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A B S T R A C T

Ship Time Headway (STH) is the time interval between two consecutive ships arriving in the same water area. It
serves as a crucial indicator for visually measuring the probability of ship congestion and the frequency of
passage in busy waterways. Accurately predicting the STH is crucial for effective maritime traffic management.
In this paper, we propose a deep learning method aimed at simultaneously predicting the STH in multiple water
areas (multi-STH). This method integrates the Variational Mode Decomposition (VMD) algorithm with the
Spatial-Temporal Attention Graph Convolution Network (STAGCN) to deeply capture the complex spatial-
temporal features between STHs of each water areas. STH sequences were obtained from Automatic Identifi-
cation System (AIS) for each reach, ensuring that these sequences remained numerically continuous on the same
timeline. The VMD algorithm was employed to decompose the sequences into multi-feature inputs for the
STAGCN, training the model in conjunction with the inland waterway traffic network to capture the patterns of
variation in STH between the water areas. Extensive experiments demonstrate that the proposed prediction
method surpasses the accuracy and robustness of other existing methods, exhibiting excellent prediction per-
formance in the STHs of various waterways. The multi-STH prediction study accounts for the inherent correlation
between inland waterways, substantially improving prediction efficiency compared to single-waterway STH
prediction. This study may have the potential to provide useful support for traffic management. This may be of
practical significance in enhancing the safety of inland waterways navigation.

1. Introduction

Economic globalization has contributed to the continuous develop-
ment of trade in goods between countries (Li et al., 2023a,b). Shipping
has always been the primary mode of transporting goods worldwide.
Compared to other modes of transport, shipping offers advantages such
as low transport costs, large carrying capacity, and the ability to handle
a wide variety of goods (Xing et al., 2023; S. Wang et al., 2023; Wang
et al., 2023, 2023b; Y. Wang et al., 2023 b). These factors have led to the
widespread use of maritime transportation on inland waterways. How-
ever, the frequent operations of maritime transportation have resulted in
a continuous increase in the risks of ship navigation at sea and in inland
waterways. Navigational accidents can lead to casualties, substantial
property damage, and even the paralysis of navigation channels in
inland waterways (Zhang et al., 2021; Shi et al., 2019; Chen et al., 2024).

Therefore, ensuring the safety of ship navigation and effectively pre-
dicting potential navigational risks has become a critical issue, sup-
porting the shift of maritime management from passive to proactive.

With the widespread adoption of Automatic Identification Systems
(AIS) for ships, the vast amount of historical AIS data provides a key
source of information for researchers to understand ship movement
patterns, water traffic patterns, and other related aspects. Notable, a
novel data-driven model was proposed to analyze navigation mode
determination in ice-covered waters using AIS data, first quantitatively
identifying and assessing the influencing factors for the need for
icebreaker assistance, examining the impact of these factors on ships
with different ship ice classes, and highlighting the innovation of
influencing factor analysis through model performance comparison (C.
Liu et al., 2024). Deep mining of this historical information plays an
important role in optimizing port operations, preventing and controlling
navigational risks, and improving navigational efficiency (Gao et al.,
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Nomenclature

Variable definition
AIS Automatic Identification System
AM Attention Mechanism
Bi-LSTM Bidirectional LSTM
CNN Convolutional Neural Network
DCC Dilated Causal Convolution
EMD Empirical Mode Decomposition
GAT Graph Attention Network
GCN Graph Convolutional Network
GNN Graph Neural Network
GRU Gate Recurrent Unit
HA Historical Average
IMFs Intrinsic Mode Functions
LR Learning Rate
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
multi-STH STH in multiple water areas
R2 Coefficient of Determination
RMSE Root Mean Square Error
RNN Recurrent Neural Network
S-T AM Spatial-Temporal Attention Mechanism
STAGCN Spatial-Temporal Attention Graph Convolution Network
STF Ship Traffic Flow
STGCN Spatial-Temporal Graph Convolution Network
STH Ship Time Headway
SVR Support Vector Regression
VMD Variational Mode Decomposition
N cross section position
lonNvirα, lon

N
virβ Longitude of the start of the cross section

latNvirα, lat
N
virβ Latitude of the start of the cross section

α,β Cross section start point
PNi,left,P

N
i,right Nearest trajectory points of the cross section

αPNi,left
⇀

,αPNi,right
⇀

Direction from point α in the cross section to the
nearest trajectory point

vNi Average ship speed
ΔTNi Time difference between the nearest trajectory points of

the cross section
ΔDNi Distance between the nearest trajectory points of the cross

section
ΔtNi Time for the ship to reach the cross section from the nearest

trajectory point of the cross section
TNi Timestamp of ship’s arrival at the cross section
tNi STH value
XNh Average level of STH in the h-th unit of time
F The number of VMD decompositions
uf The decomposition mode
ωf Centre frequency of the mode
δ(t) The Dirac distribution
xN The decomposed sequence
ε The penalty factor
λ The Lagrange multiplier
τ The update parameter of the Lagrange multiplier
ρ The threshold for the VMD to stop iteration
G The inland transport network
x The model Inputs
T,Tʹ,S,Sʹ The attention matrix
U,W,V,b The S-T AM Parameters
σ The Sigmoid activation function
L The Laplacian matrix
D The diagonal matrix of node degrees
A The adjacency matrix
IN The unit matrix
U The Fourier basis
Λ The eigenvalue diagonal matrix
x̂ The signal obtained by the graph Fourier transform
gθ The kernel of GCN
ψ The Chebyshev polynomial coefficient vector
Tk(x) The Chebyshev polynomial
K The order of the Chebyshev polynomial
λmax The maximum eigenvalue of the Laplacian matrix
M The observation time step
O The prediction time step
Hn The model hidden state
F (•) The mapping function

Fig. 1. Schematic diagram of multi-STH.
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2023; Liu et al., 2022; R. W. Liu et al., 2024). In recent years, Ship Traffic
Flow (STF) data mined from AIS by researchers has been able to provide
a macroscopic assessment of ship traffic patterns in study waterways
(Zhang et al., 2022). STF represents the total number of ships passing
through a specific location within a specified time (Xiao et al., 2022).
Changes in STF values can indicate the busyness and intensity of traffic
in target waterways, with a consistently increasing STF in limited wa-
terways suggesting a potentially higher navigational risk (Su et al.,
2022). However, in busy and complex navigational environments, STF is
limited in the information it can provide. In particular, the simultaneous
existence of multiple ship behaviors such as sailing, anchoring, berthing,
and de-berthing in a given water area may not accurately reflect the
frequency and density of ship traffic. Therefore, analyzing
macro-indicators such as STF alone is insufficient to determine the risks
present in the waterways. It is necessary to introduce a micro-indicator,
such as Ship Time Headway (STH), to provide more fine-grained feed-
back on the navigational risk in the target water areas (Ma et al., 2024a,
b).

STH is the time interval between the arrivals of two consecutive ships
in the same water area, as illustrated in Fig. 1. Analyzing changes in STH
values can intuitively reflect the frequency of ship traffic and the
probability of congestion in target water areas, particularly in busy or
narrow channels with high ship density. Maintaining adequate ship
safety spacing is essential to reduce navigational and congestion risks.
The variation of STH as a micro-indicator is closely related to the
behavior of individual ships and the overall structure of ship traffic. The
specific roles of STH can be summarized as follows:

• Quantitative Assessment: STH can quantitatively assess the level of
ship activity in a given water area and serve as a visual indicator of
the frequency of ship traffic. A sudden reduction in STH indicates a
higher risk of congestion or collision.

• Relation to STF: Changes in STH are related to changes in Ship Traffic
Flow (STF). In heavy traffic waterways, controlling the appropriate
STH can effectively alleviate traffic flow bottlenecks.

• Support for Maritime Supervision: STH can help maritime supervi-
sors develop accurate and sound management measures and ship
scheduling decisions for various water areas, including harbor water
areas, fairway water areas, bridge water areas (Lei et al., 2021), and
lock water areas (Deng et al., 2021). Additionally, STH provides
reference information for developing subsequent voyage plans for
ships in various waterways.

Understanding and studying STH is crucial for comprehending traffic
conditions, improving ship traffic management, and reducing naviga-
tional risks in the water areas. Therefore, accurately and consistently
predicting STH is essential, as it can provide reliable evaluation infor-
mation for dynamically changing traffic patterns.

The nature of STH is time series data, making it similar to the STF
prediction method (Wang et al., 2021). The most common and effective
prediction methods for STH fall into two main categories:
modeling-based machine learning prediction methods (Xu et al., 2017;
Gao et al., 2023) and learning-based deep learning prediction methods
(Kamilaris and Prenafeta-Boldú, 2018; Hinton and Salakhutdinov,
2006). However, STH is subject to non-linear variations due to uncon-
trollable factors (e.g., bad weather, traffic control, traffic accidents),
resulting in non-stationary STH data. Modeling-based prediction
methods may face difficulties in dealing with these irregularly fluctu-
ating time-series data and are often unable to effectively capture the
contextual relationships in the data (Semenoglou et al., 2023).

The increasing computational power and the clever design of Back
Propagation algorithms have enabled deep learning methods to exhibit
powerful learning capabilities. Initially, the emergence of Recurrent
Neural Networks (RNN) proved effective in processing time series data
(Cossu et al., 2021). By adding contextual association to the input, RNNs
enable accurate prediction of time-series data. However, RNNs have

limitations such as difficulty in learning long-term dependencies of
complex data, susceptibility to gradient explosion or vanishing, and
inability to capture spatial features (Bengio et al., 1994).

To address these issues, studies combined a variant of RNN, the Long
Short-Term Memory (LSTM) neural network, with a Convolutional
Neural Network (CNN). LSTM solves the problems of gradient explo-
sion/vanishing and long-term dependency by adding forget gates, input
gates, and output gates to the network (Yu et al., 2019). CNNs can
extract spatial features from data (Alzubaidi et al., 2021). This combi-
nation has shown excellent predictive performance in spatial-temporal
prediction (Kim and Cho, 2019). As deep learning continues to evolve,
researchers have introduced graph theory into neural networks to form
Graph Convolutional Networks (GCN), a type of convolutional neural
network that can directly act on graphs and utilize their structural in-
formation (Zhang et al., 2019 c). GCNs can extract informative features
in non-Euclidean data and have been successfully used in road traffic
scenarios. In these networks, sensors and their interoperability are
represented as nodes and edges in a graph, integrating spatial, temporal,
and correlation information into the model. This approach allows for
accurate and efficient predictions in more complex scenarios. Further-
more, many studies overlook the impact of data input forms on the
performance of prediction methods, which relates to how much infor-
mation the model receives from the data. For example, resetting a
one-dimensional time series to high-dimensional data as an input
strategy can effectively improve the model’s ability to capture complex
relationships between historical and current data (Chen and Sun, 2021).
Sufficiently rich information input raises the upper limit of the model’s
capability to capture these relationships.

Therefore, this paper proposes a multi-STH prediction method based
on deep learning. Multiple virtual cross-sections are set up within a
continuous segment, and the times of real ship trajectories passing
through these cross-sections are recorded to construct the multi-STH
dataset.

The VMD algorithm, spatial-temporal attention module, GCN, and
CNN are integrated into the VMD-STAGCN framework, enabling multi-
STH prediction. The key innovations and contributions of this paper are
summarized as follows:

• Development of an inland waterway transport network that lever-
ages the connectivity and inherent interrelationships between inland
waterways. This network combines spatial-temporal attention with a
graph-based learning approach to deeply analyze the spatial-
temporal variation patterns of STH across different water areas,
facilitating simultaneous multi-water areas prediction.

• Extraction of temporal features from the multi-STH dataset using the
VMD algorithm. These high-dimensional features enhance the
model’s ability to learn the evolutionary patterns of STH across
different water areas.

• Provision of accurate and stable STH predictions that aid maritime
regulators and ship pilots in understanding traffic patterns across
extensive water areas, thereby offering robust support for safe nav-
igation in these water areas.

The paper is structured as follows: Section 2 describes the issues
raised in this paper. Section 3 presents the methodology and steps for the
collection and prediction of multi-STH data to formulate the problem.
Section 4 applies a real case to the method proposed in this paper, and
the experimental results fully validate the effectiveness of the proposed
method. Finally, Section 5 summarizes the main findings and limitations
of the study and suggests directions for future research work.

2. Literature review and problem description

In this section, we provide a brief review of the relevant literature on
both traffic flow analysis and traffic flow prediction and analyze the
existing limitations. The research questions addressed in this paper are

Q. Ma et al.
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also elaborated.

2.1. Literature review

Massive amounts of historical AIS data contain important informa-
tion, and both quantitative and qualitative analyses help to better un-
derstand traffic flow patterns and provide insights for traffic safety
management (Liang et al., 2021; Sui et al., 2024). In recent years, re-
searchers have conducted extensive research on traffic flow analysis. For
instance, Zhang et al. (2019) proposed an autocorrelation model to
quantitatively describe the spatial-temporal dynamics of maritime
traffic flows. Kujala et al. (2009) explored the relationship between
traffic density and marine accidents in specific areas by analyzing his-
torical AIS data. Ma et al. (2024b) utilized a spatial autocorrelation
model and Moran’s index to extract maritime traffic flow characteristics
(average ship speed, density, etc.) and analyzed their spatial and tem-
poral distribution. Kang et al. (2018) assessed the relationship between
traffic flow speed and density in the target watershed using a basic
traffic flow diagram and the least squares method. However, these
macro-assessment methods often ignore individual ship behavior, pre-
venting detailed analysis of traffic flows.

To explore individual ship behaviors out of maritime traffic, Xiao
et al. statistically analyzed the dynamic values of AIS information
(lateral position, speed, heading, and ship arrival interval) to charac-
terize ship traffic (Xiao et al., 2015). Zhang et al. (2022) proposed a
micro-prediction method for analyzing the complexity of traffic flow,
highlighting the importance of ship arrival intervals for traffic flow
assessment. In our previous study, the concept of STH was introduced
and confirmed as predictable. The prediction results can effectively
forecast ship arrivals, prevent congestion, and avoid accidental traffic
accidents in inland waterways (Ma et al., 2024a,b). Deep learning
models, with their sophisticated structures and numerous trainable pa-
rameters, can learn complex feature representations from data,
improving the accuracy of regression and classification tasks and of-
fering opportunities to handle complex time series data. Mainstream
deep learning methods for traffic flow prediction include CNN (Zhang
et al., 2019 b), RNN (Suo et al., 2020), Graph Neural Networks (GNN)
(Yu et al., 2017), Attentional Mechanisms (AM) (Sun et al., 2020), and
hybrid neural networks (Ma et al., 2022; Cao et al., 2022). For example,
Belhadi et al. (2020) explored the application of RNN for long-term
traffic flow prediction, proposing a method for long-term prediction
using multiple data sources. Yang et al. (2019) developed a CNN-based
multi-feature prediction model that integrates data from various periods
with external factors to enhance prediction accuracy. Li et al. (2023)
introduced a prediction architecture combining Graph Attention
Network (GAT) and Dilated Causal Convolution (DCC), which considers
the spatial-temporal variation patterns of traffic flows across multiple
port areas to improve prediction accuracy. Hao et al. (2019) proposed an
AM-based seq2seq framework for traffic flow prediction, an end-to-end
architecture advantageous for capturing long-time dependencies, and
extended its application to similar scenarios. Zhou et al. (2020) com-
bined CNN, LSTM, and Bi-directional LSTM (Bi-LSTM) with CNN for
traffic flow prediction, gridding the target water areas to predict traffic
flow for each grid and validating the model’s performance using a real
dataset.

However, most existing traffic prediction studies focus on flow pre-
diction and lack accurate prediction of micro traffic characteristics such
as STH. This makes it difficult to effectively regulate ships traveling in
target water areas under complex traffic conditions. Additionally, most
studies have been limited to single-water forecasts, ignoring the
inherent correlations that may exist between watersheds, resulting in
reduced regulation efficiency and the inability to make accurate man-
agement decisions for a wide range of water areas. To fill this research
gap, it is necessary to develop a method that can predict multi-STH, see
more in Section 3.

2.2. Problem description

In previous studies, predictions based on maritime data have been
limited to individual area. Expanding the prediction target to multiple
water areas, while taking into account the inevitable correlation be-
tween water areas, would substantially increase the value of the study
for real-world applications. However, similar closed water areas, such as
inland rivers or longer waterways, typically exhibit more distinct pat-
terns of traffic behavior.

For instance, in the case of inland rivers, as shown in Fig. 2, there are
three primary scenarios for ship presence: (1) Sailing to upstream areas,
(2) Sailing to downstream areas, and (3) Remaining in nearby areas
(anchoring, entering, and exiting harbors, etc.). We used the Pearson
correlation coefficient method to calculate the correlation of these
multiple water areas traffic flows in the inland river. As shown in the
correlation matrix in Fig. 2, there are positive correlations between
traffic flows in different water areas within an inland river, and these
correlations are related to the geographical location of the areas.

Therefore, it is feasible to make simultaneous forecasts for these
waters by leveraging this inherent dependency. However, the correla-
tion values are not very high, making the prediction of multi-STH
challenging. To address this, the paper proposes a spatial-temporal
attention method for the prediction of multi-STH using AIS data. This
approach allows for a more comprehensive and accurate prediction
model that reflects the interconnected nature of traffic flows in these
waterways. By predicting multi-STH, it may enhance the effectiveness of
traffic management and safety measures across multiple water areas,
leading to improved navigation planning and congestion mitigation.

3. Methodology

In this section, a framework for the prediction of multi-STH using a
spatial-temporal attention method is presented. Fig. 3 illustrates the
proposed framework, which consists of three steps:

Step 1: Collection of multi-STH. After pre-processing the raw AIS
data, the time of arrival at the proposed virtual cross-section is estimated
based on the spatial motion of the ship historical trajectory to obtain the
STH sub-sequence for each target water area. In order to make the data
from these different water areas uniform on the timeline, multiple STH
sub-data from each water in the same time window were averaged as
STH data for the current time period.

Step 2: Construction of multi-feature STH dataset using VMD
algorithm. The raw STH data has non-linear variations due to shipping
uncertainty, with sharp fluctuations, making it difficult for the model to
learn the pattern of change in the time series. The VMD algorithm de-
composes the STH data of a certain area into several Intrinsic Mode
Functions (IMFs) as multiple features to assist the model in learning the
changing law of STH.

Step 3: Deep learning method for multi-STH prediction. Inland
waterway transport networks are formed using transport relationships
between multiple target water areas. Since these water areas are related
to each other to varying degrees in both the temporal and spatial di-
mensions, weights were obtained by calculating attention scores for
both the temporal and spatial dimensions. The inputs combined with the
attention weights go into the spatial-temporal convolution module,
which extracts spatial features between areas (nodes) by GCN. A con-
ventional CNN operation is performed on the input temporal dimension
to obtain temporal features. To enable the model to fully learn the
spatial and temporal variations and connections between STH in mul-
tiple water areas.

3.1. Collection of multi-STH data

In this paper, virtual cross-sections are set up in several target water
areas of an inland river based on previous research work (Ma et al.,
2024a,b). The multi-STH data is collected from virtual cross-sections.

Q. Ma et al.
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3.1.1. Capturing sub-trajectories of ships passing through the cross-section
In this section, all ships (upstream and downstream) passing through

the cross-section are calculated to prevent a high number of missing
values from being generated when the ship flow is too low at a given
time in the inland waterway. The proposed virtual section consists of α, β

connection VirsectionN =
(
lonNvirα,lon

N
virβ,lat

N
virα,lat

N
virβ

)
，N ∈ R,N denotes

the finite set of water area locations (nodes). If the ship passes through
the section, then there must be a sub-trajectory that intersects the sec-
tion. The sub-trajectory segment consists of a connection of two
consecutive trajectory points of the closest cross-section of PNi,left and
PNi,right . i denotes the i-th trajectory. The two points are determined by Eq.
(1) as

αPNi,left
⇀

< Virsection
⇀

< αPNi,right
⇀

, (1)

where Virsection
⇀

represents the direction from α to β, αPNi,left
⇀

and αPNi,right
⇀

represent the direction from α to the left and right neighbouring tra-
jectory points, respectively.

3.1.2. STH subsequence estimation
To determine the time at which the ship finally arrives at the cross-

section, the sub-trajectory’s voyage ΔDNi is calculated using the time
difference ΔTNi between the AIS recording times at points PNi,left and
PNi,right . Here the Euclidean distance calculation is used and the default
speed of the ship is a uniform speed while passing through the segment.
Eq. (2) is used to calculate the average speed vNi by

vNi =
ΔDNi
ΔTNi

(2)

The perpendicular distance ΔdNi is calculated between PNi,right (or PNi,left)
and VirsectionN. Using vNi to derive the required time ΔtNi for the ship to
get to VirsectionN at the position of PNi,left (or PNi,right), the time of arrival of
the ship, TNi , can be estimated by Eq. (3) and Eq. (4) as

Arrival timeNi =ΔtNi + TNi,left, (3)

tNi =T
N
i+1 − T

N
i , (4)

Fig. 2. Pearson correlation coefficients of STH between inland multiple water areas.

Fig. 3. The framework for multi-STH prediction using the proposed spatial-temporal attention method.

Q. Ma et al.
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where TNi,left refers to the time when the ship arrives at the position PNi,left .
Repeating the above steps for all ships involved in the calculation, as
shown in Fig. 4., we can get N ship arrival time series

(
TN0 ,TN1 ,TN2 ,…,TNM

)
.

The sequence consists of timestamps, and the STH subsequence is ob-
tained by calculating the difference between the arrival times of two
neighbouring ships in each sequence

(
tN0 , tN1 , tN2 ,…, tNm|m = M − 1

)
.

3.1.3. Computing continuous multi-STH data
The N STH subsequences estimated by the above process all possess a

different number of elements and these different cross-sections are
discrete from each other, which makes it extremely difficult to analyze
the data and subsequent prediction. Therefore, in this section, these sub-
sequences are reassigned, aiming to ensure that these cross-sections can
appear as consecutive values on the same timeline. In this paper, a fixed
time window (unit time) is set, as shown in Fig. 5. The time window
slides from left to right along the time axis and is used to collect the
elements of the STH subsequence in each unit of timeWindowNh =

(
tN0 ,…

, tNn
)
, with h denoting the h-th unit of time. By taking the mean value of

these elements as STH per unit time, N equal length STH sequences will
be obtained, XN =

(
XN1 ,…,XNh ,…,XNH

)
. At the h-th unit time, there exists a

sequence of length N, Xh =
(
X1
h ,X

2
h ,…,XNh

)
, where XNh is defined by

XNh =

∑I

i=0
tNi

n
, (5)

where n denotes the number of ships passing through the cross-section in
the h-th unit of time.

Due to some uncontrollable factors (i.e., bad weather, traffic acci-
dents, channel maintenance, etc.) in the unit time of the ship flow is too
small or no ship through the situation, especially in the tributaries,
which may appear in the missing values or noise values lead to violent
oscillations in the data, which have an impact on the prediction results.
Therefore, it is necessary to introduce some thresholds to avoid similar
situations: (1) XNh = 0 when no ship passes through the cross-section in

the h-th unit of time, and (2) XNh = 1 when only one ship passes through
the cross-section in the h-th unit of time, and XNh with thresholds is given
by

XNh =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if len
(
WindowNh

)
= 0,

1, if len
(
WindowNh

)
= 1,

∑I

i=0
tNi

n
, otherwise.

(6)

3.2. Construction of multi-feature STH dataset using VMD algorithm

The originally acquired multi-STH data has a strong non-linear
relationship among each water areas due to various uncertainties, and
the numerical changes do not have an obvious pattern, which makes it
difficult for the model to learn the spatial and temporal correlation of the
data from it. Therefore, this paper uses the VMD algorithm to decompose
the original sequence into F finite number of Intrinsic Mode Functions
(IMFs) as multiple features of STH to improve the prediction accuracy.
The VMD algorithm is an adaptive, fully non-recursive mode decom-
position method (Humphrey et al., 1996). Complex sequence decom-
position is achieved by finding the optimal solution of the constrained
variational model, which overcomes the problems of end-point effects
and modal component mixing in Empirical Mode Decomposition (EMD).
Extract the centre frequency of the corresponding IMF such that the
mode uf revolves around the centre frequency ωf . The VMD algorithm
flow consists of constructing the variational problem and solving the
variational problem (Zhang et al., 2020). The constructed constrained
variational problem is defined as

min
{uf}{ωf}

{
∑F

f=1

⃦
⃦
⃦
⃦∂t
[(

δ(t) +
j

πt

)

∗ uf (t)
]

e− jωf t
⃦
⃦
⃦
⃦

2

2

}

, (7)

xN(t)=
∑F

f=1
uf (t), (8)

where uf is the f-th mode, ωf is the centre frequency of the f -th mode, F is
the total number of modes, δ(t) is the Dirac distribution, and the com-
posite of each mode is the decomposed sequence xN.

To transform the constrained variational problem into an uncon-
strained variational problem, penalty factors and Lagrange multipliers
are introduced (Lv et al., 2021) as

where ε is the penalty factor and λ is the Lagrange multiplier.
The unconstrained variational problem is solved using the method of

alternating multiplications, and then the minima of the generalised
Lagrange expression are found by alternately updating uf , ωf and λ. The
iterative formulation is as follows (Zhao et al., 2023)

ûp+1
f (ω)=

Ĥ(ω) −
∑

i<f
ûni (ω) −

∑

i>f
ûpi (ω) +

λ̂
p
(ω)
2

1+ 2ε
(

ω − ωpf
)2 , (10)

ωp+1
f =

∫∞
0 ω|up+1

f (ω)|
2dω

∫∞
0

⃒
⃒
⃒up+1
f (ω)|2dω

, (11)

Fig. 4. STH estimation process (Ma et al., 2024a,b).

L
( {
uf
}
,
{

ωf
}
, λ
)
= ε
∑F

f=1

⃦
⃦
⃦
⃦∂t
[(

δ(t) +
j

πt

)

∗ uf (t)
]

e− jωf t
⃦
⃦
⃦
⃦

2

2
+

⃦
⃦
⃦
⃦
⃦
H(t) −

∑F

f=1
uf (t)

⃦
⃦
⃦
⃦
⃦

2

2

+ 〈λ(t),H(t) −
∑F

f=1
uf (t)〉, (9)
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λ̂
p+1

(ω)= λ̂
p
(ω) + τ

(

Ĥ(ω) −
∑F

f=1
ûp+1
f (ω)

)

, (12)

where ûf (ω), Ĥ(ω) and λ̂(ω) are the spectra of uf (t) , H(t) and λ(t),
respectively. τ is the update parameter of the Lagrange multiplier, which
determines whether or not to use the multiplier to enforce the
constraint.

The specific steps of the VMD algorithm process are as follows:

a. Initialize u1f , ω1
f and λ1, and make the number of iterations p = 1.

b. Set p = p+ 1 and execute the loop.
c. For 1: f and all ω greater than or equal to 0, update ûp+1

f (ω), ωp+1
f and

λ̂
p+1

(ω) according to the above equation.
d. For all ω greater than or equal to 0, Eq. (11) is executed.
e. Repeat steps b to d until the iteration stopping condition is satisfied,

as shown in Eq. (13)

∑

f

⃦
⃦
⃦ûp+1

f − ûpf
⃦
⃦
⃦
2

2
⃦
⃦
⃦ûpf
⃦
⃦
⃦
2

2

< ρ, (13)

where ρ is the threshold for determining the stopping of iterations.
When the whole decomposition process is finished, the STH sequence

of a certain water area is decomposed into F feature sequences (IMF
components) XN =

(
IMFN1 , IMF

N
2 ,…, IMFNF

)
∈ RH×F. The VMD algorithm

was used to decompose the STH sequences of all areas to obtain the
multi-featured multi-STH dataset. At the h-th time unit, there exists the
matrix Xh =

(
X1
h ,X2

h ,…,XNh
)T

∈ RN×F. The dataset can be represented as
X = (X1,…,Xh,…,XH)T ∈ RN×F×H.

3.3. Deep learning based multi-STH prediction

To enhance the interpretability of the proposed prediction frame-
work, this section presents the construction of the inland waterway
traffic network, the method for performing multi-STH prediction based
on STAGCN, and the operational mechanism of each component in the
model. The deep learning model primarily consists of the Spatial-
Temporal Attention Mechanism (S-T AM), GCN, and CNN.

3.3.1. Inland waterway transport network
In this paper, we define an undirected graph G = (N, E,A) inland

river traffic network considering the characteristics of inland river that
are closed and the water areas are connected to each other, which is used
to construct a node-level prediction task (Jiang and Luo, 2022), where N

denotes the finite set of nodes (water areas), E denotes the set of edges
representing the connectivity of neighbouring nodes, and A denotes the
adjacency matrix, A ∈ RN×N. If nodes Ni and Nj are connected in G, the
corresponding position of Aij in the adjacency matrix takes the value of
1, otherwise, it is 0, as shown in Eq. (14)

Aij=
{
1, if Ni connects to Nj, i ∕= j,

0, otherwise, (14)

where Ni and Nj denote the i-th and j-th nodes in the undirected graph,
respectively. Each node in G records F measurements after VMD
decomposition at the same sampling frequency, and each node generates
a feature vector of length F at each unit time.

3.3.2. Spatial-temporal attention mechanism module
The emergence of AM provides more powerful learning capabilities

for deep learning. It essentially mimics human vision and cognition and
can help deep learning models focus on more important information.
AM have been widely used in areas such as natural language processing,
computer vision and time series prediction (Chorowski et al., 2015). In
this section, multi-STH are subjected to attention score computation in
the temporal and spatial dimensions separately, capturing the extent of
time-space influence on the STH of different nodes. Unlike the common
scaled dot product attention (Vaswani et al., 2017) and additive atten-
tion (Wu et al., 2021) computations. A dynamic computational method
(Graves, 2016) is applied to construct an attention score function similar
to a simple network (Guo et al., 2019). The advantage is that the output
attention matrix can adaptively change the dynamic correlations be-
tween nodes in the spatial-temporal dimension as the inputs change and
provide more trainable parameters to improve the learning ability of the
model (Sukhbaatar et al., 2019). STH itself changes over time and in-
teracts to varying degrees between different water areas over time. The
input x is subjected to attention computation in the time dimension
using the above method to obtain the attention matrix T. The attention
weights in T are normalised andmerged with the input x by means of the
softmax function (Martins and Astudillo, 2016), as shown in Fig. 6 .The
inputs are dynamically adjusted by applying the correlation of the time
dimension, as shown by

T=Vt⋅σ
( (
xTU1

)
U2(U3x)+ bt

)
, (15)

Tʹ
i,j=

exp
(
Ti,j
)

∑M

j=1
exp

(
Ti,j
)
, (16)

Tʹ= softmax(T), (17)

Fig. 5. Schematic diagram of multi-STH.
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xʹ= xTʹ, (18)

where x = (Xh− M+1,Xh− M+2,…,Xh) ∈ RN×F×M is the input, N is the
number of target water areas (nodes), F is the number of features for
each water areas in the input,M is the input time step, U1, U2, U3, Vt, bt
are trainable parameters, U1 ∈ RN, U2 ∈ RF×N, U3 ∈ RF, Vt ,bt ∈ RM×M. T
is the output attention matrix, Tʹ is the attention matrix through the
softmax layer, T, Tʹ ∈ RM×M. Tí,j is a scalar for the correlation between
moments i and j. x́ is the final output, x́ ∈ RN×F×M. σ is a Sigmoid
activation function that provides nonlinearity to the model (Han and
Moraga, 1995).

STH between different nodes all interact with each other, especially
in closed water areas such as inland waterways. Ships in a given body of
water can only sail upstream or downstream, and there is a strong dy-
namic correlation between the STHs of all neighbouring nodes. The
output x́ of temporal attention is taken in the spatial dimension to
compute the attention matrix and the matrix is weight normalised by a
softmax layer. The output Ś of the spatial attention is applied to the
graph convolution together with the input x and the adjacency matrix A
to dynamically adjust the interactions between the nodes as shown in
Fig. 6, through Eq. (19) to Eq. (21)

S=Vs⋅σ
( (
(xʹ)TW1

)
W2(W3xʹ)+ bs

)
, (19)

Sʹi,j=
exp

(
Si,j
)

∑N

j=1
exp

(
Si,j
)
, (20)

Sʹ= softmax(S), (21)

where x́ is the input of spatial attention,W1,W2,W3, Vs, bs are trainable
parameters, W1 ∈ RM, W2 ∈ RF×M, W3 ∈ RF, Vs, bs ∈ RN×N. S is the
output attention matrix. Sʹ is the attention matrix through the softmax
layer, S, Ś ∈ RN×N. Sí,j is a scalar for the correlation between moments i
and j.

3.3.3. GCN
CNN are widely used in the fields of target detection, image classi-

fication, and image segmentation (Euclidean data) due to their powerful
feature extraction capabilities. However, the existence of non-Euclidean
data brings challenges for deep learning. For example, in chemical
molecular structures, social networks, traffic networks, etc., it is chal-

lenging to complete classification or regression tasks using traditional
CNNs in such graph data with topological properties (Liang et al., 2022).
The emergence of GCN solves this problem by using spectral graph
theory to extend the convolution operation from grid-based data to data
based on graph structures and introducing filters to define GCN from the
perspective of graph processing (Shuman et al., 2013). In this section the
inland waterway traffic network signals are processed using spectral
graph based GCN, making full use of the topology of the inland
waterway traffic network to analyze the spatial features between the
nodes, where the features of each node in the inland waterway traffic
network are signals of the graph, as shown in Fig. 7. An undirected graph
can be represented by a normalised Laplacian matrix L as:

L=D − A, (22)

L= IN − D−
1
2AD−

1
2 = U ΛU

T ∈ RN×N, (23)

where is the diagonal matrix of node degrees for D ∈ RN×N, Dii =
∑

j

(
Ai,j
)
, A ∈ RN×N is the adjacency matrix, IN ∈ RN×N is the unit matrix,

U ∈ RN×N is the Fourier basis, which is the matrix of eigenvectors or-
dered by eigenvalues, U = [u0,u1,…,uN− 1]. Λ ∈ RN×N is the eigenvalue
diagonal matrix, Λii = λi. Using the fact that the canonical Laplacian

Fig. 6. Mechanisms for the operation of the S-T AM module.

Fig. 7. Connectivity between nodes in the graph (elliptical regions indicate
spatial graph convolution).
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matrix has the property of being symmetric semi-positive definite, it can
be decomposed into L = U ΛU T.

In graph signal processing, a graph signal x ∈ RN is a certain char-
acteristic of all nodes in an inland waterway traffic network. The graph
Fourier transform of a signal x is defined as x̂ = U Tx, the graph Fourier
inverse transform is defined as x = U x̂, and x̂ is the signal obtained by
the graph Fourier transform. The graph Fourier transform projects the
input signal into a standard orthogonal space with the basis formed by
the eigenvectors of the normalised graph Laplacian operator, and the
GCN can use linear operations diagonalised in the Fourier domain
instead of traditional convolution operations (Henaff et al., 2015). The
kernel gθ and the input signal x are Fourier transformed and multiplied
respectively, and the result of the multiplication is Fourier inverse
transformed to get the result of the convolution operation. The spec-
trogram convolution can be defined as follows

gθ∗Gx= gθ(L)x= gθ
(
U ΛU

T)x=U gθ(Λ)U Tx, (24)

where gθ is the kernel, ∗G is the graph convolution operator, and x is the
input signal.

However, due to the fact that doing eigen-decomposition of the
Laplacian matrix has an expensive computational cost, especially when
the size of the graph becomes large. To improve the computational ef-
ficiency, the problem is solved using Chebyshev polynomials to
approximate the kernel gθ instead, i.e., gθ =

∑K
k=0 ψkTk(Λ̃). Λ̃ is obtained

by scaling the Laplace operator by Eq. (26). The Chebyshev polynomial
is Tk(x) = 2xTk− 1(x) − Tk− 2(x), where T0(x) = 1,T1(x) = x. The Che-
byshev spectrogram is convolved as

gθ∗Gx=U gθ(Λ)U Tx=U

(
∑K− 1

k=0

ψkTk(Λ̃)
)

U
Tx=

∑K− 1

k=0

ψkTk(L̃)x, (25)

Λ̃=
2

λmax
Λ − IN, (26)

where ψ ∈ RK is the polynomial coefficient vector, Tk(L̃) ∈ RN×N is a
Chebyshev polynomial of order k computed on the scaled Laplace
operator, λmax is the maximum eigenvalue of the Laplacian matrix, and K
is the order of the Chebyshev polynomial.

In this paper, in order to dynamically adjust the spatial-temporal
correlation between the nodes in the input, the output Ś from the
spatial-temporal attention module is combined with Tk(L̃). The output of
the graph convolution is fed into the subsequent CNN through the ReLU
activation function (Li and Yuan, 2017), as shown in Eq. (27)

ReLU(gθ∗Gx)=ReLU

(
∑K− 1

k=0

ψkTk(L̃⨀Sʹ)x

)

, (27)

where ⨀ is the Hadamar product.

3.3.4. CNN in the time dimension
After the Chebyshev spectral graph convolution process, the inputs

have extracted the spatial correlation features between the nodes in the
inland waterway traffic network. To further capture the features of the
input in the time dimension for model learning, the above graph
convolution output is subjected to a standard convolution operation in
the time-varying direction (Shin et al., 2016), as shown in Fig. 8. To
ensure that the stacking of sub-modules does not affect the model and to
avoid the problem of vanishing gradients, which improves the nonlin-
earity of the model, residual connections are taken in the sub-modules
(Szegedy et al., 2017). The final output of the sub-module H1 is ob-
tained by merging the input with the convolutional output of the time
dimension after passing it through the convolutional operation of the 1
× 1 convolutional kernel as

H1 =ReLU((Γ ∘ReLU(gθ∗Gx))+ γ ∘ x) ∈ RN×F×M, (28)

where Γ is a convolution kernel in the time dimension, γ is a 1 × 1
convolution kernel, ∘ is a convolution operation.

3.3.5. Multi-dimensional time series prediction method for STAGCN
In this paper, the acquired multi-STH data are decomposed into

Fig. 8. Schematic of CNN in the time dimension.

Fig. 9. STAGCN-based multi-feature temporal prediction framework map.
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multiple features input into the STAGCN model by the VMD algorithm.
The constructed spatial-temporal attention module dynamically adjusts
the inputs to make the model more attentive to important information
based on the calculated attention score. The adjusted inputs are subse-
quently fed into a graph convolutional network to capture spatial fea-
tures between nodes, making full use of the connectivity between nodes
in the inland transport network. The standard convolution is then used
for feature extraction along the temporal dimension to obtain the tem-
poral dependence of the STH to get the output H1 of the sub-Block.
Multiple sub-Blocks are stacked to ensure a more powerful learning
capability of the model and residuals are connected between the sub-
modules, and the final output Hn is guaranteed to have the same
dimensionality as the target value through a fully connected layer, as
shown in Fig. 9. Multi-STH forecasting belongs to a classical multidi-
mensional time series forecasting, which predicts the future O time steps
based on the historical M time step observations. Therefore, the pre-
diction method in this paper is shown as

F ([Xh− M+1,Xh− M+2,…,Xh],G)= (Yh,Yh+1,…,Yh+O), (29)

where F ( • ) is the mapping function and G is the inland transport
network.

Evaluation indicator scores are calculated to quantitatively measure
the accuracy and robustness of the prediction results of the proposed
method. However, the STH values contain several zeros, which would
lead to a deviation of the assessment results from the actual situation if a
score is calculated using Mean Absolute Percentage Error (MAPE) on the
model prediction results. Therefore, in this paper, we use three other
evaluation metrics commonly used for regression tasks, i.e., Root Mean
Square Error (RMSE), Mean Absolute Error (MAE) and coefficient of
determination (R2). The model extension potential is measured by the
scores of these metrics as

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

k=1

(
yprediction − yobservation

)2

N
,

√
√
√
√
√

(30)

MAE=
1
N
∑N

k=1

⃒
⃒
⃒
⃒
⃒
yprediction − yobservation

⃒
⃒
⃒
⃒
⃒
, (31)

R2 =1 −

∑N

k=1

(
yprediction − yobservation

)2

∑N

k=1

(
yprediction − yobservation

)2
, (32)

whereN is the number of data, yobservation is the historical observation and
yprediction is the prediction. The smaller the RMSE and MAE, the better the
predictive performance of the model, and the larger the R2 indicates the
better the fit of the model, i.e., the higher the prediction accuracy.

4. Case study

4.1. Data collection

In this paper, we use real AIS data to verify the feasibility and
excellent performance of our proposed prediction framework. We
collected historical ship AIS data from May 1, 2021, 00:00 to June 1,
2021, 00:00 for the Nanjing-Zhenjiang section of the Yangtze River in
China, amounting to 24,363,072 trajectory points, as shown in Fig. 10.
AIS devices in reality only have the function of receiving and trans-
mitting signals and cannot automatically correct data information (Xing
et al., 2023). During the transmission process, data can be lost or contain
errors, leading to inconsistencies between the ship’s historical trajectory

Fig. 10. Schematic of target water areas with multiple virtual cross-sections.

Table 1
Coordinates of the starting point of the virtual cross-section of the seven nodes.

Water Areas Points Longitude (◦) Latitude (◦)

Node 1 N1
α 118.72 32.12
N1

β 118.75 32.11
Node 2 N2

α 118.83 32.17
N2

β 118.84 32.16
Node 3 N3

α 118.94 32.19
N3

β 118.94 32.17
Node 4 N4

α 119.16 32.25
N4

β 119.15 32.23
Node 5 N5

α 119.35 32.25
N5

β 119.26 32.22
Node 6 N6

α 119.36 32.22
N6

β 119.26 32.19
Node 7 N7

α 119.52 32.28
N7

β 119.38 32.24
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Fig. 11. Kernel density curves of the STH data samples for each cross-section, where the horizontal coordinate is the STH value, and the vertical coordinate is the
number of STH values.

Fig. 12. Multi-feature decomposition based on VMD algorithm (taking node 1 as an example), (a) VMD decomposition results, where the blue part is the training set
data and the yellow part is the testing set data, (b) spectrogram of each IMF component.

Q. Ma et al.



Ocean Engineering 311 (2024) 118927

12

and the actual situation. Directly using the original AIS data to calculate
the STH results in large deviations. Therefore, we use the AIS data
preprocessing method proposed in a previous study to enhance the ship
trajectory quality (Ma et al., 2024a,b).

In this paper, seven virtual cross-sections are set up to estimate the
STH. These sections are all within the continuous river channel to ensure
connectivity between the nodes, and the constructed inland waterway
traffic network is shown in Fig. 10. The layout of the cross-sections
should follow the direction of the cross-river bridge or be perpendic-
ular to the navigation channel, avoiding areas with many ships crossing
the channel vertically. Details of the virtual cross-section locations are
shown in Table 1. Using the multi-STH calculation method proposed in
this paper, the STH values of these nodes are calculated simultaneously
at a unit time of 0.5 h to construct the Nanjing-Zhenjiang multi-STH
dataset. The distribution of the generated sequences is shown in Fig. 11.
The dataset is then decomposed into F = 8 IMF components as a multi-
feature input model using the VMD algorithm, as shown in Fig. 12(a).
Too few IMF components result in incomplete decomposition with dif-
ferences from the original data, while excessive decomposition over-
burdens the model calculations. The output decomposed frequency
domain data is used to determine whether modal aliasing or incomplete
decomposition occurs. The more complete the decomposition of indi-
vidual modes, the smaller the center frequency overlap, as shown in the
center frequency distribution in Fig. 12(b) (Zhao et al., 2023). For
example, the STH sequence of node 1 has no modal overlap at F = 8.

4.2. Deep learning based multi-STH prediction

In this section, the model is trained on data decomposed by the VMD
algorithm. To ensure consistency across all experiments, they are con-
ducted using the same computer, as specified in Table 2. We use the first
80% of all datasets as the training dataset and the remaining 20% as the
test dataset. This allocation provides enough data for the model to learn
and identify good model parameters. The Mean Square Error (MSE) is
used as the model’s loss function, measuring the error between the
observed and predicted values. The training goal is achieved by
continuously and iteratively updating the model parameters using the
back-propagation algorithm (Li et al., 2023a,b). The Adam optimizer is
employed to assist the loss function in continuously approximating the
global minimum (Kingma and Ba, 2014).

4.2.1. Model parameter setting
The Learning Rate (LR) is a crucial hyperparameter for model

training, determining whether the model’s loss function can converge to
a global minimum. The choice of LR has a decisive impact on the per-
formance of the model. A small LR results in slow gradient descent,
requiring more iterations and potentially causing the model to fall into a
local optimum. Conversely, a large LR may cause the model to hover
around the optimal solution or, in extreme cases, diverge and fail to
capture features effectively. Therefore, in this paper, we experimented
with different learning rates to determine the most appropriate value, as
shown in Fig. 13. When LR = 0.01, the model converges faster and
smoother, with the loss value eventually decreasing to the lowest and
stabilizing after 60 iterations. To reduce unnecessary training time, the
number of training iterations was set to 100 epochs.

The choice of batch size also influences the training results and af-
fects the model’s generalization. We tested different batch sizes (16, 32,

64, 128, 256) and compared the predictions, as shown in Fig. 14(a). The
prediction accuracy for batch sizes 16 and 32 was similar; however,
smaller batch sizes reduce the model’s running speed and increase
computational cost. Therefore, a batch size of 32 was used in all
experiments.

In time series forecasting, the samples of each input model form a
mapping function to the target value. However, the historical informa-
tion contained in the samples at different time steps (length of the input
samples) has varying time-series associations with the target value. We
selected different timesteps ∈ [2,4,6,8,10,12] for comparison experi-
ments. As shown in Fig. 14(b), the best prediction accuracy of the model
is achieved with a timestep of 10.

In deep learning, the training model is continuously updated using
the backpropagation algorithm to form a mapping relationship between
inputs and outputs for each parameter (weights and biases) of themodel.
The structure and scale of the model directly determine the accuracy and
robustness of the prediction, with each component affecting the pre-
diction results to varying degrees. We performed several comparison
tests of the important parameters in the model to construct a suitable
model structure, as shown in Fig. 14(c–f).

The highest prediction accuracy was achieved when the Chebyshev-
based graph convolution output had a feature dimension of 32, and the
time dimension convolution output had a feature dimension (number of
convolution kernels) of 128. The convolution kernels in the time
dimension had a dimension of 1 × 3 and slid along the direction of time
change. The model performed best when the Chebyshev polynomial had
the number of terms K = 1 and the number of blocks = 1. This is mainly
due to the small number of nodes in the dataset, meaning the parameter
size of the model does not need to be too large to form a good mapping
relationship.

The hyperparameter configuration of the model in this paper is
shown in Table 3, which has a total of 14,607 trainable parameters.

4.2.2. Qualitative evaluation of the proposed model
K-fold cross-validation is a commonly used method for model eval-

uation and selection in deep learning and machine learning. It is also a
strategy for partitioning datasets (Zhang et al., 2024). The aim is to
avoid overfitting due to the limited amount of data and to improve the
generalization ability of the model, which is particularly advantageous
for small datasets. The dataset is partitioned into k equal parts; each
time, one part is used as the test dataset and the rest as the training
dataset. This cross-validation is repeated k times, and the scoring results
from these k iterations are averaged to determine the final

Table 2
Experimental environment configuration.

CPU Operating system Python

Intel Core i5-13490 F Windows 10 64-bit 3.11

GPU Pytorch

GTX 1660 SUPER 2.0

Fig. 13. Training loss of the model at different learning rates.
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generalization error, as shown in Fig. 15.
In this paper, a 5-fold cross-validation strategy is used, meaning the

ratio of the training dataset to the test dataset is kept at 4:1. The scores of
the five trained models are averaged to determine the overall perfor-
mance of the model when extended to new data, as shown in Table 4.
The results indicate that the prediction method proposed in this paper
demonstrates superior performance. However, it is important to note
that the lower score for Split 4 is due to the presence of more noise in the
dataset, caused by various uncertainties assigned to the test dataset,
highlighting the model’s limitations when facing unconventional vari-
ations in STH.

Based on the series of validation experiments mentioned above, the
performance of the model on the validation set is finally derived. As

Fig. 14. Comparison of prediction scores for different model parameters.

Table 3
The model characteristics and optimal hyperparameters.

Model Input variables Output
variable

Number of
blocks

VMD-
STAGCN

7*10*8
(node*timestep*feature)

7*1 1

Chebyshev conv Time conv K Batch size

32 128 1 32

Learning rate Epoch Optimizer Loss function

0.01 100 Adam MSE

Fig. 15. 5-Fold cross-validation model evaluation.

Table 4
5-fold cross-validation of model predictions.

Score1 Score2 Score3 Score4 Score5 Score

RMSE(s) 23.39 18.85 18.37 57.54 24.88 28.61
MAE(s) 17.73 13.53 13.63 29.23 16.53 18.13
R2 0.95 0.95 0.95 0.86 0.94 0.93
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shown in Fig. 16, the model is able to fit the complex multi-STH data,
demonstrating excellent feature extraction capabilities. The loss curves
of the model were also output to judge the training of the model ac-
cording to the optimal hyperparameters in Table 3, as shown in Fig. 17.
The decrease in both training loss and test loss stabilised after the 60th
epoch, indicating that the balance between model performance and
training data converged and the model reached a state of good fit. To
avoid overfitting, model training can be terminated early if no further
improvement in performance occurs after this balance point, an opera-
tion that also saves unnecessary training time. In addition, the 5-fold
cross-validation taken in the previous section can improve the general-
isation ability of the model and effectively prevent the problem of model
overfitting.

4.3. Validation and comparison

To verify the validity and excellent performance of this prediction
method, we compared the proposed method with classical machine
learning and deep learning baseline models. The baseline models
included Historical Average (HA), Support Vector Regression (SVR),
LSTM, Gate Recurrent Unit neural network (GRU), GCN, and Spatial-
Temporal Graph Convolutional Network (STGCN), as shown in
Table 5. All these baseline models struggle to learn key information from
multi-STH data, whereas our prediction method is far superior to them.
This is due to the small structure and scale of the baseline models, which
cannot effectively extract timing features from the complex multi-STH

Fig. 16. Predictive performance of the model in the test dataset.

Fig. 17. Training loss and test loss of the model with optimal hyperparameters.

Table 5
Comparison of the performance of different prediction models.

Evaluation
Metrics

Model

HA SVR LSTM GRU GCN STGCN STAGCN VMD-STGCN VMD-STAGCN

RMSE(s) 130.92 124.19 120.54 119.19 115.65 97.01 96.31 45.31 28.61
MAE(s) 87.69 76.55 75.93 75.08 72.66 63.10 62.48 29.33 18.13
R2 * 0.01 0.01 0.01 0.02 0.15 0.16 0.88 0.93
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data. However, the STAGCN model performs exceptionally well because
it not only considers the dynamic correlation of STH between nodes but
also captures feature information in the time dimension.

We also conducted a set of ablation experiments to validate the
importance of each component in the model, as shown in Table 5. When
the VMD algorithm is introduced, the model’s performance substantially
improves. Transforming time-domain data to frequency-domain data
provides the model with rich multi-STH feature information, enhancing
its ability to detect spatial-temporal variations. Additionally, removing
the spatial-temporal attention module results in decreased model per-
formance, regardless of the presence of the VMD algorithm.

By observing the four sets of experiments, STGCN, STAGCN, VMD-
STGCN, and VMD-STAGCN, it can be seen that the addition of the
spatial-temporal attention module to the model will result in a better
prediction performance with the same input data. The evaluation met-
rics RMSE and MAE were reduced by 36.9% and 38.2 %, respectively,
and R2 was improved by 5.7%. In addition, to visualize the operation
mechanism of the spatial-temporal attention module, a random sample
was used to output the temporal and spatial attention matrices. As
shown in Fig. 18, the output matrices conduct the attention scoring from
the temporal and spatial dimensions, according to the importance of the
input information. Thus, the spatio-temporal attention module can

effectively capture the complex dependencies from the data.
In this paper, the residual analysis of the proposed predictionmethod

is carried out to examine the reasonableness and reliability of the
method. In this part, residuals are defined as the difference between
observed and predicted values. There may be differences in the model’s
predictive performance in the face of STH in different water areas. To
verify the limitations of the model on different STH datasets, we plot the
output of the model on the test set separately for different cross-sectional
STH violin residuals, as shown in Fig. 19(a). Most of the residuals for
each cross-section are spread around 0, with only a very small amount of
data showing larger values, due to unavoidable noise in the data.
Therefore, the method proposed in this paper can make good predictions
in multiple water areas simultaneously. All the outputs are plotted
against the residual distribution, as shown in Fig. 19(b), where most of
the residual values are distributed on both sides of 0 and the mean value
is only − 0.52s. This indicates that VMD-STAGCN has successfully
captured the spatial-temporal correlation of inland waterway traffic
networks and extracted the complex STH relationship between different
research areas.

To further evaluate the generalization potential of the method pro-
posed in this paper and its application value in intelligent transport
systems, we explore the multi-step prediction performance of the model

Fig. 18. Attention matrix output from the spatial-temporal attention module (temporal attention matrix on the left, spatial attention matrix on the right).

Fig. 19. Predictive performance of the model in the test set ((a) shows the violin plot of the residuals of the prediction results based on each cross-section, (b) shows
the distribution of the residuals of all the prediction results).
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(long-term prediction) in this section. The longer the model predicts
while maintaining stable performance, the higher its application value.
However, theoretically, as the prediction time horizon extends, the
prediction difficulty increases dramatically, potentially limiting the
model’s performance (Liu et al., 2022).

As shown in Fig. 20, the model maintains high prediction perfor-
mance under multi-step prediction tasks, even though prediction accu-
racy tends to decrease as the prediction time increases. Additionally,
increasing the model input step size (input time step increased from 10
to 15) helps mitigate performance degradation, as indicated by the
RMSE dashed line in Fig. 20. This is caused by the fact that the model
needs inputs that contain more historical information to estimate the
long-term STH.

5. Conclusion and future work

This paper proposes a deep learning method to predict multi-STH in
inland waterways. The proposed framework consists of (1) estimating
the STH: Estimate the STH of historical multiple water areas through the
proposed set of cross-sectional ships and recount the STH sequences of
these different cross-sections to ensure they are numerically continuous
on a uniform timeline, (2) transforming STH Sequences: Transform the
STH sequences into several IMF components as multi-features using the
VMD algorithm, and (3) constructing a Traffic Network: Construct an
inland waterway traffic network and train a graph-based deep learning
model to dynamically capture the spatial and temporal characteristics of
STH variations between each water areas.

To validate the feasibility of the proposed method, a large amount of
historical AIS data was collected from the Nanjing-Zhenjiang section of
the Yangtze River. The connectivity among the waterways was used to
construct an inland waterway traffic network. The proposedmethod was
subsequently compared with existing methods, and the validation re-
sults were analyzed from multiple perspectives to assess the method’s
potential for extension.

The main conclusions can be summarized as follows:

• A graph-based learning framework combined with a spatial-temporal
attention mechanism module for predicting multi-STH is promising
and a suitable choice. This approach efficiently processes data with a
graphical structure while dynamically capturing the correlation be-
tween STH in the spatial-temporal dimension.

• Validation shows that using the VMD algorithm to decompose STH
sequences into multiple features effectively improves the model’s
prediction performance.

• Comprehensive validation of real data and comparison experiments
with existing baseline methods demonstrate that our method out-
performs other baseline methods in prediction. It also shows high

accuracy and robustness in predicting complex multidimensional
STH. Additionally, the model exhibits excellent performance in
multi-step prediction, offering great potential for method
generalization.

• The ability to predict STH simultaneously, accurately, and stably in
multiple inland waterways enables effective determination of ship
arrival patterns and correlations across a wide range of waterways.

• Accurate and stable prediction of multi-STH may prevent maritime
accidents in advance caused by ship congestion on inland waterways
and may provide a solid basis for ship scheduling strategies and
planning. This study may have important theoretical significance for
studying maritime traffic.

This study applies not only to multiple contiguous segments of an
inland river but also to areas with multiple correlated locks and bridge
water areas. There is still room for improvement in multi-STH prediction
to enhance its accuracy and potential for real applications. STH is sub-
ject to non-linear variations in different waters due to various abnormal
events, including management rules of different segments, navigation
regulations, and weather conditions. Additionally, the presence of out-
liers in the STH sequence can affect prediction accuracy. Ideally, noise
influence should be minimized when collecting STH data.

Future work should expand the study range, for example, by
applying STH prediction to busy coastal waterways. Integrating large-
scale maritime shipping networks into the model will expand its appli-
cation potential and demonstrate the significance of STH predictions.
This integration will also support the establishment of traffic manage-
ment schemes and ship scheduling decisions to improve shipping
efficiency.
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