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Abstract
Virtually all deep learning-based frameworks trying to solve routing problems
have a neural encoder architecture. In this work, we explore the sparsification
of graphs representing instances of routing problems. By this sparsification,
we allow the neural encoder architectures of learning-based frameworks to fo-
cus on the parts of the routing problem that are most promising to be part of
the problem solution. As a result, the encoders can produce better encodings
that represent the problems in the neural framework. Since these good prob-
lem representations are fundamental for the overall learning pipeline, good
encodings improve the overall performance.

In particular, in this thesis, we focus on graph neural network (GNN) and
transformer encoders applied to instances of the traveling salesman problem
(TSP). We propose two different procedures to determine the most promising
edges of a TSP, i.e., the edges that are likely to be part of the optimal TSP
tour. The first method is the simple k-nearest neighbor heuristic, where each
node in the TSP instance is only connected to the k closest other nodes af-
ter sparsification. The second method is based on minimum spanning trees
(MSTs) and offers the advantage of guaranteeing connected sparse graphs.

Furthermore, we propose ensemble methods of different sparsification levels.
This means that each TSP instance is represented several times, each time as a
graph with either more or less edges of the original TSP graph being kept. By
combining very sparse graphs with only the most promising edges and dense
graphs with a high amount of edges, we allow the encoder architecture to focus
on the most important parts of the problem only while minimizing the risk of
completely deleting optimal TSP tour edges in the sparsification process. The
encodings produced on the TSP graphs of different sparsification levels are
merged afterwards, creating encodings that can be incorporated easily into
existing learning-based routing frameworks.

Keywords: Machine Learning, Traveling Salesman Problem, Vehicle Rout-
ing, Graph Neural Networks, Transformers, Combinatorial Optimization, Graph
Sparsification

i



ii



List of Publications
This thesis is based on the following publications:

[A] Attila Lischka, Jiaming Wu, Rafael Basso, Morteza Haghir Chehreghani,
Balázs Kulcsár, “Less Is More – On the Importance of Sparsification for Trans-
formers and Graph Neural Networks for TSP”. Preprint.

Other publications by the author, not included in this thesis, are:

[B] Fangting Zhou, Attila Lischka, Balázs Kulcsár, Jiaming Wu, Morteza
Haghir Chehreghani, “Learning for routing: A guided review of recent devel-
opments and future directions”. In pipeline..

iii



iv



Acknowledgments
My biggest thanks go to my supervisors Prof. Balázs Kulcsár, Prof. Morteza
Haghir Chehreghani, and Dr. Jiaming Wu. Without their help and encour-
agement, I would not have finished this degree. I deeply appreciate all the
interesting discussions we had. They significantly contributed to guiding the
direction of our research.

I would also like to express my gratitude to the Swedish Electromobility
Centre (SEC) which provided funding for this thesis through the research
project “LEAR: Robust LEArning methods for electric vehicle Route selec-
tion”. Furthermore, I want to acknowledge that computations were enabled
by resources provided by the National Academic Infrastructure for Supercom-
puting in Sweden (NAISS) at Chalmers e-Commons partially funded by the
Swedish Research Council through grant agreement no. 2022-06725.

Acronyms

CVRP: Capacitated Vehicle Routing Problem

GAT: Graph Attention Network

GCN: Graph Convolutional Network

GNN: Graph Neural Network

MCTS: Monte Carlo Tree Search

MLP: Multilayer Perceptron

MST: Minimum Spanning Tree

RL: Reinforcement Learning

SL: Supervised Learning

TSP: Traveling Salesman Problem

VRP: Vehicle Routing Problem

v





Contents

Abstract i

List of Papers iii

Acknowledgements v

Acronyms v

I Overview 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9
2.1 Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . 9

Capacitated Vehicle Routing Problem . . . . . . . . . . . . . . 10
Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . 11
Limitations of Graph Neural Networks . . . . . . . . . . . . . . 12

2.2 Transformer Networks . . . . . . . . . . . . . . . . . . . . . . . 12

vii



2.3 Minimum Spanning Trees . . . . . . . . . . . . . . . . . . . . . 12
1-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Related Work 15
3.1 Learning to Route . . . . . . . . . . . . . . . . . . . . . . . . . 15

Construction-based Approaches . . . . . . . . . . . . . . . . . . 16
Improvement-based Approaches . . . . . . . . . . . . . . . . . . 18

3.2 Sparsifying the TSP . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Methodology - Sparsifying the TSP 23
4.1 Sparsification Methods . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Sparse Graph Ensembles . . . . . . . . . . . . . . . . . . . . . . 29

5 Summary of included papers 33
5.1 Paper A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Concluding Remarks and Future Work 35
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

References 39

II Papers 45

A Less Is More A1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A3
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . A7

2.1 Learn to Route . . . . . . . . . . . . . . . . . . . . . . . A7
2.2 Sparsification for Routing . . . . . . . . . . . . . . . . . A9

3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . A9
3.1 Graph Neural Networks . . . . . . . . . . . . . . . . . . A9
3.2 Travelling Salesman Problem . . . . . . . . . . . . . . . A10

4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . A10
4.1 Making the TSP Sparse: The Sparsification Process . . A10
4.2 A Sparsification Based Framework for Learning to RouteA14
4.3 Other Sparsification Methods . . . . . . . . . . . . . . . A16

viii



5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A16
5.1 Optimal Edge Retention Capability of Sparsification Meth-

ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A16
5.2 Sparse Graphs for Encoders Evaluation . . . . . . . . . A17
5.3 Results - GNNs . . . . . . . . . . . . . . . . . . . . . . . A19
5.4 Results - Transformers . . . . . . . . . . . . . . . . . . . A22

6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . A24
1 Data Distributions . . . . . . . . . . . . . . . . . . . . . . . . . A25
2 Experiments - Setup . . . . . . . . . . . . . . . . . . . . . . . . A25
3 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . A29
4 Experiments - Preprocessing Times . . . . . . . . . . . . . . . . A29
5 Experiments - Ensembles . . . . . . . . . . . . . . . . . . . . . A31
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A31

ix





Part I

Overview

1





CHAPTER 1

Introduction

1.1 Motivation

Vehicle routing problems are examples of optimization problems with many
use cases in real-world problems such as logistics or chip designing. For ex-
ample, a delivery service might be interested in serving all its customers while
not overloading their delivery vehicles, starting and ending their journey at
the delivery center, and minimizing the traveled distance. This is an example
of the capacitated vehicle routing problem (CVRP). Another example is the
traveling salesman problem (TSP) in which a set of customers is given which
shall be visited by an agent in an order that minimizes the traveled distance.

Despite their omnipresence, routing problems are challenging to solve as
they belong to the class of NP-hard problems. Since no efficient algorithms
are known for solving NP-hard problems, heuristics play an important role in
approximating good solutions. In recent years, machine learning has arisen
as a powerful trade-off to build algorithms that are fast while still achieving
good solution quality for routing problems.

To process the information inherent to a routing problem instance, it has to
be captured and encoded by a suitable neural architecture. Routing problems
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Chapter 1 Introduction

can be interpreted as graph problems, where, e.g., customers of a delivery
company are represented as graph nodes, and the roads between the customers
are represented as graph edges. As a result, graph neural networks (GNNs),
a class of neural architectures designed to operate on graph-structured data,
are a straightforward choice to serve as an encoder architecture for routing
problems. Similarly, transformer models (that have been shown to be related
to GNNs) have also been used successfully to generate encodings for routing
problems in the recent past.

GNNs are known to exploit structural information when applied to under-
lying input graph instances [1], [2]. In routing problems, however, the input
graph often carries little structural information. This is because in principle
it is possible to travel between any pair of nodes in the graph which means
that the graph is complete. Therefore, graph neural networks are not able
to meaningfully extract information about promising node neighborhoods in
their internal message-passing operations. In fact, the GNN will perform
aggregation operations over the complete graph for every single node when
performing message-passing, resulting in the exact same neighborhood infor-
mation and therefore similar node encodings for every node. As a result,
a framework based on these encodings will struggle to differentiate between
them and structure them meaningfully to generate a valid solution. We visu-
alize this concept with a toy example in Figure 1.1. In the figure, we have two
dense graphs to the left and two sparse graphs to the right. The left dense and
the left sparse graphs show the initializations of the graphs that are passed
to a GNN. In the initialization, each node has its own (unique) initial feature
vector which is represented as a color in the figure. The right dense and the
right sparse graphs show the results of performing one message-passing opera-
tion by the graph neural network. After this message-passing operation, each
node feature vector contains information on all its neighboring node feature
vectors as well. We note that in the case of the dense graph, each node shares
the same five colors as it was flooded with information from all graph nodes.
This is not the case in the sparse graph, where each node only has three colors.
We note that the color proportion of the initialization stays “larger” after the
message-passing compared to the color proportions representing neighboring
nodes (e.g., the node at the very bottom of the second graph is 50% white,
whereas each other color only covers a smaller proportion in this node). This
is because, typically, the old node feature vector is combined with the infor-
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1.2 Contributions

mation of the aggregation in a weighted manner emphasizing the prior node
information.

We now interpret the graphs in Figure 1.1 as TSP instances and show how
the sparse graph leads to better encodings. We note again that in the graphs
to the right of the figure, only the optimal TSP edges are part of the graph,
making them therefore sparse compared to the complete, dense graphs to the
left. Because of this sparseness of only optimal TSP edges, it is trivial to
decode the optimal TSP solution after the message passing operation of the
GNN, given only the colors of the nodes in the updated graph representation
(now ignoring the edges in the graph!). We visualize the process in Figure
1.2: W.l.o.g., we start at the node at the bottom which is half white. This
node also has a red and orange part. W.l.o.g., we focus on the red part and
travel to the node which is half red. This node is also partially white and light
blue. We already visited the half-white node, so we go on to the half-light-blue
node. This node is also half red and half dark blue. We already visited the
half-red node, so we go on to the half-dark-blue node, and so on. In contrast,
this decoding strategy would not be possible with the dense graph obtained
after message-passing of Figure 1.1, because each node carries information
from every other node, so where would we go next in each decoding step?

This idea underlines how a GNN can create more powerful encodings when
there is structural information in the graph to exploit. As a consequence, the
following questions arise:

• Can we induce structural information on TSP graphs by graph sparsi-
fication, enabling neural encoders like GNNs to produce more powerful
encodings?

• Which graph sparsification methods can be used and how can the risk
of accidentally deleting important edges in the sparsification process be
minimized?

1.2 Contributions
To tackle the shortcomings of GNNs on dense graphs, such as graphs repre-
senting TSP instances, we provide the following contributions:

• We present the idea of graph sparsification as a form of data preprocess-
ing for instances of the traveling salesman problem. This preprocessing
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Chapter 1 Introduction

Figure 1.1: Message Passing on Dense (left) and Sparse (right) Graph

Figure 1.2: Decoding Sparse Graph Encodings

aims to remove unpromising edges (i.e., edges unlikely to be part of the
solution) from the TSP instance, allowing the GNN to focus on the more
promising parts of the problem.

• We propose two methods for determining the promising edges in the
TSP graph.

1. k-NN is a simple and fast way to preprocess the TSP instance by
only keeping the k shortest edges for each node in the graph.

2. A modified minimum spanning tree (MST) based approach gives
additional guarantees for our processed graph such as connected-
ness.

• We generalize the idea of graph sparsification for GNNs to the concept of
attention masking for transformer architectures operating on TSP data.

• We propose ensemble models of different sparsification levels to decrease
the risk of optimal edge deletion while still providing additional structure
to exploit for the overall model.

6



1.3 Thesis outline

1.3 Thesis outline
We provide a background on important concepts necessary for this work in
Chapter 2. Afterwards, we give an overview of the current state of learning-
based routing concepts in the related work section in Chapter 3. The method-
ology for sparsifying TSP instances can then be found in Chapter 4. A sum-
mary of the paper on which this thesis is based can be found in Chapter 5. The
papers is also appended in the second part of this thesis. Chapter 6 concludes
the work and gives an overview of potential future research directions.
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CHAPTER 2

Background

In this Chapter, we provide the necessary background information for rout-
ing problems, used machine learning architectures, and the graph-theoretical
concept of minimum spanning trees.

2.1 Traveling Salesman Problem
The Traveling Salesman Problem (TSP) is a combinatorial optimization prob-
lem. Despite its NP-hard nature, the problem is easy to describe: Given a set
of cities, a traveling salesman wants to visit all the cities at hand exactly once
while ending the journey in the same city where it was started and minimizing
the overall traveled distance.

Without loss of generality, we assume there are n cities to be visited,
{1, . . . , n}. Then, the problem can be represented as a graph problem with a
graph G = (V, E) and V = {1, . . . , n}, E = {(i, j)|i ̸= j, i, j ∈ V }. To deter-
mine the solution to the problem, a cost metric is required. This cost metric
assigns a weight to each edge in the graph representing the distances between
the cities. The TSP can then be solved by finding a Hamiltonian cycle in the
graph with minimal weight.
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Chapter 2 Background

Classically, the problem can also be modeled and solved as an integer linear
program, e.g. by the following formulation by Dantzig–Fulkerson–Johnson [3]:

minimize
n∑

i=1

n∑
j ̸=i,j=1

dijxij

subject to
n∑

i=1,i̸=j

xij = 1, j = 1, . . . , n

n∑
j=1,i̸=j

xij = 1, i = 1, . . . , n∑
i∈S

∑
i ̸=jj∈S

xij ≤ |S| − 1, ∀S ⊆ {1, . . . , n}, |S| ≥ 2

xij ∈ {0, 1}, i, j = 1, . . . , n

In this formulation, xij = 1 indicates that in the solution one travels from
city i to j. dij reflects the distance between city i and j. The first constraint
ensures that each city is entered exactly once whereas the second constraint
ensures that each city is left again. The third constraint eliminates the possi-
bility of unconnected subtours. The subtour elimination constraints result in
an exponential number of constraints which makes solving the integer linear
problem infeasible in practice for big TSP instances with many cities.

Capacitated Vehicle Routing Problem

A simple extension of the TSP is the Capacitated Vehicle Routing Problem
(CVRP). The problem can be described as follows: Given a delivery vehicle
with a maximum capacity C, we have a special depot node where the vehi-
cle starts and ends its tours. Furthermore, we have a set of customer nodes,
where each customer i has a demand for goods that occupy a certain capac-
ity ci (e.g., the weight of the goods). As the delivery vehicle only has the
aforementioned limited maximum capacity C, it can potentially not serve all
customer demands at once, making it necessary for the vehicle to return to
the depot in an intermediate step before serving the next customers. This
means that, in contrast to the TSP, there is a special node (the depot) that
can be visited multiple times. The overall goal of the problem stays the same,
however: we want to minimize the traveled distance. We note that the TSP is
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2.1 Traveling Salesman Problem

a special case of the CVRP where the vehicle has an infinite capacity, making
intermediate returns to the depot unnecessary.

Graph Neural Networks

Graph neural networks (GNNs) are a class of neural architectures where the
structure of the neurons reflects the structure of the input. This makes them
different from other neural architectures like multi layer perceptrons (MLPs)
where the connections between neurons are fixed. GNNs have achieved promis-
ing results in many tasks operating on graph-structured data such as molecules,
social networks, and traffic models [4]. GNNs iteratively compute feature vec-
tor representations for the nodes in the input graph. These representations
are updated in each layer of the neural network by performing aggregation
operations over the nodes’ neighborhoods. Additional learnable weights and
activation functions allow the network to process the inputs further. An ex-
ample of how a node’s feature vector is updated in a simple GNN architecture
is the following:

hi+1
v = φ

(
W ihi

v + (
∑

u∈N(v)

U ihi
u) + bi

)
,

where W i, U i, and bi are learnable weights of suitable sizes and ϕ is a non-
linear activation function such as sigmoid or ReLU. The feature vectors of
node v in layer i + 1 is then computed by multiplying the previous layers
feature vector of the node hi

v and the feature vectors of the nodes in v’s
neighborhood N(v) with these learnable weights and aggregating them before
applying the non-linearity. The aggregations over the node neighborhoods
(which do not have to be summations necessarily but other options such as,
e.g., mean operations are also possible) are called message-passing operations.

After performing several message passing and update iterations, the node
feature vectors of the last network layer can be used for node-level classification
or regression tasks. Alternatively, the node feature vectors can also be merged
by aggregating or concatenating them and then be used for graph-level tasks.

Noticeable versions of GNNs are the graph convolutional network (GCN;
[5]) where messages in the message-passing are weighted by node degrees,
giving higher emphasis on nodes with only a few neighbors. Graph attention
networks (GAT; [6]) are another popular type of GNNs where the weight of
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Chapter 2 Background

each message in the message-passing step is determined using the attention
mechanism [7].

Limitations of Graph Neural Networks
In terms of their discriminative power to distinguish between different graph-
structured inputs, GNNs are known to be related to the Weisfeiler-Leman
(WL) graph isomorphism heuristic which has similar aggregation and update
operations as GNNs [1], [2]. WL is known to be unable to differentiate between
regular graphs (graphs where all nodes have the same degree) [8]. As a result,
GNNs cannot distinguish between regular graphs either. This limitation has
consequences in real-world datasets. For example, as pointed out in [9], GNNs
cannot distinguish between the two molecules decalin and bicyclopentyl. In
[10], this limitation has been tackled be explicitly encoding information about
structural information not detectable by vanilla GNNs in the initial node
feature vectors passed to the GNN. By this, structural information that would
otherwise been hidden from the GNN was made accessible to it.

2.2 Transformer Networks
Transformers are a machine learning architecture that recently excelled in
natural language processing tasks [7]. However, via graph attention networks,
transformers are also closely related to GNNs [11]. In fact, GATs operating
on complete graphs are equivalent to transformers. It is possible to apply a
concept called attention masking to transformers, meaning that the model is
unable to consider (or attend to) certain inputs. The concept was already
introduced in [7], as in NLP tasks it can be important for the model not
to attend to certain inputs (e.g., words in the “future” of a text or padding
tokens). However, we can also use attention masking for transformers such
that when applied to graph-structured inputs, attending is only possible along
the edges of the graph.

2.3 Minimum Spanning Trees
A minimum spanning tree (MST) is a subgraph of an undirected, weighted,
connected graph. Weighted means that every edge in the graph has an asso-
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2.3 Minimum Spanning Trees

ciated cost, like, in the case of the routing setting of this work, the distance
between the nodes. A spanning tree of a graph consists of a subset of edges
such that all vertices of the graph are still connected and there are no cycles.
The minimum spanning tree is such a spanning tree on a weighted graph with
the additional property that the sum of the MST edge weights is minimal.
Finding the MST of a graph is a combinatorial optimization problem. How-
ever, in contrast to the TSP, the problem can be solved in polynomial time,
e.g., with the well-known algorithms of Prim [12] or Kruskal [13]. We provide
an example of an MST in Figure 2.1, where the green edges are part of the
MST and the light-grey edges are part of the underlying original graph.

Figure 2.1: A Minimum Spanning
Tree

Figure 2.2: A 1-Tree

1-Trees
1-Trees are graph structures related to MSTs. Despite their name, 1-Trees are
not trees, since they contain cycles. A 1-Tree can be created from a graph
G = (V, E) (w.l.o.g., we assume V = {1, . . . , n}) by finding a MST on the set
of edges V \ {1} where 1 is an arbitrary node of V . After finding an MST
on V \ {1}, a 1-Tree is created by combining the set of edges of the MST
with two edges from E that are incident to 1. We provide an example of a
1-Tree in Figure 2.2, where the dark blue node has been chosen arbitrarily
and we further chose two arbitrary edges to connect this special node with
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Chapter 2 Background

the MST computed on the remainder of the graph. We note that there also
exist minimum 1-Trees which are 1-Trees with minimal weights. Minimum
1-Trees are interesting in our routing setting because their cost form a lower
bound on the cost of an optimal TSP tour. As a result, minimum 1-Trees
play an important role in the popular LKH algorithm [14].

14



CHAPTER 3

Related Work

We give an overview of existing work dealing with learning-based routing
problem solvers in this section. We categorize these works by the way learning
is used within the overall solver frameworks. Further, we provide a short
review of learning-based studies that deal with the concept of sparsification
of the TSP.

3.1 Learning to Route
With the rise of deep learning in the last few years, there have also been
many proposals to develop machine learning-based frameworks for solving
routing problems. The different frameworks use machine learning in many
different ways. Furthermore, the suggested frameworks use a variety of neural
network architectures and learning paradigms (supervised learning, reinforce-
ment learning or unsupervised learning). In this work, we try to classify the
papers by the way machine learning is incorporated into the framework. In
general, papers use typically one of two approaches in their machine learning-
based framework: In the first approach category, solutions for the routing
problem are constructed from scratch. Therefore, in the following, we refer
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Chapter 3 Related Work

to these approaches as construction-based. In the second approach category,
solutions are iteratively improved. This means, an initial solution is passed to
the neural framework and it iteratively applies improvement operations until
a convergence criterion is met. Hereinafter, we refer to these approaches as
improvement-based. The proposed categories can be further split into sub-
categories. Construction-based approaches can be one-shot-approaches or
incremental-approaches, depending on whether the machine learning frame-
work is only applied once or several times to incrementally build a solution.
Improvement-based approaches can be heuristic-based in case they learn im-
provement operators known from classical heuristics such as k-opt. However,
they can also be subproblem-based when the framework iteratively selects and
improves subproblems to generate overall better solutions in a divide-and-
conquer manner. We note that the categories mentioned so far capture the
majority of papers that try to use machine learning to tackle routing problems.
However, there are further possibilities, e.g., by using machine learning to fa-
cilitate decisions in traditional solvers (like branching in branch-and-bound
algorithms) or to restrict the search space. In the following, we provide an
overview of the approaches mentioned so far.

Construction-based Approaches
Incremental-based Approaches

In incremental-based approaches, solutions are built by iteratively adding one
city at a time to a partial solution until they form a valid tour. The machine
learning model’s task is, typically, to autoregressively select the next city to
visit. Let’s consider an example of a small TSP instance visualized in Figure
3.1. Starting from node 3, in the first step node 1 is selected as the next one
to visit. Afterwards, the connection (1,4) is chosen. Then, we travel to node
5. To complete the tour, we would probably travel to node 2 next and finally
back to node 3.

A neural framework constructing solutions for routing problems this way
typically consists of two parts: An encoder and a decoder architecture. The
encoder captures the instance by encoding all the information of individual
nodes in high-dimensional feature vectors. These encodings typically embed
information of the node coordinates in a coordinate frame, the distances be-
tween each other, and additional information like, e.g. in the case of the
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3.1 Learning to Route

1 2
3

4 5

1 2
3

4 5

1 2
3

4 5

Figure 3.1: Incremental Solution Construction

CVRP, capacity demands customers might have. Then, the partial solution
can be represented as a combination of the high-dimensional feature vectors
and the decoder iteratively predicts probabilities of selecting new nodes to
add to the solution. These probabilities can be used for sampling, greedy
decoding, or more advanced search algorithms (e.g., Monte Carlo tree search
(MCTS; [15]) or beam search [16]). We note that typically probabilities are
masked in a way to ensure valid solutions, e.g., in a way such that nodes can-
not be visited multiple times, or, in the case of CVRP, capacity constraints
are respected.

Examples of such incremental approaches are the works of [17]–[21]. All of
these papers follow the RL paradigm. Neural architecture-wise, [18] (who solve
the CVRP in their framework) relies on a recurrent neural network (RNN)
whereas the other works rely on Transformer-based architectures. [17] designs
a framework for TSP, while [19] generalizes to TSP, CVRP and other routing
problem variants. [20] introduces a shared baseline in the RL framework by
performing multiple solution rollouts, enhancing the performance of existing
frameworks. [21] generalizes to bigger TSP instances with up to 500 nodes
by using reversible residual network layers. There are also papers using SL
for incremental-based approaches, e.g. [22] where the authors train a GNN
to predict the probability of selecting the next node in the next decoding
step. They use these probabilities in a Monte Carlo tree search to find good
solutions.

One-shot Approaches

In contrast to incremental approaches, where probabilities where a model is
applied over and over again to predict probabilities for the next node to visit,
in one-shot approaches, these probabilities are generated at once.

Let us consider the same small TSP instance from before, now represented

17



Chapter 3 Related Work
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Figure 3.2: One-shot Solution Construction

in Figure 3.2. To the very left, we have the representation of the nodes in
a coordinate frame, still without any connections between them. After the
machine model is applied, probabilities are predicted indicating how likely it
is to travel from one node to another in the solution tour. In the figure, darker
connections represent higher probabilities. Finally, a search algorithm or some
other decoding technique transforms these probabilities in a valid solution (to
the very right).

Within the ML framework, the pairwise probabilities to travel from one
node to another are typically predicted in the form of probability heatmaps
represented as matrices. Examples for such approaches are [23]–[27]. [23]
trains GNN in an SL setting to predict probability heatmaps for TSP which are
decoded to valid solutions by beam search. [24] generalizes the idea to big TSP
instances with thousands of nodes by sampling subgraphs and merging their
heatmaps. The solutions are then created by MCTS from the heatmaps. [25]
uses dynamic programming to decode the heatmaps and further generalizes
the idea to CVRP. [26] gets rid of the supervision requirement by designing
an RL framework to generate heatmaps for TSP. [27] developed a completely
unsupervised framework for TSP by using a surrogate loss, resulting in fast
and efficient learning and generalizing to instances with up to 1000 nodes.

Improvement-based Approaches
Heuristic-based Approaches

In heuristic-based approaches, improvement operators like k-opt are learned.
When applying such operators, an initial valid solution is improved over and
over until convergence (or some termination criterion is met). As the final
output is not necessarily an optimal solution, we refer to such algorithms
as heuristics. Examples of traditional (i.e., non-ML-based) algorithms using

18



3.1 Learning to Route

1 2
3

4 5

1 2
3

4 5

1 2
3

4 5

Figure 3.3: 2-opt move

such improvement operators for solving routing problems are LK [28] and
its extension LKH3 [14]. Applying k-opt to a routing problem such as TSP
means deleting k edges in the current solution and substituting them with k

new edges while still ensuring the validity of the new solution. We present
an example of a 2-opt move in Figure 3.3. In the 2-opt move, the blue edges
{2,4} and {3,5} are deleted and the edges {4,5} and {2,3} are added instead.
Note that the node permutation in the old solution was (3,1,4,2,5,3) and it is
(3,1,4,5,2,3) in the new solution (3 is chosen as an arbitrary start node in this
representation). We highlight that the edge {2,5} is traversed in the opposite
order in the new solution.

Learning such improvement operations typically means learning to select
the edges (or the nodes that form the edges) for the swapping operations.

[29] proposes a long short-term memory (LSTM; [30])-based deep Q-learning
framework that is applicable to CVRP (among other problems). The frame-
work is trained to pick two nodes in the CVRP solution and the first node is
moved after the second one in the new solution. [31] learns 2-opt moves for
the TSP in a GNN-based framework with RL. The idea is later generalized to
CVRP [32]. Within a transformer-based framework, [33] tries to learn other
improvement operations than 2-opt as well such as swapping and relocating
nodes for TSP and CVRP. [34] proposes another transformer-based framework
trained with RL which can freely select from a set of different improvement
operators to solve the CVRP. By this, the authors create the first ML-based
framework to outperform the state-of-the-art LKH3 [14] algorithm on CVRP.

Subproblem-based Approaches

Subproblem-based approaches are especially suitable for big problem instances.
By selecting and optimizing a subregion of the current valid solution, the over-
all solution improves in quality until convergence.
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Figure 3.4: Subproblem-based Approaches

In Figure 3.4, we visualize a subproblem-based improvement for a TSP
instance. The nodes on the blue path are selected as the subproblem to be
improved and deleted. Afterwards, while remembering the end nodes of the
path, the shortest path visiting all currently unconnected nodes is constructed
and plugged into the solution. An example of such an approach for TSP is [35]
where subproblems from the current solution are sampled and reconstructed
by a transformer-based model, trained to find the shorted path with RL.

[36] tackles the CVRP by using a transformer-based model trained with su-
pervised learning to predict a possible improvement in subproblems. The most
promising subproblem is then optimized by using the LKH3 [14] algorithm.

Similarly, [37] trains an LSTM-based framework with RL to provide CVRP
subproblems for the optimization. The optimization of the subproblems is
then done by traditional heuristics or it can again be learning-based.

3.2 Sparsifying the TSP
Not many papers using ML to solve routing problems have considered spar-
sifying the graph representations of TSP instances before passing them to
neural encoder architecture such as GNNs or transformers.

[38] sparsifies TSP instances by applying the k-nearest neighbors heuristic
to the graph representations before passing them to a GNN encoder in their
one-shot-based approach. They did this to reduce the runtime of their frame-
work from O(n2) to O(kn). [39], [40] also use k-nn to overcome the quadratic
growth of the number of edges in the TSP graphs used in their learning-based
frameworks and, therefore, to reduce the runtime of their frameworks. [41]
proposes a GNN to predict scores for the edges in a TSP graphs, afterwards
used in a “neural” version of the LKH algorithm and acknowledges the impor-
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tance of prior sparsification. They sparsify the graphs by applying 20-nn but
do not further investigate the concept of sparsification. [25] do not sparsify the
graph passed to the GNN outputting the heatmaps but adjust the heatmaps
before passing it to the dynamic programming decoding. This heatmap ad-
justment is performed in a way such that edges not part of the sparse graph
representation are ruled out to be part of the solution generated by the DP.
[42] do not use deep learning but SVMs to predict whether edges in a TSP
graph are promising to be part of the optimal solution. Unpromising edges
are removed to reduce the search space for classical solvers.

We note that none of these papers analyze why sparsification is important
(for encoders like GNNs) or provide an extensive study on it. We further
note that sparsification in these papers is done to reduce runtime, not to
improve solution quality by allowing the encoders to take advantage of the
additional structure induced on the TSP graphs. Moreover, most papers use
the simple k-nn heuristic as a sparsification strategy and do not consider more
sophisticated methods.
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CHAPTER 4

Methodology - Sparsifying the TSP

In this Chapter, we discuss how TSP instances as a representative for routing
problems can be made sparse. We note that it is possible to generalize this idea
to other routing problems. We further point out that the idea of sparsification
is independent of the way learning is incorporated into a deep-learning-based
routing framework. If the framework includes an encoder architecture (which
virtually all frameworks do), it is possible to adapt it to incorporate the idea
of sparsification. The idea is also independent of the learning paradigm (su-
pervised, unsupervised, or reinforcement learning) that is used to train the
encoder within the overall framework.

4.1 Sparsification Methods
As outlined in this work so far, GNNs are not suitable to operate on dense
graphs such as TSP instances. Therefore, we want to investigate imposing
additional exploitable graph structure on the TSP instances through graph
sparsification. The goal of this sparsification process is to delete unpromising
edges (i.e., edges that are not likely to be part of the TSP solution) from the
graph, before applying the GNN encoder.
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As the cost of traveling from one node to another in a routing problem is
typically equivalent to the distance between these nodes, a straightforward
idea is to just include the edges between a node and its k-nearest neighbors,
as it has already been done in [38]–[40]. This approach is simple and, addi-
tionally, computationally cheap and therefore fast. We visualize the idea of
sparsification with k-nn in Figure 4.1. To the left, we show the dense TSP
graph. In the center, each node is only connected to its 5 nearest neighbors.
To the right, for comparison, we can see the optimal TSP tour.

(a) TSP instance as a com-
plete graph

(b) TSP instance with 5-
nn edges only

(c) Optimal tour of TSP
instance

Figure 4.1: A TSP instance with 20 cities

Even though the result of the sparsification in the particular instance Figure
4.1 was good, as it reduced the number of edges in the graph considerably while
still including all edges of the optimal tour, it has a serious drawback: The
resulting sparse graph can generally be disconnected, meaning that it consists
of several connected components. This problem is especially prone to occur
when a very low k is chosen (meaning we want to delete many edges) or the
nodes in the TSP instance are clustered. In fact, if we consider a graph with
n nodes and two very dense clusters with n/2 nodes each, no k < n/2 will
suffice to produce a connected sparse graph with k-nn. We give an example
of such a clustered graph in Figure 4.2. In this figure, we also show the graph
of Figure 4.1 again, now sparsified with 3-nn instead of 5-nn, resulting in an
unconnected graph.

Choosing high k to minimize the risk of unconnected graphs does not seem
optimal, as it results in graphs that are still rather dense, reducing the disad-
vantages of GNNs on dense graph data only unsatisfactorily. However, uncon-
nected graphs are also not acceptable in our setting, since no message-passing
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(a) TSP instance sparsified
with 3-nn

(b) Clustered TSP in-
stance sparsified with
9-nn

(c) Optimal tour of clus-
tered TSP instance

Figure 4.2: Unconnected sparse TSP instances produced with k-nn

will be performed between the disconnected components of a graph, resulting
in encodings that do not carry information on all important connections in
the graph.

Therefore, we propose another method of graph sparsification which is based
on minimal 1-Trees. MSTs (and therefore (minimal) 1-Trees) are connected by
definition, meaning a sparsification approach building upon 1-Trees eliminates
the risk of unconnected sparse graphs.

For the sake of simplicity, we explain the idea based on MSTs instead of
1-Trees, but the concept is exactly the same: Given a graph G = (V, E) we
can construct its MST T ∗ which has a unique cost c(T ∗). To determine how
promising an edge (u, v) is to keep in the sparsified graph, we can construct
another spanning tree T ∗

u,v which should also have minimal cost but at the
same time enforce edge (u, v) to be part of it. We can then assign a hypothet-
ical cost α(u, v) to edge (u, v) by computing the difference c(T ∗) − c(T ∗

u,v).
Note that this cost is non-negative (it is zero exactly for the edges part of
T ∗) and expresses how much more expensive an MST becomes if edge (u, v)
is enforced to be part of it. We visualize the idea in Figure 4.3 where we
show the plain MST to the left and the MST enforcing edge (1,2) to the right.
α(1, 2) = 2 − 1.06 = 0.94, where 2 is the cost of edge (1, 2) and 1.06 is the
cost of the no long required edge (3, 6). By computing α for all edges in the
graph, we can obtain a sparse TSP instance by the following way: For each
node u in the TSP instance, we keep the k edges (u, v), v ∈ V \ {u} with the
lowest α. We also describe the procedure in Listing 4.1. This idea (based on
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Figure 4.3: MST (left) and the MST with enforced edge (1,2)

1-Trees) is also used in the LKH algorithm [14] to find candidate edges for
k-opt moves in the improvement framework of this algorithm. In the LKH al-
gorithm, the procedure is further refined by applying a gradient-optimization
method to adjust the weights in the original graphs and by this obtaining
minimal 1-Trees which are closer to the optimal TSP solution.

We want to emphasize here that the sparsification procedure is not only
beneficial to GNN but can also be applied to transformer networks in the
form of attention masking. There, the attention masks can easily be computed
from the adjacency matrices of the sparse graphs. If the adjacency matrix of
the sparse graph indicates an edge (i.e., the entry of the matrix is 1), we do
not mask the attention score at the corresponding position in the transformer
network. Otherwise, the attention is masked, disabling the transformer to
attend along this connection when computing the node embeddings.
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Figure 4.4: The graph from Fig-
ure 4.2a, now sparsi-
fied with the MST-based
approach, keeping the
3 most promising edges
for each node.

Figure 4.5: The clustered graph
from Figure 4.2b, now
sparsified with the
MST-based approach,
keeping the 3 most
promising edges for
each node.
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1 def mst_sparsification (G: Graph , c: CostMetric , k:int):
2 """
3 Returns a sparse graph given a dense TSP graph .
4

5 Parameters :
6 G = (V, E) Graph : The dense TSP graph .
7 c CostMetric : A cost metric assigning a cost to each edge in

G.
8 k int: Determines how many edges shall be kept for each node

in G.
9

10 Returns :
11 Graph , a sparsified graph (V, sparse_edges )
12 """
13 T_opt = MST(G, c) # get the MST
14 alpha = dict () # init the alpha dict
15

16 for u in V:
17 for v in V:
18 if u == v:
19 continue
20 T_opt_u_v = MST(G, c, u, v) # get the MST enforcing

edge (u,v)
21 alpha [(u,v)] = cost( T_opt_u_v ) - cost( T_opt ) #

compute the alpha value
22

23 sparse_edges = set () # init the sparse graph edges
24 for u in V:
25 edge_list = list () # a list of all edges with endpoint u
26 for v in V:
27 if u == v:
28 continue
29 edge_list . append (( alpha [(u,v)], (u,v))) # tuples of

form (alpha , edge)
30 edge_list .sort(key= lambda x: x[0]) # sort based on alpha
31 edge_list = [edge for (alpha , edge) in edge_list ] # keep

only edge
32 sparse_edges . update ( edge_list [:k]) # add k best edges to

sparse_edges
33

34 return (V, sparse_edges )

Listing 4.1: MST-based Sparsification
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Figure 4.6: Ensemble Encoder Using Different Sparsification Levels

4.2 Sparse Graph Ensembles
So far, we introduced graph sparsification as a procedure of TSP instance pre-
processing which allows GNN encoders to create more expressive encodings.
However, we also noted that simple heuristics like k-nn carry the risk of pro-
ducing disconnected sparse graphs. We overcome this limitation by proposing
an MST-based sparsification concept. However, the MST-based sparsification
method also cannot guarantee never to delete edges from the optimal TSP
tour when producing the sparse graph. This might result in node embeddings
where two nodes, that should be visited after each other in the optimal TSP
tour, do not carry information about each other in their embedding represen-
tations.

As a trade-off between sparse graphs where each node is only connected
to its most promising neighbors and dense graphs where the risk of optimal
edge deletion is minimized, we propose sparse graph ensembles. The idea is
that each TSP instance is encoded several times, with each encoding being
performed on a TSP graph representation of different sparsification levels.
After the encodings are generated for each sparsification level, they are merged
on a node level. This means, that the different encodings for a single node in
the different graphs are merged by, e.g., concatenation or averaging. By this,
a single encoding for each node is obtained again which can be processed in
existing ML-based routing frameworks as usual.
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1 def get_mst_ensemble_encoding (G: Graph , c: CostMetric , k_values ):
2 """
3 Returns an ensemble encoding of different MST - based

sparsification of G
4

5 Parameters :
6 G = (V, E) Graph : The dense TSP graph .
7 c CostMetric : A cost metric assigning a cost to each edge in

G.
8 k_values list: A list of k values used in the sparsification

processes
9

10 Returns :
11 An encoding of the graph based on different sparsification

levels
12 """
13 N = len(V) # number of nodes
14 ensemble_encodings = list () # a list to save the encodings
15 for _ in range (N): # initialize the encoding for each node

as an empty list
16 ensemble_encodings . append (list ())
17

18 for k in k_values : # iterate over different sparsification
levels

19 sparse_graph = mst_sparsification (G, c, k) # get the
sparse graph

20 individual_encoding = get_graph_encoding ( sparse_graph ,
k) # encodings are of size N x hidden_dim

21 for i in range (N): # for each node , add the encodings of
current sparsification level

22 ensemble_encodings [i]. extend ( individual_encoding [i])
23

24 return ensemble_encodings

Listing 4.2: Ensemble Encoder

We describe the procedure in Listing 4.2. Further, we visualize the idea
in Figure 4.6. In the figure, a TSP instance with six nodes is given. In the
beginning, it is represented as a dense, complete graph. In the first step,
the instance is sparsified several times with different sparsification levels. In
the example at hand, possibly 2-nn, 4-nn, and 5-nn were applied (the latter
sparsification resulted in a dense graph again because of the small size of the
example). Afterwards, a GNN computed encodings for all graph representa-
tions, we visualize this by assigning different colors to the nodes. Furthermore,
we note that we can extract the node embeddings from the graph, represented
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as the column of different node colors next to it. We note that these colors are
ordered by using the node order depicted in the initial dense graph (w.l.o.g.
(6,5,4,3,2,1)). In the last step, the different embeddings computed for each
node are merged. E.g., the three encodings for node 1 (which are all reddish)
are merged. The merging in the figure is done by concatenation, which could
be followed by an MLP to reduce the dimensionality of the encodings or an
alternative averaging.

We note that it is also possible to generate transformer-based ensemble en-
coders where different attention masks are produced from the different sparse
graphs.
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CHAPTER 5

Summary of included papers

This chapter provides a summary of the included papers.

5.1 Paper A
Attila Lischka, Jiaming Wu, Rafael Basso, Morteza Haghir Chehreghani,
Balázs Kulcsár
Less Is More – On the Importance of Sparsification for Transformers
and Graph Neural Networks for TSP
Submitted to IEEE Transactions on Neural Networks and Learning Sys-
tems in March 2024 .

In this paper, the concept of graph sparsification for GNN encoders on TSP
data was introduced. Two sparsification methods were proposed and their
performance in keeping optimal TSP edges in sparsified graphs was evalu-
ated. This evaluation was performed for different sparsification levels and
on different distributions of TSP nodes in the coordinate frame. The first
sparsification method was k-nearest neighbors where the edges (i,j) to the
k closest nodes j in the TSP graph are kept for each node i. This spar-
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sification method has the advantage of being fast, while on the other hand
having a high risk of deleting optimal edges or producing disconnected sparse
graphs. The second sparsification method was based on 1-Trees, a variant of
minimum spanning trees, which is computationally more expensive but less
likely to delete optimal edges. Furthermore, this approach is guaranteed to
produce connected sparse graphs. Afterwards, an incremental-construction-
based framework was adapted to incorporate different types of GNNs (Graph
Attention Networks and Graph Convolutional Networks) operating on sparse
data. By this, it was shown that the performance of the overall architecture
increases if the GNN encoders operate on sparse TSP data. This performance
increase was up to a factor of ×22, depending on the exact GNN architecture
and the data distribution. The idea was further generalized to transformer
encoders by leveraging attention masking. Here, the attention masks imposed
on the transformers reflect the adjacency matrices of sparsified TSP graphs.
Moreover, ensemble encoders of different sparsification levels were adopted.
The resulting transformer-based encoder ensembles achieved state-of-the-art
performance within the domain of incremental-construction-based frameworks
with optimality gaps as good as 0.10% on TSP with 100 nodes.
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CHAPTER 6

Concluding Remarks and Future Work

6.1 Conclusion

Routing problems such as the TSP are a class of NP-hard combinatorial op-
timization problems that have been tackled using machine learning-based
frameworks in recent years. In this work, we explored the sparsification of
data instances when using GNN encoders in such learning-based frameworks
to solve routing problems. We discussed two sparsification methods, the sim-
ple k-nearest neighbor heuristic and a procedure based on minimum spanning
trees with the first one being simple and computationally cheap and the sec-
ond one guaranteeing connected sparse graphs. We generalized the idea of
graph sparsification for GNN encoders to transformer-based encoders by ap-
plying attention masking. Furthermore, we presented an ensemble method
where a TSP instance is sparsified several times with different sparsification
levels. Afterwards, encodings for all sparsified graphs are computed which are
merged in the end. By this, it is possible to provide guidance for the encoder
on what the most promising edges in a graph are while still minimizing the
risk of completely deleting optimal edges in the sparsification process.
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6.2 Future Work
So far, our encoders operating on sparse data have only been tested in a
construction-based framework. As pointed out in this work, the idea is highly
flexible, however, and can easily adapted to compute encodings in one-shot-
based, heuristic-based, or subproblem-based approaches as well.

Furthermore, the idea of sparsifying data instances for routing problems
has only been adapted for TSP. However, there are many extensions of the
TSP that are also tackled by learning-based solvers that could benefit from
sparsification too. Examples are the traveling salesman problem with time
windows (TSPTW), the Prize Collecting TSP (PCTSP), or the capacitated
vehicle routing problem. The latter two were, e.g., tackled by the learning-
based framework in [19].

Similarly, the sparsification idea can be deployed to more applied settings.
The TSP is a rather theoretical problem dealt with by many papers in the
computer science community. However, it would be interesting to adapt the
sparsification framework in more applied settings where problems with real-
world data and challenges are tackled. As an example, we mention [43] where
the goal was to route an electric vehicle, plan the charging, and prevent po-
tential battery depletion.

Another open question is if it is possible to provide theoretical guarantees
or bounds for the sparsification procedures. This means predicting a value on
how many optimal edges are expected to be deleted on accident when a specific
sparsification method and sparsification level are applied. Furthermore, other
sparsification methods can be developed and tested, possibly with a view
to more constrained routing problems (like the aforementioned PCTSP or
TSPTW) and special data distributions (e.g., clustered data).

Overall, possible future directions are:

• Implementation of encoders leveraging sparsification in one-shot-based,
heuristic-based, or subproblem-based learning frameworks.

• Adapting sparsification to CVRP, PCTSP, TSPTW, and similar routing
problems.

• Deployment of sparsification-based encoders to real-world, applied set-
tings.

• Development of new sparsification methods, (potentially considering dif-
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ferent routing problems and data distributions) as well as theoretical
analysis.

37





References

[1] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” In International Conference on Learning Representa-
tions, 2019.

[2] C. Morris, M. Ritzert, M. Fey, et al., “Weisfeiler and leman go neu-
ral: Higher-order graph neural networks,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 33, 2019, pp. 4602–4609.

[3] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale
traveling-salesman problem,” Journal of the operations research society
of America, vol. 2, no. 4, pp. 393–410, 1954.

[4] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A compre-
hensive survey on graph neural networks,” IEEE transactions on neural
networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[5] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[6] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio,
et al., “Graph attention networks,” stat, vol. 1050, no. 20, pp. 10–48 550,
2017.

[7] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[8] S. Kiefer, “Power and limits of the weisfeiler-leman algorithm,” Ph.D.
dissertation, Dissertation, RWTH Aachen University, 2020, 2020.

39



References

[9] R. Sato, “A survey on the expressive power of graph neural networks,”
arXiv preprint arXiv:2003.04078, 2020.

[10] G. Bouritsas, F. Frasca, S. Zafeiriou, and M. M. Bronstein, “Improv-
ing graph neural network expressivity via subgraph isomorphism count-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 45, no. 1, pp. 657–668, 2022.

[11] C. Joshi, “Transformers are graph neural networks,” The Gradient, 2020.
[12] R. C. Prim, “Shortest connection networks and some generalizations,”

The Bell System Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957.
[13] J. B. Kruskal, “On the shortest spanning subtree of a graph and the

traveling salesman problem,” Proceedings of the American Mathematical
society, vol. 7, no. 1, pp. 48–50, 1956.

[14] K. Helsgaun, “An extension of the lin-kernighan-helsgaun tsp solver for
constrained traveling salesman and vehicle routing problems: Technical
report,” 2017.

[15] C. B. Browne, E. Powley, D. Whitehouse, et al., “A survey of monte carlo
tree search methods,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. 4, no. 1, pp. 1–43, 2012.

[16] P. S. Ow and T. E. Morton, “Filtered beam search in scheduling,” The
International Journal Of Production Research, vol. 26, no. 1, pp. 35–62,
1988.

[17] M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M. Rousseau,
“Learning heuristics for the tsp by policy gradient,” in Integration of
Constraint Programming, Artificial Intelligence, and Operations Research:
15th International Conference, CPAIOR 2018, Delft, The Netherlands,
June 26–29, 2018, Proceedings 15, Springer, 2018, pp. 170–181.

[18] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác, “Reinforcement
learning for solving the vehicle routing problem,” Advances in neural
information processing systems, vol. 31, 2018.

[19] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” In International Conference on Learning Representations,
2019.

40



References

[20] Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min, “Pomo:
Policy optimization with multiple optima for reinforcement learning,”
Advances in Neural Information Processing Systems, vol. 33, pp. 21 188–
21 198, 2020.

[21] Y. Jin, Y. Ding, X. Pan, et al., “Pointerformer: Deep reinforced multi-
pointer transformer for the traveling salesman problem,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 37, 2023,
pp. 8132–8140.

[22] Z. Xing and S. Tu, “A graph neural network assisted monte carlo tree
search approach to traveling salesman problem,” Ieee Access, vol. 8,
pp. 108 418–108 428, 2020.

[23] C. K. Joshi, T. Laurent, and X. Bresson, “An efficient graph convolu-
tional network technique for the travelling salesman problem,” arXiv
preprint arXiv:1906.01227, 2019.

[24] Z.-H. Fu, K.-B. Qiu, and H. Zha, “Generalize a small pre-trained model
to arbitrarily large tsp instances,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 35, 2021, pp. 7474–7482.

[25] W. Kool, H. van Hoof, J. Gromicho, and M. Welling, “Deep policy dy-
namic programming for vehicle routing problems,” in International con-
ference on integration of constraint programming, artificial intelligence,
and operations research, Springer, 2022, pp. 190–213.

[26] Y. L. Goh, W. S. Lee, X. Bresson, T. Laurent, and N. Lim, “Combining
reinforcement learning and optimal transport for the traveling salesman
problem,” arXiv preprint arXiv:2203.00903, 2022.

[27] Y. Min, Y. Bai, and C. P. Gomes, “Unsupervised learning for solving the
travelling salesman problem,” in Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

[28] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Oper. Res., vol. 21, pp. 498–516, 1973.

[29] X. Chen and Y. Tian, “Learning to perform local rewriting for combina-
torial optimization,” Advances in neural information processing systems,
vol. 32, 2019.

[30] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

41



References

[31] P. R. d O Costa, J. Rhuggenaath, Y. Zhang, and A. Akcay, “Learning
2-opt heuristics for the traveling salesman problem via deep reinforce-
ment learning,” in Asian conference on machine learning, PMLR, 2020,
pp. 465–480.

[32] P. da Costa, J. Rhuggenaath, Y. Zhang, A. Akcay, and U. Kaymak,
“Learning 2-opt heuristics for routing problems via deep reinforcement
learning,” SN Computer Science, vol. 2, pp. 1–16, 2021.

[33] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, “Learning improvement
heuristics for solving routing problems,” IEEE transactions on neural
networks and learning systems, vol. 33, no. 9, pp. 5057–5069, 2021.

[34] H. Lu, X. Zhang, and S. Yang, “A learning-based iterative method for
solving vehicle routing problems,” in International conference on learn-
ing representations, 2020.

[35] H. Cheng, H. Zheng, Y. Cong, W. Jiang, and S. Pu, “Select and optimize:
Learning to aolve large-scale tsp instances,” in International Conference
on Artificial Intelligence and Statistics, PMLR, 2023, pp. 1219–1231.

[36] S. Li, Z. Yan, and C. Wu, “Learning to delegate for large-scale vehicle
routing,” Advances in Neural Information Processing Systems, vol. 34,
pp. 26 198–26 211, 2021.

[37] Z. Zong, H. Wang, J. Wang, M. Zheng, and Y. Li, “Rbg: Hierarchically
solving large-scale routing problems in logistic systems via reinforce-
ment learning,” in Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, ser. KDD ’22, Washington
DC, USA: Association for Computing Machinery, 2022, pp. 4648–4658,
isbn: 9781450393850.

[38] R. Qiu, Z. Sun, and Y. Yang, “Dimes: A differentiable meta solver for
combinatorial optimization problems,” Advances in Neural Information
Processing Systems, vol. 35, pp. 25 531–25 546, 2022.

[39] Z. Sun and Y. Yang, “Difusco: Graph-based diffusion solvers for combi-
natorial optimization,” Advances in Neural Information Processing Sys-
tems, vol. 36, pp. 3706–3731, 2023.

[40] H. Ye, J. Wang, Z. Cao, H. Liang, and Y. Li, “Deepaco: Neural-enhanced
ant systems for combinatorial optimization,” Advances in Neural Infor-
mation Processing Systems, vol. 36, 2024.

42



References

[41] L. Xin, W. Song, Z. Cao, and J. Zhang, “Neurolkh: Combining deep
learning model with lin-kernighan-helsgaun heuristic for solving the trav-
eling salesman problem,” Advances in Neural Information Processing
Systems, vol. 34, pp. 7472–7483, 2021.

[42] Y. Sun, A. Ernst, X. Li, and J. Weiner, “Generalization of machine
learning for problem reduction: A case study on travelling salesman
problems,” OR Spectrum, vol. 43, pp. 607–633, 2021.

[43] R. Basso, B. Kulcsár, B. Egardt, P. Lindroth, and I. Sanchez-Diaz, “En-
ergy consumption estimation integrated into the electric vehicle routing
problem,” Transportation Research Part D: Transport and Environment,
vol. 69, pp. 141–167, 2019, issn: 1361-9209.

43






