CHALMERS

UNIVERSITY OF TECHNOLOGY

Challenges in Creating Effective Automated Design Environments: An
experience report from the domain of generative manufacturing

Downloaded from: https://research.chalmers.se, 2025-10-18 21:23 UTC

Citation for the original published paper (version of record):

Garlan, D., Schmerl, B., Wohlrab, R. et al (2024). Challenges in Creating Effective Automated
Design Environments: An experience report from the

domain of generative manufacturing. Proceedings - 2024 IEEE/ACM International Workshop on
Designing Software, Designing 2024: 15-20. http://dx.doi.org/10.1145/3643660.3643949

N.B. When citing this work, cite the original published paper.

© 2024 |IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

Check for
Updates

2024 IEEE/ACM International Workshop on Designing Software (Designing)

Challenges in Creating Effective Automated Design
Environments: An experience report from the domain of
generative manufacturing

David Garlan
Bradley Schmerl

garlan@cs.cmu.edu
schmerl@cmu.edu
School of Computer Science,
Carnegie Mellon University
Pittsburgh, PA, USA

ABSTRACT

The emergence of powerful automated design tools in many do-
mains is changing the nature of design, as human-intensive ac-
tivities can be increasingly off-loaded to those tools. Rather than
having a human consider only handful of options, as has been done
historically, such tools now enable the generation of a large space
of potential designs, exhibiting different tradeoffs among compet-
ing qualities of merit, and supporting systematic exploration of
the design space. At the same time, this paradigm raises new chal-
lenges centered on enabling humans to effectively navigate that
generated space in order to select a design that best meets their re-
quirements. In this paper we describe our experience in the domain
of generative manufacturing, in which we developed a novel design
environment for airplane parts manufacturing that incorporates
a number of sophisticated design tools and attempts to tackle the
emergent problems of design space exploration that are faced by
designers of those parts. We use this experience to highlight the
challenges that we faced and reflect on their applicability more
generally to tool-assisted software design environments.

ACM Reference Format:

David Garlan, Bradley Schmerl, Rebekka Wohlrab, and Javier Camara. 2024.
Challenges in Creating Effective Automated Design Environments: An
experience report from the domain of generative manufacturing. In 2024
International Workshop on Designing Software (Designing ’24), April 15-14,
2024, Lisbon, Portugal. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3643660.3643949

1 INTRODUCTION

In the past, design has typically been a human-intensive activity:
given a set of requirements, perhaps only partially specified, the
designer would attempt to come up with a design that best satisfies
the known requirements. Given limited human cognitive abilities,
the process of considering possible designs for a given artifact has
typically been limited to a small number of potential candidates

(@MOM

This work licensed under Creative Commons Attribution International 4.0 License.
Designing °24, April 15-14, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0563-2/24/04.

https://doi.org/10.1145/3643660.3643949

Rebekka Wohlrab
wohlrab@chalmers.se
Chalmers | University of Gothenburg
Gothenburg, Sweden

Javier Camara
jcamara@uma.es
ITIS Software, Universidad de Malaga
Malaga, Spain

from which the most promising is selected for implementation. This
traditional process of designing relies heavily on the experience and
skill of the designer to identify those design candidates, with the
potential problem of having missed out on ones that might be better
than those under consideration. Even when this process results in
an adequate solution, it is not obvious that it will be sufficient if
market conditions and requirements change. Because this process
is so labor- and expertise-intensive, the cost of redesign is often so
high that companies simply make do with sub-optimal solutions.

Today, in many domains this paradigm is changing. With the
increasing availability of design tools that can automate, or partially
automate, the generation of candidate designs based on a set of
formalized requirements, a designer can now be presented with a
very large number of candidates, each exhibiting different tradeoffs
in a complex multi-dimensional space of possibilities. Examples
include design tools for manufacturing [8], embedded systems [11],
and software architecture [16]. In the arena of software systems
design the increasing sophistication of generative Al tools is likely
to only accelerate this trend.

However, the ability to automatically generate a large space of
potential designs raises its own challenges. How can the designer
understand the overall space in terms of the main tradeoffs? How
can the designer focus on the regions of the space that are most
relevant? What combinations of requirements are simply infeasible?
What are key requirements thresholds that determine when one
kind of solution is better than another?

Over the past two years, we and our colleagues have been in-
volved in an exploratory research project, collaborating with an
industrial partner, to develop design tools for generative manufac-
turing — and specifically for airplane parts manufacture. The goal
was to develop a design environment to enable rapid and agile part
design and manufacturing based on requirements by incorporating
a suite of existing and novel design tools. Over the course of two
years and two prototypes, we encountered numerous challenges in
finding ways to provide designers with the ability to answer the
kind of design questions noted above.

In this case study, we use our experience to examine the nature
of those questions in the context of the manufacturing domain and
the solutions that we came up with, reflecting on the applicability
of those concerns and solutions more generally to tool-assisted
design, and in particular to software systems design. We start by
briefly surveying the background of design generation tools and

Corrected Version of Record. V.1.1. Published November 7, 2024

https://orcid.org/XXXXXXXX
https://orcid.org/0000-0001-7828-622X
https://orcid.org/XXXXXXX
https://orcid.org/XXXXX
https://doi.org/10.1145/3643660.3643949
https://doi.org/10.1145/3643660.3643949
https://doi.org/10.1145/3643660.3643949
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643660.3643949&domain=pdf&date_stamp=2024-07-25

Designing *24, April 15-14, 2024, Lisbon, Portugal

mechanisms used in prior research to improve the understandability
of complex design spaces. Then in Section 3 we describe the design
environment that we came up with, focusing on the challenges we
faced and lessons learned in developing two prototypes. Section 4
attempts to generalize from this experience, focusing on three key
lessons that we believe would apply to design environments in other
domains and specifically software system design. In the following
section we discuss additional capabilities that we identified as of
potential benefit, and conclude in Section 5.

2 BACKGROUND: MANUFACTURING AND
BEYOND

The current state of the practice in manufacturing relies on the
expertise of designers, who have to internalize many of the require-
ments and design choices with respect to materials, manufacturing
techniques, tolerances, supply chains, etc. In practice this typically
means that designers consider only a handful of options based on
their past experience. Once selected, there is considerable cost to re-
design, and consequently manufacturing plans are rarely changed.
This situation leads to sub-optimal choices at the beginning of the
process that become increasingly sub-optimal as requirements or
aspects of the environment change (such as the cost of materials or
the availability of suppliers for manufacturing the product).

Current manufacturing techniques involve the use of commer-
cial computer-aided design (CAD) tools to design the parts to be
manufactured, and computer-aided manufacturing (CAM) tools to
develop instructions on how to build the designed part, for example
using milling or printing machines. These tools typically require
designers to manually make tradeoffs in the design space to develop
a solution, which they then specify with these tools. The tools may
give them some guidance, options, and analysis to help with the
design, but fundamentally the designer already needs to have a
design in mind, and how it is to be manufactured.

However, the design space for manufacturing is becoming in-
creasingly complex, with more choices in materials, manufacturing
methods, and alternative supply chains. Add to that a changing
set of qualities and contexts, as well as changes to supply chains
and manufacturers, and the design space that must be considered
to produce an optimal part for a given context quickly becomes
intractable for a designer to manage. Moreover, existing tools do
not support reasoning about the tradeoffs that a designer has to
make, such as how choice of material (aluminum, plastic, etc.) might
affect cost and schedule.

This situation has led engineering researchers to investigate new
approaches to CAD and CAM tools that use Al to generate and rank
alternatives. For example, in [5] the authors use machine learning to
optimize the topology of a designed piece given physical properties
such as maximum mass and rigidity. The use of such tools shifts the
designer’s cognitive load from having to manually consider how
to make tradeoffs in a complex design space, to having to examine
and understand a large number of generated alternatives.

However, as noted above, the existence of many such possible
designs introduces the new problem of navigating that space and
understanding its key features. What is needed to support the pro-
cess of automated design generation is tooling that helps designers

David Garlan, Bradley Schmerl, Rebekka Wohlrab, and Javier Caimara

understand the design space and the options that are being pre-
sented so that they can make informed choices about which of the
generated designs best meets their needs.

Design space exploration has been broadly studied in many
areas areas including product lines [15], model-based performance
prediction [1] and formal verification [10]. However, explanation
of design spaces has been largely unaddressed until recently, partly
due to the considerable amount of data that it requires, which is
often difficult to obtain, as well as for the challenge posed by the
limited capacity of humans to effectively assimilate large quantities
of information.

To address this challenge, our recent work [3, 4, 6, 17] has ex-
plored the use of dimensionality reduction techniques, traditionally
used in areas such as biology and machine learning [13], to identify
and facilitate the understanding to a human designer of the main
design decisions and tradeoffs in a design space.

Principal Component Analysis (PCA) [9] is used in [3] by soft-
ware architects to understand which design decisions contribute
the most to the satisfaction of system qualities (e.g., performance,
availability) by identifying the subset of design variables that ex-
plain the most variation across the design space. Additionally PCA
indicates correlations and anti-correlations between these design
variables (e.g., using component X in a software configuration is
positively correlated with cost, and negatively with response time).

The range of tools employed in [3] is extended in [4, 17], which
also incorporate: (i) Multiple Correspondence Analysis [12] (MCA
— similar in functionality to PCA, but for categorical variables),
(ii) Decision Tree Learning (DTL) [2], which is used to explain how
concrete choices associated with specific design decisions influence
the qualities across the design space, and (iii) clustering [14] to
identify the main categories of solutions in the space. This prior
work describes explores a combination of those tools in the contexts
of software architecture [4] and planning for robotic autonomous
systems [17]. These techniques are generalized in [6], which de-
scribes a design space explanation process and lessons learned from
experience those domains, as well as the generative manufacturing
case, described in this case study.

3 GENERATIVE MANUFACTURING TOOL
SUPPORT

In this section we describe the design environment that we devel-
oped working with colleagues and industrial collaborators in the
generative manufacturing domain. Over the course of two years
we developed two major prototypes, incorporating lessons learned
from the first into the second. After describing those lessons and
how we addressed them, we consider in Section 4 how those lessons
might generalize to other domains, and specifically how they might
provide insight into tool-assisted software systems design.

Our initial generative manufacturing prototype used design gen-
eration tools to pre-compute a large space of designs that can then
be explored by a designer. This is done in two phases. In the first
phase a designer inputs a specification of the part’s topological
constraints (i.e., its rough shape), and dimensions of quality such
as strength, tolerances, options of material (aluminum, steel, etc.)
and manufacturing methods (additive, subtractive, etc.). The design

Challenges in Creating Effective Automated Design Environments: An experience report from the domain of generative manufddesigngng '24, April 15-14, 2024, Lisbon, Portugal

tools then sample the entire design space, using CAD tools to gen-
erate a large number of potential designs (in the thousands). From
this very large space, the tools identify the Pareto optimal ones,
which represent the best designs for a given weighting of quality
dimensions — mass, stiffness, and cost and time to manufacture the
part. This is a reduced, but still very large, number of candidates.

In the second phase the designer can specify alternative attribute
weights to understand the tradeoffs among qualities for the pre-
computed Pareto optimal designs. By varying the weights on quality
dimensions using the tool, the designer can explore the space, one
design at a time, displaying the shape and properties of each, to
find one that best satisfies their needs.

This first prototype was a vast improvement over the more-
manual processes used by designers at our partner’s company, since
it allowed rapid exploration of many possible designs. However, it
had a number of serious shortcomings.

First, it was difficult for the designer to get an overall sense of
the design space landscape. Thus it was hard for them to answer
questions like: What regions are feasible and which aren’t? (For
example, is it possible to use aluminum to make the part cheaply?).
What are key thresholds of quality weights that lead to different
outcomes? (For example, what is the maximum strength that we can
get if we restrict ourselves to additive manufacturing?) How many
other designs are close to a given one? (For example, are there many
other designs that also use aluminum and additive manufacturing?)

Second, some of the information required by the tools to pre-
compute the design space was not readily available up front. In
particular, getting time and cost values for manufacturing a spec-
ified quantity of parts, given a part’s design, required reaching
out to the various part manufacturers for “bids”. While this might
be feasible for small numbers of designs, it cannot be done for
thousands.

Third, large parts of the pre-computed design space were of little
interest to the designer. Often there were constraints on various
design properties (such as maximum manufacturing cost) that im-
mediately ruled out certain designs. Including these designs added
unnecessary complexity to the set of design options provided by
the tool, further complicating design space understanding.

Fourth, it was difficult for designers to intuitively connect utility
weights with design outcomes. For example, how would increasing
the significance of having low mass decrease its corresponding
flexibility and cost of manufacturing?

Based on this experience, the second prototype moved to a very
different process: instead of pre-generating a comprehensive and
large space of possible designs, the tool uses an iterative process in
which a designer incrementally explores the design space, adding
new designs to the considered pool of possible solutions, by speci-
fying constraints, and then using our tools to understand the pool
of generated solutions that satisfies those constraints. This had a
number of benefits.

First, by reducing the number of designs under consideration, it
now became feasible to obtain supplier bids to use in comparing
business-related properties from the part manufacturers. Although
there was some residual uncertainty in these bids at an early stage
of design, they provided a realistic basis for including key concerns
of cost and schedule into the design process.

Options genet
!

AI6061

TI6ALAV

ABS Plastic

== Mass = 98.35 kg
Maximum Displacement

Figure 1: Option Generation.

Second, the new environment included design space explanation
tools — specifically, ways to support comparison of systems across
various dimensions and mechanisms to understand the key factors
that influence design choices, as we describe in more detail below.

Third, this approach better corresponded to a designer’s way of
working, by taking advantage of their prior experience and knowl-
edge to set initial bounds on the space of solutions through a set of
iteratively refined constraints and preferences, but still effectively
using the tools to interpret and enhance that space through design
generation and explanation. Moreover, using constraints to bound
the search space eliminated the generation of large numbers of
irrelevant designs.

The second generation tool is illustrated in Figures 1—3. Figure 1
depicts designs for two parts that are generated by the CAD tool,
which takes a set of requirements about the geometries and con-
straints on the solution (such as ranges of cost, mass, and time to
deliver) and generates a set of designs that satisfy those constraints.

A key feature of this display is that regions of the design space
that are not feasible are made explicit: in Figure 1 the cells shaded
in orange indicate that there is no feasible design in this space for
the given input constraints. The bottom of Figure 1 shows that the
designer can view specific details about a particular design and the
values of associated metrics.

Designing *24, April 15-14, 2024, Lisbon, Portugal

Analysis + tradeoffs

:

4

®
®
®

*°s o

Figure 2: Pairwise Trade-off Analysis.

Figure 2 shows how the tool facilitates pairwise tradeoff analysis.
For specified pairs of qualities, each of the currently generated
designs is plotted along where it lies on each dimension. Such a
plot gives the user an idea of how two quality attributes may be
related, and would be used by a designer to (a) refine constraints
further to restrict the set of options for the next iteration, or (b)
identify parts of the design space that haven’t been considered and
try to come up with options in those unpopulated areas.

Figure 3 shows an abbreviated learned decision tree indicating
how a particular quality is impacted by all of the other qualities.
The decision tree depicted in the figure is showing to the designer
how cost is impacted by decisions about lead time, compliance
(flexibility) and choice of manufacturing material. As shown, the
top-level decision points are based on lead time (i.e., the time to
complete the manufacturing) — meaning that decisions about lead
time are the most important with respect to differentiating cost,
followed by compliance, then whether the material is titanium,
followed by the mass. The decision tree also indicates how many of
the designs make similar decisions, helping the designer understand
clustering behavior.

In contrast to the pairwise comparison, the decision tree provides
a combined view about how a particular quality is impacted by all
the other concerns. This allows a designer to understand what parts
of the design space might be missing from consideration to generate

18

David Garlan, Bradley Schmerl, Rebekka Wohlrab, and Javier Caimara

Options: 16 (100.0%)
Average cost: $124953 .53
Range: [$1148.00 - $262528.13)

lead_time <= Sw, 5d

Options: 11 (68.75%)
Average cost: $86638 88
Range: [$1148.00 - $170841.00]

|ead_time > Sw, 5d

Options: 5 (31.25%)
Average cost: $209245.76
Range: [$172946.58 - $262528.13

[ead_time? 1]

lead_time <= lw, 6d
Options: 4 (25.0%)
Average cost: $30698 .00
Range: [$1148.00 - $64019.00)

lead_time > 1w, 6d
Options: 7 (43.75%)
Average cost: $118605.09
Range: [$88946.46 - $170841.00)

[lead_time?] [

compliance?]

compliance > 0. 87Nm

Options: 5 (31.25%)
Average cost: $109100.13
Range: [$88946.46 - $133621.34)

material?

material is not TIGAI4V

Options: 4 (25.0%)
Average cost: $111267.10
Range: [$88946 .46 - $133621.34)

ompliance <= 0.87Nm

Options: 2 (12.5%)
Cost: $142367.50

material is TIGAI4V

Options: 1 (6.25%)
Cost: $100432.27

2(12.5%) # Options: 2 (12.5%)

Cost: $111183.08 Cost: $111351.11

Figure 3: Decision Tree Analysis.

options in the next iteration, or to understand how many similar
options may exist in a particular part of the design space, as well
as indicating thresholds (for numerical variables) and decisions
(for categorical variables) that influence the cost of design. Other
decision trees can be created to “explain” other variables, such as the
time required for manufacture of the part in the quantity needed.

4 BEYOND MANUFACTURING

Stepping back from the details of our tool and the particulars of the
manufacturing domain, we can consider some general observations
about tool-assisted design space exploration, and in particular, how
these might apply to software system design.

Designs and requirements co-evolve: The availability of automated
design tools might naively suggest that given a well-defined set
of requirements, a designer simply pushes a button and the tool
spits out the optimal design satisfying those requirements. In prac-
tice this doesn’t work. First, the designer may not know what is
feasible, let alone optimal, without exploring a bit of the design
space. Second, it may not be clear what are the inherent tradeoffs
associated with the design: by strengthening one requirement it
is often unclear what other requirements or desired properties are
also affected. Thus it essential for tools to provide a collection of
designs and ways to compare them in order for the designer to
understand which requirements and desired properties are feasible,
and how those impact other requirements and properties.

At the same time, it must be possible for the designer to interac-
tively control the number of designs that are under consideration.

Challenges in Creating Effective Automated Design Environments: An experience report from the domain of generative manufddesigngng '24, April 15-14, 2024, Lisbon, Portugal

While dimensionality reduction techniques, noted in Section 2, can
reduce the complexity of design spaces, in practice it may work
much better if the designer can directly affect which designs are
available for comparison. This is particularly true when working
with experienced designers, who can bring their understanding
about what makes sense in their domain to help them focus the
search and comparison process, while refining their more-detailed
understanding of the possible requirements for a particular design
task. Moreover, when the cost of elaborating the properties of a
particular design (such as cost and manufacturing lead time for a
set of manufactured parts) is non-trivial, it is important to bound
the set of designs under consideration.

We argue that the need to support co-evolution of design and
requirements in a tool-assisted context applies equally to software
systems. A software system designer may know what quality at-
tributes are important to their design, but they likely do not know
precisely how their design choices affect quality outcomes or what
tradeoffs need to be made to achieve desired levels of certain prop-
erties. Through design exploration and design space explanation
of the sort we outlined earlier, a much clearer picture emerges of
what can be achieved and at what cost.

In a similar way to the manufacturing context, software systems
designers also can benefit from the ability to guide the search and
generation of alternatives. For example, while a software architect
might use an architectural design tool to generate a very large set
of possible systems designs from scratch, in practice it is likely that
such designs will be variations on some standard styles or frame-
works that the architect already has in mind, or are already in place.
Or, the design generation tools might be used to improve a “seed”
design using a set of tactics, for example improving performance or
availability. Further, there are likely to be certain properties of the
designs - such as system-level performance — that require proto-
typing or simulation, and that therefore can feasibly be determined
for only a relatively small number of candidates.

Design space “explanation” is a necessity: Regardless of the size
of the generated space, beyond a very small number of candidates
it becomes crucial to provide summaries and explanatory views of
the current set of candidates chosen by the designer.

In our first prototype, we allowed a designer to explore the space
of candidates, but did not provide ways to visualize the overall
space itself or the tradeoffs among a set of alternatives. As a result,
designers had to perform a lot of manual traversal, using a form of
“generate-and-test” exploration.

In contrast, as described earlier, the second prototype provided
(a) trade-off views and (b) decision tree views. With the former,
designers could see all of the current candidates mapped onto 2-
dimensional trade-off plots (cf. Figure 2). With the latter, designers
could identify the key thresholds and decision points that led to
alternative sets of designs with respect to a target property, such
as which factors, and which thresholds of the design account for
the cost of manufacturing (cf. Figure 3).

As we outlined earlier, there is a rich set of such visualizations
and design space reduction mechanisms that can potentially be
applied across many domains. However, we learned in working
with manufacturing designers that not all of these are useful for all
domains. For example, Principal Component Analysis can identify

the strongly correlated or anti-correlated factors that account for
the variability in a set of designs. However, this view turned out
to be of little value for manufacturing, where such correlations are
already well-understood by designers (e.g., that cost and schedule
are anti-correlated).

This suggests, more generally, that care must be taken to tailor
the potential space reduction techniques to the domain. For soft-
ware systems design this is also likely to be true: in some domains
it is clear to a seasoned designer what are the essential qualities
of interest, and how are they correlated — at least at a high level.
But at a more detailed level the particular questions they need to
answer using the tools may depend substantially on the kind of
system being designed [7].

Human expertise remains essential: While for some domains
many of the properties that are important in developing a good de-
sign can be incorporated into generative design tools, there typically
exist relevant properties that are not easily encoded or mechanized.
These properties are often based on knowledge that the designer
has outside the realm of automation and requirements specification.

In the manufacturing world, such properties included knowledge
of the history of interactions with particular manufacturing subcon-
tractors, hunches about the future price of materials, the reliability
of certain manufacturing processes, etc. Recognizing this inherent
inability of automated design tools to capture all dimensions of
concern and knowledge, underscores the importance of creating
automated design environments where such human knowledge
and experience can complement the automated design process.

This observation is likely to be true for software systems design.
Humans bring to the table much tacit knowledge, such as the capa-
bility of the development team to implement a particular design,
strategic priorities of the company, the reliability of outsourcing
partners, the expected lifetime of the system, the maturity of frame-
works that might be used as system building blocks, technology
trends, etc.

5 ADDITIONAL CAPABILITIES

Tools such as those we developed for assisting manufacturing de-
sign, and their likely analogs for software system design, represent
an important step forward in providing automated assistance to
designers. However, beyond the needs for design generation, dis-
tillation, and comparison which they address, there are several
additional capabilities that we identified as being ripe for inclusion.

Change management and robustness. The domain of manufac-
turing undergoes frequent changes: new manufacturing methods
and materials become available; the cost of materials fluctuates;
the functional requirements of a part may change over time; the
context in which the part is used may evolve. Given that there is a
cost to changing a design, a useful analysis capability would be to
evaluate how robust a design is to such changes. In other words,
if the current assumptions about the manufacturing and deploy-
ment context change, will a given design continue to be adequate.
Or, put another way, given some cost in making design changes,
at what point would the design have to change to accommodate
an evolving environment. These kinds of concerns suggest a new

Designing ’24, April 15-14, 2024, Lisbon, Portugal

set of capabilities in automated design tools that would focus on
evaluating and improving system design robustness to changes.
Such concerns also can directly affect software systems design.
Software systems may make certain assumptions about the op-
erating or development environments in order work correctly or
effectively. However, it is important to know to what extent devia-
tions from those expectations can be handled by the system without
violating certain essential properties or making adequate design
tradeoffs. This knowledge could be used to improve the robustness
of the design: for example, adding redundancy to manage potential
attacks, or self-adaptation mechanisms to recover from faults.

Requirements malleability and provenance. As we noted in the
previous sections, requirements and designs naturally co-evolve.
However, not all requirements are equally changeable. In practice
some requirements may be non-negotiable, such as those that are
mandated by a regulatory process. Others may have limits within
which they must be satisfied, such as the cost of production.

Our current tool provides no way to indicate the degree to which
a given requirement can be flexible. Thus we rely on the designer
to keep in mind those restrictions and tolerances. Making them
explicit would help bound the exploration, and help ensure that
designs do not violate some externally mandated requirement.

To do this effectively requires automated support for require-
ments tracking [18]. Knowing, for example, that a particular physi-
cal property of a manufactured part is required for external certifi-
cation is important in order to know how much flexibility one has
in its design to make tradeoffs involving that property. Conversely,
knowing that a certain target cost of production has some flexibil-
ity, provided that the part can be produced quickly, would allow
alternative cost-time tradeoffs to be considered.

Similar capabilities are likely to also be essential for software
systems design, where some requirements may derive from legal
sources (for example privacy laws), while others are more “wish
lists” where there is considerable flexibility in achieving them and
making design tradeoffs.

6 CONCLUSIONS

In this paper we have outlined our experience in developing a design
space exploration and understanding environment for generative
manufacturing, highlighting some of the issues and challenges we
faced along the way. We have argued that many of these issues
generalize to other domains, such as software systems design, which
are increasingly supported by design generation tools, and that have
a rich set of requirements and quality dimensions that ultimately
require the designer to identify a design that best balances the
tradeoffs inherent in that domain.

Specifically, we identified three key observations that frame
effective use of automated design generation tools: (a) the need to
support co-evolution of requirements and design through designer
interaction and iteration to bound and explore the space of designs,
(b) the need for explanation and summarization tools that provide
a designer with ways to understand the design space features and
tradeoffs, and (c) the need to allow for human expertise about
aspects of the design that cannot be easily encoded in design tools.
We also identified two important areas for future investigation: (a)
tools that can evaluate and improve design for design robustness

20

David Garlan, Bradley Schmerl, Rebekka Wohlrab, and Javier Camara

in the face of environmental changes, and (b) tools that support
requirements provenance and degree of malleability.

ACKNOWLEDGMENTS

This work was partially supported by the Wallenberg Al, Autonomous
Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation, by the Spanish Government (FEDER,
Ministerio de Ciencia e Innovacién-Agencia Estatal de Investi-
gacién) under projects TED2021-130523B-100 and PID2021-125527NB-
100, and by Lockheed Martin.

In particular we would like to thank Levent Burak Kara, Greg Fed-
erer, Steve Smith, Zack Rubenstein, Hongrui Chen, Aditya Joglekar,
and Ani Kimmel of Carnegie Mellon as colleagues who worked with
us on the smart manufacturing project, and whose work is depicted
in Figure 1.

REFERENCES
n

Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni.

2004. Model-Based Performance Prediction in Software Development: A Survey.

IEEE Trans. Software Eng. 30, 5 (2004), 295-310.

[2] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles] Stone. 2017.
Classification and regression trees. Routledge.

[3] Javier Camara, Mariana Silva, David Garlan, and Bradley R. Schmerl. 2021. Ex-
plaining Architectural Design Tradeoff Spaces: A Machine Learning Approach.
In Software Architecture - 15th European Conference, ECSA 2021, Virtual Event,
Sweden, September 13-17, 2021 (LNCS, Vol. 12857). Springer, 49-65.

[4] Javier Camara, Rebekka Wohlrab, David Garlan, and Bradley R. Schmerl. 2023. Ex-
TrA: Explaining architectural design tradeoff spaces via dimensionality reduction.
7. Syst. Softw. 198 (2023), 111578. https://doi.org/10.1016/j.js5.2022.111578

[5] Hongrui Chen, Aditya Joglekar, and Levent Burak Kara. 2023. Topology Op-
timization Using Neural Networks With Conditioning Field Initialization for
Improved Efficiency (International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, Vol. Volume 3A: 49th Design
Automation Conference (DAC)). https://doi.org/10.1115/DETC2023-116937

[6] Javier Camara, Rebekka Wohlrab, David Garlan, and Bradley Schmerl. 2023.
Focusing on What Matters: Explaining Quality Tradeoffs in Software-Intensive
Systems via Dimensionality Reduction. IEEE Software (2023), 1-10. https:
//doi.org/10.1109/MS.2023.3320689

[7] J. Andres Diaz-Pace and David Garlan. 2024. The Architect in the Maze: On the Ef-
fective Usage of Automated Design Exploration. In Proceedings of 1st International
Workshop on Designing Software.

[8] Mikell Groover and EWJR Zimmers. 1983. CAD/CAM: computer-aided design and
manufacturing. Pearson Education.

[9] I T.Jolliffe. 1986. Principal Components in Regression Analysis. Springer New

York, New York, NY, 129-155.

Eunsuk Kang, Ethan Jackson, and Wolfram Schulte. 2011. An Approach for Ef-

fective Design Space Exploration. In Foundations of Computer Software. Modeling,

Development, and Verification of Adaptive Systems, Radu Calinescu and Ethan

Jackson (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 33-54.

Simon Kiinzli, Lothar Thiele, and Eckart Zitzler. 2006. Multi-criteria decision

making in embedded system design. System on chip: next generation electronics

(2006), 3-28.

Brigitte Le Roux and Henry Rouanet. 2009. Multiple Correspondence Analysis.

SAGE Publications.

Jake Lever, Martin Krzywinski, and Naomi Altman. 2017. Principal component

analysis. Nature Methods 14, 7 (2017), 641-642.

Angelos Markos, Alfonso Iodice D’Enza, and Michel van de Velden. 2019. Beyond

tandem analysis: Joint dimension reduction and clustering in R. Journal of

Statistical Software 91, 10 (2019).

Alexandr Murashkin, Michal Antkiewicz, Derek Rayside, and Krzysztof Czar-

necki. 2013. Visualization and exploration of optimal variants in product line

engineering. In Proc. of the 17th Intl. Software Product Line Conference.

Steffen Reussner, Ralf H.and Becker, Happe Jens, Robert Heinrich, and Anne

Koziolek. 2016. Modeling and Simulating Software Architectures: The Palladio

Approach 1st Edition. MIT Press.

Rebekka Wohlrab, Javier Camara, David Garlan, and Bradley R. Schmerl. 2023.

Explaining quality attribute tradeoffs in automated planning for self-adaptive

systems. . Syst. Softw. 198 (2023).

Rebekka Wohlrab and David Garlan. 2022. A Negotiation Support System for

Defining Utility Functions for Multi-Stakeholder Self-Adaptive Systems. Require-

ments Engineering (2022). https://doi.org/10.1007/s00766-021-00368-y.

(1]

[12

(13]

[14

(15]

[16]

https://doi.org/10.1016/j.jss.2022.111578
https://doi.org/10.1115/DETC2023-116937
https://doi.org/10.1109/MS.2023.3320689
https://doi.org/10.1109/MS.2023.3320689

