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Abstract
The main focus of this thesis is tactical decision-making for autonomous driving
(AD) through intersections with other road users. Human drivers can navigate
diverse environments and situations, even those they have never encountered
before. Autonomous vehicles are expected to have similar capabilities. This
thesis specifically addresses the challenge of navigating intersections where the
intentions of other drivers are unknown, as these intentions can be influenced
by factors such as driver mood, attention, right-of-way, and traffic signals.

To tackle the complexity of manually specifying reactions for every possible
situation, this thesis adopts a learning-based strategy using reinforcement
learning (RL). The problem is formulated as a partially observable Markov
decision process (POMDP) to account for the uncertainty of unknown driver
intentions. A general decision-making agent, based on the deep Q-learning
algorithm, is proposed. The contributions of this thesis include the development
and application of this method to various simulated intersection scenarios,
demonstrating its adaptability and effectiveness in different environments
with minimal modifications. By accounting for the inherent uncertainty in
driver behavior, this approach enhances the robustness and reliability of the
autonomous driving system.

Keywords: Autonomous driving, reinforcement learning, decision making,
uncertain environments, Partially observable Markov decision process, deep
Q-learning, transfer learning, model predictive control, neural networks
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CHAPTER 1

Introduction

The way we transport ourselves is currently evolving, and Autonomous Driving
(AD) technology is expected to have a big impact on this transformation [1],
[2]. With Autonomous Vehicles (AV) the efficiency of traffic can be improved
by scheduling commercial transports outside of rush hours [3]. The number of
parking spots in cities can be reduced if the vehicles can autonomously drive
itself to a less crowded area when not in use and drive back when needed.
Congestion and traffic jams could also be reduced if a large amount of vehicles
in traffic are autonomous and optimize around the same goal e.g., traffic flow
or fuel efficiency.

The rapid success of Machine Learning (ML) during the last decades has
lead to major progress towards deploying AVs in the real world. One clear
beneficiary of these new ML techniques are the perception systems [4]. Better
perception enables more accurate representation of the environment. However,
navigating complex scenarios such as urban intersections and roundabouts
with dense traffic remain challenging for AVs because it requires a higher
level of interaction between road users, as summarized in a review paper [5].
When human drivers approaches an intersection, they normally assess who
has the right of way, before deciding whether to proceed or yield to other road
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Chapter 1 Introduction

users. However, human drivers do not always follow the rules. According to
the Insurance Institute for Highway Safety [6], in 2019, an estimated 115,741
people were injured by drivers running a red light, whereas 928 of them were
killed. While these accidents were mainly caused by driver inattention or
reckless driving, it motivates the development of decision-making algorithms
for AVs which not only follow the traffic rules but can also take into account
other drivers future actions and inattention, which is the main focus in this
thesis.

1.1 Autonomous Driving Levels

When talking about autonomous driving, it is first important to specify which
level of autonomy that is being discussed. The Society of Automotive Engineers
has classified these different levels of autonomy ranging from zero to five [7],
also referred to as L0-L5. The first level L0 is a vehicle with no autonomy,
whereas a fully AV that can operate in any environment and without any
human supervision is defined as L5. Popular Advanced Driver Assistance
Systems (ADAS) functions today, like lane centering or adaptive cruise control
are classified as L1, while the Volvo Pilot Assist and Tesla Autopilot that
provide both steering and acceleration/braking are classified as level 2. The
main criterion for L2 systems is that the driver is in control and only supported
by the system. This requires the driver to always supervise the vehicle and
take over when needed to ensure safety. For L3 and higher, the responsibility
of driving shifts to the system. At L3, the driver still has to take control
over the vehicle, but only when the systems request it. At L4 and L5, the
autonomous driving features no longer require the driver to take over. The
main difference between L4 and L5 is the capability of driving anywhere under
all conditions. Examples of L4 are robot taxis developed by Waymo, Zoox,
Cruise and Toyota which only operate in a specified area or city.

The methods presented in this thesis are aimed at an autonomy level L3-L5.
At the highest level the system is expected to handle all aspects of driving
within a specific task such as crossing an intersection at any location.
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conflict point

(a) Single intersection (b) Double intersection

Figure 1.1: Examples of different intersections

1.2 Intersections, intentions and scenarios

This section aims to clarify the use of the terms’ intersection, intention,
and scenario within the context of this thesis. An intersection refers to the
geometric layout of roads intersecting each other, encompassing elements such
as the number of junctions, conflict points, turns, and angles of incidence,
as illustrated in Figure 1.1. Intersections can be categorized as signalized
or unsignalized. A signalized intersection is equipped with infrastructure to
designate the right-of-way, such as regulatory signs (e.g., STOP or YIELD)
or traffic signals. In contrast, an unsignalized intersection lacks such features,
relying on local driving rules, such as giving the right-of-way to vehicles
approaching from the right. However, as emphasized in the introduction,
human drivers do not always follow these right-of-way rules, which can result
in accidents. Therefore, this thesis defines intentions as the anticipated actions
of other vehicles in the future, such as stopping or proceeding through the
intersection.

Assume there are two main intentions: "take way" and "give way" (yield). In
Figure 1.2, three different agents with a starting velocity 12m/s are approaching
an intersection. At time 0s, agents with a give way intention will start to
brake. With these two main intentions, other intentions can be derived; for
example, a cautious intention can be modeled as a give way agent that changes
its intention to take way at 2 seconds. The reason for the change can be that
a cautious agent lowers the speed initially to have the possibility to give way,

5
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Figure 1.2: Velocity profiles illustrating three different intentions for an agent
approaching an intersection from the same initial position and velocity.
The green curve represents an agent with a ’take way’ intention, while
the orange curve shows an agent intending to ’give way,’ stopping before
the intersection. The blue curve depicts a cautious intention, starting
with a slowdown but without coming to a complete stop.

and later speed up only if there is no potential conflict. Distinguishing between
the ’give way’ and ’take way’ intentions poses a challenge because even after
the initial braking at 0 seconds, it is not certain that the agent will stop until
3 seconds after the initial braking. This uncertainty may be considered too
conservative by the person riding the AV.

If driver intentions can be accurately predicted, intersections could be
managed without the need for traffic lights, as right-of-way decisions can
be made based on intentions rather than relying solely on infrastructure. A
Reinforcement Learning (RL) approach could enhance driving in scenarios
where understanding intentions is crucial, such as at intersections with both
stop signs and traffic lights, or when a vehicle violates traffic rules by running
a red light. By training an RL agent in a simulation environment with varying
driver intentions, it can learn to infer these intentions and make optimal
decisions through trial and error.

6
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1.3 Research questions
This thesis focuses on investigating and evaluating RL agents for navigating
complex intersection scenarios, with a particular emphasis on managing un-
certainty. The intersection navigation problem is formulated as a Partially
Observable Markov Decision Process (POMDP), where observable states in-
clude positions and velocities of vehicles, while unobservable states pertain to
the intentions of surrounding drivers. With this in mind, this thesis aims to
answer the following research questions:

Q1. How can RL techniques be used to develop a decision-making agent
that effectively navigates intersections without explicitly estimating the
intention state of other vehicles?

A deep Q-learning approach is used to solve the POMDP, with short-term
goal as actions. These short-term goals are translated into reference points
and constraints for a controller. Paper A uses a sliding mode controller, while
Paper B uses a Model Predictive Control (MPC) to generate the vehicles’
acceleration. To address the challenge of unobservable intentions, the hidden
state in the Long Short-Term Memory (LSTM) layer of the RL agent is
designed to incorporate estimations of these intentions.

Q2. How can an RL agent utilize the uncertainty in its predictions and actions
to enhance decision-making in complex environments?

Two main sources of uncertainty are tackled in this thesis: Q-value uncertainty
and intention state uncertainty. For Q-value uncertainty, Paper C estimates the
uncertainty in the Q-values predicted by using an ensemble of neural networks
on different subsets of the available data. This ensemble provides a distribution
over the estimated Q-values and the uncertainty in choosing different actions
can be defined as the coefficient of variation of the Q-values. In Paper D,
the hidden intention states of other vehicles are represented using a belief
state generated via a particle filter. This belief state provides a probability
distribution over possible true states, which informs the agent’s decisions.

Two methods are proposed to handle intention estimation: QMDP-IE and
QID. QMDP-IE, derived from the QMDP algorithm, uses a single estimated
intention state, reducing computational complexity while blending elements of
POMDPs and MDPs. In contrast, QID represents the intention state using a
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belief state distribution, allowing for more adaptive and robust decision-making
in uncertain environments.

Q3. How can an RL agent handle situations it has not been trained on?

A confidence criterion is applied to the uncertainty of the estimated Q-values in
Paper C, making actions with high uncertainty invalid and if no action satisfies
the confidence criterion a backup action e.g., emergency braking, can be applied
avoiding potential collisions. If the uncertainty measure from Paper C and
Paper D can be used to identify that the agent is in the wrong environment,
the transfer RL approach from Paper E can be employed to determine which
environment out of a set of environments the agent is currently in, or to select
the policy that best fits the current situation

1.4 Scope and limitations
The following aspects of creating a tactical decision-making agent for au-
tonomous driving in uncertain environments are not considered in this thesis.

1. Guaranteeing safety in AD systems is an important open question that
is out of scope for this thesis.

2. The work in this thesis is tested in simulation environments and not real
world.

3. This work considers the control of one vehicle and not multiple agents.

1.5 Contributions
The main contributions of this thesis are:

1. A deep Q-learning approach for creating a decision-making agent navi-
gating intersection that considers the intentions of other drivers.

2. A neural network architecture that is invariant to permutations of the
order of which surrounding traffic participants are observed, which speeds
up training and improves the quality of the trained agent.

3. A belief state representation of driver intentions using a particle filter.
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4. A belief state Deep Q-network (DQN) method that can adjust the
aggressiveness of the policy using one threshold parameter.

5. Extension of RL methods that provide an uncertainty estimate of the
proposed decisions and use it to create a confidence criterion that can
identify situations with high uncertainty.

6. A transfer learning method that is able to identify which Markov Decision
Process (MDP) the agent is in from a set of MDPs.

1.6 Thesis outline
The outline of the thesis is as follows: in Chapter 2 other research in the same
field is presented. Chapter 3 introduce the mathematical framework MDP
and POMDP with a brief theory of RL, deep Q-learning and the Intelligent
Driver Model (IDM). Chapter 4 is where the problem is formulated by defining
the components of the POMDP. Results from using deep Q-learning to solve
the POMDP is presented and later combined with an MPC to improve the
actions. Later in Chapter 5 two approaches to handle the uncertainty is
presented. First the uncertainty in the decisions from the RL algorithm and
then an empirical study of how well a DQN can handle uncertainty of others
driving intentions. Chapter 6 present an approach to generalize over different
MDPs more specifically policies learned from different transfer functions. The
synergies and differences of the different methods are highlighted in Chapter 7.
Finally, Chapter 8 provides some concluding remarks and future research
directions.
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CHAPTER 2

Related work

In recent years, decision-making for AVs in structured scenarios like intersec-
tions has attracted a lot of attention in the literature. This chapter provides a
broad introduction to the primary research directions and outlines how the
contributions in this thesis relate to existing work. However, it does not aim
to provide a comprehensive survey of every approach.

2.1 Rule-based methods
A skilled engineer can sometimes solve the decision-making problem for struc-
tured traffic scenarios using rule-based methods. One example of a rule-based
method was implemented using hierarchical state machines to switch between
predefined behaviors depending on what scenarios was encountered [8], [9].
These methods were successful for a limited and controlled environment such
as the Urban Challenge event, but it is difficult for an engineer to anticipate
every situation that may occur in the real world and design a suitable strategy
that can solve all of them, in particular when drivers are not following the
law [10]. The limitations of rule-based approaches motivate the choice of more
adaptive and flexible methods, such as a planning-based or learning-based
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method.

2.2 Planning-based methods
Planning-based methods treats the decision-making task as a motion planning
problem. Commonly, a prediction model is used to predict the motion of
the other agents, and then the behavior of the ego vehicle that is being
controlled is planned accordingly. Liebner et al. [11] used to the IDM infer
driver intent in urban intersections and Hoermann et al. [12] used a particle
filter to estimate the parameters of the IDM, both works showed promising
results when evaluated on real-world data. Consequently, the IDM is used in
this thesis to model the driving behavior of other vehicles.

One planning-based method is using Monte Carlo Tree Search (MCTS) [13],
but since the predictions are independent of the ego vehicle plan results in a
reactive behavior [14], [15]. Therefore, the interaction between the ego vehicle
and other agents is not explicitly considered, but may happen implicitly by
frequent replanning. MCTS also requires extensive online computation and
can be hard to scale in complex traffic situations with an increasing number of
traffic participants.

Another approach to solve the motion planning problem is to use optimal
control, which was applied to highway driving scenarios by Werling et al. [16].
Since human behavior is complex and varies between individuals, a study
by Damerow et al. [17] use a probabilistic prediction as input to the motion
planning, which aims to minimize the risk of collision during an intersection
scenario. While Batkovic et al. [18] used a robust scenario MPC approach
to handle uncertain multi-modal road users. Other approaches to motion
planning for autonomous driving are provided in the surveys by González et
al. [19] and Paden et al. [20]. However, these planning-based methods rely on
the accuracy of the prediction models and require a lot of on-board computing
power which may be limited in an AV.

2.3 Learning based methods
Learning-based approaches offer the ability to learn from experience, adapt
to new situations, and make decisions based on a wide range of scenarios,
rather than relying on predefined rules or models. RL methods can help relieve
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the burden of designing hand-crafted solutions for all possible scenarios [21],
[22]. The work by Mnih et al. [23] showed a DQN that achieved impressive
results in training agents to play Atari games from raw pixel inputs using
experience replay, highlighting DQNs ability to learn complex behaviors from
high-dimensional sensory data, a key requirement for autonomous vehicles
navigating intersections. In order to handle the uncertainty of predicting
other traffic participants’ behaviors or intentions, the literature formulates
the problem of driving under uncertainty as a POMDP [24]. Deep Recurrent
Q-Network (DRQN) approaches, such as the ones from Hausknecht et al. [25]
and Zhu et al. [26], showed some promise solving POMDP with non-observable
states by leveraging past observations or actions.

Another approach by Bouton et al. [27] used belief states to capture
uncertainties in the environment. The belief state can be used to model the
probability distribution over the uncertain world states, e.g., the intention of
other road users. Wang et al. [28] decoupled the belief state modeling (via
unsupervised learning) from policy optimization (via RL) and Littman et al.
[29] claimed that having full observability at learning time, combined with
knowing what will not be observable at deployment time, enables an RL agent
to learn a policy that is more robust to its unobservable states.

Advantage of DQN methods, compared to planning based methods, is
that DQN learns through interaction with the environment. Experience
replay allows DQN to learn efficiently from past experiences, improving its
performance with less real-world data compared to methods without it. This
capability enables autonomous vehicles to adapt to unseen situations and
make informed decisions based on accumulated experiences at intersections.
While DQN doesn’t directly address driver intentions, it can learn to infer
them indirectly from traffic patterns and historical data. This allows for
adaptive decision-making based on the perceived likelihood of driver actions
at intersections. Therefore, DQN is a suitable choice for this thesis due to its
adaptability and efficiency in learning from complex, dynamic environments.

13





CHAPTER 3

Technical background

This chapter briefly introduces the MDP framework and its extension POMDP
and RL. A more comprehensive overview of POMDPs and RL is given in the
books by Kochenderfer [24] and Sutton and Barto [21], upon which this chapter
is based. The purpose of the chapter is to summarize the most important
concepts and introduce the notation that are used in the subsequent chapters.

3.1 Markov decision process
A MDP is a mathematical framework for modeling discrete time sequential
decision-making problems. It involves an agent making decisions in an envi-
ronment evolving over time according to a stochastic process. The state of
the environment contains all the information necessary about the agent and
environment at a given time to be able to transition to any given state. This
property is referred to as the Markov property.

The MDP is formally defined as the tuple (S,A, T, R, γ), described by the
following list [24]:

• The state space S represents the set of all possible states of the environ-
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ment. This set could consist of both discrete and continuous states.

• The action space A represents the set of all possible actions the agent
can take. The action space can consist of both discrete and continuous
actions. Since this thesis focuses on high-level decision-making, only
discrete actions are considered.

• The state transition model T (s′ | s, a) describes the probability Pr(s′ |
s, a) that the system transitions to the next state s′ ∈ S from state s ∈ S
when action a ∈ A is taken.

• The reward function R(s, a) returns a scalar reward r for each action
a an agent takes in a given state s. The design of the reward function
should reflect the overall objective that the agent should maximize.

• The discount factor γ ∈ [0, 1) is a scalar that discounts the value of future
rewards. The discount factor γ will affect the results of the optimization
problem. A discount factor set close to 0 will make immediate rewards
more important while a γ closer to 1 would give some weight to expected
future reward as well.

A policy π is defined as the mapping from state s to action a and the goal
of the agent is to take a sequence of actions that maximizes the accumulated
reward r. The value of being in a state while following a policy is described by
the value function

V π(s) = E

[ ∞∑
k=0

γkR(st, at)|s0 = s, π

]
. (3.1)

The optimal value function V ∗ is unique and follows the Bellman equation:

V ∗(s) = max
a

[
R(s, a) + γ

∑
s′

T (s, a, s′)V ∗(s′)
]

. (3.2)

From the bellman equation one can deduce a state-action value function
Q(s, a) that satisfies V ∗(s) = maxa Q(s, a). Given this Q function, a policy
can be derived as π(s) = argmaxa Q(s, a).
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3.1 Markov decision process

3.1.1 Partially observable Markov decision process
Sometimes the agent does not have direct access to the entire state of the
environment. In these cases, it is more common to model the problem as a
POMDP, which is an extension to the MDP. A POMDP is defined by the tuple
(S,A,O, T, O, R, γ), where the state space, action space, transition model,
reward and discount factor is the same as the MDP, but a POMDP has two
additional elements:

• The observation space O, which represents all possible observations that
the agent can receive. This can be both discrete and continuous.

• The observation model O(o|s′, a), which describes the probability of
observing o ∈ O in a given state s′ after taking an action a: O(o, s′, a) =
Pr(o|s′, a).

In a POMDP, the agent takes an action a from a given state s and the
environment transitions to the next state s′ according to the transition model
T . The agent then receives an observation o related to s′ and a according
to the observation model O. After the agent takes an action a from a given
state s and the environment transitions to the next state s′ according to the
transition model T , the agent receives an observation o. This observation o

is drawn according to the observation model O(o|s′, a), which specifies the
probability of observing the given new state s′ and taken action a.

Since the state is not observable, policies in a POMDP are no longer
described by mapping from states to actions. Instead, the agent must reason
about the history of observations and actions. This history can sometimes be
summarized in a statistic referred to as a belief state (or belief). A belief state
b is a probability distribution such that

b(s) = Pr(s | o1:t) (3.3)

is the probability of being in state s at time t, given observations o1:t :=
{o1, o2, ..., ot} up to time t. At each time step t, the agent updates its belief
using a Bayesian filtering approach given the previous belief and the current
observation as follows:

b′(s′) ∝ O(o | s′, a)
∫

s∈S

T (s′ | s, a)b(s), (3.4)
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Chapter 3 Technical background

where b′ is the updated belief state after taking action a and receiving
observation o. By summarizing all relevant information into the current belief
state, a POMDP also satisfy the Markov property [21, Ch. 17], ensuring
that future states depend only on the current belief state and not on the
entire history of actions and observations. This approximation is referred
to as a k-Markov approximation, where k defines the length of the included
history. With a sufficiently long history, the Markov property is assumed to
approximately hold, even in a partially observable environment.

Policies are now described as mappings from beliefs to actions. The optimal
belief state value function V ∗(b′) that satisfies the Bellman equation can be
formulated as:

V ∗(b) = max
a

[
R(b, a) + γ

∑
o∈O

Pr(o | b, a)V ∗(b′)
]

(3.5)

where b′ is computed using (3.4), and R(b, a) =
∫

s∈S b(s)R(s, a) is the expected
reward in a belief state b. Similarly, as in the MDP one can deduce a belief-
action function Q(b, a) that satisfy V ∗(b) = maxa Q(b, a) and the policy a
policy can be derived as π(b) = argmaxa Q(b, a).

The observable states in this work are information that sensors on the ego
vehicle can provide e.g., distance to intersection, position and speeds of other
vehicles. While the unobservable states are the intentions of other drivers that
are approaching the same intersection as ego. Chapter 4 will later formulate
the POMDP studied in this work.

3.2 Reinforcement learning
In some problems, the state transition probabilities or the reward function
are unknown. These problems can be addressed using reinforcement learning,
where the agent learns how to behave by interacting with the environment [24,
Ch. 5]. The data available to an RL agent depends on its current policy,
necessitating a balance between exploring the environment and exploiting
existing knowledge. Moreover, the reward an agent receives might hinge on a
crucial decision made earlier, making it essential to attribute rewards to the
correct decisions.

RL algorithms are categorized into two approaches: model-based and model-
free [24, Ch. 5]. In model-based methods, the agent first estimates a represen-
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3.2 Reinforcement learning

tation of the state transition function T and then uses a planning algorithm
to find a policy. Conversely, model-free RL algorithms, as the name suggests,
do not explicitly construct a model of the environment to determine actions.

Model-free approaches can be further divided into value-based and policy-
based techniques. Value-based algorithms, such as Q-learning [30], aim to
learn the value of each state, thereby implicitly defining a policy. Policy-
based techniques [31] directly search for the optimal policy within the policy
space, either through policy gradient methods [32] or gradient-free methods like
evolutionary optimization. Hybrid techniques, such as actor-critic methods [33],
combine both policy and value-based approaches.

RL algorithms typically assume that the environment is modeled as a
MDP, where the agent knows the state of the environment. However, in many
practical situations, only partial information about the state of the environment
is available, which is modeled within the POMDP framework. In such cases, it
is common to approximate the state as a belief b [34].

3.2.1 Deep Q-learning
Q-learning [30] is a model-free and value-based RL algorithm, where the
objective of the agent is to learn the optimal state-action value function
Q∗(s, a). This function is defined as the discounted expected return when
taking action a from state s and then following the optimal policy π∗, i.e.,

Q∗(s, a) = max
π

E

[ ∞∑
k=0

γkR(sk, ak)|s0 = s, a0 = a, π

]
. (3.6)

The optimal state-action value function follows the Bellman equation

Q∗(s, a) = Es′∼T (s′|s,a)

[
R(s, a) + γ max

a′
Q∗(s′, a′)

]
, (3.7)

which recursively defines the Q-values of the state-action pairs (s, a). The
equation can intuitively be understood by the fact that if Q∗ is known, the
optimal policy is to select the action a′ that maximizes Q∗(s′, a′).

In the DQN algorithm, a Neural Network (NN) with weights θ is used as a
function approximator of the optimal state-action value function, Q(s, a; θ) ≈
Q∗(s, a) [35]. The weights of the network are adjusted to minimize the temporal
difference (TD) error in the Bellman equation, typically with some kind of
Stochastic Gradient Descent (SGD) algorithm. Mini-batches with size M of
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experiences, e = (s, a, r, s′), are drawn from an experience replay memory, and
the loss is calculated as

L(θ) = EM

[
(r + γ max

a′
Q(s′, a′; θ−)−Q(s, a; θ))2

]
. (3.8)

Here, θ− represents the NN parameters of a target network, which is kept
fixed for a number of training steps, in order to stabilize the training process.
Several of improvements to this standard form of DQN have been proposed
and are compared by Hessel et al. [36]. See Paper A for the details of the DQN
implementation in this thesis.
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CHAPTER 4

Modeling Intersection Driving Scenarios

Navigating an intersection is a sequential decision-making problem that can
be mathematically modeled using an MDP, as introduced in Section 3.1. This
thesis focuses on driving through intersections in the presence of other drivers,
emphasizing not only to follow traffic rules but also the ability to adapt to
the intentions of other drivers. Given that current sensors cannot directly
observe other drivers’ intentions, a POMDP is a more suitable framework for
formulating this problem.

This chapter explores the modeling of intersection driving scenarios for
autonomous vehicles.

4.1 POMDP formulation

Effectively modeling the intersection problem is key for developing an optimal
decision-making policy. This section outlines each component of the POMDP
framework as applied to the intersection problem in this thesis. While specific
details of the POMDP may vary between Paper A-D, the general description
remains consistent.
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4.1.1 State space

pego, vego

Car n

pnvnζn

Car 1

Figure 4.1: General description of the states in a simple intersection. The ego
vehicle in red is controlled by the agent, while the blue vehicles are
the other vehicles crossing the same intersection. Each blue vehicle
is described by an index n, a position pn, a velocity vn and hidden
intention ζn

.

From Section 3.1, the state space contains all the information necessary
about the agent and environment to be able to transition from any given state
s to the next state s′. In the scenario shown in Figure 4.1, the red car on the
horizontal lane represents the ego vehicle controlled by the agent while the
blue cars on the vertical lane are the other vehicles which the ego vehicle needs
to interact with in order to cross the intersection.

A simplified description of the state,

s = (pego, vego, {pn, vn, ζn}N
n=1), (4.1)

consists of positions state pego and pn, where subscript ego and n denotes
the ego vehicle and the index of the surrounding vehicle up to N vehicles.
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4.1 POMDP formulation

Instead of using a Cartesian coordinate system to describe the position pego
and pn, relative distance measures are proposed. This way, the state space
is generalizable to different intersection designs, e.g., the angle of incidence
and the number of crossing points. The velocity of ego vego and of all the
other traffic participants vn are also necessary to be able to predict what
position they will be in the next state. Finally, the intention of all the other
participants ζn. As mentioned in Section 1.2, ζn encapsulates information such
as stop sign, traffic light or even inattention in to one variable. Paper D shows
a comparison between two fully observable MDPs, one with intention and the
other one without and the results show that having an intention state reduce
number of collisions.

4.1.2 Action space
One limitation of deep Q-learning is the requirement for a discrete action
space. In various AD studies [37], it is common practice to define the action
space in terms of different discretized acceleration requests. To address the
challenge of managing a potentially high-dimensional action space with fine
discretization or a coarse action space with large steps between accelerations,
Paper A proposes using short-term goals as actions: {‘take way’, ‘yield’, ‘follow
car {1, . . . , N}’}.

These short-term goals represent high-level objectives, such as driving
through an intersection (take way), stopping at the start of an intersection
(yield) or drive behind a specific car (follow car n). Each high-level action is
translated into a set of parameters that are input into a sliding mode controller
in Paper A and a MPC in Paper B, which then generates the appropriate
acceleration to control the ego car.

4.1.3 Transition model
The transition model is initially unknown, and RL is employed to implicitly
learn this model by taking actions in the environment from different states,
recording the resulting rewards, and noting the subsequent state transitions.
In this work, the environment is a simulator, and the primary objective for the
agent is to learn the transition dynamics of other vehicles, which depend on their
intentions ζ. These intentions are modeled as predetermined actions governed
by an IDM. Using the IDM to guide predetermined actions enhances the
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dynamics of vehicle interactions, bringing them closer to real-world scenarios.

Intelligent Driver Model

The IDM is a widely used car-following model in traffic flow theory and
simulation [38]. It describes how drivers adapt their speed and spacing based
on the distance to the vehicle ahead. IDM helps in understanding and predicting
traffic dynamics, optimizing traffic flow, and developing ADAS functions. In
this thesis the IDM is used to model the general behavior of surrounding
vehicles. The IDM models a vehicle n’s position pn and velocity vn as

ṗn = vn (4.2)

v̇n = amax

(
1−

( vn

vdesired
n

)δ

−
(d∗(vn, ∆vn)

dn

)2)
(4.3)

with d∗(vn, ∆vn) = d0 + vnTgap + vn∆vn

2√amaxαb

where vdesired
n is the desired velocity, d0 is the minimum distance between cars,

Tgap is the desired time gap to the vehicle in front, amax is the maximum
vehicle acceleration, dn is the distance to the vehicle in front, ∆vn = vn− vn−1
is the velocity difference between vehicle n and the vehicle directly in front
n − 1, and αb and δ are model parameters for comfortable deceleration or
acceleration.

The acceleration can be simplified into two terms: an interaction term for
when there is a vehicle in front

aint
n = −amax

(d∗(vn, ∆vn)
dn

)2

= −amax

(d0 + vnTgap

dn
+ vn∆vn

2√amaxαbdn

)2
(4.4)

and free road term, when there is no leading vehicle

afree
n = amax

(
1−

( vn

vdesired
n

)δ)
. (4.5)

In this thesis, IDM’s application ensures realistic simulation of surrounding
vehicle behavior, which is crucial for testing and validating the proposed
decision-making algorithms for autonomous vehicles.
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4.1 POMDP formulation

4.1.4 Observation model
The observation space is closely aligned with the state space S, but it includes
some added noise and excludes the intention state ζn, because current sensors
cannot directly detect the intentions of other drivers. The observation

o = (pego, vego, {p̂n, v̂n}N
n=1), (4.6)

encompasses all observable elements of the state, detailed in (4.1). The ego
vehicle accurately observes its own states, while it observes noisy measurements
of the positions p̂n and velocities p̂n of the surrounding vehicles. These
measurements are given by:

p̂n = pn + ϵp, (4.7)
v̂n = vn + ϵv (4.8)

where, ϵp ∼ N (0, σ2
p) and ϵv ∼ N (0, σ2

v).

4.1.5 Reward function
The design of the reward function is pivotal as it determines the value associated
with each state, ultimately shaping the driving policy of the agent. A well-
crafted reward function is instrumental in guiding the agent towards achieving
its objectives effectively. The reward model in this thesis is formulated based
on terminal states, including reaching the goal rsucc, collision events rfail,
timeouts rt.o., and on non-terminal states rcomf e.g, every step update the
agent has not reached a terminal state. These terminal states play a critical
role in defining the success or failure of the agent’s driving behavior and are
accordingly reflected in the reward structure. One example of a reward function
used in this thesis, from Paper B, is

rt =


rsucc on success,
rfail on failure,

rt.o. on timeout, i.e. τ ≥ τm,

rcomf on non-terminating updates,

(4.9)

where the reward for reaching the goal is typically assigned a relatively high
value, such as rsucc = 1, while the reward for colliding is assigned a very low
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value, such as rfail = −1. These two rewards establish the maximum and
minimum possible rewards for a single simulation run. If the defined reward
values are too large, the Q-values in (3.8) can become large and cause the
gradients to grow and potentially lead to instability [39]. Although the absolute
values can be chosen arbitrarily, the most important aspect is their relative
values to each other. This relative scaling ensures that the agent prioritizes
achieving the goal and avoiding collisions appropriately. The other rewards for
timeout and non-terminal states are then usually set somewhere between rsucc

and rfail, such as rt.o. = −0.1. The reward for non-terminal states rcomf was
utilized differently: Paper A used rcomf to account for comfort by assigning
a higher negative reward for high acceleration jerk, while Paper B added a
negative reward was given if the MPC predicted a collision.

4.2 Simulation environment
The simulation environment in this thesis, first introduced in Paper A, places
an agent at an intersection tasked with reaching the goal across the intersec-
tion while interacting with up to N other cars on the intersecting lane. At
the beginning of each episode, up to N vehicles are initialized with initial
positions p0

n distributed along the intersecting lane, starting velocities v0
n and a

deterministic policy that defines their intention ζn. Each vehicle, including the
ego vehicle, adheres to the IDM (Section 4.1.3) aimed at maintaining specific
speeds and safe distances, with the maximum acceleration is capped at 5m/s2

to ensure comfort and safety under normal driving conditions. For example,
if a vehicle’s intention ζn is yield, it would set the IDM for the distance to
the object in front dn to the distance to the start of the intersection, and
its velocity vn−1 would be set to 0. Alternatively, a vehicle with a take way
intention would follow the IDM only considering the vehicle directly in front
of it.

During the simulation, whenever a vehicle in the perpendicular lane crosses
the intersection, it is removed from the environment. Subsequently, a new
vehicle is spawned at the start of that lane at a random time, with new initial
values for position p0

n, velocity v0
n, desired velocity vdesired

n and intention ζn.
This dynamic spawning process ensures that the traffic scenario continually
evolves, presenting varying challenges and interactions for the agent navigating
the intersection. Each episode continues until a terminal state is reached,
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Environment

Policy
Controller Vehicle

Action Acceleration

Observation

Immediate
Reward

State
Reward

Figure 4.2: Representation of the decision-making architecture. Policy represents
the DQN that chooses an action that is sent to a Controller that can
either be a sliding mode controller or MPC. The Environment represents
the simulation environment in which the vehicles operate, but can be
replaced by the real world. The State Reward is the reward given
by the terminal state (rsucc, rfail, rt.o.) from the environment and the
Immediate Reward rcomf is given by the controller.

which can be reaching the goal, collision, or timeout for Paper A-C and goal,
collision, safe stop, or deadlock for Paper D. Rewards are assigned based on a
predefined reward function designed to reinforce desired behaviors.

4.3 Deep Q-learning approach
To find a driving policy π for the POMDP detailed in the previous section,
both Paper A and Paper B used deep Q-learning, described Chapter 3.2.1,
using a decision-making architecture shown in Figure 4.2. Paper A proposed a
network architecture with shared weights and LSTM layer to approximate the
Q-function. The shared weight effectively reduces the input space, as the state
for each car n can be initially weighted the same as any other car, independent
of the order it comes into the neural network. While the LSTM layer has the
role of utilizing the previous states to implicitly estimate a hidden state that
could possibly encapsulate the intention of other cars.

As mentioned in Chapter 4.1.2, the actions in Paper A are controlled by
a sliding mode controller while Paper B uses an MPC to generate a velocity
profile for a short time horizon. The sliding mode controller, which is used
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interchangeably with the IDM in this thesis, aims to maintain a minimum
distance from a target vehicle by controlling acceleration in a manner similar
to IDM.

4.3.1 Model Predictive Control
MPC is an optimization-based control technique where an Optimal Control
Problem (OCP) is repeatedly solved over a receding limited time horizon,
starting from the current system state. For every time instance, a mathematical
model of the controlled system is used to simulate future states over a finite
horizon, while a sequence of control inputs is selected and optimized given an
objective cost function. The first element in the sequence of control inputs
is then applied to the real system, and a new OCP with an updated state is
solved at the next time instance.

MPC faces challenges as a mixed integer problem, where calculating the
optimal path for all possible actions is computationally intensive. DQN on the
other hand, only handles discrete actions. While DQN cannot guarantee safety,
it excels at choosing actions with the highest utility (Q-value). The reward
function in DQN can incorporate the predicted outcome from the MPC model,
penalizing suboptimal actions. However, if experience shows a better outcome
than the model predicts, DQN can opt for an action that leads to a better total
reward. Paper B integrates the MPC cost as a negative immediate reward,
allowing the DQN to balance this cost with the high-level goal of reaching the
target. This enables the DQN to choose actions that are generally beneficial
at a high level, even if they may not seem optimal to the MPC.

The agents from Paper A and Paper B are evaluated on two scenarios: a
single intersection and a double intersection with two crossing points, both
shown in Figure 1.1. The next section presents the experimental results from
Paper A and Paper B for both intersections.

4.4 Results from simulation
The results from Table 4.1 show that the proposed DQN agent from Paper
A found a policy that successfully crossed a single intersection 96.1% of the
time, with 2.8% resulting in collisions and 1.1% resulting in timeouts. When
comparing agents trained with and without an LSTM layer, those with the
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LSTM succeeded in 3 out of 4 attempts where those without it would fail. This
demonstrates that deep Q-learning has great potential for creating decision-
making agents capable of navigating intersections. OA key contribution of this
thesis is the proposal of network architectures specifically designed for this
problem. In Paper A, an architecture employing shared weights is introduced,
and the results shown in Figure 4.3 reveal that utilizing a network with
shared weights for processing information about observed vehicles notably
enhances convergence speed. The combination of shared weights with other
improvements, such as dropout and experience replay, is crucial for achieving
these performance gains.

Figure 4.3: The figure shows that the success rate for a network with shared weights
(brown line) converge faster than the fully connected network structure
which do not share weights (turquoise line).

As mentioned in Section 4.1.2, the controller from Paper A could only
consider one car at a time e.g., follow car n. If the agent needs to achieve
a velocity between two discrete actions, it can do so by switching between
them in a manner similar to pulse-width modulation. However, this placed
a heavy burden on the DQN compensate by frequently switching actions. In
contrast, in Paper B, the MPC showed significant improvement in handling
more complex intersections. For instance, in the double intersection, the MPC
agent succeeded 95.2% of the time with a collision rate of 3.6%, compared to
the sliding mode controller, which only succeeded 90.9% of the time with a
collision rate of 8.3%.
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Controller Success Rate Collision Rate
Single Double Single Double

SM (Paper A) 96.1% 90.9% 2.8% 8.3%
MPC (Paper B) 97.3% 95.2% 1.2% 3.6%

Table 4.1: Average success rates and collision rates for a fully trained DQN agent
driving through a single and double intersections. If the agent failed
to reach the goal or collide within a given time, the terminal state was
classified as a timeout.

4.5 Discussion
Observing the behavior of a fully trained agent from Paper A and Paper B
provides the insight that the path of the ego vehicle can be segmented into
four zones, illustrated in Figure 4.4. Starting from the right, Zone 0 represents
the safe zone, where the ego vehicle is out of danger and can resume nominal
driving. Zone 1 is the conflict zone, where a collision with another vehicle is
possible. Zone 2, the critical decision zone, is the final opportunity for the
vehicle to either stop or proceed through the intersection. The size of zone 2
is determined by the minimum distance required for the vehicle to come to a
complete stop before entering the conflict zone, ensuring sufficient time for safe
decision-making. Lastly, Zone 3, the information gathering zone, is situated
furthest from the intersection. Here, the agent can observe how other vehicles
behave over time to estimate their intentions.

The goal is to reach Zone 0. To achieve this, the agent aims to minimize the
time spent in Zone 1 if there is a chance of intersection with another car. Our
actions are formulated as short-term goals, designed for comfortable use with
lower acceleration rates. The size of Zone 2 depends on the vehicle’s current
speed, which is influenced by its behavior in Zone 3.

Now, two conflicting strategies emerge: to minimize time in Zone 1, the
agent desires a high speed entering the intersection. However, it also seeks a
low speed to reduce the size of Zone 2 and the critical decision period. If the
intentions of other vehicles are known, the stochasticity in Zone 1 would be
eliminated, transforming the problem into a scheduling task aimed at creating
a velocity profile that minimizes the time required to cross. However, since
the intentions of other vehicles are inherently stochastic, the next chapter
offers a promising approach by accounting for this uncertainty and optimizing
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z0z1z2z3

Figure 4.4: Intersection scenario divided into zones describing what is required of
the decision maker in different zones

decision-making in dynamic traffic scenarios.
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CHAPTER 5

Accounting for the uncertainty

The previous chapter formulated the POMDP and introduced how deep Q-
learning methods can be utilized to create decision-making agents capable
of navigating intersections. A significant advantage of RL methods is their
scalability to different scenarios through appropriate training. However, a
drawback of deep Q-learning methods, is the use of neural networks, which
provide a black-box solution without indicating any confidence or uncertainty
in their decisions [40].

This chapter presents two approaches to estimating the uncertainty: Paper
C addresses the uncertainty in the output of the DQN, and Paper D addresses
the uncertainty in the intention estimation that is fed as an input to the DQN.
To demonstrate the effect of accounting for uncertainty, the results include
two types of experiments. In the first type, the trained agent is evaluated on
scenarios within the training set. In the second type, the agent is evaluated on
scenarios outside the training set. Both types of experiments are conducted
using the same simulation environment described in Section 4.2.
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5.1 Estimating the uncertainty of the Q-value
To estimate the uncertainty in the Q-value of the trained agent, Paper C
employed statistical bootstrapping to train an ensemble of neural networks
on different subsets of the available experience. This ensemble provides a
distribution over the estimated Q-values for any input. A better Bayesian
posterior is obtained by adding different Randomized Prior Functions (RPF)
to each ensemble member [41]. The Q-values of each ensemble member k is
then calculated as the sum of two neural networks, f and p, with the same
architecture but different values on the weights θk and θ̂k, i.e.,

Qk(s, a) = f(s, a; θk) + βp(s, a; θ̂k). (5.1)

Here, the weights θk of network f are trainable, and the weights θ̂k of the prior
network p are fixed to the randomly initialized values. A parameter β scales
the importance of the networks. With the two networks, the loss function in
Eq. 3.8 becomes

L(θk) = EM

[
(r + γ max

a′
(fθ−

k
+ βpθ̂k

)(s′, a′)

− (fθk
+ βpθ̂k

)(s, a))2
]
. (5.2)

The training process of an ensemble RPF is described by Algorithm 1. An
ensemble of K DQN are first initialized randomly. Each ensemble member
is also assigned a separate experience replay memory buffer mk. For each
new episode, a random ensemble member ν is selected and used to take
greedy actions throughout the episode, which corresponds to an approximate
Thompson sampling approach to the exploration vs. exploration dilemma.
Each new experience e = (si, ai, ri, si+1) is then added to the separate replay
buffers mk with probability padd. The trainable weights of each ensemble
member are then updated by uniformly sample a mini-batch M of experiences
and using SGD.

The agent’s uncertainty in choosing different actions can be defined as the
coefficient of variation cv(s, a) of the Q-values of the ensemble members [42].
A threshold cv(s, a) can then be used to determine whether an action has an
acceptable level of uncertainty.

A high uncertainty, where cv(s, a) > csafe
v , indicates that (s, a) is outside the

training distribution. When the agent is fully trained, the policy π chooses
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Algorithm 1 Ensemble RPF training process
1: for k ← 1 to K do
2: Initialize θk and θ̂k randomly
3: mk ← {}
4: i← 0
5: while networks not converged do
6: si ← initial random state
7: ν ∼ U{1, K}
8: while episode not finished do
9: ai ← argmaxa Qν(si, a)

10: si+1, ri ← StepEnvironment(si, ai)
11: for k ← 1 to K do
12: if p ∼ U(0, 1) < padd then
13: mk ← mk ∪ {(si, ai, ri, si+1)}
14: M ← sample mini-batch from mk

15: update θk with SGD and loss L(θk)
16: i← i + 1

actions by maximizing the mean of the Q-values of the ensemble members,
with the restriction cv(s, a) < csafe

v , i.e.,

π = argmax
a

1
K

K∑
k=1

Qk(s, a),

s.t. cv(s, a) < csafe
v .

(5.3)

If no action within the action space satisfies the restriction, a predefined
backup action asafe is chosen instead. This asafe can be something like a
collision avoidance measure, such as emergency braking.

5.1.1 Results for scenarios within the training set
This section shows the results of the ensemble RPF method compared to the
DQN method used in Paper A, but without the LSTM layer. The ensemble
RPF method outperforms the DQN method when the agents are tested on
scenarios that are similar to the training scenarios. When the fully trained
ensemble RPF agent is exposed to situations that are outside the training
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distribution, the agent indicates a high uncertainty and chooses safe actions,
whereas the DQN agent sometimes collides with other vehicles.
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Figure 5.1: Proportion of test episodes where the ego vehicle reached its goal
(dashed), and episode return (solid), over training steps for the ensemble
RPF and DQN methods. The shaded areas show the standard deviation
for 5 random seeds.

The average return and the average proportion of episodes where the ego
vehicle reached the goal, as a function of number of training steps, is shown in
Figure 5.1, for the test episodes. The figure also shows the standard deviation
for 5 random seeds, which generates different sets of initial parameters of the
networks and different training episodes, whereas the test episodes are kept
fixed. The results show that the ensemble RPF method both learns faster,
yields a higher return, and causes fewer collisions than the DQN method.
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Figure 5.2: Uncertainty cv during the time steps before one of the collisions in the
test episodes, within the training distribution. The collision occurs at
t = 0 s.
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Upon analyzing the scenarios with collisions using the DQN agent, it was
observed that in one particular example, the agent fails to brake sufficiently in
zone 3 (from Figure 4.4) and takes an incorrect action in zone 2, resulting in a
collision in zone 1. In contrast, in the same scenario with the ensemble RPF
agent, Figure 5.2 show that the estimated uncertainty increases significantly
during the time before the collision (zone 2), when the incorrect actions
was taken. By applying the confidence criterion, the agent, aware of high
uncertainty, brakes early enough in zone 2, thus avoiding collisions. This
confidence criterion was applied to all test episodes, effectively eliminating all
collisions for scenarios within the training set.

5.1.2 Results for scenarios outside the training set
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Figure 5.3: Performance of the ensemble RPF agent, with and without the con-
fidence criterion, and the DQN agent, in test episodes with different
velocities for the surrounding vehicles.

To evaluate the agents’ ability to detect unseen situations, a fully trained
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ensemble RPF agent was tested in scenarios outside the training distribution.
The same testing scenarios as in the previous section were used, with the
exception that the speed of the surrounding vehicles was set to a single
deterministic value, which was varied during different runs in the range vn ∈
[10, 20] m/s. The proportion of collisions as a function of set speed of the
surrounding vehicles is shown in Figure 5.3, along with the proportion of
episodes where the confidence criterion was violated at least once. The figure
demonstrates that by accounting for the uncertainty of the Q-value and the
use of the confidence criterion some collisions can be avoided.

5.2 Estimating the uncertainty of the intention
state

The ensemble RPF agent avoided collisions by not taking a bad action in zone
2, by accounting for the uncertainty of the Q-value estimate. However, can
further reductions in collisions be achieved by accounting for uncertainty in
the input? In Paper D, the uncertainty regarding the intention state ζn is
managed using a belief state represented as a probability distribution over
possible states. This distribution, referred to as intention distributions, is
generated using a particle filter. Based on these distributions, two methods
were proposed: QMDP-IE and QID.

QMDP-IE is derived from the QMDP algorithm [29]. This derivation
leverages the assumption that the intention state ζn can be determined after
the ego vehicle has crossed the intersection analyzing the actions taken by the
other vehicle, i.e., the intention can be determined by post-data analysis. This
assumption allows the QMDP algorithm to blend elements of POMDPs and
MDPs. The QMDP algorithm is comprised by the following steps:

1. Oracle DQN Training: The weights θMDP used in Q(a, s; θMDP), are
trained using the true state s, which includes the true intention state ζn.

2. Expected Q-value Computation: QMDP calculates the Q-value for each
belief state, which accounts for uncertainty in the true state. It then
computes the expected Q-value for each action by averaging the Q-values
of the potential states, weighted by their probabilities in the belief state.

QMDP-IE modifies the QMDP approach:
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5.2 Estimating the uncertainty of the intention state

1. Utilization of Oracle DQN: QMDP-IE uses the same Q-values
Q(a, s; θMDP) as calculated by the Oracle DQN.

2. Intention State Estimation DIE(b): Instead of considering the full distri-
bution of potential states (belief state b), QMDP-IE estimates a single
intention state. This estimation DIE(b) is done using a threshold ζthreshold
on the intention distribution

DIE(b) = ζIE
n =

{
yield if ζyd

n > ζthreshold,

take way otherwise.
(5.4)

This ζIE
n , together with the observable state o, is then passed as to the

NN to estimate the Q-value.

The threshold value ζthreshold in the QMDP-IE method is a critical parameter
that directly influences the agent’s behavior, ranging from aggressive to passive.
The agent is tested with different ζthreshold values, and the outcomes are
observed in terms of success rate and success time shown in 5.4. A lower
threshold value (ζthreshold = 0, 5) means the agent relies on the most likely
estimation of the intention state, resulting in aggressive behavior. This can
lead to quicker success times but might increase the risk of collisions or other
negative outcomes. A higher threshold values (ζthreshold = 0.9) makes the
agent more cautious, potentially leading to safer but slower success times. In
summary, while both QMDP and QMDP-IE rely on the Oracle DQN to predict
Q-values, QMDP-IE reduces the complexity of decision-making by focusing on
a single estimated intention state rather than a full belief state distribution
reducing the computational complexity.

In the QID method, the intention state ζID
n is derived from the belief state b

using an approximator DID(b). The derived intention state ζID
n is obtained as

the marginal distribution of intention from the set of particles {xm}M
m=1:

DID(b) = ζID
n = [ζID

tw ζID
yd ] =

M∑
m=1

wn[m][x(ζ)]n[m], (5.5)

where each particle xm represents a possible state, and each particle has an
associated weight wn[m], indicating its probability out of M number of total
particles. The intention state used by the particle [x(ζ)]n[m] is specified using
a one-hot vector, which represents the intention state in a binary format where
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Figure 5.4: The success time and outcome percentages of QMDP-IE for different
values of ζthreshold values. The top figure show that increasing ζthreshold

result in slower success times, whereas the lower figure indicates that
higher ζthreshold reduces the collision rate while simultaneously increas-
ing the safe stop rate.

one element is ’1’ (indicating the active intention) and the others are ’0’. The
intention state for "take-way" is then ζID

tw ∈ [0, 1] and consequently, "yield"
becomes ζID

yd = 1− ζID
tw . This process allows the QID method to derive a clear

and actionable intention state from a distribution of possible states.
Both QMDP-IE and QID were evaluated on the intersection scenario intro-

duced in Section 4.2, specifically designed to include at least one car on the
intersecting lane with the same time to intersection as the ego vehicle. This
scenario increases the likelihood of a collision if the intentions of the other
vehicles are not accurately considered, thereby encouraging more safe stops.

5.2.1 Results within the training set

This section presents the experimental results, starting with a comparison of
the results of QMDP-IE and QID. QMDP is used as a baseline algorithm for
QMDP-IE, while QPF, an algorithm trained on the whole belief state b is used
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Table 5.1: Result summary for scenarios within the training set

Experiments Goal reached Safe stop Collision Deadlock Success
Time

% % % % s

Oracle DQN 84.50 14.45 1.05 0.00 15.49
QMDP-IE 80.00 18.15 1.35 0.50 17.14
QMDP 71.95 15.05 5.70 7.30 20.56
QID 85.60 10.40 3.70 0.30 16.64
QPF 63.50 21.80 12.15 2.55 16.61

as the baseline for QID. Unlike QMDP-IE, the QID algorithm does not require
access to the true intent during training.

As shown in Table 5.1, both QMDP-IE and QID beat their respective
baseline algorithm in both higher goal reached and lowest collision percentage.
QMDP-IE collision rate 1.35 % was very close to the oracle DQN 1.05 % making
it as good as knowing the intention in these test cases. QID experienced more
collisions than QMDP-IE but fewer than QMDP. This indicates that while
training on ground truth is preferable, QID is a suitable alternative when
ground truth data is not available.

5.2.2 Results for scenarios outside the training set
To investigate how the algorithms perform when exposed to behaviors they
are not trained for, a scenario is introduced where a car is allowed to overtake
another car in front, thereby violating the assumption of the IDM. In the
previous experimental scenario, the order of the other cars was structured such
that if one car yielded, all following cars would stop behind it. This makes it
possible to collide with a car that started behind a yielding car, but it also
creates larger gap in between cars, that was not possible before.

In this overtake scenario, both QID and QPF exhibit relatively low collision
rates at 2.53 % and 3.7 % respectively. QMDP-IE and QMDP show slightly
higher collision rates of 4.6 % and 5.95 % respectively, which is higher than
QID and QPF and slightly higher than their own performance in the trained
scenarios, detailed in Table 5.1. Because QMDP-IE uses the network from
the Oracle DQN, it performs well when the intention is within the training

41



Chapter 5 Accounting for the uncertainty

Table 5.2: Results with an overtake agent

Experiments Goal reached Safe stop Collision Deadlock Time
% % % % s

Oracle DQN 89.80 0.15 10.05 0.00 16.01
QMDP-IE 94.55 0.20 4.60 0.65 16.62
QMDP 79.70 10.20 5.95 4.15 19.84
QID 96.89 0.11 2.53 0.47 16.38
QPF 96.15 0.10 3.70 0.05 17.62

set, while QID and QPF was trained on the uncertainty making the policy
more cautious in zone 3 which lead to an opening in zone 2 leading to the goal.
This suggests that QID is slightly better at taking passive actions in zone 3,
which can change the intention distribution and reduce the uncertainty for the
next state. This makes QID more effective at handling scenarios outside the
training set than QMDP-IE.

Overall, QID proves to be better than QMDP-IE in scenarios outside the
training set, offering more robustness to untrained behaviors. Meanwhile,
QMDP-IE provides a structured approach with moderate collision rates and
higher computational efficiency, performing well when the intentions are within
the training set.
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Generalizing over different scenarios

In the previous chapter, the experiments demonstrated how an agent can
utilize the uncertainty measurement to reduce the number of collisions. This
chapter explores how to identify when an agent is acting in a scenario outside
its training set.

Let’s consider that a company is designing Level 5 AD agents. As mentioned
in Section 1.1, L5 requires the AV to be able to drive anywhere. The company
has already designed two RL agents that have learned to drive at L4 in the
USA and UK. Now, the company wants to deploy a new RL agent in India.
Though all the RL agents are concerned with the same task, i.e. driving, the
models encompassing driver behaviors, traffic rules, signs, etc., can differ for
each. For example, UK and India have left-handed traffic, while the USA has
right-handed traffic. However, learning a new controller specifically for every
new geographic location is computationally expensive and time-consuming, as
both data collection and learning take time. Thus, the company might use
the models learned for UK and USA, to estimate the model for India, and
use it further to build a new RL agent. Hence, being able to transfer the
source models to the target environment allows the company to use existing
knowledge to build a new agent faster while using less resources. This problem
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Algorithm 2 Maximum Likelihood Estimation for Model-based Transfer RL
(MLEMTRL)

1: Input: weights w0, m source MDPs Ms, data D0, discount factor γ,
iterations T .

2: for t = 0, . . . , T do
3: // Stage 1: Model Estimation //
4: wt+1 ← Optimiser(logP(Dt |Σm

i=1wiµi), wt)
5: Estimate the MDP: µt+1 =

∑m
i=1 wiµi

6: // Stage 2: Model-based Planning //
7: Compute the policy: πt+1 ∈ arg max

π
V π

µt+1

8: // Control //
9: Observe st+1, rt+1 ∼ µ∗(st, at), at ∼ πt+1(st)

10: Update the dataset Dt+1 = Dt ∪ {st, at, st+1, rt+1}
11: return An estimated MDP model µT and a policy πT

of model transfer from source models to a target environment to plan efficiently
is address in Paper E.

6.1 Approach
In this example, the driving model for each country is defined by its own MDP.
A set of source MDPs Ms ≜ {µi}m

i=1 is used to create a convex hull of MDPs
C(Ms), where each MDP µi acts as a boundary. The proposed approach,
Maximum Likelihood Estimation for Model-based Transfer RL (MLEMTRL),
involves using model transfer RL to determine the unknown target MDPs
µ∗ ∈ C(Ms) position within this convex hull of MDPs and then find an optimal
policy π∗ for that MDP. This method relies on having a diverse set of MDPs
to effectively span the convex hull of models, thereby facilitating the discovery
of optimal policies between MDPs. For example, downtown driving behavior
in one country may closely resemble that in another. For the case when µ∗ is
close but outside C(Ms), see Paper E.

The MLEMTRL algorithm, outlined in Algorithm 2, consists of a model
estimation stage and a planning stage.
Model estimation: This stage estimates a MDP µ̂ from a compact subset
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of m source MDPs, µ′ ⊂Ms, utilizing data from experience Dt gathered by
taking actions in the environment. Let’s define the convex hull as:
C(Ms) ≜ {µ1w1 + . . . + µmwm |µi ∈ Ms, wi ≥ 0, i = 1, . . . , m,

∑m
i=1 wi = 1}.

Then, the corresponding MLE problem with the corresponding likelihood
function is

µ̂ ∈ arg max
µ′∈C(Ms)

logP(Dt |µ′), Dt ∼ µ∗. (6.1)

Since C(Ms) induces a compact subset of model parameters M′ ⊂M, (6.1)
leads to a constrained maximum likelihood estimation problem [43]. It implies
that if the parameter corresponding to the target MDP is in M′, it can be
correctly identified. For continuous state-action MDPs, a linear-Gaussian
likelihood is used. In this context, let ds be the dimensionality of the state-
space, s ∈ Rds and da be the dimensionality of the action-space. Then, the
mean function M is a Rds × Rda+ds matrix. The mean visitation count to the
successor state s′

t when an action at is taken at state st is given by M(at, st).
The corresponding covariance matrix, denoted by S, is of size Rds × Rds . The
log-likelihood is then expressed as follows:

logP(Dt |M, S) = log
t∏

i=1

exp
(
− 1

2 v⊤S−1v
)

(2π)ds/2|S|1/2 ,

where v = s′
i −M(ai, si).

As the optimization problem involves weighing multiple source models
together, a weight vector w ∈ [0, 1]m is introduced, with the usual property
that w sum to 1.

min
w

logP(Dt |Σm
i=1wiµi), Dt ∼ µ∗, µi ∈Ms,

s.t.
m∑

i=1
wi = 1, wi ≥ 0.

(6.2)

Because of the constraint on w, this is a constrained nonlinear optimization
problem. Any optimizer algorithm, denoted by Optimizer, can be used for
this purpose. When an appropriate model µt+1 has been identified at time
step t, the next stage of the algorithm involves model-based planning in the
estimated MDP.
Planning: This stage computes the policy πt+1 that maximizes the expected
reward given the value function V π

µt+1 based on µt+1. After computing πt+1,

45



Chapter 6 Generalizing over different scenarios

the agent executes actions in the environment to acquire new experiences Dt+1.
These steps are repeated T times before producing a final estimated MDP
model µT and a policy πT is given.

Given the model, µt and the associated reward function R, the optimal
value function of µt can be computed iteratively as [21]:

V ∗
µt(s) = max

a

∑
s′

T a
s,s′

(
R(s, a) + γV ∗

µt(s′)
)

. (6.3)

The fixed-point solution to Eq. (6.3) is the optimal value function, where T is
the transition function introduced in Section. 4.1.3. When the optimal value
function has been obtained, one can simply select the action maximizing the
action-value function. Let πt+1 be the policy selecting the maximizing action
for every state, then πt+1 is the policy the model-based planner will use at
time step t + 1.

6.2 Experiments and results
The proposed algorithm is evaluated on 10 different tasks in Deepmind Control
Suite [44], and the results for two Linear Quadratic Regulator(LQR) tasks,
dm_LQR_2_1 and dm_LQR_6_2, are presented. These environments have
continuous states and actions, where the tasks involve controlling a two-joint,
one-actuator system and a six-joint, two-actuator system toward the center
of the platform, respectively. They feature unbounded control inputs and
rewards, with state spaces s ∈ R4 and s ∈ R12, respectively. In the Deepmind
Control Suite, each task varies by seed, which determines the stiffness of the
joints.

The performance is compared to baseline algorithms such as a posterior
sampling RL method (PSRL), multi-task soft-actor critic (MT-SAC) [45],
[46] and a modified MT-SAC-TRL that uses data from the novel task during
learning. In PSRL, a new model is sampled from the prior at every round,
learning in the target MDP from scratch. The aim of this experiment is to
identify improvements in learning speed, jumpstart and asymptotic improve-
ments. Learning Speed Improvement: A learning speed improvement would be
indicated by the algorithm reaching its asymptotic convergence with less data.
Jumpstart Improvement: A jumpstart improvement can be verified by the
behavior of the algorithm during the early learning process. In particular, if
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Figure 6.1: The average cumulative reward at every time step computed for two
LQR tasks from Deepmind control suit. The shaded regions represent
the standard error of the average cumulative reward at the time step.

the algorithm starts at a better solution than the baseline, or has a simpler
optimization surface, it may more rapidly approach better solutions with much
less data.Asymptotic Improvement: An asymptotic improvement would mean
the algorithm converges asymptotically to a superior solution to that one of
the baseline.

The results experiment are shown in Figure 6.1, where the performance metric
is the average cumulative reward at each time step over 105 time steps, with
the shaded region representing the standard deviation. In these experiments,
MLEMTRL demonstrates a clear advantage over all baselines in terms of
learning speed improvement and asymptotic performance when compared to
MT-SAC, but shows negligible differences in jumpstart improvements.

This shows that MLEMTRL is able to construct a model for an RL agent
using a set of source models, provided that the target model is sufficiently
similar to the source models.
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CHAPTER 7

Discussion

Chapter 4, 5 and 6 introduce different methods to create a decision-making
agent for navigating through intersections using deep Q-learning, while con-
sidering the uncertainty of its own decisions and the prediction of the other
drivers intentions. This chapter highlights some differences and synergies of
the different methods.

7.1 Guaranteeing safety
Safety is the most important factor of a AD system, but since RL is a data
driven approach it is very difficult to guarantee safety in the same way e.g., a
MPC can. Safety validation in a data driven approach can be very costly as it
is usually done by driving many miles and showing statistical confidence in
the safety metrics [47], [48], e.g., number of interventions. That is why this
section will clarify where the work in this thesis would fit in by first defining
a system architecture for AD, its modules and a short summary of the ISO
26262 standard. Then, place itself within the system and motivate how safety
can be guarantied.

The architecture of an autonomous driving system can be divided into
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perception, planning and control [5], [49]. The perception module is responsible
for sensing and mapping the environment with the use of sensors such as
LIDARs, cameras, radars etc. The raw data from the sensors are then processed
though various sensor fusion techniques to generate a representation of the
environment, e.g., position, velocity of other traffic participants while also
describing the road such as width and distance to the next intersection. This
information is then used by the planner to create a driving strategy of how to
transverse through the world. However, the information from the sensors are
often noisy, with false positives and false negatives making it difficult for the
planner.

Tactical planning can be divided into three categories, the proactive, active
and reactive [50]. A proactive module would be something like a precautionary
safety module that interprets the information about the environment and create
constraints that is sent to the active planner, like driveable area, allowed speeds
and actions [51]. These constraints are generated from a set of safety goals
and rules, making this the first layer of protection that can ensure safety. The
role of the active planner is to take this sets of allowed actions and prescribe
the behavior of the vehicle through decisions such as drive, yield or stop. The
goal of these high level decisions is to optimize metrics such as comfort, fuel
consumption and time to goal. These decisions are then sent to a motion
planner that generates a safe dynamically feasible path for the vehicle for a
shorter planning horizon of around 0.1s. At the same time, a reactive, collision
avoidance, module make sure that the chosen decision and path does lead to
any collisions [52]. Unlike the decision maker, the collision avoidance module
main goal is to identify imminent danger [53] and therefore has access to more
aggressive actions like emergency braking to ensure safety.

In the industry today the main standard for functional safety in motor-
ized vehicles is the ISO 26262 standard, titled "Road vehicles – Functional
safety" [54]. It uses a Automotive Safety Integrity Level (ASIL) to classify the
inherent safety risk in an automotive system and the functions or modules
of such a system. The ASIL classification is used to express the level of risk
reduction required to prevent a specific hazard, from ASIL D to ASIL A. ASIL
D represents the highest hazard level and ASIL A the lowest. There is a level
with no safety relevance and only standard Quality Management processes are
required, this level is referred to as QM.

Although safety is the most important requirement for enabling autonomous
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Figure 7.1: Representation of a proposed the system architecture for AVs.

driving, the work in this paper does not make any safety guarantees. Instead,
it is proposed that the decision-making algorithms presented in this paper be
used in the system architecture shown in Figure 7.1. This approach allows
higher ASIL to be applied to the precautionary safety and collision avoidance
modules, while the decision-making algorithms focus primarily on comfort. As
a result, the ASIL classification for the decision-making components could be
at lower levels, potentially even classified as QM in the best case.

7.2 Designing the reward function and terminal
states

The reward function introduced in Chapter 4.1.5 is a crucial component
that significantly influences the behavior and performance of a reinforcement
learning agent. By carefully designing and tweaking the reward function in
(4.9), the agent can be guided towards desirable behaviors and optimize its
decision-making policy.

The results from Chapter 4 and 5 show a collision rate of 1 − 3%, which
may seem high for AVs. However, within the proposed system architecture
from Figure 7.1, this collision rate can be interpreted as interventions by a
collision avoidance system, such as emergency braking. This interpretation can
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be achieved by adjusting the simulation parameters, for example, increasing
the size of the cars or redefining the collision state to represent a collision
avoidance intervention state.

7.3 Modular models in autonomous vehicles
There are two common strategies for creating and deploying DQNs to the
real world: training a comprehensive model that encapsulates everything or
training smaller, specialized models and switching between them as needed.
The proposed MLEMTRL algorithm from Chapter 6 is a step towards the
latter approach of using smaller models. Combined with the uncertainty
measurements in Chapter 5, instead of reverting to a default action when
uncertainty is high, the agent can instead trigger a model change. MLEMTRL
can then be used to determine which model to switch to, ensuring a more
adaptive and robust decision-making process.

This approach allows for modularity and flexibility, enabling easier updates
and maintenance since individual models can be refined or replaced without
affecting the entire system. Additionally, smaller models are less likely to
overfit to irrelevant details present in a larger, comprehensive dataset, leading
to more generalizable and robust performance in their specific domains. They
also require less computational power and memory, making them more suitable
for deployment on AVs with limited resources. Smaller models are generally
easier to interpret and debug, facilitating understanding of the decision-making
process and identifying any issues or biases, which is an important property to
have when developing AVs.
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CHAPTER 8

Concluding remarks and future work

This thesis introduces how RL-based methods can be used to develop a
decision-making agent and evaluates their efficacy in learning when to drive
across intersections, with a focus on managing the uncertainty of other drivers’
intentions. By answering the three research questions presented in Chapter 1.3.

In response to Q1: How can RL techniques be used to develop a decision-
making agent that effectively navigates intersections without explicitly estimat-
ing the intention state of other vehicles? The intersection navigation problem
is formulated as a POMDP, where observable states include positions and ve-
locities of the vehicles in the scenario, and unobservable states is the intentions
of surrounding drivers. In Chapter 4, a deep Q-learning approach is introduced
to solve the POMDP, with short-term goals, as discreet actions, translated
into reference points and constraints for a controller. Two controllers are
implemented and compared: one using sliding mode and another using MPC.
The results show that the DQN effectively generates a policy for driving across
an intersection crossing with dynamic behavior of other traffic participants, and
its performance improved when combined with a robust controller like MPC.
Additionally, the hidden state in the LSTM layer of the RL agent incorporates
estimations of driver intentions, which improved the performance of the RL
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agent in dynamic traffic environments.
A significant advantage of RL methods is their scalability to different sce-

narios through appropriate training. However, a drawback of deep Q-learning
methods is the use of neural networks, which provide a black-box solution with-
out indicating any confidence or uncertainty in their decisions. This limitation
is addressed by answering Q2: How can an RL agent utilize the uncertainty
in its predictions and actions to enhance decision-making in complex environ-
ments? Chapter 5 presents two approaches to address the uncertainty: an
ensemble method addresses the uncertainty in the output of the DQN, and
a belief-based method addresses the uncertainty in the intention estimation
that is fed as an input to the DQN. The results demonstrate that accounting
for uncertainty can significantly improve the agent’s performance, especially
in scenarios outside the training set, by avoiding collisions and improving
decision-making robustness.

Chapter 6 addresses Q3: How can an RL agent handle situations it has
not been trained on? The MLEMTRL algorithm is introduced to address the
challenge of deploying RL agents in new environments by leveraging knowledge
from previously trained models. The approach involves constructing a convex
hull of source MDPs and using model transfer RL to identify the most relevant
model for the target environment. This method is evaluated in various tasks,
including a continuous state-action MDPs, demonstrating improved learning
speed and asymptotic performance. The results show that MLEMTRL can
construct a new model for an RL agent using a set of source models, provided
the target model is sufficiently similar to the source models. This capability can
potentially enable the efficient deployment of AD agents in new environments,
reducing the need for extensive data collection and training specific to each
new geographic location.

Overall, the research presented in this thesis contributes to the advancement
of RL techniques for autonomous driving in diverse and dynamic environments.
The findings show the critical roles of accurate intention estimation, effective
uncertainty management, and the strategic use of transfer learning to build
robust and versatile autonomous driving systems. While RL methods alone may
still have challenges in guaranteeing safety for autonomous driving, integrating
them with MPC and other active safety systems can transform RL into a
powerful tool for creating comfortable and enjoyable rides for the passengers,
paving the way for safer and more efficient transportation solutions.
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8.1 Future work
Future research should focus on transitioning from simulation environments to
real-world implementations. While simulations offer a controlled setting for
developing and testing algorithms, real-world driving presents unpredictable
variables and complexities. Implementing and refining these models in actual
driving scenarios will be crucial for validating their effectiveness and reliability.
This step will involve rigorous testing, continuous learning, and adaptation to
ensure the autonomous systems can handle diverse and dynamic real-world
conditions, ultimately moving closer to the widespread adoption of safe and
efficient autonomous vehicles.

Additionally, the integration of language prediction models, specifically using
transformers and attention mechanisms, along with driver monitoring systems
(DMS), can enhance the prediction of driver intentions. Transformers, with
their powerful attention mechanisms, can effectively handle sequential data
and capture complex dependencies. By leveraging these models, it may be
possible to interpret and predict driver behaviors based on a broader range of
contextual cues.

Driver monitoring systems can provide critical real-time data on driver
behavior, including eye movement, head position, and other physiological indi-
cators. Combining this data with sensor inputs and verbal communication or
textual descriptions of driver actions can create a comprehensive understanding
of driver intentions. Transformers can process and correlate these different
data types, improving the accuracy of intention estimation, particularly in
complex or ambiguous driving scenarios.

Moreover, employing transformers trained on extensive datasets could facili-
tate the development of more sophisticated algorithms capable of predicting
and adapting to diverse driving behaviors. This approach could significantly
enhance the overall safety and efficiency of autonomous driving systems by
providing a more nuanced and dynamic understanding of the driving environ-
ment. Integrating DMS with advanced language models could also help in
identifying potential risks and ensuring timely interventions, thus improving
the overall robustness and reliability of autonomous vehicles.
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CHAPTER 9

Summary of included papers

This chapter provides a summary of the included papers.

9.1 Paper A
Tommy Tram, Anton Jansson, Robin Grönberg, Mohammad Ali, and
Jonas Sjöberg
Learning Negotiating Behavior Between Cars in Intersections using Deep
Q-Learning
Published in 2018 21st International Conference on Intelligent Trans-
portation Systems (ITSC),
pp. 3169–3174, Nov. 2018.
©2018 IEEE DOI: 10.1109/ITSC.2018.8569316.

This paper concerns automated vehicles negotiating with other vehicles,
typically human driven, in crossings with the goal to find a decision algorithm
by learning typical behaviors of other vehicles. The vehicle observes distance
and speed of vehicles on the intersecting road and use a policy that adapts its
speed along its pre-defined trajectory to pass the crossing efficiently. Deep Q-
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learning is used on simulated traffic with different predefined driver behaviors
and intentions. The results show a policy that is able to cross the intersection
avoiding collision with other vehicles 98% of the time, while at the same time
not being too passive. Moreover, inferring information over time is important
to distinguish between different intentions and is shown by comparing the
collision rate between a Deep Recurrent Q-Network at 0.85% and a Deep
Q-learning at 1.75%.

The thesis author contributed with the problem formulation, proposed
algorithms and the writing of the paper.

9.2 Paper B

Tommy Tram, Ivo Batković, Mohammad Ali, and Jonas Sjöberg
Learning When to Drive in Intersections by Combining Reinforcement
Learning and Model Predictive Control
Published in 2019 IEEE Intelligent Transportation Systems Confer-
ence (ITSC),
pp. 3263–3268, Oct. 2019.
©2019 IEEE DOI: 10.1109/ITSC.2019.8916922.

In this paper, we propose a decision making algorithm intended for auto-
mated vehicles that negotiate with other possibly non-automated vehicles in
intersections. The decision algorithm is separated into two parts: a high-level
decision module based on reinforcement learning, and a low-level planning
module based on model predictive control. Traffic is simulated with numerous
predefined driver behaviors and intentions, and the performance of the pro-
posed decision algorithm was evaluated against another controller. The results
show that the proposed decision algorithm yields shorter training episodes and
an increased performance in success rate compared to the other controller.

The thesis author contributed with the problem formulation, proposed algo-
rithms, implementation of the simulation and reinforcement learning algorithm,
and the writing of the paper.
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9.3 Paper C

9.3 Paper C
Carl-Johan Hoel, Tommy Tram, and Jonas Sjöberg
Reinforcement Learning with Uncertainty Estimation for
Tactical Decision-Making in Intersections
Published in 2020 IEEE 23rd International Conference on Intelligent
Transportation Systems (ITSC),
pp. 1-7, Sep. 2020.
©2020 IEEE DOI: 10.1109/ITSC45102.2020.9294407.

This paper investigates how a Bayesian reinforcement learning method can
be used to create a tactical decision-making agent for autonomous driving in
an intersection scenario, where the agent can estimate the confidence of its
decisions. An ensemble of neural networks, with additional randomized prior
functions (RPF), are trained by using a bootstrapped experience replay memory.
The coefficient of variation in the estimated Q-values of the ensemble members
is used to approximate the uncertainty, and a criterion that determines if
the agent is sufficiently confident to make a particular decision is introduced.
The performance of the ensemble RPF method is evaluated in an intersection
scenario and compared to a standard Deep Q-Network method, which does
not estimate the uncertainty. It is shown that the trained ensemble RPF
agent can detect cases with high uncertainty, both in situations that are far
from the training distribution, and in situations that seldom occur within
the training distribution. This work demonstrates one possible application of
such a confidence estimate, by using this information to choose safe actions
in unknown situations, which removes all collisions from within the training
distribution, and most collisions outside of the distribution.

The thesis author contributed with the problem formulation, proposed
algorithms, simulation implementation and the writing of the paper.

9.4 Paper D
Tommy Tram, Maxime Bouton, Jonas Fredriksson, Jonas Sjöberg, and
Mykel Kochenderfer
Belief State Reinforcement Learning for Autonomous Vehicles in Inter-
sections
Submitted to IEEE Transactions on Intelligent Transportation Systems,
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©2024 IEEE DOI: TBD.

This paper investigates different approaches to find a safe and efficient driving
strategy through an intersection with other drivers. Because the intentions of
the other drivers to yield, stop, or go are not observable, we use a particle filter
to maintain a belief state. We study how a reinforcement learning agent can
use these representations efficiently during training and evaluation. This paper
shows that an agent trained without any consideration of the intentions of
others is both slower at reaching the goal and results in more collisions. Four
algorithms that use a belief state generated by a particle filter are compared.
Two of the algorithms have access to the intention only during training while
the others do not. The results show that explicitly trying to predict the
intention gave the best performance in terms of safety and efficiency.

The thesis author contributed with the problem formulation, proposed
algorithms, simulation and experimental implementations, and the writing of
the paper.

9.5 Paper E
Hannes Eriksson, Tommy Tram, Debabrota Basu, Mina Alibeigi, and
Christos Dimitrakakis
Reinforcement Learning in the Wild with Maximum Likelihood-based
Model Transfer
Published in 2024 International Conference on Adaptive Agents and
Multi-Agent Systems (AAMAS),
pp. 516–524, May. 2024.

For decision-problems with insufficient data, it is imperative to take into
account not only what you know but also what you do not know. In this work,
ways of transferring knowledge from known, existing tasks to a new setting
is studied. In particular, for tasks such as autonomous driving, the optimal
controller is conditional on things such as, the physical properties of the vehicle,
the local and regional traffic rules and regulations and also on the specific
scenario trying to be solved. Having separate controllers for every combination
of these conditions is intractable. By assuming problems with similar structure,
we are able to leverage knowledge attained from similar tasks to guide learning
for new tasks. We introduce a maximum likelihood estimation procedure
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for solving Transfer Reinforcement Learning (TRL) of different types. This
procedure is then evaluated over a set of autonomous driving settings, each
of which constitutes an interesting scenario for autonomous driving agents
to make use of external information. We prove asymptotic regret bounds
for proposed method for general structured probability matrices in a specific
setting of interest.

The thesis author contributed with the problem formulation and experimen-
tal analysis of the paper.
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