity at ṡ = 0 and increases
the nonlinearity of fs due to multiplication with 1

ṡ(t) .

B. MPC Problem Formulation
A direct multiple shooting is used as a transcription method,

discretizing the state and the input space into a regular finite-
sized grid. The implicit 4th-order Runge-Kutta method is used
to discretize system dynamics, and hereon we denote their
discrete counterpart as fds (ξ(s),u(s), κ(s)).

The receding horizon optimization problem is an economic
MPC (EMPC) problem, and it is solved for a finite-horizon of
Sf and a horizon length N , with sampling interval ∆s =
Sf/N . In EMPC, persistent feasibility is cumbersome to
guarantee, and operating near feasibility limits may increase
computational complexity. To avoid such difficulties, the con-
straints the vehicle most often tends to violate, i.e. those of
acceleration and path limits, are softened by adding slack
variables, represented by the vector ζ, and penalizing them.
Let the subscript i denote the node i of the horizon starting
at s0, thus abbreviating α(i|s0) to αi. The EMPC problem
formulation then follows:

min
ξ0,...,ξN ,u1,...,
uN−1,ζ1,...,ζN

N−1∑
i=0

(
∥ξi − ξi,ref∥2Qξ

+ ∥ui∥2Qu

+ ∥ax,i∥2qax
+ ∥ζi∥2Qζ

+ qe,iEi

)
+ ∥ξN − ξN,ref∥2Qx

+ ∥ζN∥2Qζ

s.t. ξi+1 = fds (ξi,ui, κi(si)), ∀i ∈ [0, N − 1]

ξi ∈ [ξ, ξ̄], ∀i ∈ [0, N ]

ui ∈ [u, ū], ∀i ∈ [0, N − 1]

gs(ξi,ui, κ(si)) ≤ 0, ∀i ∈ [0, N − 1]

ξ0 = ξ̂(s0) ,

(9)
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Fig. 2. Test path with initial point highlighted in red.

where E = P∆s/ṡ is the energy consumed per sampling
interval and ξ̂(s0) is the measured current state. Constrained
variables are those referred to in Section II-C, where the
algebraic constraints are redefined in the spatial domain as
gs(·). Specifically, algebraic constraints limit the longitudinal
and lateral accelerations as a2(·) ≤ 32m/s2. To mitigate tuning
unbalance between terms of different units and magnitude in
the cost functions, the weights q· and Q· are scaled as follows:

Qξ,1,1 =
q̃d
d2max

, Qξ,3,3 =
q̃v

(vx − vx,ref)2max

, Qu,1,1 =
q̃δ̇
δ̇2max

Qu,2,2 =
q̃Ṫ
Ṫ 2
max

, qax =
q̃ax

a2x,max

, qe,i =
q̃e

vx,ref,iCETmax
,

where Q(·) are diagonal matrices with Qξ,n,n = 0 ∀n ∈
{2, 4, 5, 6, 7}, (vx−vx,ref)max is user-defined, and the constant
CE translates linear wheel velocity to motor rotation velocity.

IV. SIMULATION RESULTS

The proposed controller was tested with a high-fidelity
model of a sports passenger car in the IPG CarMaker software.
The main parameters of the vehicle are: m = 2100 kg,
Iz = 4900 kg/m2, and lf + lr = 2.80 m. Moreover, it has
one electric motor per each wheel, among which the optimized
torque is equally distributed. The test track is presented in Fig.
2. It is a planar path with constant width and multiple corners
of increasing curvature. The vehicle starts at the red dot in Fig.
2 and drives towards the first corner to the left. At the start of
every simulation, the vehicle is driven from vx = 0 km/h
towards the reference velocity by the controller embedded
in the simulator. MPC takes control only after the vehicle
velocity is close enough to the reference velocity. All plots
below contain a vertical line that indicates the MPC trigger
instant. Furthermore, we assume full-state observation and the
controller runs at 20 Hz. All computations were performed on
a standard laptop computer with Intel i9 2.30 GHz processor.

The reference ξref(s) is composed by zero-elements except
for the reference longitudinal velocity, which is defined as:

vx,ref(s) = min

{
Vx,ref,

√
ay,max

∥κ(s)∥

}
, (10)

where Vx,ref is a constant velocity reference value. By saturat-
ing Vx,ref according to κ(s) and ay,max, we ensure the optimal
velocity trajectory remains in the vicinity of the reference.
Although this saturation can be less accurate for d ̸= 0, it is

TABLE I
ENERGY-OPTIMAL PATH TRACKING: PERFORMANCE INDICATORS

{q̃ax , q̃e} {0, 0} {0, 10} {1, 0} {1, 10}
Relative energy saving [%] - 0.0 12.1 14.2

v̄x [km/h] 44.9 44.9 44.1 43.9
MAD (d) [m] 0.06 0.05 0.06 0.06

Mean computation time [ms] 7.7 15.2 7.4 14.6
Max computational time [ms] 15.0 21.4 13.8 24.0

assumed to have little effect on the optimal trajectory and to
be surmountable with proper controller tuning.

Two scenarios are studied. Firstly, MPC is tuned to ac-
curately track the path centerline, where different values of
q̃e and q̃ax

are chosen to analyze the impact of longitudinal
control on energy savings. Secondly, a range of q̃d is chosen
to study the effect of deviating from the path centerline on
energy consumption. We refer to these scenarios as energy-
optimal path tracking and trajectory planning, respectively. In
both, the reference velocity is Vx,ref = 70 km/h, and the look-
ahead distance is Sf = 50 m with N = 50.

In the results, the energy consumed along the path is
decomposed into different sources of consumption, computed
for the high-fidelity vehicle model. These are inertial forces
(linear and rotational), tire resistive forces (longitudinal and
lateral slips and rolling resistance), and aerodynamic drag.
Other types of non-modelled power dissipation sources, e.g.
gears, are assumed negligible due to their magnitude.

A. Energy-optimal path tracking

The controller is tuned with the following parameters:

q̃d =10, q̃v = 1, q̃δ̇ = 0.1, q̃Ṫ = 0.05,

q̃ax ∈ {0, 1}, q̃e ∈ {0, 10} .

The tracking results are shown in Fig. 3 and the performance
indicators for this scenario are summarized in Table I.
Looking at the latter, one can note that the mean absolute
deviation of d from d = 0, MAD(d), is similarly low for
all {q̃e, q̃ax}, which indicates the vehicle accurately tracks the
path centerline. Given the high q̃d, the controller is expected to
exploit vx instead in order to save energy. Nevertheless, in Fig.
3, comparing the two trajectories with q̃ax

= 0, higher q̃e did
not lead to a significant reduction in velocity - the trajectories
practically overlap. In fact, for that q̃ax , trajectories show
aggressive manoeuvring to track the reference, which in turn
is infeasible given the constraints on acceleration. Conversely,
when q̃ax

= 1, the overall penalty on deviating from vx,ref
is reduced and one observes a slight, but visible difference
between trajectories for different q̃e.

Comparing results with different q̃ax , one concludes that
smoother longitudinal control yielded a lower overall energy
consumption. Penalizing q̃ax

resulted in fewer electrical and
longitudinal tire slip power losses, where a reduction of
v̄x ≈ 1 km/h also led to a decrease in drag power losses and
inertial power. The energy dissipated due to rolling resistance
remained constant, since load transfer is assumed static, while
dissipation due to tire lateral slip did not vary significantly



Fig. 3. Energy-optimal path tracking: Longitudinal velocity and energy
consumption (per dissipation source). ”Lon Slip” and ”Lat Slip” refer to
longitudinal and lateral tire slips, and ”Rol Res” refers to tire rolling resistance.

and was of low magnitude due to the limited range of lateral
accelerations.

Having as a baseline the case with {q̃ax
, q̃e} = {0, 0},

smoothing vehicle accelerations and reducing v̄x ≈ 1 km/h
led to energy savings of more than 12%. More interestingly,
comparing the trajectories with q̃ax = 1 but different q̃e, it was
found that reducing acceleration when entering and exiting
corners while reducing speed on average solely 0.2 km/h,
resulted in consuming 2.1% less energy.

Furthermore, maximum computation did not exceed two
times the average, which suggests solver numerical stability. It
is also interesting to note that including the economic term in
MPC led to higher computation times, illustrating its impact
on computational complexity.

B. Energy-optimal trajectory planning

For this study, multiple simulations were conducted for
different q̃e and q̃d, with the following MPC tuning:

q̃v = 1, q̃ax
= 1, q̃δ̇ = 0.1, q̃Ṫ = 0.05

q̃d =10n, n ∈ {−4,−3, ..., 2}, q̃e ∈ {2, 5, 10}.

Fig. 4 illustrates a set of performance indicators of all
simulated trajectories: energy consumption E, MAD(d), v̄x,
MAD of vx from vx,ref, ax standard deviation, σ(ax), and the
closed-loop trajectories cost, J . Looking at the evolution of
the different parameters as a function of q̃d, one concludes that
the energy consumed over one lap increased as q̃d decreased.
Fig. 5 presents an analysis of two trajectories corresponding
to q̃d ∈ {10−4, 10}, with constant q̃e = 10, which illustrate
the following conclusions. For high q̃d, the main objective of
the vehicle is to follow the centerline of the path. To do so,
it compromises velocity to guarantee feasible accelerations,

Fig. 4. Energy-optimal trajectory planning: Trade-off between reference
tracking and energy consumption.

Fig. 5. Energy-optimal trajectory planning: Longitudinal velocity, lateral
displacement, and energy consumption per dissipation source with qd = 10−4

relative to the baseline qd = 10.

which leads to a decrease in v̄x. Coherently with the find-
ings above, such reduction in average velocity led to energy
savings, mainly due to lower inertial power and drag power
losses. Conversely, for small q̃d, when approaching a corner,
the vehicle both reduces its velocity and deviates from the



path centerline. That results in lower longitudinal acceleration
and reduced MAD(vx), since lateral acceleration limits can be
respected by controlling both trajectory curvature and velocity
- see Eq. (10). However, even though the electric power losses
were of lower magnitude, the higher v̄x increased the inertial
power and drag power losses and consequently the total energy
consumption.

The results show a trade-off between energy consumption
and reference tracking. The main optimization objective is to
track the reference longitudinal velocity, since otherwise the
vehicle would have no incentive to move forward. Therefore,
energy minimization and tracking of the path centerline be-
come secondary. When reducing the penalty on d, the con-
troller was able to more accurately track vx,ref, increasing v̄x.
Moreover, the standard deviation of longitudinal acceleration
decreased with q̃d due to less variation in the velocity along
the track. Consequently, better tracking of vx,ref, smoother
longitudinal control, and reduced penalty on d led to an
overall decrease in the cost of closed-loop trajectories, at the
cost of higher energy consumption. Inversely, the accurate
tracking of path centerline increased the cost J due to a higher
deviation from vx,ref and more aggressive longitudinal control,
regardless of the decrease in energy consumption. In sum, note
that energy consumption depended mainly on v̄x, following a
proportional relation to it.

When comparing among q̃e, instead, the main observation is
that the average longitudinal velocity and standard deviation of
the longitudinal acceleration decrease as the energy becomes
more expensive for higher q̃e, resulting in lower J . However,
attention must be paid when increasing q̃e, since too high
values can lead to deviation from vx,ref in straight parts of
the track, which is obviously undesirable.

V. CONCLUSIONS

In this paper, we proposed an Economic Model Predictive
Control (EMPC) approach to the problem of energy-optimal
trajectory planning of an electric vehicle. A simplified vehicle
dynamics model was presented, and the problem was formu-
lated in the spatial domain, which allowed for easier treatment
of path constraints and curvature.

The proposed controller was tested with a high-fidelity
vehicle model on a simulated test track while tracking the track
centerline and a space-varying longitudinal velocity reference.
Over one lap, the results showed that significant energy savings
come from slight reductions in average longitudinal velocity,
which are maximized by smoothing longitudinal acceleration.
For the specific case when the vehicle deviates from the track
centerline, the controller tended to prioritize velocity reference
tracking, leading to higher average longitudinal velocity and
thus total energy consumption, proving the existence of a
trade-off between reference tracking and energy consumption.

Future work includes the proper definition of the target cost
and set of the MPC problem to include prior knowledge of
the curvature ahead, and thus optimally exploit the full track
width. In addition, we plan to implement MPC on vehicle
hardware to assess computational aspects.
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