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Abstract

The nonlinear optical coefficients are very small for most materials. This results in a
need for very long waveguides in integrated optics in order to achieve nonlinear optical
processes such as optical parametric oscillation with appreciable efficiency, meter-long
waveguide structures not being uncommon. This in turn makes simulations of nonlin-
ear integrated optical devices challenging. Translationally invariant waveguides can be
simulated using approximate methods such as the the beam envelope method. How-
ever, for more complicated structures, for instance a periodically patterned waveguide,
these approaches becomes unfeasible. In this thesis, we describe how the nonlinear
wave propagation in periodically patternedwaveguides can be simulated using the non-
linear Schrödinger equation, including a computational strategy to calculate the coeffi-
cients of the nonlinear Schrödinger equation describing the linear andnonlinear effects
of the opticalmaterials. In particular, we focus on effectivemeshing strategies for simu-
lations using the finite-elementmethod and an approach to numerically determine the
higher-order dispersion coefficients needed to solve the nonlinear Schrödinger equa-
tion for long, periodically patterned structures.

Keywords: Nanophotonics, nonlinear optics, FEM, parametric amplifiers, four wave
mixing, OPA, FWM
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1
Introduction

The goal of this thesis is to provide the relevant theory that we need for understanding
andsimulatingnonlinear optical effects inwaveguides,with the intentionofusing them
asoptical parametric amplifiers. What thismeanswill becomeclearer over the course of
this thesis. Wewill start by setting the stage and give some examples of what these non-
linear effects can be used for and then we will dive into the theory. My assumption will
be that you at a point in timehave read anundergraduate course in electromagnetismor
equivalent. I will repeat some core concepts of linear electromagnetics in Chapter 2 so
that we are up to speed, and refresh the terminology that we will utilise on this journey.
Once we are onboard, we will move over to nonlinear effects in Chapter 3 and finally
treat numerical methods for how we will simulate these effects in Chapter 4.
I hope you as a reader will find the journey enlightening, and perhaps invoke some

internal thoughts over the progress that is being made in the field and the interesting
applications these nonlinear effects have.

1.1 What are we pursuing?
Perhaps one of themost commonday-to-day appliances relying onnonlinear optics that
you have come into contact with are green laser pointers. Here nonlinear effects are
used to convert a 1064 nm wavelength laser source into 532 nm by means of a second-
order nonlinear effect. This thesis is building towards the ability to simulate these kinds
of effects for the purpose of amplifying optical signals through optical parametric pro-
cesses. Amplification throughnonlinear optical effects is interesting, because it enables
the amplification of an optical signal with a very low noise level that can be manufac-
tured with an on chip design [1]. Common for many of these methods is that they rely
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Chapter 1. Introduction

on a rather simple geometrical layout, often consisting of somehomogeneousmaterials
or systems like Bragg gratings [2].
This geometry constraint, although it simplifies the modelling, also has the potential
of excluding better designs. But complex geometries are more complicated to simulate
and cannot rely on analytical solutions that can assists for well-defined and symmetric
geometries. In this thesis we will provide the tools needed to simulate these kinds of
structures in the context of a periodic optical waveguide structure where each unit cell
in the structure can have an arbitrary pattern, as illustrated in Figure 1.1.

(a)

(b)

Figure 1.1: Simple vs complex geometries. Figure 1.1a shows a uniform Bragg grating, alternat-
ing between different dielectric materials. In Figure 1.1b we see an example of a more compli-
cated geometrical shape.
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2
Electromagnetic wave propagation

In this Chapter we will repeat concepts of electromagnetic wave propagation that are
needed to understand the nonlinear optics and simulations that we will treat in Chap-
ter 3 and 4. This will not be an exhaustive introduction, but should be seen more as a
reminder. For people looking for a more thorough introduction to electromagnetics,
see for example Griffith [3], Jackson [4] or Yariv & Yeh [5].
In section 2.1, we will treat the concept of dispersion and discussmaterial dependen-

cies on frequency. This will then be followed in section 2.2 where discuss propagating
modes in waveguides. Finally we will discuss periodic structures in section 2.3.

2.1 Understanding dispersion
The framework for studying the propagation of electromagnetic waves has been known
for a long time, startingwith thework byD’Alembert [6–8] in the 18th century continued
by Euler [9] and Lagrange [10], resulting in the wave equation. The next significant de-
scription camewhenMaxwell presented his work of electromagnetismup to his time in
1865 [11], verified by Hertz in 1893 [12]. TheMaxwell equations that we are familiar with
todaywere however formulated byHeaviside based on thework ofMaxwell [13] [14]. The
macroscopic differential versions of the equations can be written as:

∇ ⋅ D = 𝜌𝑓 , ∇ × E = −𝜕B𝜕𝑡 , (2.1)

∇ ⋅ B = 0, ∇ ×H = Jf + 𝜕D
𝜕𝑡 .

Anytime an electromagnetic wave interacts with a dielectric material there will be
an interaction where the electric field induces electric dipole moments in the material.
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Chapter 2. Electromagnetic wave propagation

These dipolemoments then cause an added term to the electric field, E, in the form of a
polarisation, P, and together they formwhat is called the displacement field [3][4]:

D = 𝜀0E + P = 𝜀E. (2.2)

where the permittivities 𝜀 and 𝜀0 quantify the polarisation in the material and in free
space, respectively. What gives rise to this effect is that a material contains both pos-
itive and negative charges, and when an electric field is applied they are pulled apart,
or displaced, causing the charge distribution to be polarised. If a molecule already has
a polarised distribution then the molecule also has the possibility to rotate in order to
align with the applied field.
If the polarisation is the result of a field interacting with the material on a macro-

scopic scale, it is not unreasonable to think that this effect should be dependent on the
field strength in the material and that indeed holds true. The amount of polarisation
that occurs in a material when it interacts with an electric field is expressed with the
electric susceptibility 𝜒 of the material 2.3

P = 𝜀0𝜒E. (2.3)

When talking about dispersion, we refer to effects when the susceptibility has a fre-
quency dependence 𝜒(𝜔). The effect of this is that waves propagating through the ma-
terial have different amount of attenuation and different phase velocities depending on
frequency. This results in that different frequencies travel with different speed in the
material, which gives rise to things like refraction, usually illustrated with a prism like
in Figure 2.1.

(a) (b)

Figure 2.1: Illustration of dispersion in a prism. To the left we see a 2D representation and the
figure on the right we see a version in 3D.

Whenwearedesigningdevices,waveguides, these linear effecthavebig consequences
because the design needs to operate with multiple frequencies. But since we have this
frequency dependence it also opens up the possibility to tailor systems andmaterials so
that it only favour desirable frequencies and counteracts undesired ones.
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2.2. Propagation modes in waveguides

2.2 Propagation modes in waveguides
When we are talking about dielectric optical waveguides, we are referring to structures
that have an optical medium with high refractive index, called a core, surrounded by a
material of lower refractive index, called a cladding. The purpose of the core is to con-
fine the light and guide it along its longitudinal direction. Waveguides come in many
different shapes and configurations, and readers interested in optical waveguides will
do well to read Liu[15], Yariv & Yeh [5] or Saleh & Teich [16].
Whenwe have a structure where a wave can propagate with a defined field pattern in

the structure that is confined, we call it amode. If the wave leaks out of its confinement
as it propagates in the waveguide then it is a leaky mode. To illustrate what a mode is
we can take the instance of a planar waveguide stretching to infinity as depicted in 2D
in Figure 2.2. This type of waveguide has a fixed set of stable modes, which have has
analytical solutions for the transverse field. If the solution has no electric field in the
propagation direction but only in the transverse direction it is denoted as transverse
electric (TE) mode. If the solution instead has no magnetic field in the propagation di-
rection but only in the transverse direction then it is denoted as transverse magnetic
(TM) mode. When we have multiple modes then we refer to them as TE0, TE1 etc. For
more complexgeometries, solutions involvingboth electric andmagneticfield, so called
hybrid modes are also allowed [15].

Figure 2.2: The first three propagating TE modes of a symmetric planar waveguide with di-
electrics with refractive index 𝑛1 and 𝑛2. From left to right we see TE0, TE1, and TE2.

The different modes of the waveguide each have their own dispersion. This results in
that we can express different modes on a dispersion plot as demonstrated in Figure 2.3.
We can think of themodes like a change in the phase velocity of thewave due to thewave
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Chapter 2. Electromagnetic wave propagation

bouncing more against the side of the waveguide, as it propagates in the longitudinal
direction, as a result of different angle of incidence.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

t/λ

n1

n2

β
/k

0

TE

TM

Figure 2.3: A dispersion plot showing the allowed TE and TM modes for a symmetric planar
waveguide as shown in 2.2.

The dispersion relation becomes important when we want to design waveguides that
can operate overmultiple frequencies. InChapter 3 the dispersion in thewaveguidewill
play a role in how nonlinear effects emerge.
Although analytical solutions exist for planar dielectric waveguides, once we encase

the side of the core and deal with non-planar waveguide analytical solutions generally
do not exists and we are left with numerical simulation to ascertain the modes. How
the mode confinement in an embedded waveguide can appear is illustrated in Figure
2.4. Techniques for how we will do this numerically will be treated in Chapter 4.
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2.3. Bloch waves and periodic structures

(a) (b)

Figure 2.4: Depiction of the fundamentalmode in an embeddedwaveguide. To the left in Figure
2.4a we have a schematic waveguide with a centre core surrounded by cladding. To the right in
Figure 2.4b we see an illustration of the confinement of a fundamental mode.

2.3 Bloch waves and periodic structures
We often find ourselves in a situation where we have a need to look at periodic struc-
tures. Though much of the research stem from being able to predict the behaviour of
periodic homogeneousmaterials, such as crystals, the same results can be used for big-
ger structures where we design patterning of materials with a given periodicity. It is
highly convenient to designmaterials like this since we then can analyse and categorise
a smaller segment or unit cell, simplifying the problem and enabling analysis of devices
that would be to large to simulate. When we are working with nanophotonic systems,
the size of the systemswewant todesignquickly becomesunfeasible to simulate or treat
without being able to treat the system as a homogeneous or periodic structure. This is
because when we are interested in the macroscopic behaviour of a photonic structure,
andwedonot have away to simplify the problem,weneed to simulate big structures but
with a very fine spatial resolution. We might need to resolve structures on nano or mi-
crometer scale but the overall structure can be on meter scale. This type of simulations
are usually unfeasible and in the best case very slow and costly, which is why everything
greatly simplifies if we can use techniques like periodicity to perform calculation on a
small part of the structure. Readers interested in wave propagation in different kinds
of photonic structures are advised to read Markos and Soukoulis [17]. Knowledge of
periodic crystal structures can also be found in solid-state physics books like [18] [19].
Let us look at the periodic structure of a waveguide depicted in Figure 2.5.

In order for us to take advantage of periodicity we want to design the system such that
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Chapter 2. Electromagnetic wave propagation

Figure 2.5: Example of a periodic patterned waveguide structure where the structure repeats
after a distance 𝑎. The unit cell is coloured differently for easier distinction.

the incoming and outgoing waves are equal, save for a phase rotation, as expressed in
Equation (2.4)

𝜓𝑘(r + a) = 𝑒𝑖k⋅a𝜓𝑘(r) (2.4)

where adenotes the length of the periodic unit cell. Waves that behave like this are called
Blochwaves, so named after Blochwho coined the requirement in 1929 [20] [18] [21]. An
understanding of the concept of Bloch periodic structures will become relevant when
we want to tailor waveguides by changing the geometry through patterning.
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3
Nonlinear optics

In this chapter, we present the theory of nonlinear optics. We start with a basic de-
scription of what kind of nonlinearity we refer to with nonlinear optics. Thereafter we
progress into the theory needed for us to understand the concept of optical paramet-
ric amplification (OPA). To reach this goal, we will treat nonlinear effects of materials
and how these combined effects can be used to understand the intermodulation phe-
nomenon four-wavemixing (FWM),which is used to describe the concept ofOPA.Read-
ers on the hunt for general books on the subject of nonlinear optics are advised to read
the books (all named ”Nonlinear optics”) by Moloney and Newell [22], Robert Boyd [23],
and Nicolaas Bloembergen [24]. I can also recommend the video series by the Interna-
tional School on Parametric Nonlinear Optics (ISPNLO) held in 2015 [25].

3.1 Nonlinear effects in materials
With the term ”nonlinear optics” we refer to effects that stem from the permittivity and
permeability of a material depending on the field strength:

D = 𝜀(E)E (3.1)
B = 𝜇(H)H

Fromherewewill focus on the electric field. Recall thatwe can express the displacement
field as the electric field in free space plus a polarisation term:

D = 𝜀(E)E = 𝜀0E + 𝜀0𝜒E. (3.2)

We then express the polarisation as a power series expansion, starting with scalar
notation to simplify the introduction:

9



Chapter 3. Nonlinear optics

𝑃 = 𝜀0 [𝜒 (1)𝐸 + 𝜒 (2)𝐸2 + 𝜒 (3)𝐸3 + ...] (3.3)

= 𝑃 (1) + 𝑃 (2) + 𝑃 (3) + ...
From Equation (3.3), we see that the nonlinear dependence emerge from the higher-

orders in the expansion. 𝜒 (1) is our normal linear susceptibility that we will recognise
fromEquation (2.3), while 𝜒 (2) and 𝜒 (3) are the second- and third-order susceptibilities
etc. From the expansion we see that higher-orders are more sensitive to field strength
and the scale of the higher-order contributions to the polarisation depend on the sus-
ceptibilities.
Let us put some order of magnitude on these constants so we can get a feeling of

how they affect the fields. We can estimate these values by calculating the character-
istic atomic field strength 𝐸𝑎𝑡 = 𝑒/(4𝜋𝜀0𝑎20), where 𝑒 is the elementary charge and 𝑎0 =
4𝜋𝜀0ℏ2/(𝑚𝑒2) is the Bohr radius of hydrogen and 𝑚 is the electron mass. Plugging in
values gives us 𝐸𝑎𝑡 = 5.14 × 1011 V/m. The first-order susceptibility, 𝜒 (1), is of the or-
der of unity for condensedmatter, and we can estimate the orders of 𝜒 (2) and 𝜒 (3) with
𝜒 (1)/𝐸𝑎𝑡 and 𝜒 (1)/𝐸2𝑎𝑡 , respectively [23]. The orders of magnitude are presented in table
3.1.

Table 3.1: Table showing order of magnitude for the first three orders of suceptibilities[23].

Suceptibility Typical order of magnitude
𝜒 (𝑛)
𝜒 (1) 100
𝜒 (2) 10−12 m/V
𝜒 (3) 10−24 m2/V2

From table 3.1 andEquation (3.3) we can deduce that for these effects to appear clearly
we need to either have large field strengths or letting the light pass through large vol-
umes of material, so it can accumulate enough nonlinear phase.
Before we go into a more thorough description of the nonlinear effects, it is worth

pointing out that what we are talking about here is electronic polarisation, effects in-
duced on the electrons in the materials under the influence of an electric field. In fact,
the nonlinear effects in materials can be caused by different physical mechanisms, as
summarised by Boyd [23] and presented in table 3.2. The focus of this thesis is on elec-
tronic polarisation, sometimes referred to as instantaneous polarisationdue to its short
response time, but there are other nonlinear effects that operate on longer time scales.
The extremes being heating effects in materials that have response times on the order
of milliseconds.
Moving back to electronic polarisation, we can describe the general polarisation field

as a combination of multiple electric fields, each with its own frequency, which may or
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3.1. Nonlinear effects in materials

Table 3.2: Values of the nonlinear refractive index for linear polarised light [23]. The response
time is the time it takes to reach the steady state after we ’turn on our laser’.

Nonlinear mechanism 𝑛2 [cm2/W] 𝜒 (3)[m2/V2] Response time [s]
Electronic polarisation 10−16 10−22 10−15
Molecular orientation 10−14 10−20 10−12
Electrostriction 10−14 10−20 10−9
Saturated atomic absorption 10−10 10−16 10−8
Thermal effects 10−6 10−12 10−3

may not be the same,

P = 𝜀0 [𝜒 (1)E1 + 𝜒 (2)E1E2 + 𝜒 (3)E1E2E3 + ...] , (3.4)

which opens up for intermodulation and interaction between different frequencies.
To understand this intermodulation, we need to start from the time dependent ex-

pression for the linear polarisation field where the polarisation is expressed as a convo-
lution of the time-dependent susceptibility and the time-dependent electric field.

P(𝑡) = 𝜀0 ∫
∞

−∞
𝜒(𝑡 − 𝜏)E(𝜏 )𝑑𝜏 . (3.5)

From causality we require that 𝜒(𝑡 − 𝜏) = 0 for 𝜏 < 𝑡, and since complex values of 𝜒
are nonphysical, the reality conditions require 𝜒 to be real [26]. For higher-orders, the
susceptibility becomes a tensor and similarly to the expression in Equation (3.5), we can
express the polarisation in Equation (3.4) for its 𝑗:th component as:

𝑃𝑗(𝑡) = 𝜀0 ∫
∞

−∞
𝜒 (1)
𝑗𝑘 (𝑡 − 𝜏1)𝐸𝑘(𝜏1)𝑑𝜏1 (3.6)

+ 𝜀0 ∫
∞

−∞ ∫
∞

−∞
𝜒 (2)
𝑗𝑘𝑙 (𝑡 − 𝜏1, 𝑡 − 𝜏2)𝐸𝑘(𝜏1)𝐸𝑙(𝜏2)𝑑𝜏1𝑑𝜏2

+ 𝜀0 ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞
𝜒 (3)
𝑗𝑘𝑙𝑚(𝑡 − 𝜏1, 𝑡 − 𝜏2, 𝑡 − 𝜏3)𝐸̂𝑘(𝜏1)𝐸̂𝑙(𝜏2)𝐸̂𝑚(𝜏3)𝑑𝜏1𝑑𝜏2𝑑𝜏3

+ ...
where we are using the Einstein summation convention [27] for summing over indices.
This expression may seem a bit tumbling at start, but some interesting things happen
when we view this expression in the frequency domain. Before presenting this expres-
sion, recall that the exponential representation of aDirac delta function 𝛿 canbewritten
as [28, 29]

𝛿(𝑥 − 𝑥0) = 1
2𝜋 ∫

∞

−∞
𝑒𝑖𝑘(𝑥−𝑥0)𝑑𝑘. (3.7)

11



Chapter 3. Nonlinear optics

With this, we can express the polarisation by Fourier transforming Equation (3.6)
yielding

̂𝑃𝑗(𝜔) = 𝜀0 ̂𝜒 (1)
𝑗𝑘 (𝜔)𝐸̂𝑘 (3.8)

+ 𝜀0
2𝜋 ∬

∞

−∞
̂𝜒 (2)
𝑗𝑘𝑙 (𝜔1, 𝜔2)𝐸̂𝑘(𝜔1)𝐸̂𝑙(𝜔2)𝛿(𝜔1 + 𝜔2 − 𝜔)𝑑𝜔1𝑑𝜔2

+ 𝜀0
(2𝜋)2 ∭

∞

−∞
̂𝜒 (3)
𝑗𝑘𝑙𝑚(𝜔1, 𝜔2, 𝜔3)𝐸̂𝑘(𝜔1)𝐸̂𝑙(𝜔2)𝐸̂𝑚(𝜔3)𝛿(𝜔1 + 𝜔2 + 𝜔3 − 𝜔)𝑑𝜔1𝑑𝜔2𝑑𝜔3

+ ...
.

From the expression in Equation (3.8) we can deduce that we have requirements on
the frequencies to match for second -and higher-order effects from the delta functions.
For example for third-order susceptibilities we have the requirement that

𝜔1 + 𝜔2 + 𝜔3 − 𝜔 = 0, (3.9)

for the effects to appear. This is something thatwewill use in the context of FWM,which
we will treat in Section 3.2. We can also deduce multiple symmetry requirements of
the tensors which is very useful since 𝜒 (3), for example, has 34 different elements. For
details regarding symmetry derivations, see, for instance, Refs [26] [23].

3.2 Four wavemixing
From Equation (3.8) in Section 3.1, we could see that we had requirements on the fre-
quencies. For the third-order processwe have 4 different frequencies that needs to obey
Equation (3.9). The interaction between these four frequencies are what is called four
wave mixing. If we assume we have a material where we can express the susceptibility
as a scalar quantity we canwrite out all the possible complex amplitudes for third-order
nonlinear interactions. Thiswill helpwith the intuition of the effects. Negative frequen-
cies are allowed andwe interpret them as the complex conjugate of the field. We end up
with the following expressions where we combine all possible combinations that result
in a polarisation contribution at one frequency [23]:

𝑃(𝜔1) = 𝜀0𝜒 (3) (3𝐸1𝐸∗1 + 6𝐸2𝐸∗2 + 3𝐸3𝐸∗3) 𝐸1, 𝑃(3𝜔1) = 𝜀0𝜒 (3)𝐸31 ,
𝑃(𝜔2) = 𝜀0𝜒 (3) (6𝐸1𝐸∗1 + 3𝐸2𝐸∗2 + 3𝐸3𝐸∗3) 𝐸2, 𝑃(3𝜔2) = 𝜀0𝜒 (3)𝐸32 ,
𝑃(𝜔3) = 𝜀0𝜒 (3) (6𝐸1𝐸∗1 + 6𝐸2𝐸∗2 + 3𝐸3𝐸∗3) 𝐸3, 𝑃(3𝜔3) = 𝜀0𝜒 (3)𝐸33 ,
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3.2. Four wavemixing

𝑃(𝜔1 + 𝜔2 + 𝜔3) = 6𝜀0𝜒 (3)𝐸1𝐸2𝐸3, 𝑃(𝜔1 + 𝜔2 − 𝜔3) = 6𝜀0𝜒 (3)𝐸1𝐸2𝐸∗3 ,
𝑃(𝜔1 − 𝜔2 + 𝜔3) = 6𝜀0𝜒 (3)𝐸1𝐸∗2𝐸3, 𝑃(−𝜔1 + 𝜔2 + 𝜔3) = 6𝜀0𝜒 (3)𝐸∗1𝐸2𝐸3,

𝑃(2𝜔1 + 𝜔2) = 3𝜀0𝜒 (3)𝐸21𝐸2, 𝑃(2𝜔1 + 𝜔3) = 3𝜀0𝜒 (3)𝐸21𝐸3, (3.10)

𝑃(2𝜔2 + 𝜔1) = 3𝜀0𝜒 (3)𝐸22𝐸1, 𝑃(2𝜔2 + 𝜔3) = 3𝜀0𝜒 (3)𝐸22𝐸3,
𝑃(2𝜔3 + 𝜔1) = 3𝜀0𝜒 (3)𝐸23𝐸1, 𝑃(2𝜔3 + 𝜔2) = 3𝜀0𝜒 (3)𝐸23𝐸2,
𝑃(2𝜔1 − 𝜔2) = 3𝜀0𝜒 (3)𝐸21𝐸∗2 , 𝑃(2𝜔1 − 𝜔3) = 3𝜀0𝜒 (3)𝐸21𝐸∗3 ,
𝑃(2𝜔2 − 𝜔1) = 3𝜀0𝜒 (3)𝐸22𝐸∗1 , 𝑃(2𝜔2 − 𝜔3) = 3𝜀0𝜒 (3)𝐸22𝐸∗3 ,
𝑃(2𝜔3 − 𝜔1) = 3𝜀0𝜒 (3)𝐸23𝐸∗1 , 𝑃(2𝜔3 − 𝜔2) = 3𝜀0𝜒 (3)𝐸23𝐸∗2 .

So how do we interpret this? What we see is a manifestation of a parametric process
that can be described by an energy diagram presented in figure 3.1. Here the initial and
final energy states are the same, so if we have two photons with frequency 𝜔1 and 𝜔2
entering the system, they canbriefly excite a virtual energy level. Conservationof energy
means that when the energy state relaxes, the energy needs to radiate out again. The
result is a combination of photons that contains the same total energy going in and out
of the system, forming a parametric process.

Figure 3.1: Energy levels of a four wave mixing process. The energy of the incoming photons
(𝜔1 & 𝜔2) adds up to a virtual energy level that later relaxes into two new photons with different
frequencies (𝜔3 & 𝜔4).

Let us, for instance, take the first term in the expression for 𝑃(𝜔1) in Equation (3.10).
Theonlyway for the system toproduce a photonwith frequency𝜔1 is to excite the energy
state with energy from 𝜔1 and then add another frequency that comes back during the
relaxation. This would result in a situation where the photons interacting in figure 3.1
would obey 𝜔2 = 𝜔3 and 𝜔1 = 𝜔4.

A similar argument can be made for second-order effects and we would then end up
with another set of relations like in Equation (3.10) but instead the four frequencies we
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Chapter 3. Nonlinear optics

treat here we would have three different frequencies. For details, see for example Ref.
[23].
The idea of mixing different frequencies in a nonlinear material was known early on

but the field of nonlinear optics really took off in the 1960s when Franken, Hill, Peters
andWeinreichexperimentallydemonstrated thegenerationofoptical harmonics in 1961
[30]. They used second-order nonlinearity to generate a harmonic of a pump frequency,
where two photons of frequency𝜔 are converted into one photonwith frequency 2𝜔, so-
called second harmonic generation (SHG).The same year Kaiser and Garett also experi-
mentally showed thenonlinearoptical phenomenon ”twophotonabsorption” inCaF2[31]
where 2 photons through a virtual energy level could reach a higher energy state in the
material and produce a higher frequency photon. The theory of this operation was al-
ready put forth byGöppert-Mayer in 1931 [32], but it took 30 years before it could bemea-
sured. Once SHG was demonstrated, the concept of third harmonic generation (THG)
was quickly demonstrated. In THG, we combine three photons to create one photon
with thrice the frequency, 3𝜔, througha third-ordernonlinear process. Thiswasdemon-
strated in 1962 by Terhune, Maker and Savage [33]. The same year, Bloembergen, Arm-
strong, Ducuing, and Pershan used quantum mechanical perturbation theory to first
theoretically describe the process that Franken et al. had demonstrated in 1961 [34].

3.2.1 Phase matching
We saw in the previous section that we got a requirement on energy conservation for
the FWM to work, that resulted in a relation between frequencies in the mixing. We
also have another requirement on the waves, with different frequencies, that interact
and that is what is called phasematching. Thismeans that for the waves to interact and
properly mix they need to be close in phase.
For a four wavemixing process, like in figure 3.1 we have a phasematching condition of

Δ𝛽 = (𝛽1 + 𝛽2 − 𝛽3 − 𝛽4) . (3.11)

Ideally the mismatch should be zero, which in turn would mean that we have conserva-
tion of momentum for the photons. There are different ways to handle this depending
on material properties. Midwinter and Warner defined two types of phase matching
for second-order processes for bifringent materials in 1962 [35]. Here we use the crys-
tal orientation to give different dispersion for different frequencies to counteract un-
wanted dispersion. Another approach to phase matching is to change the propagation
constant by changing the angle of which the beams enter thematerial, as demonstrated
by Hobden [36]. The above approaches uses slabs of materials but we can also achieve
phase matching over a periodic structure. This approach was originally proposed by
Bloembergen, Armstrong, Ducuing, and Pershan in 1962 [34] and is named quasi-phase
matching (QPM). The use of QPM has many applications and opens up many possibili-
ties in combination with better materials engineering [37][38]. For a review of different
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3.3. Optical parametric amplifiers

quasi-matched materials, see for instance Ref. [39]. The idea is that one engineers the
dispersion of the material so that at the end of each periodic segment the phase mis-
match is negated. For this approach to work efficiently, the length of these unit cells in
the periodic structure needs to be sufficiently smaller than the coherence length 𝐿𝐶

𝐿𝐶 = 𝜋
Δ𝑘 . (3.12)

We can tailor the QPM over longer distances than 𝐿𝑐 but at the expense of weaker non-
linear interaction. This can be relevant in situations where it is hard to manufacture
thematerial thin enough andwe can then simplify themanufacturing at the expense of
weaker nonlinear interaction per distance. Another reason might be that we have un-
wanted nonlinear processes with other frequency components that we want to remove,
then we can design the material such that phase matching for the unwanted process in
unfavourable. The process of manufacturing these periodic materials often results in
distributed noise that covers a wide frequency spectrumwhere basically everything is a
little bit phasematched due tomanufacturing tolerances [40]. A good resource forQPM
tuning is Fejer and Byer [41]. If one wants to utilise FWMusing pulsed waves, the phase
matching with first-order dispersion is usually not enough – we also need to take the
higher-order dispersion, like group velocity into account, but if we are operating in a
continuous wave (CW) or quasi-CW regime, these effects can often be neglected [42].

3.3 Optical parametric amplifiers
In practical terms, we can use the concept of FMWdescribed in Section 3.2 to amplify a
desired signal, bymeansof difference frequencygeneration, also calledoptical paramet-
ric amplification (OPA).What we want is to use the energy of a pump laser and transfer
it to a desired signal. To achieve this, we need to ensure that when the excited state, as
described in figure 3.1, decomposes into two different photons we want to tailor it so
that one of the exited photons has the frequency of the signal. The way to handle this
most easily is to ensure that themixing allows the pump to interact with itself to form a
higher energy state and then relax down into the signal frequency. This in turn means
that the frequency of the signalmust be lower than twice the frequency of the pump. As
a result of themixing process, wewill also have another photon from the relaxation that
has a frequency separate from the pump and signal. This is called an idler frequency.
The concept of OPA is depicted in figure 3.2.
The effect of OPAwas firstmeasured byHarris, Oshman and Byer in 1967 [43], but the

optical effect was treated theoretically by Siegman, Yariv and Louisell earlier in 1961 [44].
The OPA has an advantage regarding its amplification, compared to other techniques,
due to the fact that it has very low noise [44][45]. The downside of the OPA, as we have
seen from expression of 𝜒 (3), is that the interaction is very weak, andwe therefore need
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Chapter 3. Nonlinear optics

Figure 3.2: Energy levels for a four wave mixing process in a optical parametric amplifier. two
photons of the pump laser, with frequency 𝜔𝑝, form an energy state that relaxes into two pho-
tons for the signal (𝜔𝑠) and idler (𝜔𝑖) frequency. The signal photon amplifies the existing signal
photons that passes through the system, indicated in blue.

to propagate the light through large volumes ofmaterial to accumulate phase. Since the
light needs to interact with large volume it also attenuates due to losses in the material.
For amplification to occurwe thereforemust ensure that the losses in thematerial is low
enough so it doesn’t negate the amplification.
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4
Electromagnetic simulations

In this chapter, I will go through the different types of numerical methods that we need
to achieve our goals, presented in Chapter 1, of simulating arbitrary patterned Bloch
periodic waveguides using the theory described in Chapters 2 and 3. The chapters will
describe the use of nonlinear Schrödinger equations to simulate the propagation over
long distances and how we will use finite element methods to determine the constants
that we need in the nonlinear Schrödinger equations. For a good overall view of numer-
ical methods in the field of photonics, see for instance Obayya [46].

4.1 Simulate the propagation of optical signals in
waveguides

In this section, we will treat the method by which we simulated wave propagation over
longer distances. When we are after results of wave propagation over long photonic
structures spanning up tometers in length, as used in Ref. [1], full-wave simulations of
the entire waveguide structure becomes computationally infeasible without some sim-
plification asmentioned in the beginning of Chapter 4. In the following sections in this
chapter,wewill introducehow this canbedoneby solving anonlinearSchrödinger equa-
tion (NLSE) to get an expression for how the excited wave propagates along the longitu-
dinal direction of the waveguide.

4.1.1 Nonlinear Schrödinger equation
We will here go through the steps taken in order to arrive at the NLSE that we will use
to calculate the wave propagation. As the name suggest, it is a extended variation of the
Schrödinger equation, first published by Erwin Schrödinger i 1926 [47]. The NLSE was
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Chapter 4. Electromagnetic simulations

first written down in 1962 by Towes, Garmire and Chiao [48], but is in itself a simplifica-
tion of the Ginzburg-Landau equation first published in 1959 by Landau and Ginzberg
[49][50]. For further details of the derivations we refer to the work by Marhic [51] and
Agrawal [42]. Thederivationwill bemadewith just linear components and thenonlinear
contributions will be added afterwards as a perturbation. In Section 2.1 we discussed
the concept of dispersion and it will, here, play a big role in setting up the NLSE. For
the problems we are interested in, we want to address a range of frequencies, 𝜔, for
the solution to work we need them centred round a centre frequency, 𝜔𝑐 and that the
difference

Ω = 𝜔 − 𝜔𝑐 (4.1)

to be sufficiently small. We can the express the dispersion as a power series:

𝛽(𝜔) = 𝛽(𝜔𝑐 + Ω) = 𝛽𝑐 +
∞
∑
𝑛=1

𝛽(𝑛)
𝑛! Ω𝑛. (4.2)

where
𝛽𝑐 = 𝛽(𝜔𝑐) and 𝛽(𝑛) = 𝑑𝑛𝛽

𝑑𝜔𝑛 |𝜔=𝜔𝑐
. (4.3)

We express the electric field along the longitudinal direction, ̂𝑧, with the slowly vary-
ing envelope A(𝑧, 𝑡).

E(𝑧, 𝑡) = 1
2 [A(𝑧, 𝑡)𝑒

𝑖(𝛽𝑐𝑧−𝜔𝑐 𝑡) + 𝑐.𝑐.] (4.4)

where 𝑐.𝑐. stands for the complex conjugate of the field. This is an assumption that 𝐸
varies slowly over time and that most change occurs in the propagation direction.

In order to reach the final expressionwewill first decomposeA in terms of its Fourier
decomposition,B(Ω). Thenwewill differentiateandcompareexpressions takingderiva-
tives and compare expressions to obtain our results.
At the start we have our envelope

A(0, 𝑡) = ∫
∞

−∞
B(Ω)𝑒−𝑖Ω𝑡𝑑Ω (4.5)

Since we assume linear propagation along the longitudinal direction we can describe
the envelope at any position along the propagation axis as

A(𝑧, 𝑡) = ∫
∞

−∞
B(Ω)𝑒𝑖(𝛽−𝛽𝑐)𝑧−𝑖Ω𝑡𝑑Ω. (4.6)

We then take the derivative of Equation (4.6), which yields

𝜕A(𝑧, 𝑡)
𝜕𝑧 = ∫

∞

−∞
B(Ω)𝑖(𝛽 − 𝛽𝑐)𝑒𝑖(𝛽−𝛽𝑐)𝑧−𝑖Ω𝑡𝑑Ω. (4.7)
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4.1. Simulate the propagation of optical signals in waveguides

From Equation (4.2) we know that we can replace the parts containing 𝛽 − 𝛽𝑐 and we
get

𝜕A(𝑧, 𝑡)
𝜕𝑧 = 𝑖 ∫

∞

−∞
B(Ω) (

∞
∑
𝑛=1

𝛽(𝑛)
𝑛! Ω𝑛) 𝑒𝑖(𝛽−𝛽𝑐)𝑧−𝑖Ω𝑡𝑑Ω (4.8)

If we then where to take the𝑚:th derivative of (4.6) with respect to 𝑡, we get
𝜕𝑚A(𝑧, 𝑡)

𝜕𝑡𝑚 = ∫
∞

−∞
B(Ω)(−𝑖Ω)𝑚𝑒𝑖(𝛽−𝛽𝑐)𝑧−𝑖Ω𝑡𝑑Ω. (4.9)

Comparing Equations (4.9) and (4.8) we note that we can replace the integral in Equa-
tion (4.8) with a sum of time derivatives which results in

𝜕A(z, t)
𝜕𝑧 −

∞
∑
𝑛=1

𝑖𝑛+1𝛽(𝑛)
𝑛!

𝜕𝑛A(z, t)
𝜕𝑡𝑛 = 0, (4.10)

which is our expression for the wave propagation taking only dispersion into account.
To reach our final expressionwe need to add the loss of the propagation constant, 𝛼 and
the nonlinear part. The loss is incorporated by adding the term 𝛼/2 to the dispersion.
Thenonlinear effect is addedusinganonlinearparameter 𝛾 to achieve the full non-linear
Schrödinger equation

𝜕A(z, t)
𝜕𝑧 + 𝛼

2 −
∞
∑
𝑛=1

𝑖𝑛+1𝛽(𝑛)
𝑛!

𝜕𝑛A(z, t)
𝜕𝑡𝑛 = 𝑖𝛾 |A(𝑧, 𝑡)|2A(𝑧, 𝑡). (4.11)

Whenwe are operating in a regime where the frequency components are close together
we can assume that the nonlinear part has a constant frequency dependence and ifwe in
turn have a systemwhere the nonlinearity has a low spacial dependencywe can simplify
the expression of 𝛾 to be

𝛾 = 2𝜇0𝜔𝜒 (3)

8𝑛2𝐴𝑒𝑓 𝑓
, (4.12)

where 𝑛 is the effective refractive index and the effective area,𝐴𝑒𝑓 𝑓 , is ameasure on the
transverse mode profile overlap [42]:

𝐴𝑒𝑓 𝑓 = [∬(𝜓 ∗𝜓)𝑑𝑥𝑑𝑦]2

∬(𝜓 ∗𝜓)2𝑑𝑥𝑑𝑦 . (4.13)

Here 𝜓 denote the transverse component of the electric field, with depending on 𝑥 and
𝑦 . What Equation (4.12) and (4.13) describe is that we can get a nonlinear effect either by
choosing amaterial with high 𝜒 (3) or by ensuring that the field concentrates in the cross
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area as much as possible. To be able to achieve stable solutions for the NLSE, so called
solitons, requires us to either tailor the spatial details of our system or tweak the time
dependence, like sendingpulses of light. Thefirst soliton solution achievedwas a spatial
soliton, realisedbyGarmire, ChiaoandTownes in 1964 [52] and thefirst temporal soliton
solution using pulses of light was realised in optical fibers by Tappert and Hasegawa in
1973 [53].

4.1.2 Split-step Fourier method
In order to solve the NLSE for the wave propagation, described in Section 4.1.1, we can
use the split-step Fourier method (SSFM) first developed by Tappert in 1972 at Bell Lab-
oratories [54]. The method is based on that we separate the components of the NLSE
(4.11) into a linear and nonlinear part and then assume that they can act separately on
thewave function during small steps in the longitudinal direction. To speed this up one
then lets the linear part act in the frequency domain and the nonlinear part in the time
domain. The process goes as follows [42]:
We take Equation (4.11) and express it like

𝜕A(𝑧, 𝑡)
𝜕𝑧 = [−𝛼2 +

∞
∑
𝑛=1

𝑖𝑛+1𝛽(𝑛)
𝑛!

𝜕𝑛
𝜕𝑡𝑛 + 𝑖𝛾 |A(𝑧, 𝑡)|2]A(z, t) = [𝐷̂ + 𝑁̂ ]A(𝑧, 𝑡) (4.14)

where 𝐷̂ expresses an operation representing the linear part of the NLSE, while 𝑁̂ rep-
resent the nonlinear part. If we then take a small enough step, ℎ, in the longitudinal z
direction, we assume that the numerical error induced by separating 𝐷̂ and 𝑁̂ is small.
This means that we can write the solution for propagation of a small step, ℎ, as

𝐴(𝑧 + ℎ, 𝑡) ≈ 𝑒ℎ𝐷̂𝑒ℎ𝑁̂𝐴(𝑧, 𝑡) (4.15)

We then note from Equation (4.14) that the linear part 𝐷̂ contains all the time deriva-
tives. These are cumbersome to calculate, but we note that the time derivatives become
muchmore simple to calculate in the frequency domain

ℱ {𝐷̂} = ℱ {−𝛼2 +
∞
∑
𝑛=1

𝑖𝑛+1𝛽(𝑛)
𝑛!

𝜕𝑛
𝜕𝑡𝑛 } = −𝛼2 +

∞
∑
𝑛=1

𝑖𝑛+1𝛽(𝑛)
𝑛! (𝑖𝜔)𝑛, (4.16)

whereℱ denotes the Fourier transformand the transformgives (𝑖𝜔) in place of the time
derivatives. Thus, the easiest way to calculate is to propagate the linear part in the fre-
quency domain and the nonlinear part in the time domain.
Putting it together we then get the expression for one spatial step, ℎ, to be

𝐴(𝑧 + ℎ, 𝑡) = ℱ −1 {𝑒ℎℱ {𝐷̂}ℱ {𝑒ℎ𝑁̂𝐴 (𝑧, 𝑡)}} , (4.17)
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4.1. Simulate the propagation of optical signals in waveguides

which has an accuracy to the second-order in the step size ℎ [42].
We can further increase the accuracy of the SSFMbyusing a staggered stepwhere the

nonlinear part is allowed to act on𝐴 at themidpoint between steps, ℎ/2. This is known
as the symmetrized split-stepFouriermethod, illustrated inFigure 4.1, first usedbyFeit,
Fleck, andMorris in 1976 [55].

Dispersion

A(z,t)

z=0 h

Nonlinear

Figure 4.1: Illustration of symmetrized split-step Fouriermethod, showing the placement in the
geometry when dispersion and nonlinearity are added.

Thesymmetrized SSFM instead expresses Equation (4.15) as two half step linear prop-
agation on the boundaries and one full nonlinear step in the segment

𝐴(𝑧 + ℎ, 𝑡) ≈ 𝑒 ℎ2 𝐷̂𝑒𝑥𝑝 (∫
𝑧+ℎ

𝑧
𝑁̂ (𝑧′)𝑑𝑧′) 𝑒

ℎ
2 𝐷̂𝐴(𝑧, 𝑡). (4.18)

When we use a small step size the integral in (4.18) can be approximated with

𝑒𝑥𝑝 (∫
𝑧+ℎ

𝑧
𝑁̂ (𝑧′)𝑑𝑧′) ≈ 𝑒ℎ𝑁̂ . (4.19)

We can then use a trick to speed up the calculations. By combining Equations (4.19)
and 4.18 we can rewrite them as

𝐴(𝑧 + ℎ, 𝑡) ≈ 𝑒 ℎ2 𝐷̂𝑒ℎ𝑁̂ 𝑒 ℎ2 𝐷̂𝐴(𝑧, 𝑡) = 𝑒− ℎ
2 𝐷̂ (𝑒ℎ𝐷̂𝑒ℎ𝑁̂ ) 𝑒

ℎ
2 𝐷̂𝐴(𝑧, 𝑡). (4.20)

From Equation (4.20) we note that the middle section contains a full step length. This
means that for the propagation over a longer length containing 𝑀 steps we can write
the final expression of𝐴

𝐴(𝑧 + 𝑀ℎ, 𝑡) ≈ 𝑒− ℎ
2 𝐷̂ (

𝑀
∏
𝑚=1

𝑒ℎ𝐷̂𝑒ℎ𝑁̂) 𝑒
ℎ
2 𝐷̂𝐴(𝑧, 𝑡). (4.21)

Thismeans that apart from the beginning and endwe can evaluate the linear andnon-
linear contributionwith the same step length, cutting thenumber of Fourier transforms
down by almost a factor of 2 [42].
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4.2 Determining propagation and dispersion
constants

This section will describe the use of the finite element method to determine the disper-
sion for a Bloch periodic waveguide. We will introduce the finite element method and
how we can use it to solve for loss and dispersion by the use of eigenmode simulations.
The purpose of this section is to present the tools needed to simulate these waveguide
and provide an understanding ofwhat different steps in the process do, while providing
references for further reading on the subject.

4.2.1 Finite element method
Since it was first conceived in 1943 by Courant [56], the finite elementmethod (FEM) has
grown to be a very popular and useful numerical tool to solve partial differential equa-
tions (PDE) over some geometry. The method works by subdividing the geometry into
smallermesh cells and approximate the solutionwith a finite number of parameters, re-
ferred to as degrees of freedom (DOF).Theprocess of subdividing the geometry is called
meshing, wherewe partition the geometrywith amesh consisting of polygons and poly-
hedrons. The physics calculations are then performed on these elements and the size of
the elements determine how accurately the physics can be described. A good reference
on the use of FEM in electromagnetism is [57]. This thesis will not go into details of the
exact workings of the finite element method, but will treat subjects needed to under-
stand and use FEM for solving for the dispersion in optical waveguides. For a thorough
understanding of finite element solvers, read for example Ottosen and Petersson ,[58],
but also manuals from commercial FEM packages usually have a good explanation, see
for example COMSOL [59–61].
Having many elements results in more calculations to be performed since we need

to determine more degrees of freedoms (DOF). It is always of interest to keep the DOF
down, both to cut down the simulation times downand also to be able to utilise available
memory better. In paper I [62], we presented a meshing strategy based on a posteriori
information of the calculated electric fields on the domain, implemented in COMSOL
[63]. By startingwith a coursemesh and then refiningmesh elements that exhibit larger
errors, we can ensure that we only refine elements that needs refining to resolve the
electromagnetic behaviour, as demonstrated in Figure 4.2.
In the following subsections, we will go through how we express the strong form of

the PDE of our problem into the weak form (Section 4.2.1.1), howwe deal with different
boundaries for our simulation domain (Section 4.2.2) and how we rewrite our electro-
magnetic expression in order to solve for for eigenmodes at a specified frequency (Sec-
tion 4.2.3).
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(a) (b)

Figure 4.2: Demonstration of amesh refinement in a 3D structurewere regionswith smaller fea-
tures are resolved with a denser mesh because of the need to resolve the electromagnetic fields.

4.2.1.1 Weak expression

When solving for a physics basedPDEwith FEM,wedonot need touse the original form
of the PDE, called the strong form. Instead, we express the variational form of the PDE,
called the weak form.
The concept revolves around expressing the original PDE as an integral equation. The

solutions of interest are then approximated with a set of basis functions on small sec-
tions of the integral. We thenmultiply the original PDE expressionwith a test function,
this test function can then be tweaked and chosen in a way that we over the integrated
area can approximate the value of our solution. This approximation can then be com-
puted on smaller element section of the total volume.
To arrive at the weak expression needed to solve for the electric field, we start with

the wave equation for the electric field:

∇ × (1𝜇∇ × E) − 𝜀 𝜔
2

𝑐2 E = 0. (4.22)

We then get theweak formulation bymultiplying the expression in Equation (4.22) with
a test function, v, to yield:

𝐹𝐸(v,E) = (∇ × v) ⋅ 1𝜇 (∇ × E) − 𝜀 𝜔
2

𝑐2 v ⋅ E = 0. (4.23)

which then is solved for in the context of an integral equation over our domain.

∭𝐹𝐸(v,E) = 0 (4.24)
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The test function can be any function and Equations (4.23) and (4.24) still hold, be-
cause we have multiplied the test function with an expression that was zero and then
integrated the expression that was zero.
What we gain from this formulation is not obvious at first glance, but this opens

up the possibility to split the integral equations into multiple smaller sections, or ”el-
ements”. Each element gets its own test function and the value of E we want to solve
for is approximated by a set of basis functions. The basis functions assume different
types of shapes over the element and are therefore also named shape functions. The
purpose of the shape functions is to be able to describe the solution over the element
and therefore also need to form a complete basis over the geometry. The weight func-
tions are chosen depending on the implementation, but a common choice is based on
the Galerkin method [64] [58], which is why we sometime see this name when people
are referring to FEM or finite differences.
As an example to illustrate this point we can in Figure 4.3 see a 1D example of how an

arbitrary function 𝑢(𝑥) can be approximatedwith different basis functions for different
element sizes. Here the basis functions are chosen to be the simplest form of piece-
wise linear. This example also highlights that we then can choose elements so they have
a smaller size where the solution changes a lot, while we can have a bigger element size
where the solution is more constant, which means that we can keep the DOF down and
solve for the system faster.

(a) (b)

Figure 4.3: Example of how an arbitrary function u(x) is described by means of basis functions
over different element partitions. The first basis function is coloured grey. In Figure 4.3a, the
elements have equal size and in Figure 4.3b the elements are refined in regions where u varies
more.
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4.2.2 Boundary conditions
When we simulate electromagnetic fields over a domain, we need to be able to confine
the size of the geometry. Electromagnetic interactions in a lossless medium stretches
to infinity so there is a need for us to accurately handlewave propagationwhen it ’leaves’
the structure so we do not get unwanted numerical artefacts and can save computation
time. In the following subsections, we will present the boundary conditions needed to
solve for wave propagation in an optical waveguide. We will treat periodic conditions,
perfect magnetic/electric conductor, and scattering boundary conditions. The bound-
ary conditions are discussed from the viewpoint of use in COMSOL [63], but the princi-
ple is the same for other implementations.

4.2.2.1 Perfect electric/magnetic conductor - PEC/PML

When we want to simulate interactions with an ideal metal, we can simulate a perfect
electrical or magnetic boundary. This is useful when we are interested in capturing ef-
fects of ground planes or metallic effects where we do not need to account for metallic
losses.
The boundary condition for a perfect electrical conductor (PEC) simply imposes the

boundary condition
n × E = 0 (4.25)

along the boundary. Here n is the normal vector to the boundary. This also results in
that we get a perfect symmetry plane for magnetic fields.
In a similar way the perfect magnetic conductor (PMC) can be used to create a sym-

metry plane for electric fields by imposing the boundary condition

n ×H = 0. (4.26)

This means that if we are interested in simulating modes in a waveguide we can use
these boundaries to create symmetry planes if the device allows for it. So if we want to
simulate transverse electricmodes in awaveguide that is homogeneous or has a symme-
try around the the longitudinal propagation we only need to simulate half of the geom-
etry if we add a PMC in themiddle, as shown in Figure 4.4. The side effect of this choice
is that we then exclude the transverse magnetic modes, since they won’t appear due to
the added boundary. If we instead were to use PEC, we would calculate the magnetic
modes.

4.2.2.2 Periodic Floquet boundary conditions

Floquet boundary conditions are a set of boundary conditions that uses Floquet theory
named after Gaston Floquet who studied these systems during the late nineteenth cen-
tury [65]. It describes systems where we can express a vector field at a destination x as
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PMC

Figure 4.4: Figure showing the use of PMC to create a symmetry plane to cut the simulation
domain in half.

a phase shift operation acting on a the vector field from the start

𝑢𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 𝑢𝑠𝑜𝑢𝑟𝑐𝑒𝑒−𝑖k𝐹 ⋅x (4.27)

In a normal periodic problemwhen we have a unit cell with length

𝐿 = |r𝑑𝑠𝑡 − r𝑠𝑟𝑐 |, (4.28)

we would have a boundary condition stating

𝑢(𝐿) = 𝑢(0). (4.29)

If we instead have accrued a change in phase and amplitude, we can express the period-
icity like in Equation (4.27) as

𝑢(𝐿) = 𝑢(0)𝑒−𝑖k𝐹 ⋅(r𝑑𝑠𝑡−r𝑠𝑟𝑐). (4.30)

This boundary condition is useful when we want to simulate an infinite periodic struc-
ture, as described in Section 2.3, and we know that the change after the wave has prop-
agated one unit cell results in an added phase shift.

4.2.2.3 Scattering boundary conditions

Whenwehaveawaveexitingourdomainof interest,wewant away tomake thiswave ’go
away’ so it does not disturb the rest of the simulation. There are differentways to handle
this such as with perfectly matched layers (PML) [66, 67], which is a well established
method to truncate a simulation volume. It does come with a performance penalty and
requires an additional region to be meshed to enclose the simulated volume.

26



4.2. Determining propagation and dispersion constants

Another less costly method is the scattering boundary condition (SBC) of the first-
order [63]

n × (∇E) − 𝑖𝑘n × (E × n) = 0, (4.31)

which is a complex-valued variation on the Robin boundary condition [68, 69]. This can
bemademore effective by including a second-order termwith an added computational
cost. The second-order scattering boundary condition adds a tangential derivative term
along the boundary which lessens reflection at greater angles of incidence.

n × (∇E) − 𝑖𝑘n × (E × n) − 1
2𝑖𝑘0

∇ × (n ⋅ (∇ × E)) = 0. (4.32)

All of these methods still allow reflections to occur when the incidence angle of the
field deviated from the boundary normal. In many cases the SBC is good enough but
it depends on the geometry and scattering properties of the specific problem we try to
solve.

4.2.3 Eigenmode simulations
When we have a periodic Bloch structure, as described in Sections 2.3 and 4.2.2.2, we
often find ourselves in a situation where we want to calculate the dispersion relation
with respect to frequency. The older conventional way to numerically achieve this, as
described in, for instance, Refs. [70][71], is to solve for the eigenmodes of the system.
We fix the wave vector 𝑘 and solve for which frequencies the eigenmodes have. Then
we perform a parametric sweep of the wave vector to get the full dispersion. In some
instances, however, it is more interesting to do this the other way around and fix the
frequency instead of 𝑘. We might, for example, be interested in a design that only can
operate at certain frequencies. Approaches to achieve this in 2D with FEM was first
proposed in Refs [72] and [73], but generalised formally in 3D by [74].
The process to get the wave vector at a specified frequency with finite element eigen-

mode simulation involves a rewrite of the weak expression presented in Equation (4.23).
The way we do this is rather straight forward, we express the electric field as a periodic
vector field in a similar way as in the case for the Floquet boundary condition:

E(x) = u(x)𝑒𝑖(𝜔𝑡−k⋅x), (4.33)

Where 𝑢(x is a periodic function. We then insert Equation (4.33) into the wave Equation
(4.22) and receive a new field equation of u:

𝑘2
𝜇 u − 𝑘

𝜇 (k ⋅ u) − 𝑖k × (1𝜇∇ × u) − 𝑖∇ × (1𝜇k × u) + ∇ × (1𝜇∇ × u) − 𝜀 𝜔
2

𝑐2 u = 0. (4.34)
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We can then solve for k like an eigenvalue problem, by writing k = 𝜆 ⋅ r̂, where r̂ is the
normalised direction of periodicity and 𝜆 is the eigenvalue we solve for. We need to fix
the periodic direction, r̂, in order to decrease the dimension of k down to 1 so that we
can solve for it using an eigenvalue solver.
To be able to solve it, we need to use Equation (4.34) to create a new weak formula-

tion for the finite element solver. This is done bymultiplying Equation (4.34) with a test
function v:

𝐹𝐸(v, u) = 𝑘2
𝜇 v ⋅ u − 1

𝜇 (v ⋅ k) (k ⋅ u) − 𝑖 1𝜇 v ⋅ [k × (∇ × u)] − 𝑖 (∇ × v) ⋅ 1𝜇 (k × u) (4.35)

+ (∇ × v) ⋅ 1𝜇 (∇ × u) − 𝜀 𝜔
2

𝑐2 v ⋅ u = 0.

So if we are interested in the propagation constant along the propagation in the 𝑧
direction, along a periodic structure, we simply use the expression (4.35) and set the
k-vector to be k = 𝜆 ̂𝑧 and solve the expression for eigenvalue 𝜆.
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Summary of papers

Paper I
Adaptive meshing strategies for nanophotonics
using a posteriori error estimation

In Paper I we present a meshing strategy for simulating nanophotonic systems using
a posteriori error estimation in finite element methods. By first simulating the electric
field on an initial course mesh, we can then use this field to evaluate the a posteriori
errors for each element in a finite element mesh. Using this information, we can then
determinewhich of these elements exhibit the largest errors. By having a schemewhere
we iteratively only refine a fraction of the total elements and only choosing the elements
that show the largest errors we provide a h-FEM method that reliably and predictably
converges to a result while keeping the DOF down as much as possible.
We implement this strategy in COMSOL Multiphysics for arbitrary 3D geometries

and benchmark the strategy against other conventional adaptive meshing approaches.
Wedemonstrate that the use of adaptivemeshing leads to faster convergencewith lower
memory footprint for complex three-dimensional nanophotonic structures. Furtherwe
discuss an issue with mesh refinement where propagation of mesh refinement can re-
sult in poor convergence for situations where the starting mesh is to course.
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(a) 0:th iteration (b) 1:st iteration

(c) 5:th iteration (d) 10:th iteration.

Figure 5.1: Mesh progression starting from a very coarse mesh. A horizontal surface charge is
present in themiddle of the structure. Themesh is not fine enough to propagate the plasmon to
the right, so the refinement gets stuck in the early iterations. The top part of each panel shows
the mesh element error in logarithmic scale and the bottom figures show the actual mesh.
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6
Conclusions and outlook

We have now reached the beginning, for surely this is not the end of this journey? We
have over the course of this thesis learnt and reviewed the development of the field of
nonlinear optics. A development that is the result of centuries of progress. We have
learnedhowdielectricmaterials behaveunder the influence of electric fields. How these
fields can be controlled and guided to create the effects we want. When we now stop at
this thesis, we have the computational knowledge to simulate these effects, being able
to guide the light. Where do we go from here?
We have now reached the final vantage point of this thesis where I will stop a bit and

look forward from this position. In the grand scheme of things, the subject of nonlinear
physics is a rather new field, but also quite old, emerging during the 1900s resting com-
fortable on the shoulders of electromagnetism and quantum physics. The basic physics
has been well studied now for some generations. Yet the field is thriving and expand-
ing at the moment. Our technology in lasers and manufacturing of photonic devices
has now improved to such a point that we now canmanufacturemany things that previ-
ously was unthinkable. The possibility to use 2020s lithography techniques (now called
”modern”) developedmuch for the purpose of current electronics manufacturing opens
up the door for amazing materials design. We can now construct optical amplification
below conventional quantum limits [1] with on chipmanufacturing 55 years afterMiller
coined the term integrated optics [75], a testament to the quality of today’s manufac-
turing. Yet another field has truly emerged based on the same possibility brought from
better computationalmethods andmanufacturingand that is thefield ofmetamaterials
[76].
With increasingmanufacturingprowess,wecannowdesignmaterials thathavemuch

more desirable characteristics than what nature typically provides. With increasing
computational abilities, we now have the possibility to combine it all and create spe-
cific materials based on our needs on a case-by-case basis. So-called inverse design of
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materials, where instead of predicting how a specific material will behave we design it
ourselves to behave as we want.
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