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Quantum theory of moiré excitons in atomically thin semiconductors

Joakim Hagel

© Joakim Hagel, 2024.

ISBN 978-91-8103-086-0
Ny serie nr 5544
ISSN 0346-718X

Department of Physics
Chalmers University of Technology
SE-412 96 Göteborg
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Quantum theory of moiré excitons in atomically thin semiconductors
Joakim Hagel
Department of Physics
Chalmers University of Technology

Abstract

In recent years, atomically thin nanomaterials have garnered significant at-
tention for their intriguing physics and potential applications in novel tech-
nological devices. Transition metal dichalcogenides (TMDs) stand out due
to the reduced screening resulting in a remarkably strong Coulomb inter-
action and the formation of excitons, Coulomb-bound electron-hole pairs,
which dominate the material’s optical properties even at room temperature.
By vertically stacking two TMD layers, long-lived interlayer excitons emerge,
with electrons and holes spatially separated in di↵erent layers. The introduc-
tion of another layer introduces interlayer tunneling and layer polarization.
These can be finely tuned by adjusting the relative twist angle between layers,
forming a moiré pattern capable of spatially trapping excitons.
This thesis aims to explore the exciton energy landscape in vertically stacked
TMDs using a material-specific, quantum mechanical approach. The study
delves into the various coupling mechanisms and their impact on the exciton
band structure, subsequently influencing the material’s optical properties.
Additionally, the thesis investigates electric fields and twist angle engineer-
ing as externally accessible tuning knobs. The role of interlayer tunneling in
bilayer systems is emphasized, revealing strongly layer-hybridized excitons
that often dominate the material’s optical spectra. Atomic reconstruction in
the small twist angle regime is also examined, demonstrating its significant
impact on the exciton energy landscape and exciton wave function. Finally,
the twist-angle-dependent in-plane charge-separation is investigated and its
relation to the inter-site hopping of the moiré exciton. In summary, this re-
search sheds light on the physics governing moiré excitons in this promising
class of atomically thin nanomaterials.
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3 Moiré potential 27

3.1 Interlayer excitons . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Polarization-induced alignment shift . . . . . . . . . . . . . . . 29

3.3 Interlayer tunneling . . . . . . . . . . . . . . . . . . . . . . . . 33
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CHAPTER 1

Introduction

In 1959, Nobel laureate Richard Feynman held a lecture titled ”There is
plenty of room at the bottom” where it was hypothesized that one could write
the entire Encyclopedia Britannica on the head of a pin. Furthermore, it was
envisioned that one could construct machines that in turn could construct
smaller machines, all the way down to the atomic scale [1]. The introduction
of these new concepts has often been refereed to as the birth of nanotechnol-
ogy [1]. For the past decades, a growing demand to make electronic devices
smaller has continuously motivated further studies in nanotechnologies where
it has now grown into the its very own field of research. In 2004, nearly half a
century after the birth of nanotechnology, a major breakthrough in the field
of nanoscience occurred when Andre Geim and Konstantin Novoselov suc-
cessfully isolated, and characterized a single sheet of graphene for the first
time [2]. The successful isolation and characterization of a material with
a single-atom thickness rewarded both researchers with the Nobel prize in
physics in 2010 [3], and the materials intriguing properties later paved the
way for a new field of nanoscience called two-dimensional materials [4, 5].
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CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of a monolayer TMD. Larger dark blue spheres illustrates
the metal atoms M and the smaller yellow spheres illustrate the chalcogen atoms
X, which forms a TMD in the form MX2. The metal atoms is usually considered to
be either tungsten (W) or molybdenum (Mo) and the chalcogen atoms are usually
considered to be either sulfur (S) or selenium (Se).

The emergence of two-dimensional (2D) materials revealed several new classes
of atomically thin materials. One particular interesting subclass of 2D ma-
terials are the transition metal dichalcogenides (TMDs), illustrated in Fig-
ure 1.1 [6, 7]. These atomically thin semiconductors are of special interest
due to their optical properties [8]. By shining a laser on the material, elec-
trons will be excited from their resting position in the valence band up to
the conduction band. By doing so, the previous occupied electron state is
now instead an electron vacancy, known as a hole [7]. In a large system of
electrons these holes acts as positively charged particles and can therefore
strongly interact with the negatively charged electron via the Coulomb in-
teraction. The two-dimensional nature of the material reduces the screening
of this Coulomb interaction and in turn leads to a very strong attraction be-
tween electrons and holes, which allows for the formation of strongly bound
electron-hole pairs, also known as excitons (see Figure 1.2.a for schematic il-
lustration) [7]. In turn, excitons fundamentally changes the optical response
of the material [9]. Consequently, understanding the physics of excitons in
TMDs is key in order to understand the optical properties of the material.
Other bound states such as trions [10–13] and biexcitons [14, 15] can also
form. However, these lie outside the scope of this thesis.

2



CHAPTER 1. INTRODUCTION

Figure 1.2: (a) Schematic illustration of an exciton formation. The most common
optical excitation of an exciton is usually referred to as the A exciton resonance.
(b) Schematic of di↵erent exciton species in a van der Waals heterostructure show-
ing intralayer exciton X, interlayer exciton IX and hybrid exciton hX.

In addition to monolayer TMDs, we can also vertically stack two monolayers
on top of each other to form van der Waals heterostructures [16]. Here, an
electron in one layer can become strongly bound with a hole in the other
layer, thus forming interlayer excitons, composed out of a spatially separated
electron-hole pair as illustrated in Figure 1.2.b [17–23]. These long-lived ex-
citons introduces a new species of excitons to study. Importantly for this
work, they harbor a permanent out-of-plane dipole moment, allowing for
direct external access via applied out-of-plane electric fields [24, 25]. Fur-
thermore, the wave function of the electron or hole can have a significant
overlap between the layers, allowing for e�cient carrier tunneling between
them. In turn, the electron or hole become strongly delocalized across the
layers and consequently lead to the formation of hybrid excitons, consisting in
a superposition between an intralayer exciton and an interlayer exciton (see
hX in Figure 1.2.b) [26–28]. As a result, the introduction of an additional
layer brings more degrees of freedom to the exciton species and fundamen-
tally changes the exciton energy landscape. In addition to stacking TMDs
vertically, it is also possible to stack them latterly, thus forming lateral het-
erostructures [29–32]. Furthermore, it is even possible for the formation of
Janus TMD crystals where di↵erent chalcogen atoms are on the top and
bottom of the crystal structure [33]. The focus of thesis however lies with
vertically stacked TMDs.

Yet another degree of freedom can be introduced via the introduction of a
relative twist angle between the layers. This induces another layer of peri-
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CHAPTER 1. INTRODUCTION

Figure 1.3: Illustration of moiré pattern with twisted TMDs.

odicity to the combined crystal structures in the form of a moiré pattern as
illustrated in Figure 1.3. The varying stacking order throughout the super-
lattice consequently give rise to a periodic potential within the moiré unit
cell which fundamentally changes the band structure of the material. The
introduction of this new degree of freedom has been shown to give rise to
exotic phases in bilayer graphene such as unconventional superconductivity
and Mott insulators [34]. In twisted bilayer TMDs, the moiré potential can
instead trap the excitons in real space at specific high symmetry points in
the superlattice and in turn give rise to a periodic arrangement of the exci-
tons in the crystal [35–40]. Furthermore, the moiré potential has been shown
to drastically impact the optical response of the material [41], resulting in
multiple new peaks in optical absorption and photoluminescence measure-
ments [42, 43]. Twist-angle-engineering has thus provided an additional way
to externally tune the material properties, and it is therefore of great interest
to fully study the excitonic response to the changing twist angle in order to
gain a deeper insight to the prospects of tuning the optics in TMDs.
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CHAPTER 1. INTRODUCTION

1.1 Outline

In this thesis we investigate the energy landscape of moiré excitons and its
optical properties in TMD bilayer structures, where the focus lies on the in-
terplay between the di↵erent components of the moiré potential. The thesis
has been organized in the following way. We start by introducing the the-
oretical framework (chapter 2) used throughout this work, beginning with
a brief introduction to second quantization and density matrix formalism,
then continuing with the Hamiltonian representation of the many-particle
processes that we are interested in and how excitons can be treated within
this formalism. We also cover the modeling of optical absorption and pho-
toluminescence here. Chapter 3 summarizes the di↵erent components of the
moiré potential, including terms from both rigid and reconstructed lattices.
The exciton energy landscape in bilayer TMDs, which is the result of paper
I is then covered in chapter 4. Chapter 5 discusses the interplay between
twist-angle-engineering and electrical field tuning, which concerns the main
results from paper II. In chapter 6 we briefly cover the impact of twist-
angle-dependent dehybridization and summarize the results from paper III.
Furthermore, paper IV is summarized in chapter 7, discussing the impact on
the optical properties from atomic reconstruction in homobilayers. Chapter
8 covers the results from paper V, where the moiré site hopping of in-plane
charge-separated moiré excitons are discussed. We end with some concluding
remarks and outlook in chapter 9.

1.2 Key outcomes

The thesis is partly based on the author’s licentiate thesis (Joakim Hagel,
Moiré Exciton Landscape and its Optical Properties in Two-Dimensional
Semiconductors (2022) [44]) and on five papers. The key outcome of these
are listed below.

Paper I In this work we investigate the exciton energy landscape in van der
Waals heterostructures. We disentangle the di↵erent interlayer cou-
pling contributions for di↵erent stackings and materials, revealing the

5



CHAPTER 1. INTRODUCTION

significant role of interlayer hybridization for the exciton band struc-
ture. We find that the exciton ground state in most materials con-
sists of a strongly hybridized momentum-indirect exciton, which often
resides far below the A exciton resonance in energy. By calculating
the phonon-assisted photoluminescence spectra for each material and
stacking, we map out the optical response of the exciton energy land-
scape in van der Waals heterostructures. The findings of this paper are
summarized in chapter 4.

Paper II In this paper we study the interplay between twist-angle-engineering
and electrical field tuning, and how it impacts the optical response of
MoSe2-MoSe2 homobilayers. By including the interlayer hybridization
we find that the excitons carry an e↵ective dipole moment, depending
on the degree of hybridization. Exploiting this, we then predict that one
can tune the material from an indirect semi-conductor to a direct semi-
conductor. Furthermore, we calculate the optical response of bright
excitons in naturally stacked MoSe2-MoSe2, where we find that one
can significantly tune the oscillator strength of the interlayer exciton
via twist-angle-engineering and electrical field tuning. The findings of
this paper are summarized in chapter 5.

Paper III In this joint theory-experiment collaboration, we investigate the twist-
angle-dependent dehybrization of the low-lying momentum-dark exci-
tons in MoSe2-MoS2. Here, we construct an e↵ective model for the
change in interlayer distance variation with twist angle, which can be
directly associated with the tunneling strength. The local decrease in
interlayer distance consequently decreases the tunneling strength sig-
nificantly, in turn leading to massive blue shifts with increasing twist
angle, allowing for significant tunability of the hybrid moiré exciton
landscape. The findings of this paper are summarized in chapter 6.

Paper IV This work investigates the direct impact of atomic reconstruction on
the optical response in twisted TMD homobilayers. We find that the
strain induced potentials significantly add to the moiré potential depth.
Furthermore, we identify that in naturally stacked homobilayers, the
strain-induced potentials are the only significant contributions of the
moiré potential for the bright A exciton resonance, accessible via optical
absorption. Consequently, we predict an unambiguous optical signature

6



CHAPTER 1. INTRODUCTION

of atomic reconstruction in the optical response for naturally stacked
homobilayers. The findings of this paper are summarized in chapter 7.

Paper V In this paper we study the interplay between atomic reconstruction
and in-plane charge separation of moiré excitons, and its relation to
the microscopic propagation. By deriving and solving a generalized
two-particle Schrödringer equation for the electron and hole, we predict
when the electron and hole will become separated in-plane as a func-
tion of twist angle. We find that the exciton can be divided in three
di↵erent regimes, depending on the level of charge-separation. We then
calculate the microscopic hopping where the charge-separated regime
exhibits unexpected trapping at larger twist angles. Furthermore, we
demonstrate that one can e↵ectively tune the charge-separation and its
impact on the hopping via substrate-controlled dielectric engineering.
The findings of this paper are summarized in chapter 8.
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CHAPTER 2

Theoretical framework

In this chapter we present the underlying theory used throughout the thesis
and in the appended works. Starting with a brief introduction to the density
matrix formalism and second quantization, then continuing with the many-
particle Hamiltonian in TMDs. We then discuss the concept of excitons
and how the Hamiltonian can be simplified by considering a transformation
into exciton basis. Finally, we briefly cover the theoretical approach to both
optical absorption and phonon-assisted photoluminescence.

2.1 Second quantization and density matrix
formalism

Second quantization
In this work we make use of second quantization in order to model the fun-
damental statistical properties of the particles found in condensed matter

9



CHAPTER 2. THEORETICAL FRAMEWORK

systems. Since the topic of second quantization can be found in most con-
densed matter physics textbooks, we will only briefly cover the essentials
here.

In the many-particle systems we are interested in, we have a vast unknown
number of identical quantum particles. This would in quantum mechanics
be described by an N-particle wave function  N [45]. The construction and
computation of this N-particle wave function is often too tedious or di�cult
to be practically feasible. In second quantization we instead capture the fun-
damental statistical properties with the introduction of creation a

† and anni-
hilation operators a. Here, we can describe a many-particle state |�1�2...�Ni

with the use of these operators acting upon a single state a
†
1
a
†
2
...a

†
N

|0i [45].
We can then interpret a†

i
as creating an additional particle in the single state

|�ii. Since the annihilation operator ai is the Hermitian adjoint of a†
i
, this

can be thought of as annihilating a particle in the single state |�ii.

The fundamental statistical properties of particles, stemming from the spin
statistics theorem, is captured by two distinct particle descriptions. Either
the particle has integer spin - boson - or it has half-integer spin - fermion -,
where fermions obey the Pauli exclusion principle and bosons do not, i.e two
fermions with the same spin can not occupy the same state. In our current
framework this translates to whether the many-particle state |�1�2...�Ni is
symmetric or anti-symmetric under Permutation (or exchange) bP [45]. The
many-particle state is symmetric for bosons

bP12 |�1�2...�Ni = |�2�1...�Ni , (2.1)

and anti-symmetric for fermions

bP12 |�1�2...�Ni = � |�2�1...�Ni . (2.2)

From this principle we can read of the essential commutators we need for a
and a

†, thus finding that bosons commute

[a(†)
i
,a

(†)
j
] = a

(†)
i
a
(†)
j

� a
(†)
j
a
(†)
i

= 0, [ai,a
†
j
] = �ij, (2.3)

and fermions anti-commute

{a
(†)
i
,a

(†)
j

} = a
(†)
i
a
(†)
j

+ a
(†)
j
a
(†)
i

= 0, {ai,a
†
j
} = �ij. (2.4)

10



CHAPTER 2. THEORETICAL FRAMEWORK

With these simple commutation rules, the fundamental statistical properties
of the many-particle state is captured, allowing us to e�ciently model the
di↵erent particles determining the physics in our nanomaterials.

Density matrix formalism
In combination with second quantization we use the density matrix formal-
ism. Here, the density matrix ⇢ describes a statistical ensemble of many
quantum states [45],

⇢ =
X

n

pn | ni h n| , (2.5)

where pn is the corresponding probability to find a particle in state | ni.
Within this formalism we can associate the expectation value of a quantum
mechanical observable hOi to the trace of the density matrix [45],

hOi =
X

n

pn h n|O| ni = Tr(⇢O), (2.6)

where Tr(⇢2) = 1 for pure states and Tr(⇢2) < 1 for mixed states. Using
this definition of expectation values we can separate the temporal evolution
of hOi into two parts, one coherent part hOi

coh
and one scattering hOi

sca

part [46]. Importantly for this work, we can then recognize the coherent part
as the particle occupation probability ha

†
i
aii and the scattering part as the

microscopic polarization ha
†
i
aji, where i 6= j.

2.2 Many particle Hamiltonian in TMDs

Now when the fundamental theoretical principles have been established we
can set up a Hamiltonian for our interacting particles in the TMDs. For the
processes covered in this work we mainly focus on three particles and their
corresponding interactions; electrons, photons and phonons. Before looking
closer at the various interactions that occurs, we will first establish the free
kinetic part of the Hamiltonian.
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CHAPTER 2. THEORETICAL FRAMEWORK

Figure 2.1: Schematic for a typical TMD band structure. The local minima for
the conduction band and maxima for the valence band can be found along the
high symmetry points. Arrows indicate the di↵erence in spin configuration. The
figure is adapted from Ref. [48].

Free Hamiltonian
The free Hamiltonian describing the kinetic energy for electrons or holes is
in single particle picture given by

Hel,0 =
X

k�

"
�

k�
†
k�k, (2.7)

where � = (c,v) is describing either electrons in the conduction band c or
in the valence band v, i.e v creates a hole in the valence band. Here k is
the momentum in the Brillouin zone (BZ) and "

�

k is the associated kinetic
energy. A schematic for a typical TMD band structure can bee seen in
Fig 2.1. Here, the local conduction band minima and valence band maxima
can be found around the high symmetry points in the Brillouin zone 1, which
in general are the points of interest when considering excitons. Furthermore,
the dispersion around these high symmetry points is well approximated by a
parabolic dispersion. Thus, the electrons and holes can be considered as free
particles with an e↵ective mass.

1The ⇤ point is strictly speaking not a symmetry point, but rather the midpoint in
a symmetry line [47]. This distinction is however not important for the purpose of this
work.
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CHAPTER 2. THEORETICAL FRAMEWORK

Figure 2.2: Schematic of a typical phonon band structure in TMDs with the
relevant modes illustrated. A linear approximation is made for the acoustic modes
close to the � point. In the vicinity of the remaining high symmetry points a
constant approximation is made. Schematic adapted from Ref. [49].

The second part of the free Hamiltonian is given by the free phonon part

Hph,0 =
X

qphj

~⌦jqphb
†
jqph

bjqph , (2.8)

where qph is the phonon momentum and j = (TA,LA,LO,TO,A1) is the
phonon mode index, which takes into account both the transverse (T) and
longitudinal (L) part, in addition the the optical (O) branch and the acoustic
(A) branch. Here, A1 is an out-of-plane optical mode. The phonon dispersion
is given by ⌦qphj, where a schematic of the relevant phonon modes in a typical
TMD phonon band structure can be seen in Fig 2.2. From this figure we can
see that most modes have an approximate flat dispersion around each high
symmetry point, the exception being the long range acoustical modes (close
to the � point) which can be approximated as linear. Thus we make use of
the Debye approximation for long range acoustics phonons and the Einstein
approximation (flat dispersion, i.e constant) for the rest.

The remaining part of the free Hamiltonian is the photon dispersion which
is given by

Hl,0 =
X

k�

~!�

k c̃
†
k� c̃k�, (2.9)

where � is the polarization and ~!�

k is the photon energy.

13



CHAPTER 2. THEORETICAL FRAMEWORK

Electron-electron Hamiltonian
The formation of excitons stems from the strong Coulomb interaction be-
tween electrons and holes, which in turn makes them a tightly bound electron-
hole pair. The Hamiltonian governing this interaction, often referred to as
the electron-electron Hamiltonian or simply the Coulomb interaction, is given
by [50]

Hel�el =
1

2

X

kk0q
��

0

Vq�
†
k+q�

0†
k0�q�

0
k0�k, (2.10)

where we now have restricted the Hamiltonian to only include intraband pro-
cesses with small momentum transfers (compared to the Brillouin zone) 2.
Here, q is the transferred momentum and Vq is the Coulomb matrix element.
When considering monolayers, the matrix element is derived from a modi-
fied form of the Rytova-Keldysh potential [51, 52], which can be obtained
by solving the Poisson equation for charges in a thin film with thickness d

encased in a dielectric environment. The obtained Coulomb potential then
has the following expression [53]

Vq =
e
2

2✏0Aq✏scr(q)
, (2.11)

where A is the lattice area, e is the charge and ✏0 is the vacuum permittivity.
The dielectric screening ✏scr(q) is given by

✏scr(q) = TMDtanh(
1

2
[↵TMDdq � ln

⇣
TMD � sub

TMD + sub

⌘
]), (2.12)

where  =
p

✏k✏? and ↵ =
q

✏k

✏? . Here, ✏k accounts for the in-plane compo-

nent of the dielectric tensor and ✏
? accounts for the out-of-plane component.

Electron-phonon Hamiltonian
An important process when describing the dynamics of excitons is their inter-

2In a more general expression, the matrix element would include form factors Ffi(q) =
hf |e

iq·r
|ii, which can be approximated as Ffi(q) = hkf ,�f |e

iq·r
|ki,�ii ⇡ ��i�f �q,kf�ki +

iq ·d�f�i via a Taylor expansion, where we only take into account the more dominant long-
range interaction (q ⌧ G). Here, d�f�i = hkf ,�f |r|ki,�ii is the transition dipole matrix
element. Consequently, this takes into account the long-range interaction of electron-hole
exchange. Since this is small in comparison to the first term we will only consider the first
term throughout this thesis.
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action with phonons. For this purpose it is important to model the electron-
phonon interaction, where an electron or hole can scatter with a phonon with
some momentum transfer

Hel�ph =
X

kq
j�

G
�

jq�
†
k+q�k(b

†
j,�q + bj,q), (2.13)

where G
�

jq is the electron-phonon matrix element given by [49, 50, 54],

G
�

jq = g
�

jq

s
~2

2⇢A~⌦jq
. (2.14)

Here, ⇢ is the mass density and A is the area of the system. ⌦jq indicate
the phonon energies, which can be extrapolated from a band structure like
Fig 2.2. The electron-phonon coupling is given by g

�

jq, which in a similar
fashion as the energy is approximated as constant for all modes except for
the long range acoustical modes that are approximated as linear in q. The
material and valley specific value of these couplings are obtained from first-
principle calculations done in [49, 54].

Electron-light Hamiltonian
In this work we treat the electron-light interaction in two di↵erent approaches,
depending on the process we wish to model 3. In the case for optical excita-
tion of an electron, we treat the electron-light interaction in the semi-classical
way, i.e an electron interacting with an electromagnetic field. As long as we
only consider optical absorption in the material, this is a su�cient approach.
Here the electron-light Hamiltonian reads

Hel�l = �i~ e0

m0

X

k��0

M��
0

k · A(t)�0†
k�k, (2.15)

where M��
0

k = h�
0k|r|�ki is the optical matrix element, A(t) is the elec-

tromagnetic vector potential. Here e0 and m0 is the elementary charge and
free electron mass respectively. Within the scope of this work, we are mainly
interested in the interband transitions, that is �0 = c and � = v. This then
describes the optical excitation of an electron which consequently can form
an exciton.

3By placing the material in a cavity, the light-matter interaction can also lead to the
formation of exciton-polaritons [55–57]. This is however outside the scope of this thesis.
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If we instead want to consider the emission of light from the material this
semi-classical description is not su�cient. Here, we instead have the emission
of a photon after an electron has been optically excited. Since we are here
dealing with the electron interacting with a single photon a more complete
quantum mechanical framework is needed. For this purpose we have the
electron-photon Hamiltonian which reads

Hel�photon =
X

�qk��0

M��
0

k� �
†
k+qk�

0
kc̃

†
q + h.c, (2.16)

where M��
0

k� again is the optical matrix element and q k is the momentum
that is parallel to the monolayer. In this work we mainly focus on the relax-
ation of an electron from the conduction band to the valence band, i.e v†cc̃†.
This is then the Hamiltonian of interest when considering a photolumines-
cence spectrum.

2.2.1 Equation of motion

By having complete access to the Hamiltonian that describes the system we
can calculate the temporal evolution of some observable O. This is done via
Heisenberg’s equation of motion [50]4.

i~ d

dt
hOi =

D
[O,H]�

E
. (2.17)

As mention in section 2.1 we can via the density matrix approach separate the
particle occupation from the microscopic polarization and thus calculate the
temporal evolution of these separately. This means when considering excitons
it is su�cient to commute the polarization hc

†
vi with the Hamiltonian 5.

4This is not to be confused with the von Neuman equation. Although being similar,
instead deals with the temporal evolution of the density matrix itself, not an operator.

5In this work we are mainly interested in the microscopic polarization, but importantly
for exciton di↵usion [58–60] one can also calculate the equation of motion of the particle
occupation.
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2.2.2 Cluster expansion approach

An often occurring problem in many-particle physics is higher order corre-
lations and how to truncate them. If we for example want to calculate the
temporal evolution for the microscopic polarization ha

†
1
a2i we will find that

it couples to a two particle correlation ha
†
i
a
†
j
akali. This quantity does in turn

couple to a three particle quantity which in turn couples to higher order cor-
relations, leading to a system of di↵erential equations which are not closed,
a problem often referred to as the hierarchy problem. In order to solve this
equation a scheme to factorize and truncate away the higher order correla-
tions is needed. This can be done by expressing the N-particle quantity as
single particle quantities, also known as singlets, and a higher order correc-
tion. A common cluster expansion and truncation scheme is the well known
Hartree-Fock approximation [50]

ha
†
i
a
†
j
akali = ha

†
i
ali ha

†
j
aki � ha

†
i
aki ha

†
j
ali + ha

†
i
a
†
j
akali

cor
, (2.18)

where the two particle correlation has been factorized as singlets and a higher
order correction. We can then neglect this higher order correction and suc-
cessfully simplify the equation of motion to a single particle problem, which
can be solved. This truncation is valid when considering undoped systems
(same amount of electrons as holes) and if we have low exciton density. A
low exciton density is determined by the criterion nX ⌧ 1/a2

B
, where nX is

the exciton density and aB is the exciton Bohr radius, which has an order of
magnitude of 1 nm [61].

2.2.3 Markov approximation

The optical responses studied in this work often comes in the form of phonon-
assisted photoluminescence. Here, the electron-phonon scattering is very
important and in these cases the inclusion of higher order correlations will
often be necessary. In these problems one will encounter the two particle
correlation S = hc

†
vb

†
i, which yields the following form for the equation of

motion
Ṡ(t) = (i! � �)S(t) + P (t). (2.19)

Here, P (t) is the source of the correlation S, which in the case of electron-
phonon scattering would be the polarization hc

†
vi. In order to solve this
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equation we make use of the Markov approximation, where we take the stan-
dard analytical solution

S(t) =

Z 1

0

d⌧e
i(!��)⌧

P (t � ⌧), (2.20)

and neglect the past values of P (t), i.e P (t� ⌧) ⇡ P (t)e�i!P ⌧ . Here P is now
approximated at its current time with some temporal oscillation !P . With
this approximation the integral can now be solved

S(t) =
P (t)

� + i(! � !P )
, (2.21)

and by applying the Sokhotski–Plemelj theorem for � ! 0 we have the
following expression

S(t) = ⇡P (t)�(! � !P ) � iP

⇣
P (t)

! � !P

⌘
. (2.22)

Here, the first term is usually contributing to the scattering rate, which is
often the point of interest and P is instead the principal value which often
contributes to an energy renormalization, something which can be neglected
in most cases.

2.3 Excitons

In the previous section we presented the relevant Hamiltonian operators for
the processes considered in this work. These Hamiltonians are, however,
given in single particle picture for electrons and holes which can often be-
come cumbersome and impractical to work with, especially when considering
exciton dynamics. In order to reduce the number of operators we work with
and thus the complexity, an additional framework is needed. In this section
we go through how one can go from the electron-hole Hamiltonian to an ex-
citon Hamiltonian and directly incorporate the Coulomb interaction into the
free exciton part.
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2.3.1 Wannier equation

An exciton becomes strongly bound due to the Coulomb interaction between
electrons and holes. In order to calculate these binding energies we need
to calculate the temporal evolution of the microscopic polarization pkk0 =
hc

†
kvk0i, which is done via Eq. 2.17. Importantly, by commuting this operator

quantity with the Coulomb interaction (Eq. 2.10) and then applying the
Hartree-Fock approximation (Eq. 2.18), the resulting expression is the well
known semi-conductor Bloch equation [46],

i~ṗkk0 = ("vk � "
c

k0)pkk0 +
X

q

Vqpk+q,k0+q + ⌦̃kk0 , (2.23)

where we have assumed a low excitation regime, i.e that the conduction band
has a small occupation compared to the valence band. The first term in the
equation is simply the band edge energy of the electron/hole pair and the
second term takes into account the Coulomb attraction between the electron
and hole. Furthermore, the last term ⌦̃kk0 = i~ e0

m0
M vc

k ·A(t)�kk0 is the Rabi
frequency that accounts for optical polarization.

The above equation can be simplified by writing it in terms of center-of-mass
(COM) coordinates Q = ke � kh, k = ↵kh + �ke. Here, ↵ = me/(me +mh)
and � = mh/(me +mh). The e↵ective masses of the electrons and holes can
be approximated with a parabolic approximation around each high symmetry
point from a band structure calculated with first-principle calculations (such
as Fig 2.1) [48]. Eq. 2.23 then reads

i~ṗQk = �"QkpQk +
X

q

VqpQ,k+q + ⌦̃0, (2.24)

where ⌦̃0 is constrained to Q = 0 from the momentum selection rules and
"Qk is the kinetic energy of the electron(hole) which is given by

"Qk = Egap +
~2Q2

2M
+

~2k2

2mred

. (2.25)

Here the center-of-mass momentum Q is shifted by some valley coordinate
⇠ = (⇠e,⇠h) (i.e Q gives the momentum in relation to the valley momentum
coordinates ⇠e � ⇠h, which means that Q = 0 only describes a momentum
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direct transition if ⇠e = ⇠h) and Egap denotes the band gap energy. Fur-
thermore, M = me +mh is the total mass and mred = memh/(me +mh) is
the reduced mass. We now introduce the basis change pQk =

P
µ
P

µ

Q µ(k),
where µ is exciton quantum number (throughout this thesis when working
with bilayers this is restricted to 1s) and  µ(k) is a complete set of orthogonal
eigenvectors that satisfy the following eigenvalue problem

~2k2

2mred

 µ

⇠(k) �

X

q

Vq µ

⇠(k + q) = E
µ

⇠  µ

⇠(k). (2.26)

Here, the eigenvalue problem has been written specifying the valley ⇠ =
(⇠e,⇠h), where ⇠e(h) denotes which valley the electron (hole) is sitting in. Con-
sequently, we can drop the dependence on Q. This equation is then similar
to the Schrödinger equation and solves for the exciton bindings energies Eµ

⇠

and exciton wave functions  µ

⇠(k).

By solving Eq. 2.26, which is known as the Wannier equation, we can then
gain access to the exciton binding energies for a specific valley configuration.
Most commonly we think of the electron and hole sitting around the same
high symmetry point in the band structure. i.e the center-of-mass momentum
Q = 0 (⇠e = ⇠h), but we can also have momentum indirect excitons (⇠e 6= ⇠h),
known as dark excitons (in contrast, an exciton where the electron and hole
sits in the same valley is called bright) (cf. Fig 2.3) [62–64]. Here, the
electron and hole are separated by some momentum in the Brillouin zone
and can thus not be optically excited. As we will see later in this work
however, these excitons will become very important when describing other
optical features, especially in bilayers, thus it is important to take them into
consideration.

Applying this basis change into Eq. 2.24 we then have the semi-conductor
Bloch equation in exciton basis

i~Ṗ µ

Q = �E
µ

QP
µ

Q � ⌦µ

0, (2.27)

where

E
µ

Q = Egap +
~2Q2

2M
+ E

µ

⇠ , ⌦µ

0 =
e0

m0

X

k

 µ

⇠(k)
⇤M vc

k · A(t). (2.28)
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Figure 2.3: Schematic for di↵erent exciton valley configurations. Here we can see
the bright KK exciton and the momentum dark K⇤/�K exciton. The shaded lines
at the K indicate the K0 valley, which instead can form the spin-dark exciton KK0.

The solution to this equation can then be found by Fourier transforming the
equation into frequency space, which then reads

P
µ

Q(!) =
⌦µ

0(!)

~! � E
µ

0 � i�
, (2.29)

where we have introduced the phenomenological damping �.

2.3.2 Exciton basis

In the previous section we showed that one can transform the semi-conductor
Bloch equation into exciton basis and thus incorporate the Coulomb inter-
action by solving the Wannier equation (Eq. 2.26). A similar approach is
possible to apply directly to the Hamiltonian [65], thus further simplifying
future calculations. First, we apply something called the pair operator ex-
pansion

P
†
ij
= c

†
i
vj. (2.30)

Here, i(j) is a generic compound index. The commutator of this operator
then reads

[Pij,P
†
kl
] = �

jl

ik
� Ocorr, (2.31)

where Ocorr = v
†
l
vj�ik + c

†
k
ci�jl is a correction term that accounts for the

fact that excitons are composite quasiparticles from fermions. Since this

21



CHAPTER 2. THEORETICAL FRAMEWORK

Figure 2.4: Schematic of transformation into exciton basis.

correction scales with the occupation, we can at low density approximate an
exciton as a fully bosonic particle, i.e

[Pij,P
†
kl
] ⇡ �

jl

ik
. (2.32)

This also translates into intraband transitions which would transform as

c
†
i
cj ⇡

X

m

P
†
im
Pjm

v
†
i
vj ⇡ �ij �

X

m

P
†
mj
Pmi.

(2.33)

The next step is to turn these pair operators into exciton operators. This is
done in similar manner as in the previous section where we expand with the
exciton wave functions

P
†
kk0 =

X

µ

X
†
µ,k�k0 µ(↵k0 + �k), (2.34)

where X
† is the exciton creation operator and  µ(k) are the exciton wave

functions. Here, µ is compound index taking into account both valley and
exciton quantum number. With this transformation we can write a diagonal
form of the free electronic Hamiltonian and the Coulomb interaction

Hel,0 +Hel�el ! H0 =
X

Qµ

E
µ

QX
†
µQXµQ. (2.35)

By solving the Wannier equation to obtain E
µ

Q (Eq. 2.26) we can then turn
a problem involving the interaction between two particles into a free one
particle Hamiltonian as illustrated in Fig 2.4. This transformation can then
be applied to all other Hamiltonians and thus moving the entire framework
to exciton basis instead.
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2.4 Optical response

Now when the theoretical framework for calculating the exciton energies has
been established, we want to investigate how to model the optical observables.
In this part we breifly go through the approach for both optical absorption
and phonon-assisted photoluminescence.

2.4.1 Absorption spectra

In order to gain access to the optical response of the material we study the
linear response from an electric field E

P (!) = ✏0�(!)E(!), (2.36)

where P (!) is the polarization induced from the electric field and �(!) is the
optical susceptibility. This equation can then be rewritten

�(!) =
j(!)

"!2A(!)
. (2.37)

Here, the relationship between the electric field and the vector potential is
used E = Ȧ(!), in combination with the relation between the polarization
and the macroscopic current j(!) = Ṗ (!).

In order to connect this macroscopic response to our microscopic model we
can for this purpose interpret j is the probability current, which in second
quantization reads

j(t) =
e0~
Am0

X

k

Im{Mkpkk}, (2.38)

where we now have neglected the intraband current due to its limiting impact
in the sub-THZ regime. Here, we also only focus on the imaginary part since
this describes the optical absorption. We can now combine the expression
together with the solution to the Bloch equation in exciton basis (Eq. 2.29)
and plug the results into Eq. 2.37 to get the formula for optical absorption

↵(!) /
1

!

X

µ

|M
µ
|
2

(~! � E
µ

0 )
2 + �2

. (2.39)

23



CHAPTER 2. THEORETICAL FRAMEWORK

This equation which is known as the Elliot formula can then be used to
calculate the optical response of the material taking into account the exciton
features of said material [66].

2.4.2 Phonon-assisted photoluminescence

In 2.2 it was shown that excitons could both be direct and indirect in mo-
mentum space, i.e center-of-mass is either in or outside the light cone. If
the latter is the case, the exciton can not directly recombine with a photon.
Instead, the optical observable comes in the form of phonon-assisted photo-
luminescence (PL) [67, 68]. That is, the exciton scatters to a virtual state
within the light cone and then emits a photon. This higher order process can
be microscopically modeled by taking the temporal evolution of the photon
density nk = hc̃

†
kc̃ki.

Following the approach laid out in Ref.[68] one can find the coupled di↵er-
ential equations for the photon density, the polarization S

µ

k = hc̃
†
kXµki, the

phonon-assisted polarization U
µ,±
kq = hc̃

†
kb

(†)
±qXµ�qi, the exciton phonon cor-

relation C
µ,±
Qq = hX

†
µQXµQ�qb

(†)
±qi and the exciton density N

µ

Q = hX
†
µQXµQi.

By factorizing with the cluster-expansion scheme and then truncating higher
order correlations with the Born-Markov approximation one can derive the
formula for phonon-assisted PL I�(!) /

d

dt
nk [68]

I�(!) /

X

µ⇠

|M
⇠µ

�
|
2

(E⇠

µ0
� ~!)2 + (�⇠

µ + �⇠0
µ )2

⇣
�
⇠

µ
N

⇠

µ0
+

X

⇠
0
µ
0

qj±

|D
⇠
0
µ
0q

⇠µj0 |
2
N

⇠
0

µ0qñ
±
qjL(E

⇠
0

µ0q ± ⌦qj � ~!,�⇠
0

µ0)
⌘
,

(2.40)

where µ(µ0) is the exciton quantum number, � the polarization of the photon,
⇠(⇠0) the valley index, q the involved phonon momentum, j the phonon mode
index and ± denotes phonon absorption (+) and emission (�). The first part
of the equation describes the direct recombination of bright excitons within
the light cone. Here, M ⇠µ

�
is the exciton-photon matrix element determining

the oscillator strength of the excitons. Furthermore, E⇠

µQ is the exciton energy
as calculated by the Wannier equation (Eq. 2.26) and L is a Cauchy–Lorentz
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distribution. The radiative and non-radiative broadening are described by �
⇠

µ

and �⇠
0

µ
, respectively. Throughout this thesis we mostly focus on the spectral

position of the peaks, thus we account for these phenomenologically [43,
69]. At low exciton densities, the exciton occupation can be approximated
according to the Boltzmann distribution N

⇠

µq. Furthermore, ⌦qj denotes the
phonon energy and ñ

±
qj = 1/2⌥1/2+nB(⌦qj) the phonon occupation, which

is given by the Bose-Einstein distribution nB(⌦qj).

The exciton-phonon matrix element D⇠
0
µ
0q

⇠⌘j0 is given by

D
⇠
0
µ
0q

⇠µj0 = G
cj

⇠,⇠0(q � �⇠)�⇠h⇠0h � G
vj

⇠,⇠0(q � �⇠)�⇠e⇠0e , (2.41)

where �⇠ = (⇠0
e
� ⇠

0
h

� ⇠e + ⇠h) is the transferred valley momentum which
ensures the correct transformation between the globally defined phonon mo-
mentum and the exciton/electron momenta defined in valley local coordi-

nates. Here, G
c(v)vj

⇠,⇠0 (q) is given by

G
cj

⇠,⇠0(q) = G
cj

⇠e⇠
0
e
(q)F ⇠⇠

0
(�⇠⇠

0
q)

G
vj

⇠,⇠0(q) = G
vj

⇠h⇠
0
h
(q)F ⇠⇠

0
(�↵

⇠⇠
0
q),

(2.42)

where G�j

⇠�⇠
0
�
is the carrier-phonon matrix element as shown in Eq. 2.14 (note

that we have also included the specific valley index ⇠ here). Finally, the
exciton form factors F

⇠⇠
0
(q) are given by

F
⇠⇠

0
(q) =

X

k

 ⇤
⇠
(k) 0

⇠
(k + q). (2.43)

Here,  ⇠(k) are the exciton wave functions as obtained from the Wannier
equation (Eq. 2.26).
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CHAPTER 3

Moiré potential

At the core of this thesis lies the di↵erent couplings that emerges between
two monolayers when vertically stacking them on top of each other, and
how they are impacted by a change in relative twist angle. In this chapter
we will go through the di↵erent interlayer couplings, how they are derived
and how they evolve with twist angle. However, first we will generalize
the theoretical framework laid out in section 2.3 to also include interlayer
excitons, i.e an exciton where the electron and hole are spatially separated
between the layers.

3.1 Interlayer excitons

So far we have only dealt with excitons in a monolayer, where the electron
and hole always sit in the same layer. If we now instead consider a bilayer
system, the electron and hole can become spatially separated by residing in
di↵erent layers. For this purpose we will introduce an additional index to
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the carrier operators, namely the layer index l = (0,1), where l = 0 denotes
the bottom layer and l = 1 denotes the top layer. Carrying the layer index
with us through the same derivation done in subsection 2.3.1, it will act as
an additional quantum index (similar to the valley index in Eq. 2.26) for the
exciton state and we can consequently generalize the Wannier equation to
include interlayer excitons as well

~2k2

2mL,red

 µ

L,⇠(k) �

X

q

VL,q µ

L,⇠(k + q) = E
µ

L,⇠ 
µ

L,⇠(k), (3.1)

where L = (le,lh) is a compound layer index taking into account the layer
positioning of both the hole and electron. In turn, for each unique set of
valley configuration ⇠ = (⇠e,⇠h) we have four unique excitons in terms of
layer configuration. Two excitons where the electron and hole sits in the
same layer (L = (0,0) and L = (1,1)), known as intralayer excitons, also two
excitons where the electron and hole sits in di↵erent layers (L = (0,1) and
L = (1,0)), which constitutes the interlayer excitons [17, 19, 24, 70–74].

Important for the exciton energies, the Coulomb matrix element now also
carries the layer index

VL,q =
e
2

2✏0Aq✏
lelh
scr (q)

, (3.2)

where the screening ✏
lelh
scr

(q) is now dependent on the layer configuration.
Consequently, we have to adjust the screening when solving the generalized
Wannier equation. This general Keldysh screening can be derived from the
Poisson equation by solving for the boundary conditions of two dielectric
slabs [75, 76]. This was done in Ref. [76] and reads

✏
ll
0

scr
(q) =

(
✏inter(q), l 6= l

0

✏
l

intra
(q), l = l

0 ,

✏inter(q) = subg
0

qg
1

qfq, ✏
l

intra
(q) =

subg
1�l

q fq

cosh(�1�lq/2)hl
q

.

(3.3)
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Here, we use the abbreviations

fq = 1 +
1

2

h
(
0

sub

+
sub

0

)tanh(�0q) + (
1

sub

+
sub

1

)tanh(�1q)

+ (
0

1

+
1

0

)tanh(d0q)tanh(�1q)
i
,

h
l

q = 1 +
sub

l

tanh(�lq) +
sub

1�l

tanh(�1�lq/2)

+
l

1�l

tanh(�lq)tanh(�1�lq/2),

g
l

q =
cosh(�lq)

cosh(�1�lq/2)[1 +
sub
l

tanh(�lq/2)]
,

(3.4)

where sub is the dielectric components of the substrate as the defined in
Eq. 2.12 and l is instead for the TMD layer l. Here, �l = ↵ldl, where dl is the
layer thickness of the TMD and ↵l also is defined in Eq. 2.12. The dielectric
components and the layer thicknesses are obtained from Ref. [77, 78]. The
decoupled bilayer exciton energies then reads

E
µ⇠
L,Q = EL,gap +

~2Q2

2ML

+ E
µ

L,⇠. (3.5)

Here, Eµ

L,⇠ are the energies obtained from the generalized Wannier equation.

3.2 Polarization-induced alignment shift

The first interlayer coupling to be covered is the polarization-induced align-
ment shift, or simply alignment shift. This component of the moiré potential
acts as band edge renormalization due to a charge-transfer induced polariza-
tion between the layers, which depends on the local atomic alignment (hence
shortened as alignment shift) [79]. In order to understand this potential it is
then natural to start with an untwisted structure and study the impact this
potential has on di↵erent stacking configurations.

Bilayer TMDs are usually divided up into two distinctly di↵erent stackings;
R-type stacking and H-type stacking. Both of these stacking in turn hosts
three distinctly di↵erent high symmetry stackings as can be seen in Fig 3.1.
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Figure 3.1: Schematic for the di↵erent high symmetry stackings found in bilayer
TMDs.

Here we have Rh

h
, where the metal atoms of layer 1 is on top the metal atoms

of layer 2, and the chalcogen atoms of layer 1 is on top of chalcogen atoms
of layer 2. From this position the layers can be shifted with respect to each
other such that the metal atom of layer one sits on top of the hole of layer
2 (i.e empty space between atoms) and the metal atoms of layer 2 sits on
top of the chalcogen atoms of layer 1. This would then constitute the R

M

h
-

stacking. Shifting the layers in the opposite direction gives the inverse of the
configuration and thus constitutes RX

h
, i.e chalcogen atoms of layer 1 sits on

top of hole in layer 2 and metal atoms of layer 1 sits on top of the chalcogen
atoms of layer 2. Note that in a homobilayer (both layers being the same
material), RM

h
and R

X

h
are identical and can not be di↵erentiated.

In H-type (cf. Fig 3.1), we instead start from a di↵erent position. Here, one
of the layers are rotated with 180� with respect to the other such that metal
atoms of layer 1 is on top of chalcogen atoms of layer 2, and metal atoms of
layer 2 are on top of chalcogen atoms of layer 1. This high symmetry stacking
then constitutes H

h

h
, but is also commonly referred to as naturally stacked

TMDs due to it being to most energy e�cient stacking [80]. Again shifting
the layers with respect to each other leads to the two other high symmetry
stackings, which are known as HX

h
and H

M

h
.

The induced band edge renormalization can then be computed for each high
symmetry stacking described above via ab inito calculations, where the ma-
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trix element governing this shift is given by [73]

�"
↵k
l

=

Z
drnl,↵k(r)�Vpol(r). (3.6)

where nl,↵k is the orbital density of state |↵ki of monolayer l. Here, ↵ = (�,⇠)
is a compound index, where � = (c,v) is the band index and ⇠ is the valley
index. Furthermore, �Vpol is the solution to the Poisson equation for the
electron density di↵erence �n (r2

�Vpol � �n = 0) with �n = n1,2 � n1 � n2,
with the subscript indicating which monolayer and n1,2 being the bilayer. The
material specific values of these induced shifts were computed with density
functional theory by Christopher Linderälv in paper I.

In future uses of this potential we can drop the valley index from Eq. 3.6
since the induced shifts are a rigid shift of the entire band structure. Fur-
thermore, since microscopic origin of these shifts stem from a spontaneous
charge-transfer-induced polarization between the layers, it requires that the
material system lacks inversion symmetry [79], i.e it must be more energet-
ically favorable for the electrons to sit in one layer rather than the other
in order to induce a polarization between the layers. As a consequence, a
homobilayer with H-type stacking will not exhibit this potential at all since
it is inversion symmetric 1.

After calculating the alignment shift for each high symmetry stacking we can
investigate how it would manifest with the introduction of a marginal twist
angle between the layers. When introducing a twist angle, each of the three
high symmetry stackings will be present (Rh

h
, RM

h
, RX

h
if twisted from 0� and

H
h

h
, HX

h
, HM

h
if twisted from 60�) throughout the superlattice with varying

local stacking alignment between them, thus inducing a C3 symmetric moiré
pattern as shown in Fig 3.1. Considering only small twist angles, we can treat
this variation in the local stacking alignment as continuous and consequently
map the alignment shift as a smooth periodic function [42]. Assuming this
form of the alignment shift allows us to interpolate between the calculated
values for each high symmetry stacking, thus obtaining the full twist-angle-

1In H-type stacked heterostructures, this potential is also heavily suppressed due to the
only thing breaking the inversion symmetry is the small di↵erences between the materials
and not the stacking configuration itself [73].
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Figure 3.2: Schematic of a twisted bilayer TMD superlattice.

dependent alignment shift which is given by

U
�

nn
(r) = Re

h
v
�

n
+ (A�

n
+ B

�

n
e
i2⇡/3)

2X

h=0

e
igh·r

i
. (3.7)

Here, g0 = G1 � G2 is the first shell reciprocal moiré lattice vector defined
as the di↵erence between the reciprocal vector of layer 1 and layer 2, where
g0/g1/g2 are connected via the 120� rotation operator C3 as C3g0 = g1

(C3g1 = g2). The real space coordinate of the moiré is denoted by r, which
is periodic with moiré lattice vectors aM . Moreover, v�

l
, A

�

l
and B

�

l
are the

parameters obtained through the interpolation process and U
�

nn
(r) is the real

space representation of the spatially periodic alignment shift. Finally, n is
here a generic index also containing the layer index l. With access to the full
twist-angle-dependent alignment shift we can now set it up as a Hamiltonian
so it can be incorporated into our theoretical frame work for excitons down
the line

HU =
X

n�r

U
�

nn
(r) �†

n
(r) �

n
(r), (3.8)

where  (†)�
n (r) are the real space annihilation (creation) operators for the

conduction/valence band.
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3.3 Interlayer tunneling

The second component to the moiré potential is the interlayer tunneling of
charge carriers [26, 27, 43, 73, 81, 82]. In bilayer TMDs, the wave function
overlap between the layers leads to e�cient tunneling between the layers
for the electrons and holes, which in turn forms a layer-hybridized state,
where the electron/hole is delocalized across the layers. Consequently, an
intralayer exciton can mix with an interlayer exciton and lead to a layer-
hybridized exciton state, which would be in a superposition between these
two states C00 |l = 0,l0 = 0i+C01 |l = 0,l0 = 1i, where C is the relative mixing
between these states. The exciton hybridization will in turn also impact the
final exciton energy, which means if the tunneling strength itself is periodic
in the twist-angle-induced superlattice, we have a periodic modification to
the exciton energies and thus another component to the moiré potential.

In order to model the tunneling correctly and then map it to the superlattice
we will take a similar approach as in section 3.2, and calculate the tunneling
strength for each high symmetry point and then interpolate between them.
In contrast to the alignment shift, the tunneling strength is very much de-
pendent on the orbital composition of the local valley [28, 83], which in turn
means that we need to calculate the tunneling strength for each valley as
well.

First we will consider the tunneling around the K (K0) point in the Brillouin
zone. Here, at the edges of the BZ, a special case emerges due to the angular
symmetry of the d-orbitals that it is mostly composed out of [28, 83]. Ap-
proximating that the only contribution to the orbitals around the K-point
stems from these d-orbitals around the metal atom (d-orbital contribution
is ⇠ 80%), one can exploit this in a tight binding framework and model the
tunneling as [28, 43]

T
�

ll0(S) =
2X

n=0

t
�

ll0(S) e
i⌧(C

(n)
3 K�K)·D(S)

�l0(S), (3.9)

where we now have exploited the C3 symmetry of the d-orbitals. Here, K is
the vector that translates to the K point, D(S) is the atomic displacement
vector, which changes with the stacking S. Furthermore, ⌧ is equal to 1 for
the K point and -1 for the K0 point. Furthermore, �l0(S) = e

i�l
0
(S)2⇡/3, where
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�l
0(S) = (�1)l

0
for the valence band in H-type and 0 otherwise [43]. This

stems from the di↵erence in the rotational quantum numbers where m = �

for the valence band and m = 0 for the conduction band [28]. Finally, t�
ll0(S)

is the stacking dependent tunneling strength for either electrons or holes and
T

�

ll0(S) is the matrix element for said tunneling.

Importantly, we can now read o↵ how the tunneling around the K-point will
behave at each high symmetry stacking. Applying the corresponding atomic
displacement for each stacking we find that both R

M

h
and R

X

h
become 0, and

are thus symmetry forbidden. In the case of Rh

h
, we instead have T

�

ll0(S) =
3t�

ll0(S) (for simplicity we will just incorporate the factor 3 inside of t�
ll0(S)

for future uses), which means that the tunneling matrix element is either 0
or directly proportional to the tunneling strength. Similarly, in H-type we
find that the only symmetry allowed tunneling for holes are at H

h

h
and for

electrons at HX

h
. For other valleys such as � and ⇤(0), the tunneling for each

stacking will simply be proportional to the tunneling strength, which means
that all non-zero tunneling matrix elements can be written as T �

ll0(S) = t
�

ll0(S).

The tunneling strength can be obtained by considering a two-band model for
the conduction/valence band, i.e one band in each layer where the charge-
carrier will tunnel between. The Hamiltonian then reads

H =
X

↵lk

Ẽ
↵

lk(S) a
†
↵lka↵lk +

X

↵k
l 6=l

0

t
↵

ll0(S) a
†
↵lka↵l0k, (3.10)

where ↵ = (�,⇠) is a compound index for the band and valley. Here, Ẽ↵

lk(S) =
E

↵

lk+�"
�

l
(S), where E↵

lk are the decoupled monolayer band edge energies and
�"

�

l
(S) is the alignment shift discussed in 3.2. Analytically diagonalizing

this Hamiltonian with respect to the layer index yields the avoided crossing
formula

E
↵

±,k(S) =
1

2

2X

l=1

eE↵

lk(S) ±
1

2

q
e�↵

k(S)
2 + 4|t↵(S)|2. (3.11)

Here, e�↵

k(S) = eE↵

1k(S) � eE↵

2k(S) and E
↵

±,k(S) is the final hybrid energies.
Solving for the tunneling strength we then obtain

|t
↵(S)| =

1

2

q
(�E↵

k (S))
2 � e�(S)2, (3.12)
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where �E
↵

k (S) = E
↵

+,k(S) � E
↵

�,k(S) is the di↵erence between the layer hy-
bridized electronic states. Thus, with access to the alignment shift (sec-
tion 3.2), the monolayer band edges and the bilayer band edges, we can
extract the tunneling strength under the assumption of a two-band model.
The monolayer band energies and bilayer band energies were calculated using
DFT by Christopher Linderälv in paper I.

The extracted tunneling strength for each material and valley (see appendix
for paper I) di↵ers vastly depending on the valley. Around the K (K0) point
the tunneling strength is much weaker than around the the � or ⇤ point. This
stems from the orbital composition of the valley. As discussed previously, the
K (K0) point has its dominating contribution from the d-orbitals around the
metal atom, whereas the �/⇤ point also has a significant contribution from
the chalcogen atoms, which results in a much greater wave function over-
lap between the layers due to the atoms being closer to each other than the
metal atoms. The tunneling strength also varies with stacking. Each stack-
ing has a di↵erent optimal interlayer distance, which directly translates into
the tunneling strength, i.e longer interlayer distance gives smaller tunneling
strength due to reduced wave function overlap. Since each high symme-
try stacking has a di↵erent optimal interlayer distance, a twisted structure
will have a varying interlayer distance throughout its supercell, which in turn
means that the tunneling strength varies in the supercell. Following the same
approach for the tunneling strength as for the alignment shift, we now use
Eq. 3.7 to smoothly interpolate between the high symmetry stackings and
consequently map out the tunneling strength in the entire supercell. In turn
we can formulate the twist angle dependent Hamiltonian for the tunneling
in real space as

HT =
X

n 6=m

�r

T
�

nm
(r) �†

n
(r) �

m
(r),

(3.13)

where T
�

nm
(r) is the calculated map of the carrier tunneling.

3.4 Atomically reconstructed moiré potential

So far we have only discussed the potentials that emerge in a rigid lattice.
However, when the relative twist angle between the layers is small, the lat-
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tice does no longer remain rigid. Here, the atoms undergoes a relaxation
process known as atomic reconstruction where the more energetically favor-
able stackings grow in size to form large domains, separated by a thin do-
main wall [84–92]. In R-type stacking, we have two high symmetry stackings
that are optimal in terms of stacking energy R

M

h
and R

X

h
, thus the result-

ing domain formation is triangular [80, 93, 94]. In H-type, the situation is
qualitatively di↵erent. Here, Hh

h
is the single most optimal stacking, in turn

resulting in hexagonal domain formation, also known as a kagome pattern
[80, 93, 94]. The domain formation occurs due to atomic displacement, either
in the form of atomic dilation (also refereed to as scalar strain within this
thesis), or atomic rotation, which connects to shear strain [86]. The emerg-
ing strain fields in a reconstructed lattice consequently impacts the electronic
band structure and will thus become an additional component of the moiré
potential.

Assuming only small displacements, we can in the small twist-angle-regime
model the strain in continuum mechanics via the linear strain tensor

"ij =
1

2
(ui,j + uj,i) (3.14)

where "ij is the linear strain tensor and i(j) = (x,y) is an index denoting
the x or y-coordinate. Here, ui,j is the derivative ui,j =

1

2
(@iuj + @jui) of the

displacement vector determining the local displacement of one coordinate r
with some distance u(r). In order to gain access to the strain fields in the
atomically reconstructed lattice, it is thus essential to obtain the displace-
ment vectors u(r). For this purpose we to set up an energy integral for the
twisted bilayer system which depends on the displacement vectors u(r) and
then minimize it in terms of stacking energy. This is done by first considering
the total elastic energy. Following the theory of elasticity, the total elastic
energy per unit volume can be written as [95]

U
l =

�

2
(ul

i,i
)2 + µu

l

i,j
u
l

j,i
, (3.15)

where � and µ are the material specific Lamé parameters.

With the total elastic energy taken into account, we also need to take into
account the stacking energy, also known as the adhesion energy [80], between
the layers. Following the method laid out in Ref.[80], this is taken into
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account via a parameterized form of the adhesion energy which is then fitted
to data from DFT. The expression for the adhesion energy then reads

WR/H(r0) = �Z
2

R/H
(r0)

+
2X

n=0

h
a1cos(Gnr0) + a2sin(Gnr0 + �R/H)

i
,

(3.16)

where R/H denotes R-type and H-type stacking respectively, and the phase
is given by �R = ⇡/2(�H = 0). Here, r0 = ✓ẑ⇥r+ut(r)�ub(r), which means
that Gnr0 ⇡ gnr + Gn�u(r), where �u(r) = ut(r) � ub(r) and gn is the
reciprocal vector of the mini-Brillouin zone (mBZ). Furthermore, ZR/H(r0)
is the deviation of the interlayer distance from d0 nm [96], given by

ZR/H(r0) =
1

2

2X

n=0

h
a1Acos(Gnr0)

+ a2|Gn|sin(Gnr0 + �R/H)
i
.

(3.17)

The parameters , a1, a2 and A are all fitted from DFT simulations and are
obtained from [96]. The total stacking energy can then by described with
the following integral [93, 96]

E =

Z

AM

d
2r
hX

l

U
l +WR/H(r0)

i
, (3.18)

where AM is the moiré unit cell area and r is the real space coordinate in
the moiré lattice. To find the relevant displacement vectors ul(r), we ex-
pand them as a Fourier series ul(r) =

P
n
ul

n
e
ignr and turn the problem

into an optimization problem, which can then be solved numerically for the
Fourier coe�cients [93, 94, 96]. The numerical implementation of the opti-
mization problem was done by Johannes Abelardo Pineiro in paper IV using
the python library GEKKO optimization suite [97].

With access to the displacement fields we can write out the linear strain
tensor in its entirety2

"
l

ij
=

✓
u
l

x,x

1

2
(ul

x,y
+ u

l

y,x
)

1

2
(ul

y,x
+ u

l

x,y
) u

l

y,y

◆
, (3.19)

2Note that with access to the numerically obtained Fourier coe�cients for the displace-
ment vectors, all of the entries in the linear strain tensor can be solved analytically since
the real-space derivative now only acts on the exponential in the Fourier series.
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which is a second-rank tensor belonging to the D3h symmetry group. Con-
sequently, in 2D u

l

i,j
transforms according to scalar component u

l

x,x
+ u

l

y,y

(Tr("l
ij
)) and a vector component (ul

x,x
�u

l

y,y
,� 2ul

x,y
) [98–100]. Since we are

interested in the e↵ect reconstruction has on the exciton energy landscape,
we are mainly interested in what impact the strain has on electronic bands.
For this purpose, we can associate the scalar component as uniaxial strain in
each direction and the vector component as a vector gauge potential [101],
also known as piezo potential [80, 102].

Here, one component directly scales with the trace of the linear strain tensor,
whereas the second component scales with the shear strain as well. It is
therefore of interest to investigate how the trace and shear strain manifests
themselves in the superlattice and how they evolve with the twist angle. One
common way of measuring the shear strain is via the maximum shear strain
value �max = umax � umin [86], where umax,min is given by

umax,min =
Tr("ij)

2
±

r
("11 � "22)2

2
+ "12"21. (3.20)

In Fig 3.3.a-b we have calculated this for the example material WSe2-WSe2
using H-type stacking. Here we can see that the shear strain is accumulated
along the domain walls for small angles (see ✓ = 0.6�) and when the angle is
increased the domains become less pronounced, which reduces the strain (see
✓ = 1.8�). The same holds for the scalar strain which is shown in Fig 3.3.c-f.
Here, we also see concentrated strain along the domain walls. Notably, the
strain has the reversed sign in the top layer compared to the bottom. This
stems from the relaxation process where the optimal stacking will emerge by
one layer having compressive strain where the other has tensile strain.

3.4.1 Scalar strain

The potential associated with the scalar strain can be directly determined
from the linear dependence on the uni/biaxial strain [103]. We can thus write
the scalar strain potential as

S
l

⇠�
(r) =

X

i

u
l

i,i
(r)gl

⇠�
= Tr("l

ij
)gl

⇠�
, (3.21)
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Figure 3.3: Calculated strain fields for the example material WSe2 homobilayer.
The shear strain profile is shown at (a) ✓ = 0.6� and (b) ✓ = 1.8�. (c-f) Scalar
strain profile for both top and bottom layer at ✓ = 0.6� and ✓ = 1.8�.

where gl
⇠�

the valley-specific gauge factor obtained from the DFT calculations
performed in Ref.[103]. The scalar strain potential Hamiltonian then reads

HS =
X

n�r

Sn�(r) 
�†
n
(r) �

n
(r), (3.22)

where n again is a generic index, now containing both the valley and layer
index.

3.4.2 Piezo potential

In order to obtain the potential associated with the shear strain we will first
consider the relationship between the polarization P

l

i
and the linear strain

tensor [104]

P
l

i
=

X

jk

u
l

j,k
e
l

ijk
, (3.23)
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where e
l

ijk
is the piezoelectric tensor component. Similarly to the strain

tensor, the piezoelectric tensor belongs to D3h and will thus only have certain
components contributing. These are [105]

e
l

11
= e

l

111
= �e

l

122
= �e

l

212
= �e

l

221
, (3.24)

where we have dropped the third index and only use e
l

11
as the piezo coe�-

cient from now on. The resulting polarization is the vector component of the
linear strain tensor established previously multiplied by the piezo coe�cient

P
l(r) = e

l

11
(ul

x,x
� u

l

y,y
, � 2ul

x,y
). (3.25)

By aligning the y-axis of the polarization with the vector from the metal
atom to the chalcogen atom we have e0

11
= �e

1

11
> 0 for H-type configuration

and e
0

11
= e

1

11
for R-type configuration [80]. The value of the piezo coe�cients

are obtained from Ref.[106]. Note that there is no polarization in uniformly
strained lattices without a shear component. Via Gauss law one can write
the charge distribution with respect to the polarization

⇢
l

piezo
(r) = �rr · P

l(r). (3.26)

By including the out-of-plane direction it reads

⇢
l

piezo
= �e

l

11

h
2@xu

l

x,y
+ @y(u

l

x,x
� u

l

y,y
)
i
�(z � zl). (3.27)

In addition to the piezo charge density, there is also the screening-induced
charge density given by the Poisson equation

⇢ind

↵
l

k
= �(z � z

l)r2

r�(r,z), (3.28)

where �(r,z) is the electrostatic potential produced by the piezo charges
and ↵

l

k = d0✏0(1 � ✏
l

k) is the in-plane polarizability [80]. Here, ✏lk is the in-
plane dielectric screening obtained from Ref.[77]. The total charge density
⇢tot = ⇢ind+⇢piezo and the piezoelectric potential can then be found by solving
the full Poisson equation, which is done by expanding the piezo potential
as a Fourier expansion �(r,z) =

P
n
�̃n(z)eign·r and solving for matching

boundary conditions of the two dielectric slabs [80]

[@2

zz
+ r

2

r]�(r,z) = (⇢l=0

tot
+ ⇢

l=1

tot
)/✏0. (3.29)
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The piezo-induced energy shifts of a charge carrier P
�

l
(r) is then directly

obtained from the piezo potential for each layer �l(r), i.e P
�

l
(r) = e0�l(r).

The corresponding Hamiltonian then reads

HP =
X

n�r

Pn�(r) 
�†
n
(r) �

n
(r), (3.30)

where similarly to previous potentials n is a generic index contain the layer
index l.

3.4.3 Deformation of the rigid lattice potentials

The last thing to take into account in the reconstructed moiré potential is
the deformation of the potentials already existing in the rigid lattice. This
is simply done by considering the coordinate to be r0 instead of r, i.e we
transform the coordinate system in Eq. 3.7 to be gnr ! gnr + Gn�ul(r).
The resulting expression then reads

U
�

nn
(r) = Re

h
v
�

n
+ (A�

n
+ B

�

n
e
i2⇡/3)

2X

h=0

e
i(gh·r+Gh·�ul

(r))
i
. (3.31)

Here, we have deformed the otherwise smooth potential with the displace-
ment �ul(r) and thus allowed it to follow the domain formation. The same
can then be done for the interlayer tunneling (3.3).

Combining all the di↵erent component, the total moiré potential Hamiltonian
reads

HM =
X

n�r

S
�

nn
(r) �†

n
(r) �

n
(r) +

X

n�r

P
�

nn
(r) �†

n
(r) �

n
(r)

+
X

n�r

U
�

nn
(r) �†

n
(r) �

n
(r) +

X

n 6=m

�r

T
�

nm
(r) �†

n
(r) �

m
(r),

(3.32)

where we have taken into account the scalar strain S
�

nn
(r), the piezo potential

P
�

nn
(r), the alignment shift U�

nn
(r) and the interlayer tunneling T

�

nm
(r). Since

the scalar strain, piezo potential and alignment shift all acts as a renormal-
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ization of the band edges, we can merge them to one expression

HM =
X

n�r

V
�

nn
(r) �†

n
(r) �

n
(r) +

X

n 6=m

�r

T
�

nm
(r) �†

n
(r) �

m
(r). (3.33)

Here, V �

nn
(r) = S

�

nn
(r) + P

�

nn
(r) + U

�

nn
(r).

Key message: Stacking two layers on top of each other allows for interlayer
excitons, which can be taken into account by generalizing the the screening
in the Wannier equation. The presence of another layer induces multiple
interlayer couplings which become periodic with the introduction of a twist
angle. The couplings can be summarized as the polarization-induced align-
ment shift, interlayer tunneling, scalar strain potential and piezo potential,
which all are components to the total moiré potential.
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CHAPTER 4

Exciton Landscape

In the previous chapter we covered the di↵erent interlayer coupling mecha-
nisms that emerges when stacking two TMDs on top of each other. In this
chapter we will generalize our picture for the exciton energies from the de-
coupled monolayer (i.e using the screening discussed in section 3.1) to also in-
clude these couplings and then summarize the resulting impact on the exciton
energy landscape from these e↵ects (paper I). For this purpose we start in the
decoupled monolayer basis (i.e using the screening discussed in section 3.1)
and then add the relevant interlayer couplings on top of that as modifications
to these energies. For a bilayer without any moiré e↵ects, these couplings
would be the polarization-induced alignment shift (section 3.2) and the inter-
layer tunneling (section 3.3). After obtaining the exciton energy landscape,
we also briefly cover the optical observables from said landscape in the form
of phonon-assisted PL. This chapter summarizes the results from paper I,
which includes results for di↵erent material configurations. However, in this
chapter will only cover the results for the heterostructure MoS2-WS2, but
the approach and general conclusions drawn can be extended to the other
material configurations as well.
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4.1 Energetic landscape

In order to calculate the exciton energies in TMD bilayers, we first transform
the Hamiltonian in Eq. 3.10 to exciton basis via the approach laid out in
subsection 2.3.2

H =
X

⇠Q
LL

0

(E⇠

LQ(S)X
⇠†
LQX

⇠

LQ�LL0 + T
⇠

LL0(S)X
⇠†
LQX

⇠

L0,Q), (4.1)

where E⇠

LQ(S) are the exciton binding energies solved from the general Wan-
nier equation in Eq. 3.1 in combination with the stacking (S) dependent
alignment shift discussed in section 3.2, which for an untwisted structure
is just a valley-independent renormalization. The exciton tunneling matrix
element now reads

T
⇠

LL0(S) = F
⇠

LL0(t
c⇠e

lel
0
e
(S)�le,l0e�1�lh,l

0
h

�t
v⇠h

lhl
0
h
(S)�lh,l0h�1�le,l0e),

(4.2)

where the deltas ensure single carrier tunneling processes and t
�⇠�

l�l
0
�
(S) are the

stacking dependent tunneling strength discussed in section 3.3. Here, F
⇠

LL0

are the exciton formfactors which reads

F
⇠

LL0 =
X

k

 ⇤
⇠L
(k) ⇠L0(k), (4.3)

where  ⇠L(k) are the exciton wavefunctions as obtained from the generalized
Wannier equation (Eq. 3.1 and Eq. 3.3). An illustration of the hybridization
process that then occur for excitons, taking into account both the alignment
shift and interlayer tunneling, can be seen in Fig 4.1.c. Here, the decoupled
monolayer energies of the interlayer and intralayer exciton are shifted by the
alignment shift �"(S) which is then split into two hybrid exciton states. It
is important to note here that the tunneling channel for which intralayer
excitons and interlayer exciton couple to each other change drastically with
stacking. If we consider a homobilayer at R

h

h
stacking (here there is no

polarization-induced alignment shift) we will have two degenerate (note that
including spin indices will add another level of degeneracy to the system, but
can in this context of the exciton landscape be neglected 1) intralayer excitons

1If we consider electron-hole exchange processes, the inclusion of the spin might however
bring some smaller quantitative changes [107].
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Figure 4.1: (a) Schematic of the electronic band structure in MoS2(black)-
WS2(gray) heterostructure (a) before and (b) after hybridization. The intralayer
(X0) and interlayer (iX) excitons are marked in blue and red, respectively. The
strong tunneling of holes around the � point results in a pronounced hybrid exciton
state (hX, purple line). (c) Schematic for the formation of hybrid excitons. The
dashed lines are the unperturbed exciton energies that become shifted by �"(S)
due to the layer polarization. Interlayer hybridization results in hybrid exciton
states denoted by eE⌘(S).

(one for each layer) and two degenerate interlayer excitons (le = 0,lh = 1 and
le = 1,lh = 0) that couple to each other via carrier tunneling (cf. Fig 4.2.a).

Normally we only think of the KK exciton, also known as the A exciton, but
we also have the B exciton (K0K0). Due to the large spin-orbit coupling in
TMDs these excitons are very far up in energy and can thus be neglected
usually, which is the case in R-type structures (see XB and IX0 in Fig 4.2.a).
However, in H-type structures one layer has the reversed spin-orbit coupling,
which fundamentally changes interlayer tunneling channels allowed. In this
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CHAPTER 4. EXCITON LANDSCAPE

Figure 4.2: Schematic for the di↵erent tunneling channels in R-type structures
(a) and H-type structures (b). Here, 2x notes that the exciton state is two-fold
degenerate. In H-type structures K0 is on top of K thus creating fundamentally
di↵erent tunneling channels. This allows for the lowest lying interlayer exciton to
hybridize with the B exciton.

stacking, the degeneracy of the excitons with respect to the tunneling channel
is now broken, and now the A exciton couples to the B exciton. Consequently,
we have a new set of interlayer excitons that in turn can hybridize with the
B exciton (cf. Fig 4.2.b).

Having formulated a Hamiltonian for the exciton energies in exciton basis
in Eq. 4.1, we now wish to diagonalize it. For this purpose we expand the
exciton operator into a hybrid exciton basis [42, 43]

Y
†
⇠⌘Q =

X

L

C
⇠⌘⇤
L

(Q)X⇠†
LQ, (4.4)

where ⌘ is the new hybrid exciton quantum number, Y †
⇠⌘Q are the hybrid

exciton operators and C
⇠⌘
L
(Q) are the mixing coe�cients revealing the rela-

tive contribution between intra/interlayer exciton states. Since the mixing
coe�cients are eigenvectors to the Hamiltonian they fulfill the following re-
quirements

X

L

C
⇠⌘1⇤
L

(Q)C⇠⌘2
L

(Q) = �⌘1⌘2

X

⌘

C
⇠⌘⇤
L

(Q)C⇠⌘
L0 (Q) = �LL0 .

(4.5)
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Figure 4.3: (a) Lowest lying exciton state for each exciton valley configuration
as a function of stacking for the MoS2-WS2 heterostructures on a SiO2 substrate.
All energies are expressed in relation to the bright K-K exciton at Rh

h
. Note that

K-K and K-K0 as well as �-K and �-K0 are almost degenerate. (b) Degree of
hybridization for each exciton valley as a function of stacking. (c) Schematic for
R-type stacking configurations, where blue indicates the WS2 and red the MoS2
layer.

Applying the following transformation to the exciton Hamiltonian gives us
the hybrid exciton eigenvalue equation

E
⇠

LQ(S)C
⇠⌘

LQ +
X

L0

T
⇠

LL0(S)C
⇠⌘

L0Q = E
⇠

⌘Q(S)C
⇠⌘

LQ. (4.6)

Here, E
⇠

⌘Q(S) are the final hybrid exciton energies. Solving this numerically,
which is the equivalent of diagonalizing a 4⇥4 matrix, we obtain the diagonal
form of the interaction free bilayer exciton Hamiltonian.

H0 =
X

Q⇠⌘

E
⇠
⌘Q(S)Y

†
⇠⌘QY⇠⌘Q. (4.7)
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This was done for the van der Waals heterostructure MoS2-WS2 in paper I for
di↵erent R-type stackings and valleys. The resulting exciton band structure
is shown in Fig 4.3.a, where the lowest lying exciton for each valley is shown
as a function of stacking (cf. Fig 4.3.c). Here we can see the strong impact
of the carrier tunneling, consequently making the �K exciton the lowest
lying one. The variation in energy between di↵erent stackings can mainly be
explained by the varying interlayer distance, which in turn heavily impacts
the tunneling strength. In Fig 4.3.b we see how the degree of hybridization
changes with stacking, revealing a very small change for the momentum dark
excitons. Interestingly, we find that the intralayer KK exciton no longer is
the lowest lying one when going between R

M

h
to R

X

h
. Here, the alignment

shift blueshifts this exciton su�ciently for the low lying interlayer exciton to
become the lowest lying one.

4.2 Optical response

Now when we have access to the hybrid exciton energy landscape we wish to
know what the corresponding optical response is. In the example material
used here (MoS2-WS2), the momentum dark excitons are by far the lowest.
Consequently, this exciton energy landscape is not directly accessible via
optical absorption or via direct emission of a photon. Instead, the exciton
will first need to scatter with a phonon to virtual bright state and then emit a
photon. This phonon-assisted recombination of said exciton will then result
in multiple phonon sidebands emerging from the scattering process, in turn
giving us the optical response of the material via the photoluminescence (PL)
spectra. This phonon-assisted PL formula discussed in subsection 2.4.2 was
first derived by Samuel Brem et al. in Ref. [68] and then later generalized
to bilayers in Ref. [43].

The phonon-assisted PL was calculated in Fig 4.4.a for R
h

h
stacking, corre-

sponding to the hybrid exciton band structure shown in Fig 4.3. Here, one
can see the clear dominance of the phonon-assisted PL peaks at low tem-
peratures and at higher temperatures the KK exciton will again dominate
the spectrum. This is due to the Boltzmann nature of the exciton distri-
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Figure 4.4: (a) Normalized photoluminescence spectra as a function of tempera-
ture and energy for Rh

h
-stacking in the MoS2-WS2 heterostructure. PL spectra at

70 K for (b) Rh

h
, (c) RM

h
and (d) RX

h
stacking. The green and the red shaded areas

indicate the phonon sidebands of the �-K exciton and the K-K intralayer exciton,
respectively. Phonon sidebands stemming from emission (�) and absorption (+)
of optical (Op) and acoustical (Ac) phonons are labeled accordingly.

bution2, where the direct emission, which corresponds to the leading order
term, will gain a larger occupation. This in turn will a↵ect the PL intensity
for said peaks. At the lower temperatures the process of emitting a phonon
is the dominating one. This is due to the number of phonons scaling with
temperature. In the intermediate temperature range, we can see phonon
absorption appearing as well. Furthermore, we can see the clear splitting
between the optical and acoustic phonon modes since these will not have the
same phonon energies [49, 54]. The hybrid exciton energies have then been

2The exciton distribution will in reality follow a Bose-Einstein distribution, but can be
well approximated as a Boltzmann distribution at low densities [43, 68].
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Figure 4.5: Experimental PL measurement of MoS2-WS2. Figure taken from
Ref.[111].

redshifted(blueshifted) with these phonon energies, which then determines
the relative position to A exciton (KK) peak3. This peak is in turn fitted
to experimental observations since calculating the absolute PL peak position
would require reliable first principle calculations concerning the band gap.
For the purpose of this PL calculation, the linewidth has been phenomeno-
logically modeled in accordance with Ref. [69].

Looking at Fig 4.4.a to Fig 4.4.c we see the how this optical response varies
with stacking, again reflecting the strong variation of tunneling strength due
to the changing interlayer distance. The above calculated results are in good
agreement with experimental findings, where two predicted phonon sidebands
have been observed about 300 meV below the bright K-K exciton in MoS2-
WS2 [111] (compare AB stacking in Figure 4.5 with calculated PL spectrum
in Figure 4.4.c). This corresponds well to the calculated PL at R

M

h
- and

R
X

h
-stacking, which is the energetically most favorable R-type stackings.

Key message: In bilayer TMDs, the interlayer tunneling can drastically
change the exciton energy landscape. Strongly hybridized momentum-dark

3Additional energy renormalizations will appear due to exciton-exciton interactions,
but since these only become significant at higher densities they have been neglected here
[108–110].
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excitons will often become the new exciton ground state. These can be
optically accessed via phonon-assisted PL.
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CHAPTER 5

Electrical tuning of moiré excitons

In the previous chapter we summarized the results from paper I where the
hybrid exciton landscape was modeled, taking into account the untwisted
bilayer modifications to the monolayer exciton energies. In this chapter we
will generalize this approach to include a twist angle. Furthermore, we will
investigate how one can exploit the insights made in chapter 4 in order to
externally tune the optical response of the material. We do this by studying
the interplay between twist angle engineering of a rigid lattice and an applied
electric field. This chapter consequently summarizes the theory and results
from paper II. Here, the material investigated is the homobilayer MoSe2,
which was chosen due to the close proximity between momentum indirect
and momentum direct excitons, thus making it an interesting material to
study when changing both the twist angle and an applied electric field. The
approach is however general can be applied to any material configuration.
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5.1 Moiré exciton Hamiltonian

The first thing we need to do is generalize our exciton Hamiltonian for the
inclusion of twist angles. As discussed in chapter 3, both the alignment shift
and the interlayer tunneling is dependent on the atomic configuration, and
will thus be periodic in real space, i.e both are components of the moiré
potential. Our aim is then to generalize the model so that it will incorporate
these periodic features over the whole superlattice.

We start by considering a Hamiltonian for the rigid lattice moiré potential. In
real space, this is simply the sum of the two Hamiltonians given in chapter 3
by Eq. 3.8 and Eq. 3.13.

HM =
X

i�r

V
�

ii
(r) �†

i
(r) �

i
(r) +

X

i 6=j

�r

T
�

ij
(r) �†

i
(r) �

j
(r) + h.c. (5.1)

Here, i(j) = (l,⇠) is a compound index, r is the real space coordinate in the
superlattice and  (†) are annihilation (creation) operators. The first term
accounts for the periodic alignment shift (section 3.2) and the second term
accounts for the interlayer tunneling (section 3.3).

We can approximate the wave functions in the vicinity of high symmetry
points as plane waves  �†

i
(r) =

P
k e

ik·r
�
†
i,k due to the e↵ective mass ap-

proximation made in section 2.2. This is analogous to Fourier transforming
the Hamiltonian to momentum space

HM =
X

i�
kg

v
�

ii
(g)�†

i,k+g�i,k +
X

i 6=j�

gkq

t
�

ij
(g)�†

i,k+g�j,k + h.c,
(5.2)

where g are the reciprocal lattice vectors of the mini Brillouin zone (mBZ)
that emerges due to the real space superlattice (cf. Fig 5.1). This vector is
consequently defined as g = G1 � G2, where Gl are the reciprocal lattice
vector of layer l. The above equation is obtained by expanding the periodic
moiré potential as a Fourier series

V
�

ii
(r) =

X

g

v
�

ii
(g)eig·r. (5.3)

Here, the mBZ lattice vectors g are the eigenmodes of this expansion. Con-
sequently, the matrix elements in Eq. 5.2 are simply the Fourier coe�cients
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Figure 5.1: Schematic of the mini-Brillouin zone that emerges due to the emer-
gence of a real space superlattice and a schematic interpretation of the hybrid
moiré excitons that will be heavily a↵ected by the twist angle.

of this expansion and can be obtained by solving the following integral

v
�

ii
(g) =

1

AM

Z

AM

dre�ig·r
V

�

ii
(r), (5.4)

where AM is the unit area of the superlattice. Here, the polarization-induced
alignment shift is used an example, but the same approach is done for the
tunneling as well.

Applying the exciton transformation from section 2.3 we can now write down
the complete interaction-free exciton Hamiltonian

H0 =
X

LQ⇠

E
⇠
LQX

⇠†
L,QX

⇠
L,Q +

X

LQ⇠
g

V
⇠
L
(g)X⇠†

L,Q+gX
⇠
L,Q

+
X

LL
0

Q⇠g

T
⇠
LL0(g)X

⇠†
L,Q+gX

⇠
L0,Q + h.c,

(5.5)

Here, the first term accounts for the dispersion

E
⇠
LQ = ~2 (Q � [⇠e � ⇠h])2

2[me +mh]
+ "

c

⇠e0
� "

v

⇠h0
+ E

b

⇠ , (5.6)

where Eb

⇠ are the exciton binding energies and "
�

⇠�
is the valley splitting (Ref.

[48]).

The matrix element of the polarization-induced alignment shift is given by

V
⇠
L
(g) = v

c

le
(g)F⇠

LL
(�LLg) � v

v

lh
(g)F⇠⇤

LL
(�↵LLg), (5.7)
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where v�
l�
(g) are the Fourier coe�cients as obtained from Eq. 5.4 and F

⇠
LL0(q)

are the form factors given by

F
⇠
LL0(q) =

X

k

 ⇠⇤
L
(k) ⇠

L0(k + q). (5.8)

The tunneling matrix element is similarly given by

T
⇠
LL0(g) =

h
�lh,l

0
h
(1 � �le,l0e)t

c⇠e
lel

0
e
(g)F⇠

LL0(�LL0g)

��le,l0e(1 � �lh,l
0
h
)tv⇠h

lhl
0
h
(g)F⇤⇠

LL0(�↵LL0g)
i
,

(5.9)

where the delta functions ensure that only one electron or hole can tunnel
at the same time and t

�⇠�
l�l�0

(g) are the Fourier coe�cients of the real space
tunneling landscape, in analogy to Eq. 5.4.

In a similar fashion as in chapter 4 we want to find a diagonal form for the
Hamiltonian in Eq. 5.5. Before we can to this we must first deal with the
additional periodicity of the superlattice. This is done by considering the
zone-folding scheme. Here, we restrict our summation over the center-of-
mass momentum Q to the mBZ and then fold the dispersion back in again
with the mBZ lattice vectors g [42, 43].

H0 =
X

LQ⇠
g

E
⇠
LQ(g)X

⇠†
L,Q+gX

⇠
L,Q+g +

X

LQ⇠
gg0

V
⇠
L
(g0)X⇠†

L,Q+g+g0X
⇠
L,Q+g

+
X

LL
0Q

⇠gg0

T
⇠
LL0(g0)X⇠†

L0,Q+g+g0X
⇠
L,Q+g + h.c,

(5.10)

where E⇠
LQ(g) = E

⇠
LQ+g and the summation over Q 2 mBZ. We simplify the

above expression by introducing the zone-folding operators F ⇠
LQg = X

⇠
L,Q+g

and apply them to the Hamiltonian

H0 =
X

LQ⇠
g

E
⇠
LQ(g)F

⇠†
LQgF

⇠
LQg +

X

LQ⇠
gg0

V
⇠
L
(g,g0)F ⇠†

LQg0F
⇠
LQg

+
X

LL
0Q

⇠gg0

T
⇠
LL0(g,g0)F ⇠†

LQg0F
⇠
LQg + h.c.

(5.11)

56



CHAPTER 5. ELECTRICAL TUNING OF MOIRÉ EXCITONS

Here, T ⇠
LL0(g,g0) = T

⇠
LL0(g0

� g) is used as an abbreviation.

In order diagonalize this Hamiltonian we introduce a similar basis change
as in chapter 4, but with the additional mBZ lattice vector as an index
Y

†
⇠⌘Q =

P
gL C

⇠⌘⇤
Lg (Q)F ⇠†

LQg. Here, C
⇠⌘⇤
Lg (Q) not only gives us the relative con-

tribution between intra/interlayer excitons, but also the relative contribution
between the di↵erent sub-bands that emerge due to the zone-folding. These
coe�cients then fulfill

X

Lg

C
⇠⌘1⇤
Lg (Q)C⇠⌘2

Lg (Q) = �⌘1⌘2

X

⌘

C
⇠⌘⇤
Lg (Q)C⇠⌘

L0g0(Q) = �LL0�gg0 .

(5.12)

Expanding the Hamiltonian with the mixing coe�cients and summing over
the quantum index ⌘ gives us the moiré eigenvalue equation

E
⇠
LQ(g)C

⇠⌘
Lg(Q) +

X

g0

V
⇠
L
(g,g0)C⇠⌘

Lg0(Q)

+
X

L0g0

T
⇠
LL0(g,g0)C⇠⌘

L0g0(Q) = E
⇠
⌘QC

⇠⌘
Lg(Q).

(5.13)

Solving this eigenvalue problem numerically will then yield us the energies
for the diagonal form of the interaction-free hybrid moiré Hamiltonian

H0 =
X

Q⇠⌘

E
⇠
⌘QY

†
⇠⌘QY⇠⌘Q. (5.14)

5.2 Electrical and twist angle tuning of moiré
excitons

We have now generalized the interaction-free Hamiltonian to include twist
angles, thus allowing for one method of external tuning of the excitons land-
scape. We are also interested in the e↵ects of applying on out-of-plane electric
field. The addition of an external electric field is straight forward and the
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Hamiltonian in electron-hole basis can to leading order be approximated as

Hfield = �

X

kl
�

e0z
�

l
Ez�

†
kl�kl, (5.15)

where e0 is the elementary charge and z
�

l
is the real space position in z-

direction of electrons (holes) in layer l. Here, Ez is the electric field strength
in out-of-plane direction. By transforming this Hamiltonian into exciton
basis (subsection 2.3.2), we have the following expression

HX�l = �

X

⇠QL

dLEzX
⇠†
Q,L

X
⇠
Q,L

, (5.16)

where dL = e0uL is the dipole moment and uL = z
c

l
� z

v

l
the dipole length.

This is intuitively understood as the potential energy of a dipole within
an electrical field, sometimes referred to as the Stark shift of an exciton
[112, 113]. This equation can then easily be incorporated into Eq. 5.6 and
consequently be taken into account when solving Eq. 5.13.

In paper II we investigated the interplay between the two presented methods
for external tuning by solving Eq. 5.13. This was done for hBN encapsulated
MoSe2 for both R-type stacking and H-type stacking. Here, in the top row
of Fig 5.2 we see the exciton band structure for the KK exciton and the
strongly hybridized K⇤ exciton in a twisted R-type structure. Both the KK
interlayer exciton and the K⇤ exciton are heavily a↵ected by the periodic
moiré potential and will thus exhibit a flat bandstructure. The interlayer
nature of these excitons are shown via the color gradient on the right where
we can clearly see the strong hybrid nature of the K⇤ exciton.

By applying an electric field we will then redshift (blueshift) the excitons
that exhibit an out-of-plane dipole moment. Since the hybrid K⇤ exciton
only partially carries an interlayer component it will have a weighted shift
proportional to this component |CIX|

2. We see from the bottom row of Fig 5.2
that by applying an electric field we can shift the K⇤ exciton to become the
lowest lying one instead of the intralayer KK, demonstrating the possibility to
tune which exciton state will dominate the optical response of this material.

In Fig 5.3, the optical response for the material is calculated in the form of PL
spectra (subsection 2.4.2). Here we sweep over the electrical field strength,
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Figure 5.2: Exciton band structure for R-type stacked MoSe2 homobilayer for
the bright KK (left) and dark K⇤ excitons (right). Multiple moiré subbands are
shown in faded colors. Only the interlayer and the hybrid exciton exhibiting a
dipole moment become red-shifted in presence of an electrical field (lower panel).
Dashed lines indicate the original position of the corresponding excitons without
an electrical field. The calculation is performed for a twist angle of ✓ = 2� and an
electrical field of Ez = 0.1 V/nm.

consequently shifting both the K⇤ exciton and the KK interlayer exciton
downwards in the band structure. This results in three distinct optical re-
gions in the spectra. By first looking at the untwisted case (cf. Fig 5.3.a) we
see that the A exciton (KK intralayer) dominates at very small electric field
strengths. Then rapidly the spectra changes to show phonon sidebands of
the K⇤ exciton. This is due to the K⇤ exciton being redshifted su�ciently to
gain enough occupation to dominate the optical response. By increasing the
field strength even further the KK interlayer exciton IX is now dominating
instead. Since the pure KK interlayer exciton is very weakly hybridized it
carries a larger dipole moment and will thus have a steeper slope with respect
to the electric field, guaranteeing a crossing between the K⇤ exciton and IX
at some point.

Furthermore, by introducing a twist angle (cf. Fig 5.3.b and Fig 5.3.c) we
can tune the energy of the excitons that are heavily a↵ected by the moiré po-
tential. With the larger momentum transfer g that comes with an increased
twist angle, the e↵ects that redshifts these exciton will be suppressed, conse-
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Figure 5.3: Photoluminescence spectra as a function of electrical field strength at
the twist angles of (a) ✓ = 0�, (b) ✓ = 1� and (c) ✓ = 4� at 4 K. We observe three
distinct energy regions, which are dominated by the A exciton XA, the phonon
sidebands of the dark K⇤ exciton and the interlayer exciton IX, respectively. The
inset in (c) shows the critical electrical field strength E

crit
z as a function of the twist

angle for the transition between di↵erent spectral regions (XA to K⇤ and XA to
IX-dominated region). The shaded area indicates the range, where the dark K⇤
excitons dominate the PL.

quently shifting the IX and K⇤ exciton upwards in the band structre. This
allows us to calculate the critical fields necessary for a given twist angle when
the K⇤ exciton dominates the spectra. In turn we predict when the material
is transformed from a direct semiconductor (KK) to an indirect semiconduc-
tor (K⇤). Moreover, by looking at smaller twist angles (cf. Fig 5.3.b) we
can see additional features due to the multiple subbands that emerge in this
regime. Here, the rotation of the Brillouin zone puts the energetic minimum
of the interlayer exciton IX outside of the light cone, allowing for very weak
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phonon sidebands. The apparent oscillations that appear around the position
of the A exciton is also due to the small twist angle. Here, the higher lying
subbands of IX will be redshifted and hybridize with the A exciton when on
top of it, consequently a↵ecting the oscillator strength of the A exciton.

Key message: The moiré exciton landscape can be modeled by diagonaliz-
ing a zone-folded Hamiltonian for the exciton energies in a periodic potential.
The dipolar response of an interlayer exciton can be taken into account via
the linear stark e↵ect. Hybridizing an exciton will impact the response the
exciton has to the electric field by reducing/increasing its interlayer compo-
nent. Twist-angle-engineering and electrical field control allows for external
tuning between di↵erent exciton states. In turn going from a direct to an
indirect semiconductor.
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CHAPTER 6

Dehybridization of moiré excitons

In this chapter we will briefly cover the results from the theory-experiment
collaboration done in paper III. In the previous chapter we discussed the im-
portant role the twist angle plays for the interlayer tunneling. However, so
far we have assumed that the variation of the interlayer distance remains con-
stant when the twist angle changes, i.e the di↵erence between the minimum
interlayer distance and the maximum does not change. This approximation
holds in the small twist angle regime, but when the twist angle is increased
the variation between the smallest interlayer distance in the supercell and the
largest decreases [114], which in turn directly impacts the tunneling strength
throughout the moiré lattice [73, 115]. This change in interlayer distance
ultimately results in very large and experimentally observed blueshifts for
the hybrid excitons due to the reduced tunneling strength [116]. In order
to model this feature of the interlayer tunneling we construct an e↵ective
tunneling Hamiltonian, which allows for the tunneling strength variation to
change with the twist angle.

In the material studied (MoSe2-MoS2), the lowest lying exciton state is a
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Figure 6.1: (a) Tunneling strength around the � valley as a function of interlayer
distance. (b) Interlayer distance (left axis) and tunneling strength around the �
valley (right axis) in di↵erent parts of the superlattice (d). (c) Gaussian increase
of interlayer distance as a function of twist angle. Here, we allow the R

M

h
con-

figuration to approach the interlayer distance of Rh

h
. (e) Evolution of tunneling

strength around the � valley for di↵erent sites in the superlattice when increasing
twist angle.

�K exciton [117]. The tunneling of interest to model is therefore around
the � valley. By plotting out the the di↵erent tunneling strengths for each
high symmetry stacking as a function of its respective interlayer distance (cf.
Figure 6.1.a) we can see that the tunneling strength around the � valley is
approximately linear with the changing interlayer distance within this range.
This allows us to directly translate the variation of the interlayer distance in
the supercell to the tunneling strength as shown in Figure 6.1.b.

Importantly, in Ref. [114, 115] it is shown that the variation of the inter-
layer distance in the supercell becomes less pronounced with increased twist
angle. This decrease in the interlayer distance variation is approximately
Gaussian and will e↵ectively suppress the periodic modulation of the tunnel-
ing strength (cf. Figure 6.1.c) [115]. Due to the linearity between interlayer
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distance and tunneling, we can directly model the tunneling strength, where
its periodic modulation is suppressed at higher twist angles. Here we do
this by considering the approach laid out in the previous chapters, where we
smoothly interpolate between the di↵erent high symmetry points

t = t0 +
h
↵ + �e

i2⇡/3

i 2X

n=0

e
ign·r. (6.1)

Here, the parameters t0, ↵ and � are fitted to meet the condition at the
high symmetry stackings. We now let the periodic variation of the tunneling
strength decay with twist angle as a Gaussian and converge towards some
specific value

t
�⇠�

l�l
0
�
(r) = t

�(dmax) + e
�✓

2
/✓

2
0

⇣
t
�⇠�
0

+
h
↵
�⇠� + �

�⇠�e
i2⇡/3

i 2X

n=0

e
ign·r

⌘
, (6.2)

where t
�(dmax) is the tunneling strength that is present when the periodic

modulation has disappeared at large twist angles. In paper III, this is taken
to be were the interlayer distance is the largest, which corresponds to the
tunneling strength at R

h

h
stacking. Furthermore, t�⇠�

0
is chosen so that for

small ✓, the maximum tunneling strength corresponds to the value in the
untwisted case. The exponential e�✓

2
/✓

2
0 takes into account the approximate

Gaussian increase of the interlayer distance that occurs throughout the su-
percell. With this e↵ective model for tunneling strength around the � valley
we have a clear twist angle dependence for the tunneling as can be seen in
Figure 6.1.c. The evolution of the tunneling strength through the superlattice
can be seen in Figure 6.1.e, where we see the tunneling strength converging
towards the same value t

�(dmax).

Once the real space map of the the tunneling strength has been obtained
(Figure 6.1.e), we can follow the same approach as in chapter 5 and decom-
pose the the tunneling as a Fourier series

t
�⇠�

l�l
0
�
(r) =

X

g

t
�⇠�

l�l
0
�
(g)eig·r, (6.3)

where t
�⇠�

l�l
0
�
(g) can be calculated by solving the integral Fourier coe�cients

t
�⇠�

l�l
0
�
(g) =

1

AM

Z

AM

dre�ig·r
t
�⇠�

l�l
0
�
(r). (6.4)
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Figure 6.2: Comparison between the calculated �K exciton energies and the
experimentally observed peak shifts as a function of twist angle. Here, the solid
line black line is the calculated shift without taking into account the e↵ects of
increasing interlayer distance and the solid green line is with the e↵ects taken into
account. The experimental data points are given by the red/blue dots.

This allows us, to incorporate the twist-angle-dependent tunneling strength
into the moiré exciton Hamiltonian in Eq. 5.5 and then diagonalize as done
in chapter 5.

Comparing the twist-angle-dependence of the �K energies with the experi-
mental measurements we find qualitatively good agreement, where both the
observed PL peaks and the energies are drastically blue shifted due to the
reduced tunneling strength as can be seen in Fig 6.2. Here, the experiments
are given by the red/blue dots and were carried out by the group of Paulina
Plochocka at LNCMI in Toulouse. The calculated exciton energies are given
by the solid green line and as a comparison the expected blue shift when not
taken into account the increase in interlayer distance is shown in black. In
this case, the blue shift mainly stems from the change in confinement length
instead.

Key message: At larger twist angles, the variation in the interlayer distance
changes. This directly translates into the tunneling strength and e↵ectively
reduces the value of the tunneling strength due to the increased interlayer
distance at some stackings. For the � valley this can be e↵ectively be modeled
by allowing the periodic part of the tunneling strength to decay to a certain
value. The resulting exciton energies will consequently experience large blue
shift when increasing the twist angle.
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CHAPTER 7

Moiré excitons in a reconstructed lattice

So far we have only considered moiré excitons in a rigid lattice. While this
approximation holds for larger twist angles, it is not su�cient to describe the
moiré potential and the resulting exciton energies at smaller angles. Here,
the lattice undergoes a relaxation process known as atomic reconstruction
where the atoms are strained in order minimize the local stacking energy
[80, 93, 118]. In this chapter we calculate the moiré exciton energies and
their optical response, taking into account the emerging strain potentials
from an atomically reconstructed lattice. Consequently, we summarize the
results of paper IV by including the theory covered in section 3.4 in our
framework. Here, we primarily study naturally stacked WSe2-WSe2, but the
approach holds for all material configurations and the results are expected
to be similar for all naturally stacked homobilayers.

Following the approach laid out in section 3.4 we optimize the total adhesion
energy of the system, thus obtaining the Fourier coe�cients for the expanded
displacement vectors ul(r) =

P
n
ul

n
e
ignr. After obtaining the displacement

vectors we can visualize how they change the geometry of the superlattice by
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looking at a map of the interlayer distance. In Fig 7.1.a-b we have done this
for H-type stacked WSe2 homobilayer at ✓ = 0.6�. Here, we can see that the
rigid lattice (cf. Fig 7.1.b) has a smooth change in the interlayer distance,
reflecting the smooth change in stacking configuration. For the reconstructed
case, we instead see large hexagonal domains forming (cf. Fig 7.1.a) in good
agreement with experimental observations [84, 86]. In H-type, this pattern
emerges due to there only being one optimal stacking, whereas in R-type
a triangular pattern would instead emerge due to R

M

h
and R

X

h
both being

optimal stackings.

With access to the displacement fields, we now want to calculate the band
edge variations. Taking into account the total moiré potential (Eq. 3.33),
including both scalar strain and piezo potential described in section 3.4, we
can map out the band edge variations for both the conduction and valence
band. This is done in Fig 7.1.c-f for both the top and bottom layer. Here,
we see that the strain has accumulated close to the domain walls, in turn
making it the potential minimum for both the conduction and valence band.
Note the di↵erence in potential depth for the conduction and valence band.
This stems from the scalar strain potential which directly scales with the
valley gauge factor, which is di↵erent for the conduction and valence band,
thus resulting in a band gap renormalization. The e↵ective exciton potential
is then given in Fig 7.1.g, where we can see that the potential depth increases
by a lot when the twist angle is reduced. We can also note that the e↵ective
exciton potential is di↵erent for the KK exciton and the K⇤ exciton, which
again can be attributed to the scalar strain potential. Here, the di↵erence in
orbital overlap between K and ⇤ results in di↵erent gauge factors, and thus
a di↵erent e↵ective exciton potential depth [119].

Following the approach laid out in previous chapters, we can Fourier expand
the total moiré potential (treating the layer-diagonal terms as one component
and the layer-o↵-diagonal terms as another)

V
�

hh
(r) =

X

g

m
�

hh
(g)eig·r, (7.1)

where, m�

hh
(g) are the Fourier coe�cients for the total layer-diagonal moiré

potential (i.e no tunneling included), which are obtained by solving the in-
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Figure 7.1: Spatial map of the interlayer distance in (a) a reconstructed lattice
and (b) a rigid lattice at ✓ = 0.6� for H-type stacked WSe2 homobilayers. The
band edge variation for the conduction band in (c) the bottom layer and (e) the
top layer at the K-point, and the valence band edge variation in (d) the bottom
layer and (f) the top layer at the K-point. The shape of the potential stems from
the linear combination of the scalar strain potential and the piezo potential. (g)
Maximum exciton potential depth �Emax in the supercell is shown as a function
of twist angle for both intralayer excitons (dashed) and interlayer excitons (solid).

tegral for the Fourier coe�cients

m
�

hh
(g) =

1

AM

Z

AM

dre�ig·r
V

�

hh
(r). (7.2)

With access to new moiré potential matrix elements we can formulate a
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Figure 7.2: Band structure and wave function of the bright KK exciton in H-type
stacked WSe2 bilayer at ✓ = 0.6� in (a,c) the reconstructed lattice and (b,d) the
rigid lattice. Energies are normalized to the lowest-lying KK exciton in the rigid
lattice. The band index ⌘ = 0 indicates which wave function is shown.

Hamiltonian in exciton basis the same way as done in chapter 5.
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(7.3)

Here, the matrix elements are given by
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(7.4)

where F
⇠

LL0(q) are the exciton form factors. Diagonalizing the exciton Hamil-
tonian with the same scheme laid out in chapter 5 we can then obtain the
final exciton energies and exciton wave functions in a reconstructed lattice.
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7.1 Excitons in a reconstructed lattice

In paper IV we calculated the moiré exciton energies and wave functions for
H-type stacked WSe2 homobilayer as shown in Fig 7.2. The exciton band
structure for the bright KK exciton is given for both the reconstructed case
Fig 7.2.a and the rigid lattice Fig 7.2.b. The first thing to notice is that the
reconstructed lattice exhibits far more flat bands than the rigid lattice. This
is a direct consequence of the induced strain potentials in the reconstructed
lattice. Furthermore, we can note that in the reconstruceted lattice, the
interlayer (black lines) exciton has been pushed down below the intralayer
excitons (blue lines). This stems from the di↵erence in the sign between the
layers in the scalar strain potential, in turn leading to a much more e�cent
moiré potential for the interlayer excitons.

The calculated wave function shown in Fig 7.2.c for the reconstructed lattice
and Fig 7.2.d for the rigid lattice reveal that the exciton wave function dras-
tically changes when including the e↵ects of atomic reconstruction. Here,
the exciton gets trapped close to the domain walls, reflecting the deep strain
potential pockets formed. In the rigid lattice, the exciton is instead trapped
at the H

h

h
site. This is however a very ine�cient trapping as can be seen

from the energetic distance to the nearest non-flat band in the dispersion
(cf. Fig 7.2.b). This very weak trapping in the rigid lattice stems from the
hole tunneling around H

h

h
, which in turn pins the exciton to the H

h

h
sites.

Overall, the trapping in the reconstructed lattice is far more e�cient and in
a naturally stacked homobilayer the exciton goes from nearly being free, to
being very e�ciently trapped.

7.2 Optical signatures of atomic reconstruc-
tion

When we have access to the moiré exciton energies in an atomically recon-
structed lattice, we can calculate the optical response of this exciton land-
scape. Since we are here looking at bright KK excitons, we will do this in the
form of optical absorption (see subsection 2.4.1). This is done in Fig 7.3 for
a H-type stacked WSe2 homobilayer as a function of twist angle. The first
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Figure 7.3: Twist-angle dependence of the normalized absorption in H-type WSe2
bilayers for (a) the rigid lattice and (b) the reconstructed lattice. The emergence
of multiple peaks in the latter is due to the strain-induced intralayer potential and
is an unambiguous signature of lattice reconstruction.

thing to notice is the stark di↵erence in the multi-peak-structure between
the rigid lattice and the reconstructed lattice. In the rigid lattice Fig 7.3.a,
we only have one peak that does no change with twist angle. Some weak
splitting can be observed at small twist angles due to the limited tunneling.
In contrast, the reconstructed lattice has multiple new peaks emerging when
the twist angle is below 1�. Here, the induced strain potentials e�ciently trap
the excitons, giving rise to multiple flat-bands, together with a characteristic
multi-peak optical response. Note that the interlayer excitons that become
the lowest lying exciton is not visible in the absorption spectra due to its
weak oscillator strength. Since the emerging sub-band peaks is not present
in the rigid lattice and only emerges in the reconstructed lattice, this can
be exploited as an unambiguous optical signature of atomic reconstructed in
naturally stacked homobilayers.

Key message: The deformation of the lattice via atomic reconstruction can
be calculated by minimizing the stacking energy. The strain potentials can
then be incorporated into the total moiré potential. The exciton energies can
be solved as usual by diagonalizing the moiré exciton Hamiltonian. In natu-
rally stacked homobilayers, the induced strain potentials drastically change
the exciton energy landscape for the bright KK excitons, including new trap-
ping sites and induced flat-bands. The multi-peak structure that emerges in
optical absorption can be exploited as a signature of atomic reconstruction.
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CHAPTER 8

Polarization and charge-separation of moiré excitons

Throughout this thesis we have so far focused on excitons were the electron
and hole sits on top of each other within the 2D-plane. This has allowed
us to obtain the exciton binding energies via the Wannier equation (Equa-
tion 3.1), which in most circumstances so far has worked well. However, in
some twisted heterostructures, the moiré potential will act as driving force
to separate the electron and hole within the 2D-plane, which consequently
allows for the formation of intralayer charge-transfer excitons [87, 120]. Here,
we will generalize our approach for excitons by solving a general two-particle
problem instead, which in turn will allow for charge-separation. Taking into
account the total moiré potential, we then calculate the moiré site hopping
within the Hubbard model [94, 121]. This chapter consequently summarizes
the results from paper V. Here, we study the heterostructure MoSe2-WSe2,
which is a type-II band alignment semiconductor with the lowest lying ex-
citon state being a KK interlayer exciton [42]. Consequently, the interlayer
tunneling is very weak here and can thus be neglected. In turn, this makes
the material a good choice to study the impact atomic reconstruction has on
the charge-separation without considering further complications regarding
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exciton hybridization.

8.1 Generalized moiré exciton eigenvalue equa-
tion

In order to calculate the the exciton wave function and energy with charge
separation we first formulate a Hamiltonian in single-particle picture. Here,
we are only studying one type of interlayer exciton, where the electron always
will be in the molebdenum layer and the hole always will be in the tungsten
layer. Conseqently, we can drop the dependence on the layer index in the
Hamiltonian.

H =
X

k�

"
�

k�
†
k�k +

X

kq�

M
�

q �
†
k+q�k +

X

kk0q

V
cv

q c
†
k+qv

†
k0�qvk0ck, (8.1)

where "
�

k is the dispersion of the conduction/valence band and M
�

q is the
Fourier transformed total moiré potential from Equation 3.33 (excluding the
tunneling). The calculated total moiré potential is shown as a function of
twist angle for the electron, hole and exciton in Fig 8.1. Furthermore, V cv

q

(Equation 3.2) is the Coulomb matrix element responsible for the attraction
between electrons and holes.

With the single-particle Hamiltonian introduced, we now introduce the gen-
eral exciton two-particle state

|Xi =
X

kk0

 kk0c
†
kvk0 |0i = X

†
|0i , (8.2)

where  kk0 is the general two-particle wave function and X
(†) the exciton

annihilation (creation) operator. By letting the Hamiltonian (Equation 8.1)
act upon the general exciton state we can derive an eigenvalue problem
H |Xi = E |Xi, which then reads

("ck � "
v

k0) kk0 +
X

q

⇣
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q  k�q,k0�q = E kk0 .

(8.3)
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Figure 8.1: Moiré potential as a function of the twist angle and moiré period for
the (a) electron, (b) hole, and (c) exciton potential in the R-type stacked MoSe2-
WSe2 heterostructure. Cut of the (d) electron and (e) hole potential at ✓ = 1�,
and ✓ = 3�.

Here, E is the exciton energy.

We now introduce the center-of-mass momentum Q = kc � kv = ke + kh

such that we can map the momentum-dependence from k/k0 to k/Q. More-
over, we have now introduced the notation  ̃kQ =  k,k�Q $  kk0 =
 ̃k,k�k0 , which translates between the pictures. Applying the same zone-
folding scheme as in previous chapter, but now to both k andQ with the mBZ
lattice vectors g(g̃) we get zone-folded wave functions  ̃k+g,Q+g̃ = �kQ(g,g̃).
Furthermore, the moiré potential can be expressed as M

�

q =
P

g m
�

g�q,g,

where m�

g are the Fourier coe�cients obtained in chapter 7. The zone-folded
eigenvalue problem in center-of-mass and relative momentum coordinates
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then reads
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(8.4)

where �Q
k (g,g̃) is the zone-folded two-particle wave function and EQ are the

exciton energies as a function of center-of-mass momentum. Here, �"
cv

kQ(g,g̃) =
"
c

k+g�"
v

k+g�Q�g̃ is the di↵erence between the zone-folded conduction/valence
band dispersion. By treating the eigenvalue problem as a sparse matrix to
be diagonalized we can solve for the energies. This was done using the C++
library Armadillo [122, 123].

8.1.1 Charge densities

With access to the exciton energies and the two-particle wave function we
can now calculate the densities for electron, hole and center-of-mass, which in
turn allows us to visualize the charge separation. Starting with the electron
density in real space ⇢

e(r) = hXQ| †
e
(r) e(r)|XQi, we expand it via the

exciton state (now written in zone-folded coordinates)

|XQi =
X
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�Q
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†
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where  †
�
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†. The derived expression for the electron density

then reads
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where � = g�g0. Doing the same to the hole density ⇢h(r) = h0| †
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The center-of-mass density is derived by first introducing the relative r =
re � rh and center-of-mass coordinates R = 1

µ
(mere +mhrh), where µ is the

reduced mass, we can set up an expression for the conditional electron-hole
densities

Peh(r,R) = hQ| †
e
(R+ �r) e(R+ �r)

⇥ †
h
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Q|0i,

(8.8)

where Peh(r,R) = | ̄Q(r,R)|2 is the probability. After simplifying the ex-
pression we obtain
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(8.9)

Introducing the unfolded two-particle wave function �̃Q(k+g,g̃) = �Q
k (g,g̃)

and taking the trace of the relative electron-hole coordinates, i.e integrating
over r Peh(R) = 1

A

R
d
2
rPeh(r,R), the following expression for the COM

density is obtained
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Here, �0 = g̃ � g̃0. The resulting electron, hole and COM densities can now
be written as a function of the same form factor
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(8.11)

where ⇢X(R) = Peh(R) and the form factor is given by

�Q(q,�) =
X

kG

�̃⇤
Q(k + q,G+ �)�̃Q(k,G). (8.12)
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Figure 8.2: Densities ⇢i(r) as a function of the twist angle and moiré period
for (a) electrons, (b) holes, and (c) excitons (at Q = 0) in an R-type stacked
MoSe2-WSe2 heterostructure.

8.2 Twist angle-dependent charge separation

With the carrier density calculated from the two-particle wave function ob-
tained by diagonalizing Eq. 8.4 we can study its evolution with twist angle.
The results are shown in Fig 8.2.a for the electron density. Here, we can ob-
serve that the electron is very e�ciently trapped at Rh

h
. This mainly stems

from the pronounced scalar strain potential that has accumulated at the Rh

h

site (see Fig 8.1 for a plot of the potential landscape), which consequently
leads to the very deep potential pockets. At larger angles, the electron in-
stead becomes more delocalized and at ✓ > 2.2� the electron is now also
overlapping with the hole trapping site (see faint overlap with R

M

h
). The

hole density is qualitatively di↵erent. Here, it is energetically unfavorable
for the hole to be at Rh

h
(cf. Fig 8.1.b). At small twist angles, the minimum

of the hole potential instead sits very close to the electron minimum due to
the large reconstructed R

M

h
domains and the accumulation of strain around

the domain walls (compare blue lines in Fig 8.1.d/e). This short distance
between the electron and hole minima nearly puts the hole entirely on top
of the electron, thus consituting a Wannier-like exciton.
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When the twist angle is increased, the length scale between the electron and
hole minimum change. Here, the moiré potential wants to drag the hole away
from the electron, whereas the Coulomb interaction wants to pull it closer,
resulting in two competing processes. In this intermediate twist-angle-range
part of the hole becomes separated from the electron and one part is still
overlapping with it. This separation is however still small and occurs within
the expected Bohr radius (⇠ 2 � 3 nm). We therefore denote this regime
as a polarized exciton. Increasing the twist angle even further separates the
charges even more. Here, the atomic reconstruction has diminished su�-
ciently to put the hole minimum directly at R

M

h
(see Fig 8.1.b/e), which

further separates the hole from the electron. In this regime, there is little
overlap between the electron and hole. Furthermore, the electron and hole
are separated outside the expected Bohr radius. We therefore denote this
regime as intralayer charge-transfer (CT) exciton. At a supercell size about
8 nm (corresponding to ✓ ⇡ 2.4�) the charges are separated about ⇠ 4.6 nm
- in a very good agreement with previous studies on intralayer CT excitons
[87, 120]. In Fig 8.2.c, the exciton center-of-mass density is shown. Here, we
can observe that the exciton is indeed very localized at small twist angles.
Increasing the twist angle first slowly delocalizes it due to the decrease in
confinement length. When we enter the intralayer CT regime, the exciton
first become more localized, but then quickly more delocalized. Here, part
of the center-of-mass exciton density is over the hole trapping site and part
is over the electron trapping site. However, the peak of the density is in the
middle of the electron and hole, in turn reflecting the center-of-mass nature
of the exciton.

8.3 Dielectric tuning of hopping parameter

With access to the exciton landscape with charge-separation taken into ac-
count, we can now calculate the inter-site hopping within the Bose-Hubbard
framework. Following the approach laid out in Ref. [121], an expression for
the hopping parameter t can be derived by transforming to Wannier basis
[94, 121]

tij =
1

N

X

Q

e
i(Ri�Rj)·QEQ, (8.13)
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Figure 8.3: (a) Exciton hopping strength as a function of the twist angle for
di↵erent substrates including the free-standing case (blue), SiO2 (green), hBN
(red) and HfO2 (yellow), ranging from vanishing screening (with the dielectric
constant " = 1) to large screening (" = 16.1) [124] in R-type stacked MoSe2-WSe2
heterostructure. The density for electrons, holes and excitons are shown in (b)
for the case of hBN-encapsulation and in (c) for the free-standing case for a fixed
twist angle of ✓ = 2.5�.

where i(j) is the site index, Ri is the vector translating between moiré sites,
and EQ is the exciton dispersion as obtained through solving the generalized
moiré exciton eigenvalue equation in Eq. 8.4.

In Fig 8.3.a we show the calculated hopping for di↵erent substrates. Here, we
can see that for both the hBN-encapsulated case and the proposed screening
consisting of HfO2, there is a pronounced peak emerging in the intermediate
twist-angle-range. This stems from the suppression of the Coulomb inter-
action with stronger screening, thus enhancing the formation of polarized
excitons. Here, the Bohr radius has increased due to the weaker Coulomb
interaction, which allows for the electron and hole to separate more within
the Bohr radius, thus delocalizing the exciton more. In contrast, the weaker
screening such as SiO2 or a freestanding sample has no peak at all. Here,
the Coulomb interaction is strong enough to nearly completely suppress the
formation of polarized excitons, and in turn the observed increase of the
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hopping.

When increasing the twist angle further, the hopping decreases again for the
larger screenings. This unexpected e�cient trapping of excitons at larger
twist angles is occurring when the the electron and holes has been indi-
vidually e�ciently trapped, i.e the formation of intralayer charge-transfer
excitons. Interestingly, in this regime a stronger screening of the Coulomb
potential results in less e�cient hopping than in the intermediate twist-angle-
range (compare ordering of colors for ✓ & 2.2� and ✓ ⇡ 1.8�). This can be
understood from the di↵erence in the overlap between electrons and holes.
In the regime of intralayer CT excitons, electron and holes are clearly sepa-
rated outside of the exciton Bohr radius. Decreasing the screening leads to
a stronger Coulomb interaction and thus a stronger drive for electrons and
holes to be on top of each other, cf. Figure 8.3b/c. This translates into
a more delocalized excitons (cf. Figure 8.3.b/c) for a free-standing sample
and a larger hopping strength. As a result, we have a qualitatively di↵erent
behavior in the two di↵erent regimes. In the intermediate twist-angle range,
excitons are more e�ciently trapped by a stronger Coulomb interaction due
to the suppression of polarized excitons. In contrast, in the intralayer CT
exciton regime, excitons are more e�ciently trapped by a weaker Coulomb
interaction due to the reduced overlap between electrons and holes. Conse-
quently, we predict that the dielectric engineering of the Coulomb potential
can act as an additional external tuning knob to either enhance or suppress
exciton trapping.

Key message: The charge-separated exciton energies can be calculated by
considering a two-particle Hamiltonian with a total reconstructed potential
acting upon a general exciton state. In twisted MoSe2-WSe2 we predict three
di↵erent exciton regimes: (i) localized Wannier-like excitons, (ii) polarized
excitons and (iii) intralayer charge-transfer excitons. Calculating the hopping
parameter reveals an unexpected trapping at larger twist angles due the
e�cient localization of both electrons and holes. Both the charge-separation
and the hopping can be externally tuned via substrate-controlled dielectric
engineering, either enhancing or suppressing the e↵ects of charge-separation.
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CHAPTER 9

Conclusion and outlook

In this work we have presented a microscopic quantum mechanical model for
the moiré exciton landscape in vertically stacked transition metal dichalco-
genides, with a special emphasis on the di↵erent interlayer couplings and their
dependence on the relative twist angle. In combination with input from den-
sity functional theory we have calculated the exciton energy landscape for
di↵erent homo- and heterobilayers, taking into account the di↵erent compon-
tents of the moiré potential. We reveal a strong impact from the interlayer
tunneling, which hybridize the excitons and consequently often make them
the dominating exciton species in bilayer structures. Furthermore, we have
investigated the excitons optical response to both electric field tuning and
twist-angle-engineering, predicting that these two external tuning knobs can
control which exciton state is the lowest, in turn determining if the material
is a direct or indirect semiconductor. Moreover, in a theory-experiment col-
laboration we demonstrate the significant impact the twist angle has on the
tunneling strength at larger angles, leading to significant blue shifts and a
dehybridization of the low lying hybrid excitons.
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Taking into account the e↵ects of atomic reconstruction at small twist angles,
we show that the atomic relaxation induces two new components to the moiré
potential in the form of scalar strain and piezo potential. By calculating the
optical absorption in naturally stacked homobilayers we predict that the in-
troduction of these new potentials drastically changes the optical response.
Here, multiple new peaks emerge - in stark contrast to the rigid lattice where
only one peak dominates the spectrum. In turn, this can be exploited as an
unambiguous optical signature of atomic reconstruction. Furthermore, we
generalize our theoretical model by solving a general two-particle problem,
in turn allowing for charge separation within the 2D plane. Here, we find
three di↵erent exction regimes with varying levels of charge-separation when
increasing the twist angle. Finally, we calculate the inter-site hopping for
these charge-separated excitons and predict an unexpected e�cient trapping
at larger angles, which can be externally tuned via substrate-controlled di-
electric engineering. Overall, the work provides microscopic insights into the
twist-angle dependent exciton landscape that governs the optical response in
this technologically promising class of nanomaterials.

The advances made have opened up new questions and challenges within the
field. In particular, recent studies have shown that the e↵ective screening
can be continuously and dynamically tuned by electrically doping an addi-
tional layer that is separated with hBN from the moiré structure [125]. As
indicated by our results in chapter 8 this would allow for continuous con-
trol of the charge-separation. Furthermore, the charge-separation directly
translates into to the e↵ective interaction strength, where the excitons now
would exhibit much larger dipoles. Consequently, there is a potential to
continuously control the interaction strength, which would carry significant
interest for studies on excitons at higher densities [15, 74, 75, 110, 126, 127],
and for exotic phases such as Mott insulating phases and superfluidity [121].
Moreover, the increase in charge-separation would also translate into an in-
crease in exciton lifetime, making it a suitable candidate to realize exciton
condensates [128] and potentially counter-flow superconductivity [129].

The induced piezo potential in the atomically reconstructed lattice discussed
in section 3.4 stems from a vector gauge potential. Analogous to a magnetic
field, these vector gauge potentials can be transformed into pseudomagnetic
fields [101]. In twisted bilayer TMDs the resulting pseudomagnetic fields has
been predicted to reach field strengths up 50 Tesla [84]. It would therefore be
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of interest to study the interplay between spin and the pseudomagnetic field,
which could maybe give rise to interesting phenomena such as the quantum
Hall e↵ect [130, 131].

Furthermore, in the atomic reconstruction regime we have shown that the
emergence of large domains and thin domain walls can fundamentally im-
pact the exciton energies. This large scale reconstruction also influences the
phonons of the system, leading to a phonon renormalization [132]. In this
regime, the domain walls can be viewed as a soliton network [114], which in
turn fluctuates themselves, leading to the formation of long range acoustic
moiré phonons [132], which in another viewpoint can be seen as phonons
for the superlattice itself, known as phasons [133]. It has been observed
that in the small twist-angle-regime and at low temperatures, the di↵usion
coe�cient is surprisingly converging towards a finite value, which has been
attributed to the excitons surfing along the phason mediated wave [134, 135].
This phason-exciton interaction in the atomically reconstructed lattice would
then not only be of interest for transport, but also for relaxation dynamics
[136–139]

Finally, experimental studies have reported the observation of correlated in-
sulating states at fractional fillings when the twist angle is su�ciently small
to create flat bands [140]. A microscopic study of these so-called Wigner crys-
tals [141], taking into account the moiré excitons in twisted bilayers could
potentially reveal interesting insights into the intriguing topic of correlated
states in moiré structures.
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biexcitons. 2D Materials, 11(2):025030, 2024.

[16] Andre K Geim and Irina V Grigorieva. Van der Waals heterostructures.
Nature, 499(7459):419–425, 2013.

90



BIBLIOGRAPHY

[17] Pasqual Rivera, John R Schaibley, Aaron M Jones, Jason S Ross,
Sanfeng Wu, Grant Aivazian, Philip Klement, Kyle Seyler, Genevieve
Clark, Nirmal J Ghimire, et al. Observation of long-lived interlayer
excitons in monolayer MoSe2-WSe2 heterostructures. Nature Commu-
nications, 6(1):1–6, 2015.

[18] Wugang Liao, Yanting Huang, Huide Wang, and Han Zhang. Van
der waals heterostructures for optoelectronics: Progress and prospects.
Applied Materials Today, 16:435–455, 2019.

[19] Jens Kunstmann, Fabian Mooshammer, Philipp Nagler, Andrey
Chaves, Frederick Stein, Nicola Paradiso, Gerd Plechinger, Christoph
Strunk, Christian Schüller, Gotthard Seifert, et al. Momentum-space
indirect interlayer excitons in transition-metal dichalcogenide van der
waals heterostructures. Nature Physics, 14(8):801–805, 2018.

[20] Chenhao Jin, Eric Yue Ma, Ouri Karni, Emma C Regan, Feng Wang,
and Tony F Heinz. Ultrafast dynamics in van der waals heterostruc-
tures. Nature nanotechnology, 13(11):994–1003, 2018.

[21] Roland Gillen and Janina Maultzsch. Interlayer excitons in mose
2/wse 2 heterostructures from first principles. Physical Review B,
97(16):165306, 2018.

[22] Philipp Merkl, Fabian Mooshammer, Philipp Steinleitner, Anna
Girnghuber, K-Q Lin, Philipp Nagler, Johannes Holler, Christian
Schüller, John M Lupton, Tobias Korn, et al. Ultrafast transition
between exciton phases in van der waals heterostructures. Nature ma-
terials, 18(7):691–696, 2019.

[23] Pasqual Rivera, Hongyi Yu, Kyle L Seyler, Nathan P Wilson, Wang
Yao, and Xiaodong Xu. Interlayer valley excitons in heterobilayers of
transition metal dichalcogenides. Nature nanotechnology, 13(11):1004–
1015, 2018.

[24] Zefang Wang, Yi-Hsin Chiu, Kevin Honz, Kin Fai Mak, and Jie Shan.
Electrical tuning of interlayer exciton gases in wse2 bilayers. Nano
letters, 18(1):137–143, 2018.

[25] Namphung Peimyoo, Thorsten Deilmann, Freddie Withers, Janire Es-
colar, Darren Nutting, Takashi Taniguchi, Kenji Watanabe, Alireza

91



BIBLIOGRAPHY

Taghizadeh, Monica Felicia Craciun, Kristian Sommer Thygesen, et al.
Electrical tuning of optically active interlayer excitons in bilayer mos2.
Nature Nanotechnology, 16(8):888–893, 2021.

[26] Evgeny M Alexeev, David A Ruiz-Tijerina, Mark Danovich, Matthew J
Hamer, Daniel J Terry, Pramoda K Nayak, Seongjoon Ahn, Sangyeon
Pak, Juwon Lee, Jung Inn Sohn, et al. Resonantly hybridized exci-
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Berghäuser. Dark excitons in transition metal dichalcogenides. Physical
Review Materials, 2(1):014002, 2018.
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[80] VV Enaldiev, Viktor Zólyomi, CELAL Yelgel, SJ Magorrian, and
VI Fal’ko. Stacking domains and dislocation networks in marginally
twisted bilayers of transition metal dichalcogenides. Physical Review
Letters, 124(20):206101, 2020.

[81] Iann C Gerber, Emmanuel Courtade, Shivangi Shree, Cedric Robert,
Takashi Taniguchi, Kenji Watanabe, Andrea Balocchi, Pierre Renucci,
Delphine Lagarde, Xavier Marie, et al. Interlayer excitons in bilayer
mos 2 with strong oscillator strength up to room temperature. Physical
Review B, 99(3):035443, 2019.

[82] David A. Ruiz-Tijerina and Vladimir I. Fal’ko. Interlayer hybridization
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