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Yeast9: a consensus genome-scale metabolic model
for S. cerevisiae curated by the community
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William T Scott 7,8, Ulf W Liebal9, Lars M Blank 9, Hendrik G Mengers9, Mihail Anton 10,

Albert Tafur Rangel 3,11, Sebastián N Mendoza 12,13, Lixin Zhang2, Jens Nielsen11,14,

Hongzhong Lu 1✉ & Eduard J Kerkhoven 3,15✉

Abstract

Genome-scale metabolic models (GEMs) can facilitate metabolism-
focused multi-omics integrative analysis. Since Yeast8, the yeast-
GEM of Saccharomyces cerevisiae, published in 2019, has been
continuously updated by the community. This has increased the
quality and scope of the model, culminating now in Yeast9. To
evaluate its predictive performance, we generated 163 condition-
specific GEMs constrained by single-cell transcriptomics from
osmotic pressure or reference conditions. Comparative flux analy-
sis showed that yeast adapting to high osmotic pressure benefits
from upregulating fluxes through central carbon metabolism. Fur-
thermore, combining Yeast9 with proteomics revealed metabolic
rewiring underlying its preference for nitrogen sources. Lastly, we
created strain-specific GEMs (ssGEMs) constrained by tran-
scriptomics for 1229 mutant strains. Well able to predict the
strains’ growth rates, fluxomics from those large-scale ssGEMs
outperformed transcriptomics in predicting functional categories
for all studied genes in machine learning models. Based on those
findings we anticipate that Yeast9 will continue to empower sys-
tems biology studies of yeast metabolism.
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Introduction

Saccharomyces cerevisiae, a widely used model organism in
eukaryotic studies, was the first eukaryote whose genome was
thoroughly sequenced and annotated (Goffeau et al, 1996). S.
cerevisiae has long been used to study genetic interactions
(Costanzo et al, 2016; Tong et al, 2004), build cell factories for
the production of high-value-added compounds (Paddon et al,
2013; Chen et al, 2020; Ro et al, 2006), and comprehend eukaryotic
metabolism due to its clear genetic background, abundant gene
annotation and genetic tractability (DiCarlo et al, 2013; Jacobus
et al, 2022; Mans et al, 2015). Having amassed extensive knowledge
of the metabolism and physiology of yeast such as S. cerevisiae, the
genome-scale metabolic models (GEMs) of this organism have
undergone 20 years of iterative refinement and enhancement
including Yeast8 (Lu et al, 2019), Yeast7 (Aung et al, 2013), Yeast6
(Herrgård et al, 2008), iND750 (Duarte et al, 2004), iLL672
(Kuepfer et al, 2005) since the initial publication of the first-
generation model, iFF708, in 2003 (Förster et al, 2003). The
establishment and maturation of yeast-GEMs have laid a strong
foundation for the emergence of a model ecosystem centered on S.
cerevisiae, including ecYeast, etcYeast, and pcYeast, collectively
enabling a variety of system and synthetic biology investigations
concerning S. cerevisiae (Lu et al, 2019, 2022). For instance,
leveraging the enforced objective flux (FSEOF) algorithm (Choi
et al, 2010), Yeast8 and ecYeast8 have been used to obtain a 70-fold
improvement in heme production (Ishchuk et al, 2022). Kinetic
models derived from yeast-GEM possess the ability to discern
species-specific behavior (Hu et al, 2023; Henriques et al, 2021;
Scott et al, 2023).

The ability by which yeast, like any other cellular biocatalyst, can
overproduce desirable chemicals and secrete commercial proteins
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depends on cellular gene expression, which is determined by both
the genotype and the environment. Diverse growth environments,
encompassing variations in nutrition, temperature and stress,
possess the capacity to strongly shape cellular metabolism, thereby
exerting significant influence on the phenotypic outputs. Contrast-
ingly, traditional GEMs are chiefly based on the whole genome
sequence and their functional gene annotations (Thiele and
Palsson, 2010). As a result, it is challenging for GEMs themselves
to reflect gene expression levels corresponding to dynamic
environmental changes. With the accumulation of various omics
datasets, there has been a growing interest in the reconstruction of
omics-constrained GEMs, especially in Escherichia coli, where the
biological activity of metabolic networks is contextualized based on
quantitative transcriptomics or proteomics (Angione and Lió, 2015;
Becker and Palsson, 2008; Domenzain et al, 2022; Tian and Reed,
2018; Wagner et al, 2021; Martino et al, 2022). By contrast to
ordinary GEM, context-specific GEMs are more powerful in
simulating and revealing metabolic changes under environmental
and genetic perturbations. However, until now, few studies have
been conducted to systematically evaluate the quality and
prediction capabilities of large-scale context-specific yeast-GEMs.
On the other hand, model quality as denoted by e.g., accurate gene-
protein-reaction relationships (GPR) and protein compartment
annotations are at least as important in context-specific GEMs
compared to ordinary GEMs (arguably even more, as incorrect
annotations might become more influential when present in
smaller subnetworks). The continuous improvement of yeast-
GEM is therefore imperative for its use as both ordinary and
context-specific GEMs.

To this aim, we released the latest version of the yeast-GEM
(Yeast9) for the community by merging consistent model updates
that have been made in the past five years. To display the value of
yeast-GEM in transforming big data into knowledge, through
leveraging the large-scale omics and phenotype datasets, we
systematically reconstructed and analyzed numerous omics-
constrained GEMs, i.e., 163 condition-specific GEMs (csGEMs) at
single-cell level to decipher the metabolic readaptation mechanism
under high osmotic stress and 1229 strain-specific GEMs (ssGEMs)
to characterize the yeast metabolism under single gene deletion.
These studies showcase that yeast-GEM is well-suited for conduct-
ing omics integrative analysis in order to uncover complex relations
between genotype and phenotype. Moreover, yeast-GEMs can be
used for predicting cellular responses to novel environmental
conditions, as well as being computational platforms to pioneer the
development of industrial strains. Therefore, Yeast9 can serve as a
computational toolbox for quantifying yeast physiology and
guiding experimental works for the wider yeast community.

Results

Model improvements from the yeast community

Through a collective effort of iterative engagements by the yeast-
GEM community, the consensus yeast-GEM was updated from
Yeast8 to Yeast9. Following a similar pipeline as employed for
Yeast8, every round of updates was diligently recorded and
comprehensively documented through a version-controlled system
(https://GitHub.com/SysBioChalmers/yeast-GEM) which provided

transparency and reproducibility in the development of Yeast9. The
coverage of the metabolic network was increased through a
combination of targeted expansions, e.g., including reactions
related to volatile esters & polyphosphates, and by identification
of missing gene-protein-reaction relations (GPRs) from reaction
databases KEGG (Kanehisa and Goto, 2000) and MetaCyc (Caspi
et al, 2016). Combined with further curations described below, this
yielded 29 new genes, 202 new reactions, and 139 new metabolites
(Fig. 1).

Numerous GPRs and metabolite annotations were curated by
reviewing the corresponding annotation from NCBI (Sayers et al,
2009), UniProt (The UniProt Consortium, 2017), KEGG, ChEBI
(Hastings et al, 2016), PubChem (Kim et al, 2021), MetaNetX
(Moretti et al, 2021), ModelSeed (Seaver et al, 2021), BiGG (King
et al, 2016), BioCyc (Caspi et al, 2016) and Reactome (Jassal et al,
2020). We systematically curated all annotations of transport
reactions according to the detailed protein function annotations at
SGD (Cherry et al, 2012), TCDB (Saier et al, 2006), BioCyc, KEGG,
and UniProt (Fig. 1), lending confidence to simulations involving
transporter usage. The subunit composition of 36 protein
complexes was corrected based on SGD, ComplexPortal (Meldal
et al, 2022) and UniProt. To facilitate pathway analyses, each
reaction was assigned to single explicit subsystems, according to the
subsystem annotations (Dataset EV1) from KEGG, BioCyc, and the
GO ontology in SGD. The top 20 subsystems are summarized in
Fig. EV1.

When simulating flux distributions with the updated model, the
feasibility of metabolic fluxes and their directionality can be
determined by thermodynamics analysis. We therefore assigned
ΔG°’ for 98.2% metabolites and 97.2% reactions according to
evidence gathered from the yETFL model (Oftadeh et al, 2021),
dGPredictor (Wang et al, 2021) and ModelSEED database.
Furthermore, we balanced most mass/charge unbalanced reactions
in the model, thus increasing the percentage of balanced reactions
to 93.8%.

Systematic evaluation of Yeast9 in its prediction quality

Through the above improvements, Yeast9 contains 2805 metabo-
lites, 1162 genes, and 4130 reactions. Yeast9 has an improved
performance in characterizing cell growth from a wide range of
conditions compared to Yeast8. With a 27% increase in MEMOTE
score (Lieven et al, 2020), the predictions of single gene essentiality
and Biolog-plate measured substrate usage (Kang et al, 2019) by
Yeast9 were moderately improved compared with Yeast8
(Fig. 2A,B). Predicted growth from Yeast9 correlated well with
experimental data under both aerobic and anaerobic conditions
with R2 equals to 0.842 (Fig. 2C). Synthetic lethality can be
predicted with almost 80% accuracy (Fig. 2D). Various false
negative predictions may be the consequence of reactions that in
Yeast9 are annotated with redundant isozymes, which may prevent
in silico lethality. In vivo, however, the expression of isozymes may
be transcriptionally regulated (Bradley et al, 2019; Zhang et al,
2018), which is an aspect that is not considered in GEMs. Worse
synthetic lethality predictions were obtained when reactions were
disabled even if the knockout gene was an isoenzyme, yielding an
accuracy of less than 60% (Fig. 2E). This advocates for a more fine-
grained consideration of isoenzyme activity, through e.g., the
integration of condition-specific transcriptomics data, as
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demonstrated below. It is also worth to mention that the low recall
(13.1% in Fig. 2D, 37% in Fig. 2E) and precision (10.0% in Fig. 2D,
9.2% in Fig. 2E) highlight the limitations encountered by GEMs in
predicting synthetic lethality.

The newly added thermodynamic information makes it possible
to explore the driving force of mass transformation in metabolism
at both single reaction and sub-pathway levels. The ΔG°’ value is
indicative of the thermodynamic driving force of a reaction under
biochemical standard conditions, i.e., pH 7, 298 K, 1 atm and unit
concentrations for chemicals other than water and protons.
Nonetheless, as reaction directionality can be determined by
calculating condition-specific in vivo ΔG values with ΔG = ΔG°’
+ RT ln Q (where Q is the ratio of product of reactant
concentrations), the ΔG°’ is still somewhat indicative of the
likelihood of reaction reversibility.

In attempt to define reference ΔG values, we gathered average
metabolite concentrations from the Yeast Metabolome Database
(YMDB, Ramirez-Gaona et al, 2017), as this would allow the
determination of Q. Only 125 of the model metabolites (or 315
when considering compartments) with reported concentrations can
be found in YMDB. This low coverage precluded a systematic
analysis of ΔG values, albeit the ΔG°’ across metabolism can still be
examined. In central carbon metabolism (Fig. 2F), pathways such as
glycolysis, tricarboxylic acid cycle and pentose phosphate pathway
have negative ΔG°’ with −22.8, −9.6, and −13.8 kJ/mol, respec-
tively. The ΔG°’ of individual reactions, however, can range
drastically, implying that metabolites reach concentrations (i.e., Q)
that are compatible with a net flux through these reactions. This
exemplifies the importance of considering metabolite concentra-
tions before drawing conclusions on the effect of ΔG°’ on the
functioning of the metabolic network.

Environmental adaptation mechanism revealed by single-
cell omics-constrained GEMs

While yeast-GEM represents the theoretical metabolic network of S.
cerevisiae based on its genome annotation, not all enzymes might be
constitutively expressed. Gene expression may differ between cells, and
consequentially the metabolic network of individual cells may not be
the same. To examine this, we collected 163 single-cell transcriptomes
of S. cerevisiae (Gasch et al, 2017; Data ref: Gasch et al, 2017), including
80 transcriptomes measured under high osmotic stress and 83
transcriptomes measured under reference conditions. We used
GIMME (Becker and Palsson, 2008) to construct 163 single-cell
omics-constrained GEMs (scGEMs) by modifying the presence of
reactions and metabolites in the model based on transcriptomic data
(Fig. 3A). Due to the nature of single-cell data it cannot be
distinguished whether the scGEMs reflect true inter-cell variability,
or rather only reflect stochasticity in the single-cell data acquisition, a
challenge encountered in any single-cell approach. The generated
scGEMs have reaction numbers ranging from 2223 to 3856, with the
numbers of metabolites ranging from 2088 to 2708.

We gathered the metabolite number, reaction number, and
projected flux of each scGEM to categorize S. cerevisiae cells sampled
from stressed and unstressed conditions (Fig. 3A). Kernel principal
component analysis (kPCA) was executed to extract features before
machine learning. A random forest classification model was trained
using the kPCA-processed data. After parameter optimization, the
random forest classifier demonstrated 78% accuracy in differentiating
single cell sampled between the osmotic stress and unstressed
conditions (Fig. 3B). The optimized parameters are presented in
Dataset EV2. The same analysis on the whole transcriptomics dataset
yielded 100% accuracy (Fig. EV2), corroborating the observations by

: 

: 

Figure 1. Major improvements in Yeast9 compared to Yeast8.

The Yeast9 model contains 1162 genes, 2805 metabolites, and 4130 reactions. New reactions were identified by comparing Yeast8 with draft models constructed by
RAVEN. ΔG°’ was added for almost all metabolites and reactions. Each reaction was linked with a single subsystem according to the pathway annotation from KEGG or
SGD. Various GPRs were added or corrected by multi-rounds of manual comparison with databases. Nearly all reactions were curated to ensure mass and charge balances.
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Gasch et al (2017). This implied that the metabolic networks of
individual cells were sufficiently different to enable categorizing them
by which environment they resided without considering the
differential expression of non-metabolic genes. However, differential
expression of non-metabolic genes are important determinants of the
osmotic stress state that likely have strong biological relevance.

Cluster analysis on the simulated fluxes further illustrated high
similarity within the same condition, while retaining heterogeneity
(Fig. 3C). To further analyze the mechanism by which S. cerevisiae
responds to osmotic stress conditions, single-cell specific growth
rates (Fig. 3D) and central carbon metabolism fluxes (Fig. 3E;
Dataset EV3) were calculated by simulating the scGEMs. While S.
cerevisiae generally grew slower under osmotic stress, a subset of
stressed cells grew similar to those in unstressed cells and vice
versa. In this scenario, the alterations in the scGEMs’ metabolic
network topologies, driven by single-cell transcriptomes, result in
growth heterogeneity that accurately reflects the true cellular
growth state. This shows a possible existence of a resistant
phenotype or alternative stress response pathways that might be

worth exploring. In terms of evolution, it is possible that
heterogeneity of fluxes at the single-cell level play a role in aiding
S. cerevisiae populations in their adaptation to new environments.

In a more detailed analysis, we examined the flux distributions
from stressed and unstressed cells, particularly focusing on the
tricarboxylic acid cycle (TCA), pentose phosphate pathway (PPP),
and glycolysis (Fig. 3E). About 56% of the active fluxes are
divergent between unstressed cells and stressed cells (Fig. EV3), in
central carbon metabolism all reactions were significantly distinct.
An increased flux through PPP, TCA, and lower-glycolytic fluxes
was found in stressed yeast cells, which is consistent with
proteomics data (Soufi et al, 2009), which show that the overall
protein expression of these three pathways are changed in the same
direction as the flux. This signifies that S. cerevisiae strengthens its
central carbon metabolism to generate more ATP, provide NADPH
redox potential, and possibly synthesize more precursors in
response to high osmotic stress. Furthermore, the stressed scGEMs
had an increased flux from dihydroxyacetone phosphate (DHAP)
via glycerol 3-phosphate to glycerol, an osmoprotectant whose

Figure 2. Systematic evaluation of prediction capability by Yeast9.

(A) Comparison in predicted gene essentiality and Memote score between Yeast8 and Yeast9. (B) Carbon, nitrogen, phosphorus and sulfur source usages comparison
between Yeast8 and Yeast9. (C) Growth simulation under aerobic and anaerobic conditions. (D) The Yeast9 could predict the consequences of synthetic lethality of two
gene combinations considering the “AND/OR” relationship, with the accuracy at 80%. (E) Ignoring the “AND/OR” relationship, the Yeast9 shows 59% accuracy in
predicting synthetic lethality. (F) The profile of ΔG°’ in TCA, EMP, and PPP. The color denotes ΔG°’ value. The red line means that the reactions are favorable
thermodynamically; the blue line indicates that the reactions are unfavorable thermodynamically. The number within the bold rounded rectangle represents the total ΔG°’
of TCA, EMP, PPP, and reaction pathways in synthesizing acetyl-CoA, pyruvate, glutamine, aspartate, and ethanol from glucose.
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biosynthesis during osmostress is well documented (Hohmann,
2009; Yale and Bohnert, 2001).

Multi-omics analysis elucidates the metabolic rewiring
under nitrogen limitation

Another environmental parameter affecting metabolism is nutrient
availability, and as has been reported, S. cerevisiae preferentially
assimilates ammonium or certain amino acids, specifically glutamine
and glutamate (Crépin et al, 2012; Hofman-Bang, 1999). To check
whether yeast-GEM could quantitatively classify the preferred
nitrogen source utilized by S. cerevisiae, preference scores for the
nitrogen sources ammonium, glutamate, isoleucine and phenylalanine
were calculated using Yeast9 (Fig. 4A). During long-term evolutionary
processes, the cellular resources required for nitrogen uptake and
utilization influences S. cerevisiae preference for nitrogen sources. S.
cerevisiae evolutionarily chooses a nitrogen source that is more
resource-efficient and easier to utilize. If only limited nitrogen sources
are available, S. cerevisiae could contrastingly evolve more efficient use
of those nitrogen sources. Irrespective, as glucose acts as the main

carbon skeleton and energy source for yeast, we defined the nitrogen
preference score is the absolute value of the slope between nitrogen
and glucose uptake rates, where the uptake of a non-preferred
nitrogen source will result in a more significant increase in glucose
uptake when compared to a preferred nitrogen source. The order of
preferred nitrogen sources (Fig. 4B) based on Yeast9 predictions were
consistent with previous studies (Yu et al, 2021b; Hofman-Bang, 1999).

To further investigate how nitrogen sources tune yeast
metabolism, integrative analysis with Yeast9 was carried out by
leveraging reported multilayer omics datasets (Yu et al,
2021a, 2020). As the first step, we calculated flux distributions by
constraining Yeast9 with measured exchange fluxes and total
protein concentrations. As shown in Fig. 4C, nitrogen sources
largely reshape cellular flux distribution. Next, we analyzed
consistent tendencies (i.e., not correlations, but whether directions
of change agreed) between reaction fluxes and the related protein
abundances (Data ref: Yu et al, 2021a), comparing the unpreferred
nitrogen sources (isoleucine or phenylalanine) with the favored one
(i.e., ammonia). In these two cross-comparisons, 164 (isoleucine)
and 166 (phenylalanine) of the Yeast9 genes show consistent

Figure 3. Construction and application of scGEMs derived from Yeast9.

(A) Construction and analytic workflows. We integrated single-cell transcriptomics measured under osmotic stress conditions and normal conditions into yeast-GEM by
GIMME, resulting in 163 scGEMs. (B) The random forest classifier has 78% accuracy in classifying the single cell from high osmotic stress and normal conditions. (C)
UMAP is used for cluster analysis, with dimension 1 plotted against dimension 2. (D) Predicted growth rates of single cells from osmotic stress conditions and normal
conditions. p value was analyzed by Student’s t test; white circle indicates mean; thick bar indicates interquartile range; thin bar indicates 1.5× interquartile range; n= 80
for stress and 83 for unstressed. (E) Comparison of mean flux values for central carbon metabolism as predicted by scGEMs. P values were analyzed by Student’s t test.
See Dataset EV3 for a full list of P values. n= 80 for stress and 83 for unstressed.
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directional change in both flux and protein level (Table EV1).
There are 149 common genes selected from the above two groups of
genes, which were enriched in amino acid biosynthesis
(P value < 0.001) by GO term enrichment analysis (Dataset EV4).

To more precisely determine the covariance between fluxomics and
proteomics across diverse environments, we expanded the analysis to
not only consider the direction of change in both flux and protein level,
but to evaluate if protein and flux levels quantitatively correlated across
multiple conditions. We thereby utilized 12 phenotype-constrained
models (Fig. 4D) and their associated proteomic datasets (Data ref: Yu
et al, 2021a, 2020), covering not only alternative nitrogen sources but
also six dilution rates and three carbon-nitrogen ratios, in a regulatory
analysis that has previously been described for E. coli (Kochanowski
et al, 2021). The contribution of protein expression to flux can be
calculated as the slope between log (flux value) and log(protein
abundance) (Fig. 4D), which has been defined as the protein regulation
coefficient (ρ) (Rossell et al, 2006; Chubukov et al, 2013). Here,
ρ ≈ 1 signifies that changes in simulated fluxes can largely be explained
by protein concentration changes. When based on fluxes predicted
from parsimonious FBA (pFBA), most reactions from carbohydrate
metabolism and amino acid metabolism exhibited weak protein
regulation coefficients (Fig. 4D), with only 1.7% reactions revealing
high coefficients (ρ > 0.5, Table EV2). As pFBA only yields single flux
distributions, ρ values were also determined based on mean fluxes
from random sampling of the solution space, which yielded similar
results (Table EV2). Both analyses imply a low correlation between
protein abundance and flux, albeit it cannot be excluded that

uncertainty of the predicted fluxes obscure the true correlation
between protein abundance and flux. Regardless, the previous analysis
implies that the direction of change might be more distinctly
conserved. Additional post-translational regulatory mechanisms might
be implicated in this discrepancy. As proteome changes are not
necessarily reflected in flux changes, multi-omics analyses are rendered
more valuable to reflect metabolic adaptation mechanisms.

Large-scale transcriptomic empowers yeast-GEM to
predict growth profiles and gene function

When not lethal, gene knockouts may still alter gene expression
levels, flux distributions and thereby phenotypes of an organism.
Meanwhile, the knockout of genes that have similar functions may
also yield similar changes in flux distributions. Therefore, it is
possible to explore gene functions by analyzing model-predicted
fluxes and gene expression levels upon gene knockouts. To this
purpose, we collected two transcriptomic datasets containing
1143 single knockout S. cerevisiae strains (Kemmeren et al, 2014;
Sameith et al, 2015; Data ref: Kemmeren et al, 2014; Data ref:
Sameith et al, 2015) and 86 single or double knockout strains to
build 1229 ssGEMs using the early described method (Culley et al,
2020), where reaction bounds are changed according to gene
expression levels (Fig. 5A). Of these 1143 knockout genes, 75 were
assigned to reactions in Yeast9, implying that the ssGEMs are
mostly reflecting the metabolic networks after knockout of non-
enzyme-coding genes. Flux balance analysis (FBA) with growth

Figure 4. Illustration of yeast metabolism rewiring under nitrogen limitation based on Yeast9 and multi-omic integrative analysis.

(A) A graphical representation of the preference score. The preference score denotes the degree to which the change in glucose uptake rate compensates for the decrease
in nitrogen source absorption rate. (B) The preference scores of glutamine, ammonium, isoleucine, and phenylalanine. (C) pFBA was used to get the flux distributions of
four nitrogen sources. (D) 12 phenotype-constrained models and the calculation of protein regulation coefficient (ρ). The correlation analysis between protein abundances
and fluxes was conducted at both holistic and sub-pathway levels.
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maximization as the objective function showed a good correlation
between the predicted and measured growth rate, with Pearson
correlation coefficient (PCC) = 0.66 for single knockout strains and
0.78 for double knockout strains (Fig. 5B). The PCC reached 0.67
when only the 75 genes that appear in Yeast9 are considered
(Fig. 5C). In comparison to Culley et al (2020), which used the pre-

Yeast8 S. cerevisiae GEM iSce926 that had explicitly been curated
for synthetic lethality analysis (Chowdhury et al, 2015), Yeast9
exhibited enhanced PCC values for strains with double knockouts.
Nonetheless, the relatively moderate improvement in predictive
performance is representative of the gradual improvement of
yeast-GEM through each subsequent release. Meanwhile, it should

Figure 5. Large-scale transcriptomics-constrained GEMs built from Yeast9 could characterize the growth profiles of gene knockout strains and classify gene
functions.

(A) The Yeast9 is constrained by transcriptomics to generate ssGEMs for gene knockout strains, which are sequentially used to predict the growth rate and train machine
learning models in gene function classification. (B) Significant correlations existed between the relative doubling time (calculated based on measured value) and the
corresponding simulated growth rate based on ssGEMs. P values were analyzed by Student’s t test. Correlation was analyzed by Pearson correlation coefficient. (C)
Among 1143 single knockout genes, 75 genes present in Yeast9. A distinct correlation is evident between the relative doubling time and the simulated growth rate. p values
were analyzed by Student’s t test. Correlation was analyzed by Pearson correlation coefficient. (D) The ROC and AUC of Naive Bayes using fluxomic (blue line),
transcriptomic data (orange line) and the combination data (purple line) were computed by scikit-learn. (E) Using the Naive Bayes classifier, the predictive accuracy for
each gene function in the test set was evaluated.
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be noted that the expression of metabolic genes (and their
corresponding constraints on the metabolic model) is not the sole
factor that dictate strain-specific growth rates, as growth rate
predictions based solely on the whole transcriptomics dataset
reached PCC > 0.9 (Culley et al, 2020).

To evaluate the ability to annotate gene function based on flux
simulations, the aforementioned 1143 knocked-out genes were
assigned to functional categories (one per gene), in accordance with
Culley et al (Dataset EV5). In order to provide sufficient training data,
we selected the five functional categories with the highest number of
genes: cell cycle regulation; chromatin factors; gene-specific transcrip-
tion factors; protein kinases; and ubiquitin(-like) modifications,
together covering 559 genes (Table EV3), including 11 genes assigned
to reactions in yeast-GEM, and assigned these classifications to the
aforementioned knockout ssGEMs. We then explored the application
of machine learning algorithms for this five-class classification,
utilizing diverse datasets, including transcriptome data, fluxomic,
and their concatenated composites that were preprocessed by kPCA.

Five machine learning algorithms were tested, including Support
Vector Machine (SVM), Naive Bayes, Random Forest, K-Nearest
Neighbors (k-NN), Logistic Regression, and Multilayer Perceptron
(MLP), while a systematic optimization of parameters was conducted
for each model (Dataset EV2). The Naive Bayes classifiers showed the
best performance with 90% testing accuracy when utilizing both
fluxomics and transcriptomics as input data (Table 1). The testing
performance (Table 1), as well as the receiver operating characteristic
curve (ROC) and the area under the curve (AUC) all show that the
Naive Bayes classifiers performed better when utilizing fluxomic as
the only input compared to transcriptomics (Fig. 5D). In the test set,
the prediction accuracy of chromatin factor is the highest, followed by
cell cycle regulation (Fig. 5E). In addition, excluding 11 genes that are
included in yeast-GEM from the analysis did not drastically change the
performance (Table EV4). Collectively, it suggests that fluxes from the
ssGEMs can provide sufficient information to classify the function of
knocked-out genes, thus helping to bridge the gap between genotype
and phenotype.

While demonstrating the feasibility of this approach and the
suitability of yeast-GEM, this framework could gain impact with
more knockout transcriptomics, single-function gene annotations,
or machine learning approaches that allow for multi-label
classification, as would be required to handle, e.g., GO term
annotations.

Discussion

Through a concerted effort by members of the research community,
we have updated yeast-GEM from Yeast8 to Yeast9, assisted by a
version control system. The gradual improvements of yeast-GEMs
covered a wide range of curations, including but not limited to the
assignment of new gene functions; adjustment of incorrect gene
assignments; modification of reaction directionality; and inclusion
of annotations of proteins, metabolites and reactions. The
aforementioned progress has filled gaps in the current yeast-GEM
and enhanced its performance in comprehensively characterizing
yeast cellular metabolism. However, some limitations still exist for
Yeast9. For example, it still lacks high-resolution details in
representing yeast metabolic activities at the organelle level and
some reactions for lipid synthesis are not standard. Our synthetic

lethality analysis yielded almost 80% accuracy of prediction, leaving
room for improvement. Thus, further efforts from the yeast
community still need to be taken as part of the circular process to
refine the quality of Yeast9.

From a mathematical perspective, the computational output of
GEMs represents substantial solution spaces containing large numbers
of potential flux distributions. While mathematically sound, not every
flux distribution is as likely to be biologically observed, given that
biological variability simultaneously deviates from the principle of
FBA. As conventional GEMs neglect the effects of mRNA and protein
levels on the shape of the solution space, discrepancies between model
simulations and real metabolic activities are a consequence. We
therefore evaluated Yeast9 in a number of integrative multi-omics
analyses that quantified yeast physiology and metabolism. As the first
example, 163 scGEMs could be classified according to their exposure
to osmotic stress and showed subpopulations when considering their
metabolic networks. Secondly, Yeast9 was able to enumerate which
nitrogen sources (i.e., glutamine and ammonium) are most preferred
by yeast. In additional simulations with Yeast9, different nitrogen
sources could drastically alter the fluxes through central carbon
metabolism. When considering integrative multilayer omics analyses
with Yeast9, we observed a low consistency between changes in
fluxomics and proteomics. Such a lower correlation has also been
reported in other microorganisms, e.g., E. coli and Bacillus subtilis
(Gerosa et al, 2015; Hackett et al, 2016; O’Brien et al, 2016; Chubukov

Table 1. Classifier metrics when trained on different datasets, aimed at
achieving a five-class gene function classification.

Dataset Algorithm
Train data
accuracy

Test data
accuracy

Test
data
recall
rate

Test
data F
score

Transcriptomic SVM 0.99 0.68 0.66 0.67

MLP 1.00 0.67 0.66 0.66

Naive
Bayes

0.58 0.32 0.35 0.30

Random
forest

1.00 0.57 0.57 0.56

k-NN 1.00 0.60 0.58 0.60

Logistic 0.99 0.72 0.70 0.70

Flux SVM 0.52 0.39 0.35 0.33

MLP 0.34 0.31 0.27 0.17

Naive
Bayes

0.92 0.88 0.89 0.88

Random
forest

0.99 0.70 0.69 0.70

k-NN 1.00 0.57 0.54 0.55

Logistic 0.47 0.32 0.28 0.24

Transcriptomic
and Flux

SVM 0.84 0.53 0.51 0.51

MLP 0.28 0.30 0.30 0.28

Naive
Bayes

0.94 0.90 0.90 0.90

Random
forest

1.00 0.83 0.82 0.83

k-NN 1.00 0.43 0.41 0.41

Logistic 0.55 0.37 0.36 0.36
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et al, 2013). Thereby, multi-omics analyses and GEM simulations are
highly complementary when investigating metabolic regulation.
Omics-constrained GEMs reduce the solution space, thereby eliminat-
ing biologically infeasible solutions and consequentially resulting in
model outcomes with higher confidence. At the same time, this does
not mean that it is strictly essential to integrate omics data in Yeast9
before simulations can be performed, just as with any other genome-
scale model of metabolism. The ML approaches demonstrated in this
manuscript obligate transcriptomics data, thereby highlighting a
potential limitation of these approaches, as such data is not always
readily available.

Overall, Yeast9 is the most comprehensive and state-of-the-art S.
cerevisiae GEM, as well as a valuable knowledge database on its
metabolic network. Through continuing iterative updates, the quality
of yeast-GEMs has further improved and as such, this model could
function as valuable template when generating high-quality GEMs for
non-conventional yeast species, such as Pichia pastoris, Ogataea
polymorpha and Methylotrophic yeasts (Domenzain et al, 2021;
Grigaitis et al, 2022; Liebal et al, 2021; Tomàs-Gamisans et al, 2018).
Those models together can enable the exploration of evolutionary
mechanisms underlying diverse metabolic activities and traits across
yeast species. Ultimately, we are confident that the latest version of
yeast-GEMs–Yeast9 and its flourishing model ecosystem, which still
needs research community to contribute to further improvements,
fostering an open-source and collaborative environment, around it will
accelerate the developments in systems and synthetic biology studies of
yeast in the coming years.

Methods

Reagents and tools table

Reagent/
resource Reference or source

Identifier or catalog
number

Software

yeast-GEM
9.0.0

https://github.com/SysBioChalmers/
yeast-GEM

MATLAB
R2021b

https://www.mathworks.com/
products/matlab.html

RAVEN 2.9.2 https://github.com/SysBioChalmers/
RAVEN

COBRA 3.0.1 https://github.com/opencobra/
cobratoolbox

python 3.9.7 https://www.python.org

cobrapy
0.22.1

https://github.com/opencobra/
cobrapy

umap-learn
0.5.3

https://github.com/lmcinnes/umap

scikit-learn
0.24.2

https://scikit-learn.org

memote
0.13.0

https://github.com/opencobra/
memote

scipy 1.7.1 https://scipy.org

numpy 1.20.3 https://numpy.org/

pandas 1.3.4 https://pandas.pydata.org

Model curation by identifying new reactions,
metabolites, and genes

Standard procedures for metabolites and reactions annotation used
in this work were consistent with Yeast8 (Lu et al, 2019).

- Aimed at adding new reactions and metabolites, two draft models
were reconstructed using RAVEN Toolbox 2.0 (Wang et al, 2018).
The two draft models were built based on KEGG and MetaCyc
separately (Kanehisa and Goto, 2000; Caspi et al, 2016).

- Then, new reactions and metabolites were extracted by semi-
automatically comparing the Yeast8 with those two draft models.

- The detailed annotation of genes, metabolites and reactions from
MetaCyc, Yeastcyc, UniProt, SGD, and KEGG were utilized to
guarantee that the new reactions and metabolites were reasonable
and of high quality.

Model curation by adding reaction subsystems

Reaction subsystems were systematically obtained from the KEGG
pathway and integrated into the Yeast9.

- If KEGG does not have the subsystem annotation of the reactions,
the Gene Ontology of the corresponding genes in SGD or basic
biochemistry knowledge was applied.

- If no detailed information is found, the reactions are classified into
the “other” subsystem.

Model curation by adding Gibbs free energy

The Gibbs free energy change (ΔG°’) was added into yeast-GEM. The
ΔG°’ values in kJ/mol are available in the YAML version of the model,
and when loaded through the provided loadYeastModel function, the
values are available from the metDeltaG and rxnDeltaG fields.

- Whenever possible, the ΔG°’ values for reactions (97%) and metabolites
(96%) were gathered from the yETFL model (Oftadeh et al, 2021).

- The ΔG°’ for reactions that were not contained in the yETFL model
were computed by dGPredictor (Wang et al, 2021).

- The ΔG°’ for metabolites that were not contained in the yETFL model
were taken from ModelSEED (Seaver et al, 2021).

Curation of complex annotations

The complex annotations were comprehensively refined, mainly
based on ComplexPortal, and information from SGD and UniProt
were also used.

Curation of transporter annotations

The transporter annotations were curated using various databases,
including TCDB, SGD, UniProt, and KEGG.

Synthetic lethal simulation

Gene interactions data (Costanzo et al, 2016; Tong et al, 2004; Bellaoui
et al, 2003; Goehring et al, 2003; Huang et al, 2002; Kozminski et al,
2003; Krogan et al, 2003; Tong et al, 2001) were collected.
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- The function “double_gene_deletion” in COBRA Toolbox was
used to estimate synthetic lethality considering the “AND/OR”
relationship.

- For the estimation ignoring “AND/OR” relationship, all reactions
of a deleted gene were removed no matter if other genes are
associated with those reactions and how.

scGEMs construction and simulation

Gasch et al previously described a series of single-cell transcrip-
tomes of S. cerevisiae, in which 80 transcriptomes were measured
under the osmotic stress condition and 83 transcriptomes under the
unstressed condition (Gasch et al, 2017).

- Constrained by the single-cell Gasch’s transcriptome dataset, the
163 single-cell-specific models were generated using the GIMME
algorithm by COBRA Toolbox (Becker and Palsson, 2008) in
MATLAB based on Yeast9.

- To analyze the metabolic difference between the osmotic stress
condition and the unstressed condition, parsimonious flux balance
analysis (pFBA) (Lewis et al, 2010) was used to maximize growth rate
under the minimal medium condition.

- The resulting 163 flux distributions, together with the reaction numbers
and metabolite numbers, formed 163 datasets.

- Subsequently, the dataset was randomly split into training (70%)
and test (30%) datasets. The parameters of kPCA (‘n_components’
and ‘kernel’) as well as those of the Random Forest classifier
(‘n_estimators’, ‘max_depth’, ‘min_samples_split’, and ‘min_sam-
ples_leaf’) were optimized using the GridSearchCV function from
the scikit-learn library (Pedregosa et al, 2011) along with a fivefold
cross-validation

- UMAP was utilized to reduce the dimensions of 163 datasets and
to perform cluster analysis, where the n_components=2 (McInnes
et al, 2020).

Generation of condition-specific GEMs under
nitrogen limitation

- Yeast9 was constrained by the experimentally measured growth
rate and exchange rates (except for nitrogen exchange rate) under
nitrogen limitation conditions (Yu et al, 2021b, 2020).

- The carbohydrate, protein, and RNA ratios in the biomass
composition were scaled according to the measured carbohydrate,
protein, and RNA abundance in the paper. As a result, 12
phenotype-constrained models were generated.

Compute nitrogen source preference score

The preference score of yeast for different nitrogen sources was
computed as follows:

- Step 1: Allow for uptake of one nitrogen source at the time, with a
fixed growth rate of 0.1 h−1 (i.e., the experimental growth rate).

- Step 2: Determine the minimum nitrogen uptake by FBA while
setting the relevant nitrogen source exchange reaction as the
objective function.

- Step 3: Step-wise (in five steps) increase the nitrogen uptake from
100 to 150% of the value determined in step 2, and determine the
minimum glucose uptake by FBA while setting the glucose

exchange reaction as objective function.
- Step 4: Determine the slope of glucose uptake versus nitrogen source
uptake, and take its absolute value to represent the preference score.

- Step 5: The scores are scaled by Eq. (1).

scaled i ¼ i
P

I
(1)

Where i denotes the origin preference score. I denotes a vector
containing all scores.

Compute flux distribution under nitrogen limitation

- To get the flux distribution under four nitrogen sources, Yeast9
was first constrained by the measured fluxes (multiplied by 0.8
considering the possible experimental error) for each related
exchange reaction and the measured growth rate, with minimiza-
tion of nitrogen source utilization as the objective function.

- Subsequently, the uptake rate of nitrogen source in models was
fixed, to smaller than 1.5 times of the calculated minimal nitrogen
source uptake rate.

- Afterwards, all fluxes were recalculated by pFBA with maximizing
growth as the objective function.

GO enrichment analysis under nitrogen limitation

- The genes with higher protein expression level and corresponding
flux than their counterpart in the model using NH4 as the only
nitrogen source were selected. For genes related to more than one
reaction, at least one related reaction flux larger than that in the
NH4 model meets screening requirements.

- After that, GO enrichment analysis (https://david.ncifcrf.gov/) was
used to estimate the biological processes in which the selected
genes were involved.

Protein regulation coefficients from fluxomics and
absolute proteomics

Proteomic data and yeast phenotype measurements were collated from
literature (Yu et al, 2021a, 2020; Data ref: Yu et al, 2021a, 2020).

- Yeast9 was constrained by the measured exchange fluxes and
growth rates. The biomass composition was altered according to
total protein concentrations from the aforementioned publications,
using the “scaleBioMass” function in the yeast-GEM repository.
Then, nitrogen uptake (for which no measurements were available)
was minimized and subsequentially fixed to the obtained value.

- Lastly, the flux distribution was calculated by pFBA (Kochanowski
et al, 2021) with maximized ATP maintenance as objective (results
used in Fig. 4D and Table EV2) or by taking the mean value of
1000 random samples of the solution space (Bordel et al, 2010)
(results used in Table EV2).

- To determine the protein regulation coefficient ρ, only reactions
and proteins that showed nonzero value in a minimum of five out
of twelve conditions were considered. The ρ value was determined
for each reaction-protein pair individually for each limitation by
linear regression between the log-fluxes and log-protein concen-
trations. When multiple isoenzymes were associated with a
reaction, the average regulation coefficient of all corresponding
proteins was computed to determine the final protein regulation
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coefficient for that reaction. For reactions catalyzed by a complex,
the minimal concentration of all subunits was used to compute the
protein regulation coefficients.

Defining strain-specific GEMs based on single/double
knockout transcriptomics

The transcriptomic data of single- and double-knockout strains
(Kemmeren et al, 2014; O’Duibhir et al, 2014; Sameith et al, 2015)
were used to constrain reaction lower and upper bounds, by
utilizing the algorithm and MATLAB code previously described by
(Culley et al, 2020).

- Briefly, reaction lower and upper bounds as defined in Yeast9 were
defined as representing the wildtype reference strain.

- Then, non-log-transformed gene expression levels as obtained
from microarray experiments (ranging from 117-fold down-
regulation to 64-fold upregulation in comparison to wildtype)
were used to multiply the existing lower and upper bounds of
gene-associated reactions.

To prevent unrealistic flux bounds, winsorization was applied to
smooth extreme values (except for the knockout gene), to make
them fit within the 1st and 99th percentile of gene expression
values. If a reaction was annotated with multiple genes, the
minimum expression level among subunits, and/or the maximum
expression level among isoenzymes were used. Through this
approach, the original solution space was reshaped to represent
the knockout strain-specific solution spaces.

Gene function prediction using 6 machine
learning algorithms

The deleted genes were classified according to the PANTHER
classification system (Mi et al, 2019) in a previous study (Culley
et al, 2020). In this dataset, the gene number in those functional
categories ranges from 29 to 149.

- The categories with the top five highest number of genes (cell cycle
regulation, chromatin factors, gene-specific transcription factors,
protein kinases, and ubiquitin(-like) modifications) were selected
for machine learning classification.

- A suite of machine learning models, including SVM, MLP, Naive
Bayes classifiers, Random Forests, k-NN, and Logistic Regression,
was applied to categorize the genes.

- The dataset involved the predicted fluxes and transcript profiles,
along with the combination, segmented stochastically into training
(70%) and testing (30%) subsets.

- kPCA was used for extracting omics features.
- The optimization of themodel’s hyperparameters was executed through
the GridSearchCVmethod, with a fivefold cross-validation routine. The
assessment of these models was grounded on several performance
metrics including accuracy, recall, F1 score, ROC curve and AUC.

Data availability

The datasets and computer code generated in this study can be
accessed through the following databases: Yeast9 computer scripts:

GitHub (https://GitHub.com/SysBioChalmers/yeast-GEM). Model evalua-
tion and omics integrative analysis: GitHub (https://GitHub.com/
hongzhonglu/yeast_GEM_multi_omics_analysis). Supplementary files to
construct knockout models: Figshare (https://figshare.com/articles/dataset/
large_data_used_in_https_github_com_hongzhonglu_yeast_GEM_mul-
ti_omics_analysis_/22774076).

The source data of this paper are collected in the following
database record: biostudies:S-SCDT-10_1038-S44320-024-00060-7.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-024-00060-7.
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Expanded View Figures

Figure EV1. Reaction subsystems distribution of yeast-GEM.

Top 20 reaction subsystems in yeast-GEM.
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Figure EV2. Random Forest classifier prediction performance using transcriptomic data.

The Random Forest classifier has 100% accuracy in classifying the single cell from high
osmotic stress and normal conditions using transcriptomic data.
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Figure EV3. Significance analysis of reactions’ flux.

t test of active flux between salt stress condition and unstress condition.
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