
Formally Certified Approximate Model Counting

Downloaded from: https://research.chalmers.se, 2024-11-05 01:19 UTC

Citation for the original published paper (version of record):
Tan, Y., Yang, J., Soos, M. et al (2024). Formally Certified Approximate Model Counting. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 14681 LNCS: 153-177. http://dx.doi.org/10.1007/978-3-031-65627-9_8

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Formally Certified Approximate Model
Counting

Yong Kiam Tan1(B) , Jiong Yang2 , Mate Soos2 , Magnus O. Myreen3 ,
and Kuldeep S. Meel4

1 Institute for Infocomm Research (I2R), A*STAR,
Singapore, Singapore

tanyk1@i2r.a-star.edu.sg
2 National University of Singapore, Singapore, Singapore

jiong@comp.nus.edu.sg, soos.mate@gmail.com
3 Chalmers University of Technology, Gothenburg, Sweden

myreen@chalmers.se
4 University of Toronto, Toronto, Canada

meel@cs.toronto.edu

Abstract. Approximate model counting is the task of approximating
the number of solutions to an input Boolean formula. The state-of-
the-art approximate model counter for formulas in conjunctive normal
form (CNF), ApproxMC, provides a scalable means of obtaining model
counts with probably approximately correct (PAC)-style guarantees. Nev-
ertheless, the validity of ApproxMC’s approximation relies on a careful
theoretical analysis of its randomized algorithm and the correctness of
its highly optimized implementation, especially the latter’s stateful inter-
actions with an incremental CNF satisfiability solver capable of natively
handling parity (XOR) constraints.

We present the first certification framework for approximate model
counting with formally verified guarantees on the quality of its out-
put approximation. Our approach combines: (i) a static, once-off, for-
mal proof of the algorithm’s PAC guarantee in the Isabelle/HOL proof
assistant; and (ii) dynamic, per-run, verification of ApproxMC’s calls to
an external CNF-XOR solver using proof certificates. We detail our gen-
eral approach to establish a rigorous connection between these two parts
of the verification, including our blueprint for turning the formalized,
randomized algorithm into a verified proof checker, and our design of
proof certificates for both ApproxMC and its internal CNF-XOR solv-
ing steps. Experimentally, we show that certificate generation adds little
overhead to an approximate counter implementation, and that our cer-
tificate checker is able to fully certify 84.7% of instances with generated
certificates when given the same time and memory limits as the counter.

Keywords: approximate model counting · randomized algorithms ·
formal verification · proof certification

Y. K. Tan and J. Yang—The first two authors contributed equally.
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 153–177, 2024.
https://doi.org/10.1007/978-3-031-65627-9_8

https://zenodo.org/doi/10.5281/zenodo.10948388
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_8&domain=pdf
http://orcid.org/0000-0001-7033-2463
http://orcid.org/0000-0002-8356-6637
http://orcid.org/0000-0002-7355-881X
http://orcid.org/0000-0002-9504-4107
http://orcid.org/0000-0001-9423-5270
https://doi.org/10.1007/978-3-031-65627-9_8

154 Y. K. Tan et al.

1 Introduction

State-of-the-art automated reasoning solvers are critical software systems used
throughout formal methods. However, even skilled and trusted developers of such
tools can inadvertently introduce errors. Two approaches have evolved to provide
assurances that automated reasoning tools behave as intended. The first involves
the use of theorem provers to formally verify the correctness of solver implemen-
tations [20,30]. This approach guarantees correct outputs for all inputs, but
struggles to scale to complex systems such as SAT solvers. The second approach
is based on certifying algorithms [38], where a solver is required to produce a
certificate alongside its output [6,10,24,35,37,53,58]. A certificate checker (also
called proof checker)—which is often formally verified—then checks the correct-
ness of this certificate, ensuring that the system’s output adheres to the desired
specifications. This latter method has gained significant traction in the SAT
solving community, wherein a SAT solver either returns a satisfying assignment
that is easy to check through evaluation or a proof of unsatisfiability as a certifi-
cate [58]. However, neither of these approaches have been applied to probabilistic
systems that rely on randomized algorithms. In fact, McConnell et al. [38] argue
that randomized algorithms resist deterministic certification.

In this paper, we propose a hybrid approach that harnesses the power of
both theorem-proving and certificate-based approaches to certify probabilistic
systems. We present our approach on ApproxMC, a probabilistic automated rea-
soning system which computes approximate model counts for Boolean formulas.
Model counting is a fundamental problem in computer science that serves as
a key component in a wide range of applications including control improvisa-
tion [22], network reliability [14,56], neural network verification [5], probabilistic
reasoning [11,18,45,46], and so on. Therefore, it is crucial that the results com-
puted by an approximate model counter, such as ApproxMC, can be trusted.

Two key questions must be tackled by our approach. First, what does it mean
to trust a random run of ApproxMC? Here, we propose a verification modulo ran-
domness approach, i.e., our certification results are modulo a trusted random bit
generator. Second, how do we handle the huge volume of (incremental) CNF-
XOR satisfiability solver calls which are tightly integrated in ApproxMC [49,50]?
Here, we design the certificate format to require only the results of solver calls
that are crucial for ApproxMC’s correctness. In particular, ApproxMC makes
O(ε−2 · log n · log δ−1) many calls to its solver, where n is the number of (pro-
jected) variables of the formula, ε is the tolerance parameter, and δ is the confi-
dence parameter (see Sect. 3 for definitions); our crucial insight is that to certify
ApproxMC, we only need to check the correctness of O(log δ−1) UNSAT calls,
which is independent of n. We then observe that existing CNF-XOR UNSAT
checkers fail to scale to formulas that are handled by ApproxMC. To this end, we
adapt existing solving and verified proof checking pipelines to natively support
proof certificates for CNF-XOR unsatisfiability. With this design, our framework
is able to independently check certificates generated by a state-of-the-art (but
untrusted) implementation of ApproxMC, with all of the latter’s optimizations
enabled. Overall, the key idea is to combine a static, once-off, formal proof of

Formally Certified Approximate Model Counting 155

Fig. 1. The certified approximate model counting workflow.

the algorithm’s correctness guarantee in Isabelle/HOL [42,43] with dynamic,
per-run, certification of ApproxMC’s calls to an external CNF-XOR solver.

In summary, our contributions are as follows:

1. An abstract specification of ApproxMC and a formal proof of its probably
approximately correct (PAC) guarantee in Isabelle/HOL (Sect. 4.1).

2. A refinement of the abstract specification to a concrete certificate format and
checker implementation for ApproxMC (Sects. 4.2 and 4.3).

3. Updates to various tools to realize a formally verified proof checking pipeline
with native support for CNF-XOR unsatisfiability (Sect. 4.4).

4. Empirical evaluation of the framework on an extensive suite of model counting
benchmarks to demonstrate its practical utility (Sect. 5).

Our workflow for certified approximate model counting is shown in Fig. 1. In
step 1 , it uses a trusted external tool to generate uniform random bits which are
handed to an untrusted certificate generator ApproxMCCert and to the verified
certificate checker CertCheck (extracted from Isabelle/HOL); the random bits
are used identically by ApproxMCCert and CertCheck to generate random XOR
constraints as part of the counting algorithm. For step 2 , ApproxMCCert gener-
ates a partial certificate which is subsequently checked in step 3 by CertCheck;
the certificate is partial because it does not contain CNF-XOR unsatisfiability
proofs. Instead, CertCheck calls an external CNF-XOR unsatisfiability checking
pipeline (with verified proof checking in CakeML [36,53]). In the final step 4 ,
an approximate model count is returned upon successful certification.

As part of our commitment to reproducibility, all code and proofs have been
made available with a permissive open-source license [2,21,54].

Impact. Although our main objective was to enhance end-user trust in answers
to their counting queries, undertaking this project led to unexpected benefits
that are worth highlighting. While modifying ApproxMC’s underlying solver,
CryptoMiniSat [52], to emit certificates (Sect. 4.4), a bug in CryptoMiniSat’s
XOR manipulation system was discovered. The bug was introduced during the
development of part of the BIRD system [50] that keeps all XOR constraints’
clausal versions (as well as their compact XOR versions) in-memory at all times.

156 Y. K. Tan et al.

This allows a substantial level of interaction between XOR and clausal con-
straints. However, it also led to large overhead in terms of the often hundreds
of thousands of clauses needed to encode the XORs in their clausal form. The
compromise made by the developers was to detach the clausal representation
of XORs from the watchlists. However, that seemed to have led to a level of
complexity that both allowed the bug to occur, and more importantly, made it
impossible to discover via CryptoMiniSat’s standard fuzzing pipeline. Our ver-
sion of CryptoMiniSat fixes this by not keeping around a clausal encoding of all
XORs, instead introducing (and deleting) them whenever needed for the proof.

Furthermore, we have also found minor flaws in the theoretical analysis of
ApproxMC (see discussion of events_prob) and in the implementation, e.g., the
sampling of random bits was slightly biased, and an infinite loop could be trig-
gered on certain random seeds. None of these bugs were known to the authors
of ApproxMC or were previously reported by users of the tool. All of these issues
have been fixed and upstreamed to their tools’ respective codebases.

2 Related Work

This discussion is focused on formally verified algorithms and proof checkers.
Readers are referred to Chakraborty et al. [13] and references therein for related
literature on approximate model counting.

Certified Model Counting. Prior research on certificate-based approaches focuses
on deterministic methods in model counting. Prior work on certified exact model
counting focuses either on the development of proofs, such as MICE [19] and
CPOG [10], along with their respective toolchains, or on analyzing the complex-
ity of the proof system [7]. Some efforts have been directed toward certifying
deterministic approximate counting algorithms which, however, require access to
a ΣP

2 oracle and did not yield practical implementations [40]. Our work develops
the first certification framework for randomized approximate model counting.

Formalization of Randomized Algorithms. Various randomized algorithms have
been formally analyzed in Isabelle/HOL, including randomized quicksort, ran-
dom binary tree data structures [15], and approximation of frequency moments
in data streams [31–34]. These prior efforts as well as ours, all build upon the
foundations for measure and probability theory in Isabelle/HOL [16,28]. Proper-
ties of approximate membership query structures (including Bloom filters) have
been verified in Coq [26]. Pioneering work on formal verification of randomized
algorithms, including the Miller-Rabin primality test, was carried out by Joe
Hurd in HOL4 [29]. A common objective of these prior efforts, and that of ours,
is to put the guarantees of randomized algorithms on formal foundations.

Verified Proof Checking. Formally verified proof checkers have been developed
for several (deterministic) algorithms and theories, such as the CNF unsatisfi-
ability checkers used by the SAT community [27,37,53]. Within Isabelle/HOL,

Formally Certified Approximate Model Counting 157

the Pastèque tool [35] checks proofs in the practical algebraic calculus, which
can be used to validate algebraic reasoning; the CeTA tool [55] is based on an
extensive library of results for certifying properties of rewriting systems; and
the LEDA project developed specialized proof checkers for graph algorithms [1].
CoqQFBV [47] is similar in design to our approach in that a higher-level Coq-
generated tool for verified bit-blasting is used in concert with a lower-level veri-
fied proof checker for CNF formulas.

CNF-XOR Unsatisfiability Checking. Given ApproxMC’s reliance on CNF-XOR
formulas, certification of CNF-XOR unsatisfiability emerged as a key challenge in
our work. To this end, we provide a brief overview of three prior state-of-the-art
approaches for certified CNF-XOR reasoning.

1. The first approach uses proof generation and certification of XOR reasoning
based on Binary Decision Diagrams (BDDs) [48]. It uses CryptoMiniSat [52],
a SAT solver specifically made to work on CNF-XOR instances and TBUDDY [9]
to produce FRAT proof certificates [3] for CryptoMiniSat’s XOR reasoning;
FRAT-rs [3] is used as the elaboration backend and a verified LRAT proof
checker [27,53] can be used to check the elaborated proofs.

2. The second approach, due to Gocht and Nordström [24], relies on pseudo-
Boolean reasoning and its associated proof system to justify both CNF and
parity reasoning. This approach was demonstrated on MiniSat equipped with
an XOR reasoning engine, with VeriPB as a proof checker; pseudo-Boolean
proofs are also supported by a verified proof checker [23].

3. The third approach is to rely on the standard SAT solvers accompanied with
standard CNF proof formats and (verified) checkers [27,37,53].

3 Background

This section gives a brief introduction to ApproxMC (Sect. 3.1) and to theorem-
proving in Isabelle/HOL (Sect. 3.2).

3.1 Approximate Model Counting

Given a Boolean formula F , the model counting problem is to calculate the num-
ber of models (also called solutions or satisfying assignments) of F . Model count-
ing is known to be #P-complete, and therefore has been a target of sustained
interest for randomized approximation techniques over the past four decades.
The current state-of-the-art approximate approach, ApproxMC [12], is a hashing-
based framework that relies on reducing the model counting problem to SAT
queries, which are handled by an underlying solver. Importantly, ApproxMC is a
probably approximately correct (PAC) projected model counter, i.e., it takes in
a formula F , a projection set S ⊆ Vars(F), a tolerance parameter ε > 0, and a
confidence parameter δ ∈ (0, 1], and returns a count c satisfying the PAC guar-
antee: Pr

[|sol(F)↓S |
1+ε ≤ c ≤ (1 + ε)|sol(F)↓S |

]
≥ 1 − δ, where |sol(F)↓S | denotes

the number of the solutions of F projected on S.

158 Y. K. Tan et al.

Algorithm 1. ApproxMC (F, S, ε, δ)

1: thresh ← 9.84
(
1 + ε

1+ε

) (
1 + 1

ε

)2
2: Y ← BoundedSAT(F, S, thresh)
3: if (|Y | < thresh) then return |Y |
4: t ← computeIter(δ) � probability amplification using the median method
5: C ← emptyList, iter ← 0
6: repeat
7: iter ← iter + 1
8: nSols ← ApproxMCCore(F, S, thresh)
9: AddToList(C, nSols)

10: until (iter ≥ t)
11: return FindMedian(C)

Algorithm 2. ApproxMCCore (F, S, thresh)
1: Choose |S| − 1 random XOR constraints X = (X1, . . . , X|S|−1) over S
2: m ← FindM(F, S, X, thresh) � search for m ∈ {1, . . . , |S|} using BoundedSAT
3: if (m ≥ |S|) then return (2m × 1) � dummy value for failed round
4: c ← BoundedSAT (F ∧ X1 ∧ · · · ∧ Xm, S, thresh) ;
5: return (2m × c)

An outline of ApproxMC is shown in Algorithms 1 and 2. At a high level, the
key idea of ApproxMC is to partition the set of solutions into small cells of roughly
equal size by relying on the power of XOR-based hash families [12,25], then
randomly picking one of the cells and enumerating all the solutions in the chosen
small cell up to a threshold thresh via calls to BoundedSAT(F, S, thresh). The
estimated count is obtained by scaling the number of solutions in the randomly
chosen cell by the number of cells, and the success probability of this estimation
is amplified to the desired level by taking the median result from several trials.

Syntactically, the solution space partition and random cell selection is
accomplished by introducing randomly generated XOR constraints of the form
(
⊕

y∈Y y) = b for a random subset Y ⊆ S and random bit b. A crucial fact
about random XOR constraints exploited by ApproxMC is their 2-universality
when viewed as a hash family on assignments—briefly, given any two distinct
Boolean assignments over the variable set S, the probability of each one satisfy-
ing a randomly chosen XOR constraint is independent and equal to 1

2 .
Accordingly, the BoundedSAT queries made in Algorithms 1 and 2 are con-

junctions of the input formula and random XOR constraints, i.e., CNF-XOR for-
mulas. The current implementation of ApproxMC relies on CryptoMiniSat for
its ability to handle CNF-XOR formulas efficiently and incrementally [49,50].
Furthermore, the real-world implementation also relies on three key optimiza-
tions. (1) The search for the correct value of m in Algorithm 2 (FindM) combines
a linear neighborhood search, a galloping search, and a binary search [12]. (2)
The underlying SAT solver is used as a library, allowing to solve under a set
of assumptions, a technique introduced as part of MiniSat [17]. This allows the

Formally Certified Approximate Model Counting 159

solver to keep learned lemmas between subsequent calls to solve(), significantly
improving solving speed, which is especially helpful for proving unsatisfiability.
(3) To improve the speed of finding satisfying assignments, a solution cache of
past solutions is retained [49] which is especially helpful when the optimal num-
ber of XORs to add is N, but N+1 have been added and were found to be too
much. In these cases, all solutions that are valid for N+1 XORs are also solutions
to N XORs and can be reused.

3.2 Formalization in Isabelle/HOL

Notation. All Isabelle/HOL syntax is typeset in typewriter font with bold-
face Isar keywords;

∧
and =⇒ are the universal quantifier and implication of

Isabelle’s metalogic, respectively. Type variables are written as ’a, ’b . The type
of (total) functions from ’a to ’b is written as ’a ⇒ ’b , and the type of partial
functions, which are only defined on some elements of type ’a , is ’a ⇀ ’b . For
clarity, we often annotate terms with their type using the notation term :: type .
For types such as reals, integers, or natural numbers, the interval from i to j
(inclusive) is written as {i..j} ; the same interval except endpoint j is {i..<j} .
More comprehensive introductions can be found in standard references [4,42].

Locales and Probability. Isabelle/HOL is equipped with locales [4], a sys-
tem of user-declared modules consisting of syntactic parameters, assumptions on
those parameters, and module-specific theorems. These modules can be instan-
tiated and inherited, giving users a powerful means of managing mathemati-
cal relationships. The following snippet, taken from the Isabelle/HOL standard
library, shows an example locale declaration for probability spaces followed by
an interpretation command claiming that the measure space associated with
any probability mass function (PMF) p is a probability space [28].

locale prob_space = finite_measure +
assumes emeasure_space_1: "emeasure M (space M) = 1"
...
interpretation measure_pmf: prob_space "measure_pmf p"

Thanks to the locale interpretation, all definitions and theorems associated
with probability spaces can be used with PMFs. For example, the probability of
an event A :: ’a set occurring under p is measure_pmf.prob p A . The support
of PMF p is set_pmf p , which is finite for all PMFs considered in this work.

4 Approximate Model Counting in Isabelle/HOL

This section outlines our formalization of ApproxMC in Isabelle/HOL and its ver-
ified certificate checker implementation. The proof follows a refinement-based
approach, starting with an abstract mathematical specification of ApproxMC,
where its probabilistic approximation guarantees can be formalized without low-
level implementation details getting in the way (Sect. 4.1). Then, the abstract

160 Y. K. Tan et al.

specification is progressively concretized to a verified certificate checker which
we call CertCheck (Sect. 4.2) and we extend ApproxMC to ApproxMCCert, a
certificate-generating counter (Sect. 4.3). As part of CertCheck, we also built
a native CNF-XOR unsatisfiability checker, which is external to Isabelle/HOL,
but is also based on formally verified proof checking (Sect. 4.4).

4.1 Abstract Specification and Probabilistic Analysis

Throughout this section, the type ’a abstracts the syntactic representation of
variables. For example, in the DIMACS CNF format, variables are represented
with positive numbers, while in other settings, it may be more convenient to use
strings as variable names. A solution (or model) w :: ’a ⇒ bool is a Boolean-
valued function on variables and a projection set S :: ’a set is a (finite) set
of variables. The main result of this section is formalized in a locale with two
parameters sols , enc_xor , and an assumption relating the two:

locale ApproxMC =
fixes sols :: "’fml ⇒ (’a ⇒ bool) set"
fixes enc_xor :: "’a set × bool ⇒ ’fml ⇒ ’fml"
assumes "

∧
F xor.

sols (enc_xor xor F) = sols F ∩ {ω. satisfies_xor xor {x. ω x}}"

Here, type ’fml abstracts the syntactic representation of formulas, sols F is
the set of all solutions of a formula F , and enc_xor xor F is a formula whose
set of solutions satisfies both F and the XOR constraint xor . An instantiation
of the ApproxMC locale would need to provide implementations of sols , enc_xor
and prove that they satisfy the latter assumed property.

The PAC theorem for ApproxMC is formalized as follows:

theorem approxmc_prob:
assumes "δ > 0" "δ < 1" "ε > 0" "ε ≤ 1" "finite S"
shows "let sz = real (card (proj S (sols F))) in

measure_pmf.prob (approxmc F S ε δ n)
{c. c ∈ {sz / (1 + ε) .. (1 + ε) * sz}} ≥ 1 - δ"

Here, sz is the true count of projected solutions, i.e., the cardinality of the
set proj S (sols F) , interpreted as a real number. The conclusion says that
approxmc returns an ε-approximate count c with probability at least 1 - δ. The
argument n is a user-specifiable minimum number of iterations of ApproxMCCore
calls inside ApproxMC; in practice, a sufficient number of rounds is automatically
determined using the median method. Since the ApproxMC locale can be instan-
tiated for any Boolean theory in which XOR constraints can be syntactically
encoded, this theorem shows that the approximate model counting algorithm of
Chakrabory et al. [12] works for any such theory.

The rest of this section gives an overview of our proof of approxmc_prob .
Technical differences compared to the original proofs are discussed in remarks.

Formally Certified Approximate Model Counting 161

Formalized Analysis of ApproxMCCore. For simplicity, we write S ⇒ bool
for the type of solutions projected onto set S and [n] ⇒ bool for n-dimensional
bit-vectors, i.e., the type of Boolean-valued functions on domain 0, 1, . . . , n − 1.
A hash function h :: (S ⇒ bool) ⇒ ([n] ⇒ bool) maps projected solutions
into n-dimensional bit-vectors. Let W :: (’a ⇒ bool) set be any set of solu-
tions, such as sols F . Abstractly, ApproxMCCore is a way of approximating the
cardinality of the projected set proj S W , given an oracle that can count up
to a specified threshold thresh number of solutions. Without loss of generality,
assume thresh ≤ proj S W (otherwise, the oracle returns the exact count).

Remark 1. The simple type theory of Isabelle/HOL does not support dependent
function types like S ⇒ bool and [n] ⇒ bool . Our formalization represents
functions with type S ⇒ bool as partial functions ’a ⇀ bool along with an
assumption that their function domain is equal to S .

For any fixed bit-vector α :: [card S - 1] ⇒ bool , the sets of hash func-
tions T , L , and U used in the analysis are defined as follows, where card_slice
h i counts the number of entries of w ∈ proj S W such that the hash value h w
agrees with α on their first i entries (also called the i -th slices).

definition μ where "μ i = card (proj S W) / 2 ^ i"
definition T where "T i = {h. card_slice h i < thresh}"
definition L where "L i = {h. card_slice h i < μ i / (1+ε)}"
definition U where "U i = {h. card_slice h i ≥ μ i * (1 +
ε/(1+ε))}"

For any input hash function h , the following approxcore function (cf. Algo-
rithm 2 Lines 2–5) finds the first index m , if one exists in [1..<card S] , where
h ∈ T m . It returns the approximate model count as a multiplier (2 ^ m) and
cell size (card_slice h m). The failure event approxcore_fail is the set of hash
functions h such that approxcore returns a non-(1+ε) -factor-approximate count.

definition approxcore where "
approxcore h = (
case List.find (λi. h ∈ T i) [1..<card S] of

None ⇒ (2 ^ card S, 1)
| Some m ⇒ (2 ^ m, card_slice h m))"

definition approxcore_fail where "
approxcore_fail =
{h. let (cells,sols) = approxcore h ; sz = card (proj S W) in

cells * sols /∈ {sz / (1 + ε) .. (1 + ε) * sz}}"

The key lemma for approxcore (shown with proof sketch below) is that, for
hash functions h , which are randomly sampled from an appropriate hash family H ,
the probability of the aforementioned failure event is bounded above by 0.36 [12].
The lemma uses Isabelle/HOL’s formalization of hash families which is seeded [31],
i.e., p is a PMF on seeds and H is a 2 -universal hash family for seeds drawn from p ;

162 Y. K. Tan et al.

map_pmf (λs w. H w s) p is a PMF which samples a random seed s and then returns
the hash function associated with that seed according to the family H .

lemma approxcore_fail_prob:
assumes "(1 + ε / (1 + ε)) * (9.84 * (1 + 1 / ε)^2) ≤ thresh"
assumes "ε ≤ 1" "finite (set_pmf p)"
assumes "prob_space.k_universal (measure_pmf p) 2 H

{α. dom α = S} {α. dom α = {0..<card S - 1}}"
shows "

measure_pmf.prob (map_pmf (λs w. H w s) p) approxcore_fail ≤ 0.36"

Proof. The proof of approxcore_fail_prob proceeds via several sub-lemmas [12],
which we discuss inline below. We first show that an index mstar exists with the
following properties (obtains is the Isar keyword for existential claims):

lemma mstar_exists:
obtains mstar where

"μ (mstar - 1) * (1 + ε / (1 + ε)) > thresh"
"μ mstar * (1 + ε / (1 + ε)) ≤ thresh"
"mstar ≤ card S - 1"

This is proved by noting that there exists m satisfying the first two properties
separately in the finite interval 1,2,...,card S - 1 , so there must be an mstar
satisfying all three properties in that interval.

Next, the failure event (which is a set of hash functions) is proved to be con-
tained in the union of four separate events involving mstar using the properties
from mstar_exists and unfolding the respective definitions of T , L , and U :

lemma failure_subset:
shows "approxcore_fail ⊆

T (mstar-3) ∪ L (mstar-2) ∪ L (mstar-1) ∪ (L mstar ∪ U mstar)"

Finally, we bound the probability for each of the four events separately.

lemma events_prob:
assumes "(1 + ε / (1 + ε)) * (9.84 * (1 + 1 / ε)^2) ≤ thresh"
assumes "finite (set_pmf p)"
assumes "prob_space.k_universal (measure_pmf p) 2 H

{α. dom α = S} {α. dom α = {0..<card S - 1}}"
shows "let Hp = map_pmf (λs w. H w s) p in

(ε ≤ 1 −→ measure_pmf.prob Hp (T (mstar-3)) ≤ 1 / 62.5) ∧
measure_pmf.prob Hp (L (mstar-2)) ≤ 1 / 20.68 ∧
measure_pmf.prob Hp (L (mstar-1)) ≤ 1 / 10.84 ∧
measure_pmf.prob Hp (L mstar ∪ U mstar) ≤ 1 / 4.92"

Lemma approxcore_fail_prob follows from failure_subset , events_prob ,
and the union bound on probabilities. ��

Formally Certified Approximate Model Counting 163

Remark 2. Our implicit construction of mstar in mstar_exists avoids an explicit
calculation from F , S and ε [12], which is more intricate to analyze. Additionally,
in events_prob , the first bound for T (mstar-3) works only when ε ≤ 1 , an
omitted condition from the pen-and-paper proof [12, Lemma 2]; we also verified
a looser bound of 1 / 10.84 without this condition, but this leads to a weaker
overall guarantee for ApproxMCCore (which we do not use subsequently).

Formalized Analysis of ApproxMC. Random XORs and XOR-based hash
families are defined as follows:

definition random_xor where "
random_xor V = pair_pmf (pmf_of_set (Pow V)) (bernoulli_pmf (1/2))"

definition random_xors where "
random_xors V n = prod_pmf {..<n} (λ_. map_pmf Some (random_xor

V))"
definition xor_hash where "

xor_hash w xors =
(map_option (λxor. satisfies_xor xor {x. w x = Some True}) ◦

xors)"

Here, random_xor V is the PMF which samples a pair of a uniformly randomly
chosen subset of the (projection) variables V and the outcome of a fair coin
flip; random_xors V n is the PMF that samples n independent XORs according
to random_xor V . Given card S - 1 randomly chosen seed xors , the associated
xor_hash hash function takes a projected solution w to the bit-vector whose bit
i indicates whether the i -th XOR is satisfied by w .

The following definition of approxmccore (cf. Algorithm 2) randomly sam-
ples card S - 1 XOR constraints over the variables S and runs approxcore_xors
(approxcore instantiated with XOR-based hash families using xor_hash). The
top-level function approxmc (cf. Algorithm 1) selects appropriate values for thresh
and the number of rounds t for amplification using the median method.

definition approxmccore :: "’fml ⇒ ’a set ⇒ nat ⇒ nat pmf"
where "approxmccore F S thresh =

map_pmf (approxcore_xors F S thresh) (random_xors S (card S - 1))"

definition approxmc::"’fml ⇒ ’a set ⇒ real ⇒ real ⇒ nat ⇒ nat
pmf"
where "approxmc F S ε δ n = (

let thresh = compute_thresh ε in
if card (proj S (sols F)) < thresh
then return_pmf (card (proj S (sols F)))
else

let t = compute_t δ n in
map_pmf (median t)

(prod_pmf {0..<t::nat} (λi. approxmccore F S thresh)))"

164 Y. K. Tan et al.

The main result approxmc_prob follows from 2-universality of XOR-based
hash families and the facts that compute_thresh returns a correct value of thresh
and compute_t chooses a sufficient number of rounds for the median method.

Library Contributions. We added reusable results to Isabelle/HOL’s proba-
bility libraries, such as the Paley-Zigmund inequality (a concentration inequality
used in the analysis of ApproxMCCore) and a slightly modified (tighter) analysis
of the median method based on the prior formalization by Karayel [31,33]; the
latter modification does not change the asymptotic analysis of the method but
it is needed as ApproxMC implementations use the tighter calculation to reduce
the number of rounds for success probability amplification.

We also formalized the 3-universality of XOR-based hash families [25], which
implies its 2-universality, as needed by ApproxMC. The proof is sketched in the
online extended version of this paper. Our (new) proof is of independent interest
as it is purely combinatorial, using a highly symmetric case analysis which helps
to reduce formalization effort because many cases can be proved using without-
loss-of-generality-style reasoning in Isabelle/HOL.

4.2 Concretization to a Certificate Checker

The specification from Sect. 4.1 leaves several details abstract. For example,
card_slice refers to set cardinalities and approxmc uses a bounded solution
counter as an oracle, neither of which are a priori computable terms. This
section gives a concrete implementation strategy where the abstract details
are obtained from certificates generated by an untrusted external implemen-
tation, and checked using verified code. The main result is formalized in a locale
CertCheck with two key extensions compared to ApproxMC from Sect. 4.1: (i) the
ApproxMCL locale, switching from set-based to computable list-based represen-
tations for the projection set and XORs; (ii) the additional locale parameters
check_sol determining whether a formula is satisfied by a specified assignment,
and ban_sol that syntactically blocks a solution from further consideration.

locale CertCheck = ApproxMCL sols enc_xor
for sols :: "’fml ⇒ (’a ⇒ bool) set"
and enc_xor :: "’a list × bool ⇒ ’fml ⇒ ’fml" +
fixes check_sol :: "’fml ⇒ (’a ⇒ bool) ⇒ bool"
fixes ban_sol :: "’a sol ⇒ ’fml ⇒ ’fml"
assumes "

∧
F w. check_sol F w ←→ w ∈ sols F"

assumes "
∧
F vs. sols (ban_sol vs F) =

sols F ∩ {ω. map ω (map fst vs) = map snd vs}"

The correctness of the certcheck checker (shown below) has two conjuncts
in its conclusion. In both conjuncts, f models an external (untrusted) imple-
mentation returning a certificate and r is a random seed passed to both f and
certcheck . The checker either returns an error string (isl) or a certified count.
The soundness guarantee (left conjunct) says that the probability of the checker

Formally Certified Approximate Model Counting 165

returning an incorrect count (without error) is bounded above by δ. Note that for
a buggy counter f that always returns an invalid certificate, certcheck returns
an error for all random seeds, i.e., it returns a count (whether correct or not)
with probability 0. Thus, the promise-completeness guarantee (right conjunct)
says that if the function f is promised to return valid certificates for all seeds
r , then the checker returns a correct count with probability 1 - δ.

theorem certcheck_prob:
assumes "(

∧
F. check_unsat F =⇒ sols F = {})"

assumes "δ > 0" "δ < 1" "ε > 0" "distinct S"
shows "

let sz = real (card (proj (set S) (sols F))) in
let seeds = random_seed_xors (find_t δ) (length S) in
let pr = measure_pmf.prob

(map_pmf (λr. certcheck check_unsat F S ε δ (f r) r) seeds) in
pr {c. ¬isl c ∧ projr c /∈ {sz / (1 + ε) .. (1 + ε) * sz}} ≤ δ ∧
((∀ r ∈ set_pmf seeds.

¬isl (certcheck check_unsat F S ε δ (f r) r)) −→
pr {c. projr c ∈ {sz / (1 + ε) .. (1 + ε) * sz}} ≥ 1 - δ)"

Additional differences in certcheck_prob compared to approxmc_prob are: (iii)
the oracle function check_unsat , which is assumed to be an interface to an exter-
nal unsatisfiability checker; (iv) the additional certificate arguments m0 and ms ;
and (v) the eager sampling of XORs using random bits (random_seed_xors),
compared to approxmc which samples lazily.

Remark 3. Note that ban_sol and check_sol are locale parameters with assump-
tions that must be proven when CertCheck is instantiated to a Boolean theory;
in contrast, check_unsat appears as an assumption. The pragmatic reason for
this difference is that ban_sol and check_sol can be readily implemented in
Isabelle/HOL with decent performance. In contrast, developing efficient verified
unsatisfiability proof checkers and formats, e.g., for CNFs, is still an active area
of research [3,27,37,53]. Leaving check_unsat outside the scope of Isabelle/HOL
allows us to rely on these orthogonal verification efforts (as we do in Sect. 4.4).

From approxmc to certcheck . We briefly list the steps in transporting the PAC
guarantee from approxmc to certcheck , with reference to the differences labeled
(i)–(v) above. The proof follows a sequence of small refinement steps which
are individually straightforward as they do not involve significant probabilistic
reasoning. First, cf. (v), a variant of approxmc is formalized where all XORs
are eagerly sampled upfront, as opposed to lazily at each call to approxmccore .
Without loss of generality, it suffices to sample t × (card S - 1) XORs. Next,
cf. (i), the representations are swapped to executable ones, e.g., the projection set
is represented as a list S of distinct elements. Accordingly, the left-hand side of
each XOR is represented as a list of length S bits, where the i -th bit indicates
whether the i -th entry of S is included in the XOR. Note that it suffices to
sample t × (card S - 1) × (card S + 1) bits for ApproxMC. Finally, cf. (iv),

166 Y. K. Tan et al.

Fig. 2. An example pigeon-hole formula (2 pigeons, 5 holes, 180 solutions) in DIMACS
format and a valid certificate for the checker at ε = 0.8 and δ = 0.2 (thresh = 73, t =
9). The certificate is shown with colored comments and with redundant spaces added
for clarity. In clauses, the negative (resp. positive) integers are negated (resp. positive)
literals, with a 0 terminator; solutions are lists of literals assigned to true. Part of the
certificate (marked with *) is checked with an external UNSAT proof checking pipeline.

partial certificates are introduced. The key observation is that the final value
of m in approxcore from Sect. 4.1 can be readily certified because it is the first
entry where adding m XORs causes the solution count to fall below thresh—the
solution count is monotonically decreasing as more XORs are added. Thus, for
a claimed value of m it suffices to check, cf. (ii) and (iii) that the following three
conditions hold. (1) Firstly, 1 ≤ m ≤ card S - 1 . (2) Secondly, the solution
count after adding m - 1 XORs reaches or exceeds thresh , which can be certified
(check_sol) by a list of solutions of length at least thresh , which are distinct
after projection on S . (3) Thirdly, if m < card S - 1 , then the solution count
after adding m XORs is below thresh , which can be certified (check_sol) by
a list of solutions of length below thresh , which are distinct after projection,
and where the formula after excluding all those projected solutions (ban_sol) is
unsatisfiable (check_unsat).

An example partial certificate is shown in Fig. 2. Note that we call these
partial certificates because of the reliance on an external pipeline for checking
unsatisfiability, as illustrated in the example.

Code Extraction for CertCheck. To obtain an executable implementation
of certcheck , we instantiated the Isabelle/HOL formalization with a concrete
syntax and semantics for CNF-XOR formulas, and extracted source code using
Isabelle/HOL’s Standard ML extraction mechanism. The extracted implemen-
tation is compiled together with user interface code, e.g., file I/O, parsing, and

Formally Certified Approximate Model Counting 167

interfacing with a trusted random bit generator and CNF-XOR unsatisfiability
checking, as shown in Fig. 1. The resulting tool is called CertCheck.

4.3 Extending ApproxMC to ApproxMCCert

To demonstrate the feasibility of building a (partial) certificate generation tool,
we modified the mainline implementation of ApproxMC to accept and use an
externally generated source of random bits. We also modified it to write its
internally calculated values of m and a log of the respective models reported by
its internal solver to a file. The resulting tool is called ApproxMCCert. An imple-
mentation of ApproxMC (and thus ApproxMCCert) requires logarithmically many
solver calls to find the correct value of m and it can employ many search strate-
gies [12]. The partial certificate format is agnostic to how m is found, requiring
certification only for the final value of m in each round.

Remark 4. It is worth remarking that CertCheck requires checking the validity of
O(ε−2 · log δ−1) solutions (each of size n, the number of variables), and unsatis-
fiability for O(log δ−1) formulas, while ApproxMC requires O(ε−2 · log n · log δ−1)
calls to its underlying solver. In the next section, we instantiate check_unsat
with a CNF-XOR unsatisfiability checking pipeline that generates proofs which
are checkable by a verified checker in polynomial time (in the size of the proofs).

4.4 CNF-XOR Unsatisfiability Checking

A crucial aspect of CertCheck is its reliance on an external checker for unsatis-
fiability of CNF-XOR formulas. As mentioned in Sect. 2, there are several prior
approaches for certified CNF-XOR reasoning that can be plugged into CertCheck.

We opted to build our own native extension of FRAT [3] because none of the
previous options scaled to the level of efficient XOR proof checking needed for
certifying ApproxMC (as evidenced later in Sect. 5). For brevity, the new input
and proof format(s) are illustrated with inline comments in Fig. 3. We defer a
format specification to the tool repository.

In a nutshell, when given an input CNF-XOR formula, CryptoMiniSat has
been improved to emit an unsatisfiability proof in our extended FRAT-XOR
format. Then, our FRAT-xor tool elaborates the proof into XLRUP, our extension
of Reverse Unit Propagation (RUP) proofs [27] with XOR reasoning. The latter
format can be checked using cake_xlrup, our formally verified proof checker.
Such an extension to FRAT was suggested as a possibility by Baek et al. [3] and
we bear their claim out in practice.

Extending FRAT-rs to FRAT-xor. Our FRAT-xor tool adds XOR support to
FRAT-rs [3], an existing tool for checking and elaborating FRAT proofs. This
extension is designed to be lightweight—FRAT-xor does not track XORs nor
check the correctness of any XOR-related steps; instead, it defers the job to
an underlying verified proof checker. Our main changes were: (i) adding parsing
support for XORs; (ii) ensuring that clauses implied from XORs can be properly

168 Y. K. Tan et al.

Fig. 3. (top left) A sample input CNF-XOR formula where XOR lines start with x
and indicate the literals that XOR to 1, e.g., the line x 1 2 -3 represents the XOR
constraint x1 ⊕ x2 ⊕ x̄3 = 1; (bottom left) a FRAT-XOR proof; (right) an XLRUP
proof. The steps in bold indicate newly added XOR reasoning. Note that the XOR
steps are (mostly) syntactically and semantically unchanged going from FRAT-XOR to
XLRUP, so we focus on the latter here. The meaning of each XLRUP step (analogously
for FRAT-XOR) is annotated in color-coded comments above the respective line.

used for further clausal steps, including automatic elaboration of RUP [3]; and
(iii) ensuring the clauses used to imply XORs are trimmed from the proof at
proper points, i.e., after the last usage by either a clausal or XOR step.

Extending cake_lpr to cake_xlrup. We also modified cake_lpr [53], a veri-
fied proof checker for CNF unsatisfiability, to support reasoning over XOR con-
straints. The new tool supports: (i) clause-to-clause reasoning via RUP steps; (ii)
deriving new XORs by adding together XORs; (iii) XOR-to-clause and clause-
to-XOR implications. The main challenge here was to represent XORs efficiently
using byte-level representations to take advantage of native machine instructions
in XOR addition steps. The final verified correctness theorem for cake_xlrup is
similar to that of cake_lpr [53] (omitted here).

Modifications to CryptoMiniSat. A refactoring of CryptoMiniSat was per-
formed in response to the bug described in Sect. 1 and in order to add FRAT-
XOR proof logging. As part of this rewrite, a new XOR constraint propagation
engine has been added that had been removed as part of BIRD [50]—that sys-
tem did not need it, as it kept all XOR constraints also in a blasted form.
Furthermore, XOR constraints have been given IDs instead of a pointer to a
TBUDDY BDD previously used, and all XOR manipulations such as XOR-ing

Formally Certified Approximate Model Counting 169

together XOR constraints, constant folding [57], satisfied XOR constraint dele-
tion, etc., had to be documented in the emitted FRAT-XOR proof log. Further,
CryptoMiniSat had to be modified to track which clause IDs were responsible
for recovered XOR constraints. To make sure our changes were correct, we mod-
ified CryptoMiniSat’s fuzzing pipeline to include XOR constraint-generating
problems and to check the generated proofs using our certification tools.

5 Experimental Evaluation

To evaluate the practicality of partial certificate generation (ApproxMCCert) and
certificate checking (CertCheck), we conducted an extensive evaluation over a
publicly available benchmark set [41] of 1896 problem instances that were used
in previous evaluations of ApproxMC [49,51]. The benchmark set consists of
(projected) model counting problems arising from applications such as proba-
bilistic reasoning, plan recognition, DQMR networks, ISCAS89 combinatorial
circuits, quantified information flow, program synthesis, functional synthesis,
and logistics. Most instances are satisfiable with large model counts and only
approximately 6% are unsatisfiable for testing corner cases.

To demonstrate the effectiveness of our new CNF-XOR unsatisfiability check-
ing pipeline, we also compared it to the three prior state-of-the-art approaches
discussed in Sect. 2. The approaches are labeled as follows:

CMS+frat-xor. Our new (default) pipeline based on FRAT-XOR (Sect. 4.4); here,
CMS is short for CryptoMiniSat.

CMS+tbuddy. The pipeline consisting of CryptoMiniSat with TBUDDY, FRAT-rs,
and a verified CNF proof checker (Sect. 2, item 1).

MiniSatXOR+pbp. The pipeline consisting of MiniSat with XOR engine, VeriPB,
and its verified proof checker (Sect. 2, item 2)

CaDiCaL+lrat. A state-of-the-art SAT solver CaDiCaL [8,44] which generates
proofs checkable by a verified CNF proof checker (Sect. 2, item 3).

We experimented with each of these approaches as the CNF-XOR unsatis-
fiability checking pipeline for CertCheck, checking the same suite of certificates
produced by ApproxMCCert.

The empirical evaluation was conducted on a high-performance computer
cluster where every node consists of an AMD EPYC-Milan processor featuring
2 × 64 real cores and 512GB of RAM. For each instance and tool (ApproxMC,
ApproxMCCert, or CertCheck), we set a timeout of 5000 s, memory limit of 16GB,
and we used the default values of δ = 0.2 and ε = 0.8 for all tools following
previous experimental conventions [49]. For each given tool, we report the PAR-
2 score which is commonly used in the SAT competition. It is calculated as the
average of all runtimes for solved/certified instances out of the relevant instances
for that tool, with unsolved/uncertified instances counting for double the time
limit (i.e., 10000 s).

Our empirical evaluation sought to answer the following questions:

170 Y. K. Tan et al.

RQ1 How does the performance of ApproxMCCert and CertCheck compare to
that of ApproxMC?

RQ2 How does the performance of CMS+frat-xor compare to prior state-of-the-
art approaches for CNF-XOR UNSAT checking for use in CertCheck?

RQ1 Feasibility of Certificate Generation and Checking. We present the
results for ApproxMC, ApproxMCCert, and CertCheck in Table 1. For certificate
generation, our main observation is that ApproxMCCert is able to solve and gen-
erate certificates for 99.3% (i.e., 1202 out of 1211) instances that ApproxMC can
solve alone, and their PAR-2 scores (out of 1896 instances) are similar. Indeed, in
the per-instance scatter plot of ApproxMC and ApproxMCCert runtimes in Fig. 4,
we see that for almost all instances, the overhead of certificate generation in
ApproxMCCert is fairly small. This is compelling evidence for the practicality of
adopting certificate generation for approximate counters with our approach.

Table 1. Performance comparison of ApproxMC, ApproxMCCert, and CertCheck. The
PAR-2 score is calculated out of 1896 instances for ApproxMC and ApproxMCCert, and
out of the 1202 instances with certificates for CertCheck.

ApproxMC ApproxMCCert CertCheck

Counted Instances 1211 1202 1018
PAR-2 Score 3769 3815 1743

Fig. 4. Per instance runtime (s) comparison for ApproxMCCert and ApproxMC.

Turning to the feasibility of certificate checking, we observe in Table 1 that
CertCheck is able to fully certify 84.7% of the instances (i.e., 1018 out of 1202)
with certificates. Of the remaining instances, CertCheck timed out for 46 and ran
out of memory for 138 instances (no certificate errors were reported in our latest

Formally Certified Approximate Model Counting 171

Fig. 5. (left) Runtime performance comparison between CNF-XOR unsatisfiability
checkers. (right) Per instance CNF-XOR unsatisfiability proof size (bytes) compari-
son for CMS+frat-xor and CMS+tbuddy.

versions of the tools). On average, CertCheck requires 4.6 times the runtime of
ApproxMCCert across all certified instances. Note that each instance of CertCheck
requires nine separate calls to the CNF-XOR unsatisfiability checking pipeline
(because δ = 0.2). It is worth emphasizing that in other certificate checking
setups, such as the SAT competitions, one would typically provide an order of
magnitude more time and memory to the checkers compared to solvers. Thus,
CertCheck performs well even though our time and memory limits are stringent.
Furthermore, we believe that CertCheck’s ability to achieve a fairly low PAR-2
score (computed out of 1202 instances) is compelling evidence for the practicality
of certificate checking in approximate counting. Future work could explore par-
allelized certificate checking since each round used in CertCheck can be checked
independently of each other.

RQ2 Comparison of CNF-XOR Unsatisfiability Checkers. We present
results using various alternative unsatisfiability checking pipelines as part of
CertCheck in Table 2. Here, we observe that the use of CMS+frat-xor allows
CertCheck to fully certify significantly more instances than can be certified by
prior approaches, and with a much lower PAR-2 score.

Table 2. Performance comparison of CNF-XOR unsatisfiability checkers in CertCheck.
The PAR-2 score is calculated out of the 1202 instances with certificates for all checkers.

Total CaDiCaL+lrat MiniSatXOR+pbp CMS+tbuddy CMS+frat-xor

Counted Instances 527 563 623 1018
PAR-2 Score 5742 5659 5027 1743

172 Y. K. Tan et al.

Figure 5 (left) visualizes the performance gap between CMS+frat-xor and the
prior methods using a CDF (cumulative distribution function) plot; a point (x, y)
indicates that the corresponding tool certifies y number of instances when given
a timeout of x seconds for each instance. This plot provides strong justifica-
tion for our claim of the need to develop CMS+frat-xor for native CNF-XOR
unsatisfiability proof checking in Sect. 4.4. The ability to log XOR proof steps
compactly in our new CNF-XOR unsatisfiability proof format is also significant.
This is illustrated in Fig. 5 (right) which gives a scatter plot comparing FRAT
(resp. FRAT-XOR) proof sizes generated by CMS+tbuddy (resp. CMS+frat-xor)
within 600 s on instances that were successfully certified by CMS+tbuddy. Recall
that the solver in CMS+tbuddy supports XOR reasoning and uses TBUDDY to
emit its proof log in terms of a clausal proof system, i.e., without native XOR
proof steps. Overall, our new proof format achieves an average 30-fold reduction
in proof size, with the maximum reduction reaching up to 8,251 times.

6 Conclusion and Future Work

This work shows that it is feasible to use proof assistants to formalize practical
randomized automated reasoning algorithms. Such formalizations are valuable—
our end-to-end certification approach for ApproxMCCert has led to bug-fixes for
both ApproxMC and its underlying CryptoMiniSat solver.

An interesting line of future work would be to support recently proposed tech-
niques such as sparse hashing [39] or rounding [60] in the context of ApproxMC.
Furthermore, this work leaves preprocessing techniques, such as independent
support identification, out of scope. It is worth noting that efficient identifica-
tion of the independent support set, in conjunction with a new rounding-based
algorithm [60], significantly boosts the counting performance of ApproxMC; in
the experimental setting of Table 1, this combination solves 1787 instances with
a PAR-2 score of 625. Thus, certifying these extensions is a tantalizing avenue
for future research. Another potential line of future work involves developing
extensions for theories other than CNF-XOR model counting [59].

Acknowledgement. This work has been financially supported by the Swedish
Research Council grant 2021-05165, National Research Foundation Singapore under its
NRF Fellowship Programme [NRF-NRFFAI1-2019-0004], Ministry of Education Sin-
gapore Tier 2 Grant [MOE-T2EP20121-0011], Ministry of Education Singapore Tier
1 Grant [R-252-000-B59-114], and by A*STAR, Singapore. The computational experi-
ments were performed on resources of the National Supercomputing Centre, Singapore
https://www.nscc.sg. Part of this work was carried out while some of the authors par-
ticipated in the Spring 2023 Extended Reunion: Satisfiability program at the Simons
Institute for the Theory of Computing and at Dagstuhl workshop 22411 Theory and
Practice of SAT and Combinatorial Solving.

https://www.nscc.sg

Formally Certified Approximate Model Counting 173

References

1. Abdulaziz, M., Mehlhorn, K., Nipkow, T.: Trustworthy graph algorithms (invited
talk). In: Rossmanith, P., Heggernes, P., Katoen, J. (eds.) MFCS. LIPIcs, vol. 138,
pp. 1:1–1:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://
doi.org/10.4230/LIPICS.MFCS.2019.1

2. ApproxMCCert and CertCheck tool repository. https://github.com/meelgroup/
approxmc-cert

3. Baek, S., Carneiro, M., Heule, M.J.H.: A flexible proof format for SAT solver-
elaborator communication. Log. Methods Comput. Sci. 18(2) (2022). https://doi.
org/10.46298/LMCS-18(2:3)2022

4. Ballarin, C.: Locales: a module system for mathematical theories. J. Autom. Rea-
son. 52(2), 123–153 (2014). https://doi.org/10.1007/s10817-013-9284-7

5. Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative verification of
neural networks and its security applications. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) CCS, pp. 1249–1264. ACM (2019). https://doi.org/10.1145/
3319535.3354245

6. Barbosa, H., Blanchette, J.C., Fleury, M., Fontaine, P.: Scalable fine-grained proofs
for formula processing. J. Autom. Reason. 64(3), 485–510 (2020). https://doi.org/
10.1007/s10817-018-09502-y

7. Beyersdorff, O., Hoffmann, T., Spachmann, L.N.: Proof complexity of propositional
model counting. In: Mahajan, M., Slivovsky, F. (eds.) SAT. LIPIcs, vol. 271, pp.
2:1–2:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.
org/10.4230/LIPICS.SAT.2023.2

8. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT competition 2020. In: Balyo, T., Fro-
leyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

9. Bryant, R.E.: TBUDDY: a proof-generating BDD package. In: Griggio, A., Rungta,
N. (eds.) FMCAD, pp. 49–58. TU Wien Academic Press (2022).https://doi.org/
10.34727/2022/ISBN.978-3-85448-053-2_10

10. Bryant, R.E., Nawrocki, W., Avigad, J., Heule, M.J.H.: Certified knowledge com-
pilation with application to verified model counting. In: Mahajan, M., Slivovsky,
F. (eds.) SAT. LIPIcs, vol. 271, pp. 6:1–6:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2023). https://doi.org/10.4230/LIPIcs.SAT.2023.6

11. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-
aware sampling and weighted model counting for SAT. In: Brodley, C.E., Stone, P.
(eds.) AAAI, pp. 1722–1730. AAAI Press (2014). https://doi.org/10.1609/AAAI.
V28I1.8990

12. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approxi-
mate counting for probabilistic inference: from linear to logarithmic SAT calls. In:
Kambhampati, S. (ed.) IJCAI, pp. 3569–3576. IJCAI/AAAI Press (2016). http://
www.ijcai.org/Abstract/16/503

13. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Approximate model counting. In: Biere,
A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability - Second
Edition, Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 1015–
1045. IOS Press (2021). https://doi.org/10.3233/FAIA201010

14. Dueñas-Osorio, L., Meel, K.S., Paredes, R., Vardi, M.Y.: Counting-based reliability
estimation for power-transmission grids. In: Singh, S., Markovitch, S. (eds.) AAAI,
pp. 4488–4494. AAAI Press (2017). https://doi.org/10.1609/AAAI.V31I1.11178

https://doi.org/10.4230/LIPICS.MFCS.2019.1
https://doi.org/10.4230/LIPICS.MFCS.2019.1
https://github.com/meelgroup/approxmc-cert
https://github.com/meelgroup/approxmc-cert
https://doi.org/10.46298/LMCS-18(2:3)2022
https://doi.org/10.46298/LMCS-18(2:3)2022
https://doi.org/10.1007/s10817-013-9284-7
https://doi.org/10.1145/3319535.3354245
https://doi.org/10.1145/3319535.3354245
https://doi.org/10.1007/s10817-018-09502-y
https://doi.org/10.1007/s10817-018-09502-y
https://doi.org/10.4230/LIPICS.SAT.2023.2
https://doi.org/10.4230/LIPICS.SAT.2023.2
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_10
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_10
https://doi.org/10.4230/LIPIcs.SAT.2023.6
https://doi.org/10.1609/AAAI.V28I1.8990
https://doi.org/10.1609/AAAI.V28I1.8990
http://www.ijcai.org/Abstract/16/503
http://www.ijcai.org/Abstract/16/503
https://doi.org/10.3233/FAIA201010
https://doi.org/10.1609/AAAI.V31I1.11178

174 Y. K. Tan et al.

15. Eberl, M., Haslbeck, M.W., Nipkow, T.: Verified analysis of random binary tree
structures. J. Autom. Reason. 64(5), 879–910 (2020). https://doi.org/10.1007/
s10817-020-09545-0

16. Eberl, M., Hölzl, J., Nipkow, T.: A verified compiler for probability density func-
tions. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 80–104. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46669-8_4

17. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

18. Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Taming the curse of dimension-
ality: discrete integration by hashing and optimization. In: ICML. PMLR, vol. 28,
pp. 334–342. PMLR (2013). http://proceedings.mlr.press/v28/ermon13.html

19. Fichte, J.K., Hecher, M., Roland, V.: Proofs for propositional model count-
ing. In: Meel, K.S., Strichman, O. (eds.) SAT. LIPIcs, vol. 236, pp. 30:1–30:24.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.
4230/LIPICS.SAT.2022.30

20. Fleury, M.: Optimizing a verified SAT solver. In: Badger, J.M., Rozier, K.Y. (eds.)
NFM 2019. LNCS, vol. 11460, pp. 148–165. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-20652-9_10

21. FRATxor and cakexlrup tool repository. https://github.com/meelgroup/frat-xor
22. Gittis, A., Vin, E., Fremont, D.J.: Randomized synthesis for diversity and cost con-

straints with control improvisation. In: Shoham, S., Vizel, Y. (eds.) CAV. LNCS,
vol. 13372, pp. 526–546. Springer, Heidelberg (2022). https://doi.org/10.1007/978-
3-031-13188-2_26

23. Gocht, S., McCreesh, C., Myreen, M.O., Nordström, J., Oertel, A., Tan, Y.K.: End-
to-end verification for subgraph solving. In: Wooldridge, M.J., Dy, J.G., Natara-
jan, S. (eds.) AAAI, pp. 8038–8047. AAAI Press (2024). https://doi.org/10.1609/
AAAI.V38I8.28642

24. Gocht, S., Nordström, J.: Certifying parity reasoning efficiently using pseudo-
Boolean proofs. In: AAAI, pp. 3768–3777. AAAI Press (2021). https://doi.org/
10.1609/AAAI.V35I5.16494

25. Gomes, C.P., Sabharwal, A., Selman, B.: Near-uniform sampling of combinatorial
spaces using XOR constraints. In: Schölkopf, B., Platt, J.C., Hofmann, T. (eds.)
NIPS, pp. 481–488. MIT Press (2006)

26. Gopinathan, K., Sergey, I.: Certifying certainty and uncertainty in approximate
membership query structures. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS,
vol. 12225, pp. 279–303. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-53291-8_16

27. Heule, M., Hunt, W., Kaufmann, M., Wetzler, N.: Efficient, verified checking of
propositional proofs. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS,
vol. 10499, pp. 269–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66107-0_18

28. Hölzl, J., Lochbihler, A., Traytel, D.: A formalized hierarchy of probabilistic system
types. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 203–220.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22102-1_13

29. Hurd, J.: Formal verification of probabilistic algorithms. Technical Report. UCAM-
CL-TR-566, University of Cambridge, Computer Laboratory (2003). https://doi.
org/10.48456/tr-566

30. Kan, S., Lin, A.W., Rümmer, P., Schrader, M.: CertiStr: a certified string solver.
In: Popescu, A., Zdancewic, S. (eds.) CPP, pp. 210–224. ACM (2022) https://doi.
org/10.1145/3497775.3503691

https://doi.org/10.1007/s10817-020-09545-0
https://doi.org/10.1007/s10817-020-09545-0
https://doi.org/10.1007/978-3-662-46669-8_4
https://doi.org/10.1007/978-3-540-24605-3_37
http://proceedings.mlr.press/v28/ermon13.html
https://doi.org/10.4230/LIPICS.SAT.2022.30
https://doi.org/10.4230/LIPICS.SAT.2022.30
https://doi.org/10.1007/978-3-030-20652-9_10
https://doi.org/10.1007/978-3-030-20652-9_10
https://github.com/meelgroup/frat-xor
https://doi.org/10.1007/978-3-031-13188-2_26
https://doi.org/10.1007/978-3-031-13188-2_26
https://doi.org/10.1609/AAAI.V38I8.28642
https://doi.org/10.1609/AAAI.V38I8.28642
https://doi.org/10.1609/AAAI.V35I5.16494
https://doi.org/10.1609/AAAI.V35I5.16494
https://doi.org/10.1007/978-3-030-53291-8_16
https://doi.org/10.1007/978-3-030-53291-8_16
https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.1007/978-3-319-22102-1_13
https://doi.org/10.48456/tr-566
https://doi.org/10.48456/tr-566
https://doi.org/10.1145/3497775.3503691
https://doi.org/10.1145/3497775.3503691

Formally Certified Approximate Model Counting 175

31. Karayel, E.: Formalization of randomized approximation algorithms for frequency
moments. In: Andronick, J., de Moura, L. (eds.) ITP. LIPIcs, vol. 237, pp. 21:1–
21:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/
10.4230/LIPIcs.ITP.2022.21

32. Karayel, E.: Formalization of randomized approximation algorithms for fre-
quency moments. Archive of Formal Proofs (2022). https://isa-afp.org/entries/
Frequency_Moments.html, Formal proof development

33. Karayel, E.: Median method. Archive of Formal Proofs (2022). https://isa-afp.org/
entries/Median_Method.html, Formal proof development

34. Karayel, E.: Universal hash families. Archive of Formal Proofs (2022). https://isa-
afp.org/entries/Universal_Hash_Families.html, Formal proof development

35. Kaufmann, D., Fleury, M., Biere, A.: The proof checkers Pacheck and Pastèque
for the practical algebraic calculus. In: FMCAD, pp. 264–269. TU Wien Academic
Press (2020).https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_34

36. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: Jagannathan, S., Sewell, P. (eds.) POPL, pp. 179–192. ACM
(2014). https://doi.org/10.1145/2535838.2535841

37. Lammich, P.: Efficient verified (UN)SAT certificate checking. J. Autom. Reason.
64(3), 513–532 (2020). https://doi.org/10.1007/s10817-019-09525-z

38. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.
Comput. Sci. Rev. 5(2), 119–161 (2011). https://doi.org/10.1016/J.COSREV.
2010.09.009

39. Meel, K.S., Akshay, S.: Sparse hashing for scalable approximate model counting:
theory and practice. In: Hermanns, H., Zhang, L., Kobayashi, N., Miller, D. (eds.)
LICS, pp. 728–741. ACM (2020). https://doi.org/10.1145/3373718.3394809

40. Meel, K.S., Chakraborty, S., Akshay, S.: Auditable algorithms for approximate
model counting. In: Wooldridge, M.J., Dy, J.G., Natarajan, S. (eds.) AAAI, pp.
10654–10661. AAAI Press (2024). https://doi.org/10.1609/AAAI.V38I9.28936

41. Meel, K.S., Soos, M.: Model counting and uniform sampling instances (2020).
https://doi.org/10.5281/zenodo.3793090

42. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

43. Paulson, L.C.: The foundation of a generic theorem prover. J. Autom. Reasoning
5(3), 363–397 (1989). https://doi.org/10.1007/BF00248324

44. Pollitt, F., Fleury, M., Biere, A.: Faster LRAT checking than solving with CaDi-
CaL. In: Mahajan, M., Slivovsky, F. (eds.) SAT. LIPIcs, vol. 271, pp. 21:1–21:12.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.
4230/LIPICS.SAT.2023.21

45. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1–2), 273–302
(1996). https://doi.org/10.1016/0004-3702(94)00092-1

46. Sang, T., Beame, P., Kautz, H.A.: Performing Bayesian inference by weighted
model counting. In: Veloso, M.M., Kambhampati, S. (eds.) AAAI, pp. 475–482.
AAAI Press/The MIT Press (2005). http://www.aaai.org/Library/AAAI/2005/
aaai05-075.php

47. Shi, X., Fu, Y.-F., Liu, J., Tsai, M.-H., Wang, B.-Y., Yang, B.-Y.: CoqQFBV: a
scalable certified SMT quantifier-free bit-vector solver. In: Silva, A., Leino, K.R.M.
(eds.) CAV 2021. LNCS, vol. 12760, pp. 149–171. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-81688-9_7

48. Soos, M., Bryant, R.E.: Proof generation for CDCL solvers using Gauss-Jordan
elimination. CoRR arxiv:2304.04292 (2023). https://doi.org/10.48550/ARXIV.
2304.04292

https://doi.org/10.4230/LIPIcs.ITP.2022.21
https://doi.org/10.4230/LIPIcs.ITP.2022.21
https://isa-afp.org/entries/Frequency_Moments.html
https://isa-afp.org/entries/Frequency_Moments.html
https://isa-afp.org/entries/Median_Method.html
https://isa-afp.org/entries/Median_Method.html
https://isa-afp.org/entries/Universal_Hash_Families.html
https://isa-afp.org/entries/Universal_Hash_Families.html
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_34
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.1016/J.COSREV.2010.09.009
https://doi.org/10.1016/J.COSREV.2010.09.009
https://doi.org/10.1145/3373718.3394809
https://doi.org/10.1609/AAAI.V38I9.28936
https://doi.org/10.5281/zenodo.3793090
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/BF00248324
https://doi.org/10.4230/LIPICS.SAT.2023.21
https://doi.org/10.4230/LIPICS.SAT.2023.21
https://doi.org/10.1016/0004-3702(94)00092-1
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php
https://doi.org/10.1007/978-3-030-81688-9_7
https://doi.org/10.1007/978-3-030-81688-9_7
http://arxiv.org/abs/2304.04292
https://doi.org/10.48550/ARXIV.2304.04292
https://doi.org/10.48550/ARXIV.2304.04292

176 Y. K. Tan et al.

49. Soos, M., Gocht, S., Meel, K.S.: Tinted, detached, and lazy CNF-XOR solving and
its applications to counting and sampling. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12224, pp. 463–484. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53288-8_22

50. Soos, M., Meel, K.S.: BIRD: engineering an efficient CNF-XOR SAT solver and
its applications to approximate model counting. In: AAAI, pp. 1592–1599. AAAI
Press (2019). https://doi.org/10.1609/AAAI.V33I01.33011592

51. Soos, M., Meel, K.S.: Arjun: An efficient independent support computation tech-
nique and its applications to counting and sampling. In: Mitra, T., Young, E.F.Y.,
Xiong, J. (eds.) ICCAD, pp. 71:1–71:9. ACM (2022). https://doi.org/10.1145/
3508352.3549406

52. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24

53. Tan, Y.K., Heule, M.J.H., Myreen, M.O.: Verified propagation redundancy and
compositional UNSAT checking in CakeML. Int. J. Softw. Tools Technol. Transf.
25(2), 167–184 (2023). https://doi.org/10.1007/s10009-022-00690-y

54. Tan, Y.K., Yang, J.: Approximate model counting. Archive of Formal Proofs
(2024). https://isa-afp.org/entries/Approximate_Model_Counting.html, Formal
proof development

55. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 452–468. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9_31

56. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979). https://doi.org/10.1137/0208032

57. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
ACM Trans. Program. Lang. Syst. 13(2), 181–210 (1991). https://doi.org/10.1145/
103135.103136

58. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09284-3_31

59. Yang, J., Meel, K.S.: Engineering an efficient PB-XOR solver. In: Michel, L.D.
(ed.) CP. LIPIcs, vol. 210, pp. 58:1–58:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2021https://doi.org/10.4230/LIPIcs.CP.2021.58

60. Yang, J., Meel, K.S.: Rounding meets approximate model counting. In: Enea, C.,
Lal, A. (eds.) CAV. LNCS, vol. 13965, pp. 132–162. Springer, Heidelberg (2023).
https://doi.org/10.1007/978-3-031-37703-7_7

https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1609/AAAI.V33I01.33011592
https://doi.org/10.1145/3508352.3549406
https://doi.org/10.1145/3508352.3549406
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/s10009-022-00690-y
https://isa-afp.org/entries/Approximate_Model_Counting.html
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1137/0208032
https://doi.org/10.1145/103135.103136
https://doi.org/10.1145/103135.103136
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.4230/LIPIcs.CP.2021.58
https://doi.org/10.1007/978-3-031-37703-7_7

Formally Certified Approximate Model Counting 177

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Formally Certified Approximate Model Counting
	1 Introduction
	2 Related Work
	3 Background
	3.1 Approximate Model Counting
	3.2 Formalization in Isabelle/HOL

	4 Approximate Model Counting in Isabelle/HOL
	4.1 Abstract Specification and Probabilistic Analysis
	4.2 Concretization to a Certificate Checker
	4.3 Extending ApproxMC to ApproxMCCert
	4.4 CNF-XOR Unsatisfiability Checking

	5 Experimental Evaluation
	6 Conclusion and Future Work
	References

