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ABSTRACT
Web-based test automation heavily relies on accurately finding web elements. Traditional methods compare attributes but do not 
grasp the context and meaning of elements and words. The emergence of large language models (LLMs) like GPT-4, which can 
show human-like reasoning abilities on some tasks, offers new opportunities for software engineering and web element localiza-
tion. This paper introduces and evaluates VON Similo LLM, an enhanced web element localization approach. Using an LLM, it 
selects the most likely web element from the top-ranked ones identified by the existing VON Similo method, ideally aiming to get 
closer to human-like selection accuracy. An experimental study was conducted using 804 web element pairs from 48 real-world 
web applications. We measured the number of correctly identified elements as well as the execution times, comparing the effec-
tiveness and efficiency of VON Similo LLM against the baseline algorithm. In addition, motivations from the LLM were recorded 
and analysed for 140 instances. VON Similo LLM demonstrated improved performance, reducing failed localizations from 70 
to 40 (out of 804), a 43% reduction. Despite its slower execution time and additional costs of using the GPT-4 model, the LLM's 
human-like reasoning showed promise in enhancing web element localization. LLM technology can enhance web element local-
ization in GUI test automation, reducing false positives and potentially lowering maintenance costs. However, further research 
is necessary to fully understand LLMs' capabilities, limitations and practical use in GUI testing.

1   |   Introduction

Software testing plays a vital role in ensuring the quality of soft-
ware applications. However, testing is often a time-consuming 
and expensive process in practice [1, 2]. By leveraging automa-
tion, organizations can run tests more frequently, improve test 
coverage and thereby identify more defects faster, with positive 
impacts on software lead times and software quality [3–5].

Automation is applied in various types of testing, but one of its pri-
mary uses in practice is in automated regression testing. Regression 
testing allows testers to evaluate the quality of each software 

release. Typically, at higher levels of system abstraction, such as 
the graphical user interface (GUI) level, testers create a suite of test 
scripts that simulate end-user scenarios and verify the application 
under test's (AUT) correct behaviour by using automated oracles 
[6, 7]. However, it is common for new software releases to intro-
duce changes that can break existing automated regression tests, 
which require maintenance efforts and costs to update and repair 
the test scripts. The maintenance cost is exceptionally high when 
testing an application through its GUI, as GUIs frequently change 
between releases [8–10]. In addition, GUI scripts are subject to 
breaking from changes to the underlying logic and architecture of 
the AUT that modifies its behaviour.
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Furthermore, GUIs are primarily designed for human inter-
action (i.e., not machine-to-machine communication), which 
presents additional challenges for automation, such as synchro-
nization between the test scripts and the AUT. These challenges, 
although present, are not considered as prominent in lower level 
testing techniques like unit testing [3].

Test script robustness is one of the most reported challenges 
in web test automation [11]. The challenge involves making 
tests resilient to smaller changes to the AUT that should not 
affect the test execution while still allowing the tests to de-
tect significant differences that could potentially be defects. 
Many solutions that increase the robustness of locating web el-
ements (i.e., web element localization) have been proposed for 
mitigating this challenge [12–17]. Some of the more recent ap-
proaches use similarity scores to identify the most similar web 
element to a target. This is done by using previously stored 
properties (i.e., extracted from the corresponding web element 
in a previous version of the web application) and comparing 
the stored properties to the updated web elements [18, 19]. 
The web element with the highest score is assumed to be the 
most likely web element to use in an interaction (e.g., a click 
or type action). While conventional algorithms (i.e., non-AI) 
can be used for finding similarities between web elements, 
they still typically lack knowledge about how web applica-
tions work and the semantic meaning of texts (i.e., skills pos-
sessed by a human tester). Being able to tell if different words 
or sentences have the same meaning or that two different web 
elements have contextual similarities (e.g., are closely located 
or are interchangeable solutions) could be a powerful feature 
in a testing tool. For example, assume a button in a web in-
terface that changes the caption from ‘Submit’ to ‘Send’ in an 
updated version. A script that relies on the button caption to 
identify the next action would likely not find the new caption 
identical to the old caption without some form of semantic un-
derstanding, causing a false positive (i.e., a failed script ex-
ecution). On the other hand, if a test tool could reason that 
the captions still have the same meaning (i.e., in that specific 
context), they could perceivably carry on without failing the 
test execution.

Large language models (LLMs) are trained on vast amounts of 
data and utilize deep learning techniques to capture linguistic 
patterns and dependencies [20]. We have only begun to explore 
the possibilities of using LLMs in test automation. One such ex-
ample is SocraTest, a vision of a framework for conversational 
testing agents that could aid a human software tester by per-
forming tasks autonomously [21]. Recent studies utilize natural 
language processing (NLP) with heuristic search and the doc-
ument object model (DOM) structure to identify web elements 
in web applications [22] or use LLMs to generate text inputs for 
GUI applications based on semantic understanding and GUI ap-
plication context [23–25]. The proposed solution in this paper is 
based on the hypothesis that we can improve web element lo-
calization even further by combining an LLM with a traditional 
algorithm to take advantage of some of the benefits of the LLM, 
for example, its assumed semantic understanding and contex-
tual awareness, while utilizing the speed of the conventional 
algorithm.

The specific contributions of this paper are as follows:

•	 A novel approach that can improve web element localization 
by utilizing an LLM.

•	 An empirical study that shows the effectiveness and effi-
ciency of the proposed approach compared to the baseline 
approach.

•	 A qualitative content analysis on the motivations gathered 
from the LLM, explaining the main aspects used when com-
paring the similarity of two web elements.

This paper is structured as follows. Section 2 gives a short in-
troduction to LLMs. Section 3 covers the details of both pre-
vious versions and the proposed enhancement to the Similo 
algorithm. The design, research questions and procedure of 
the empirical study are presented in Section 5 and the results 
in Section 6. We then discuss results in Section 7, conclusions 
in Section 10 and future work in Section 11. Section 9 presents 
related work.

A package for replicating the experiment is available for down-
load from [26].

2   |   LLMs

LLMs like Generative Pretrained Transformer 4 (GPT-4) have 
revolutionized NLP by leveraging the transformer architecture 
[20]. This groundbreaking approach replaced traditional recur-
rent neural networks (RNNs) with a self-attention mechanism, 
enabling the models to capture long-range dependencies effi-
ciently. These models are pretrained on vast amounts of data, 
allowing them to grasp the meaning of input prompts and gen-
erate text. Notable examples of recent LLMs include OpenAI's 
GPT (GPT-3, GPT-3.5 and GPT-4) [27] and Google's Pathways 
Language Model (PaLM) [28]. ChatGPT is a sibling model to the 
InstructGPT model, which is an improved version of GPT-3 that 
has been fine-tuned and trained with human feedback [29] to 
improve its ability to follow instructions [30]. We can also use 
ChatGPT as an interface to the newer GPT-4 model, which is 
significantly larger than previous GPT models and performs 
close to human-level on some tasks [27]. We have included a 
more detailed comparison between the two latest versions of 
GPT in Section 5.4.

3   |   Similo

Visually overlapping node (VON) Similo is a web element 
localization algorithm that uses a multi-locator approach, 
similar to previous works, for example, Leotta et  al. [15]. In 
contrast to single-locator solutions, multi-locators use multi-
ple properties of a web element, such as ID, XPath, label and 
tag, to find a target. This is achieved by comparing the proper-
ties of each candidate web element on a webpage with the de-
sired properties of a target element (i.e., the correct candidate), 
resulting in a similarity score. A heuristic is then applied that 
the web element with the highest similarity is the most likely 
candidate to be a match.

VON Similo also utilizes the concept of VONs, which makes 
use of the hierarchical structure of web elements in modern 
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web applications and their representation in a DOM [31]. The 
VON concept considers that multiple DOM nodes (i.e., web el-
ements) are often visually overlapping (i.e., displayed in the 
same visual area in the web browser) and conjointly represent 
the same visual web element to the user. These conjoint ele-
ments share or have similar properties, for example, overlap-
ping areas, coordinates and similar XPaths. This implies that 
interactions (e.g., a click) on the area represented by any of 
these overlapping nodes will yield the same GUI state transi-
tion (i.e., event). As such, any of the nodes can be used to exe-
cute an automated test case, effectively increasing the number 
of valid web elements for an interaction from a single element 
to the number of overlapping elements in a visual area. This 
increase in targets improves the probability of finding a web 
element after changes to the tested application, thereby in-
creasing the test execution robustness.

In this paper, we use the following nomenclature:

•	 Properties: attributes and other information (e.g., location, 
size, XPath, etc.) that can be extracted from a web element.

•	 Candidate: a web element containing properties that can be 
evaluated by VON Similo. Candidates are typically captured 
from the currently active (i.e., visible) web page.

•	 Desired properties: the properties we are looking for in 
a candidate. The desired properties are often captured or 
recorded from a target in a previous version of the SUT 
(i.e., when the test script was created or maintained).

•	 Similarity score: a score representing the distance in sim-
ilarity between two sets of properties, where a higher score 
represents higher similarity between two web elements.

•	 Visual web element: one or many DOM nodes that overlap 
visually, according to the Visual Overlap heuristics defined 
by the VON Similo algorithm (described in Section 3.3).

3.1   |   Standard Similo

VON Similo is based on the initial version of the Similo multi-
locator algorithm proposed by Nass et al. [32]. Similo attempts 
to identify the web element among a set of candidates that is 
most similar to the desired properties. The desired properties 

are often gathered or recorded from a previous release of the 
same AUT but can be any set of properties. Candidate web ele-
ments are typically retrieved from the current (i.e., visible) web 
page. The standard version of Similo used 14 properties, listed 
in Figure 1. Each property is associated with a comparison op-
erator and a weight (also included in Figure  1). The compari-
son operator compares the property value of a candidate with 
the desired property value and returns an output value between 
zero and one (or binary zero or one). Using the output values, a 
similarity score is then calculated for each candidate by summa-
rizing the weight multiplied by the result from the comparison 
operator for all 14 properties (i.e., a weighted sum). After com-
parison of all candidate element scores, Similo then returns the 
candidate with the highest similarity score, assumed to be the 
most similar web element to the target element with the desired 
properties. Optionally the algorithm can output a ranked list of 
candidates from higher to lower similarity scores. More details 
about the weights, operators and how the similarity score is cal-
culated can be found in the original Similo paper [32].

3.2   |   Example of Calculating a Similarity Score

As an example of calculating a similarity score, five locator 
parameters are listed in Table  1. In this example, we use the 
Levenshtein distance (normalized) as a comparison operator for 
all the locator parameters (i.e., for simplicity). The comparison 
operator returns one when comparing the newer and older ver-
sions of the Tag parameter since they are identical (SPAN). We 
get the same result when comparing the Text parameters since 
they are identical. Comparing the XPath parameters results in 
a value between zero and one since the XPaths begin and end 
similarly, even though they are not identical. The result is zero 
when comparing the Class parameters since the older version is 
missing. Assuming that (1) the comparison operator returns the 
similarity specified in the Similarity column and (2) we use the 
weights in Figure 1; the resulting similarity score would be 3.74 
computed as (1 * 1.5 + 1 * 1.5 + 0.41 + 0.33 + 0).

3.3   |   VON Similo

The concept of VONs can be applied to Similo to increase the 
likelihood of locating the correct web element (i.e., according to 

FIGURE 1    |    Graphical representation of the computation of similarity score between two different sets of web element properties.
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the oracle) [33]. To illustrate the VON concept with an example, 
Figure 2 contains a picture of the search bar on YouTube.

The light-blue area of the image contains two DOM elements in 
a hierarchy. A simplified version of that DOM structure is visu-
alized in Figure 3 and detailed in Listing 1.

As can be seen from this example, what visually appears to be 
only one element is actually represented by a div element con-
taining an input element (i.e., two DOM elements in a hierar-
chy). This exemplifies how modern web pages are structured and 
presents a problem when selecting an oracle that represents the 
correctly located DOM element (i.e., web element) since there is 
more than one to choose from. The VON concept handles this 

problem by treating both of the DOM elements as equally cor-
rect by merging the properties of both elements together into 
one visual web element (i.e., a new virtual element). Listing 2 
illustrates how such a visual web element could be represented 
where the double pipe (i.e., ‘OR’ operator) denotes that an attri-
bute could have more than one value.

There are two benefits to the VON approach. First, it reduces 
the number of candidate web elements (i.e., since there are typ-
ically fewer visual web elements than DOM elements on a web 
page), resulting in a higher probability of locating the correct 
one. Second, merging the properties of all the DOM elements be-
longing to the same visual web element will result in a higher (or 
the same) similarity score than distributing the score on several 
DOM elements in the hierarchy (i.e., any contributions to the 
similarity score, when comparing the properties, is concentrated 
on the same visual web element instead of being distributed over 
several DOM elements).

Two web elements (W1 and W2) are considered to belong to the 
same visual web element when the ratio between the overlap-
ping areas of the web elements on the web page, and the union of 
the areas of the two web elements, is higher than a set threshold 
value (0.85 was selected by Nass et  al. [33]). The ratio can be 
computed as 

where R1 and R2 are the rectangular areas—Calculated using 
the coordinates (i.e., x and y) and size (i.e., width and height)—
where the elements are visible on the web page. The intersection 

∩ (R1,R2)

∪ (R1,R2)

TABLE 1    |    Example of locator parameters in newer and older versions of the same website.

Newer version Older version Similarity Weight

Tag: SPAN SPAN 1 1.5

Text: History History 1 1.5

XPath: /html[1]/body[1]/ytd-app[1]/div[1]/
ytd-mini-guide-renderer[1]/div[1]/

ytd-mini-guide-entry-renderer[5]/a[1]/
span[1]

/html[1]/body[1]/div[4]/div[4] /
div[1]/div[1] /div[1]/div[1]/div[1]/
ul[1]/li[1] /div[1]/ul[1]/li[3] /a[1]/

span[1]/span[2]/span[1]

0.41 1

ID-based XPath: id(“content”)/ytd-mini-guide-
renderer[1]/div[1]/ytd-mini-
guide-entry-renderer[5]/a[1]/

span[1]

id(“history-guide-item”)/a[1]/
span[1]/span[2] /span[1]

0.33 1

Class: title style-scope 
ytd-mini-guide-entry-renderer

0 1

FIGURE 2    |    The YouTube search bar.

FIGURE 3    |    A visualization of a web element hierarchy represented 
visually and from a DOM perspective. It shows that although W1 and 
W2 are unique entities, they appear to be the same visual component or, 
at least, overlap visually.
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of these areas thereby represents the size (in pixels) of the com-
mon area occupied by R1 and R2, and the union represents the 
size (in pixels) of the total area occupied by R1 and R2.

VON Similo (i.e., the VON concept applied on Similo) uses the 
same set of properties as in Figure 1 with the difference that each 
property value can take multiple values instead of just one, as in 
the Similo case. A property that holds more than one value is 
compared several times (i.e., one time per value). Assuming we 
would like to compare the Tag property in the web elements W1 
and W2, we would need to perform N*M comparisons assuming 
that the Tag property in W1 contains N values and the Tag prop-
erty in W2 contains M values. The highest (i.e., best) comparison 
outcome of the N*M comparisons is selected as the result and 
appended to the similarity score. As such, the final score can be 
comprised of the comparator outcomes of property values from 
multiple DOM elements joined in the new virtual element.

For example, assume that the Tag property values are ‘div’ and 
‘span’ for W1 and that the corresponding property values are 
‘span’ and ‘button’ for W2. Comparing all the combinations (i.e., 
four) will result in a match (i.e., ‘span’) and return the value one 
from the equals comparison operator (see Figure 1).

More details about the VON concept and how the similarity score 
is calculated can be found in the original VON Similo paper [33].

3.4   |   Limitations of Similo and VON Similo

While Similo and VON Similo increase the tolerance to changes 
(i.e., robustness), there are still situations where the algorithms 
fail to find the web element specified by the human oracle. Our 
hypothesis is that humans possess reasoning capabilities, for 
example, semantic, logical or contextual, about language and 
web applications that the algorithms lack. For example, assume 
that a button changed the caption (i.e., visible text) from ‘Save’ 
to ‘Store’. A human would likely consider them to be equiva-
lent buttons since the semantic meaning (i.e., purpose) is still 
the same, while the algorithm would struggle since the calcu-
lated distance between the two captions, for example, using 
Levenshtein distance, would be quite large, negatively impact-
ing the similarity score. Another example is when a button 
changes from {tag: ‘input’, type: ‘button’} to {tag: ‘button’}. If 
the tags were compared using the equals comparator, or even a 
distance comparator, the algorithm would not spot any similar-
ities, while a context-aware human might know that a ‘button’ 
is a common replacement for an input field of type ‘button’ (i.e., 
an older standard). The core hypothesis of this work is thereby 
that LLMs (e.g., GPT-4), trained on a vast amount of texts and 
websites, possess some form of reasoning, akin to humans, 
which can complement conventional algorithms to improve 
their robustness.

4   |   VON Similo LLM

VON Similo LLM is an attempt to take advantage of the speed 
and determinism of a conventional algorithm, VON Similo, but 
improved by the language understanding/processing and as-
sumed reasoning capabilities of a LLM. In VON Similo LLM, we 
begin by ranking all the candidates present on the current web 
page with VON Similo. This is done by comparing each element's 
properties to the desired properties (i.e., properties stored when 
creating or maintaining the test) of the target element. Next, we 
extract the top 10 candidates from the ranked list of candidates 
provided by VON Similo. Each candidate in the top 10 list and the 
desired properties of the target are then converted into a suitable 
format (i.e., we used JSON in the experiment since that should 
be a format familiar to an LLM). A prompt is then generated for 
the LLM (i.e., GPT-4 in our case) containing instructions for the 
comparison, the 10 candidates and the desired properties of the 
target. Figure 4 contains all the steps further detailed below.

1.	 The first step in the process is to extract all the candidate 
web elements from the currently visible web page and rank 
them, based on similarity, using VON Similo. VON Similo 
compares the desired properties with the properties of each 
of the candidates and produces a similarity score, as shown 
in Figure  1. The candidates are now sorted on similarity 
score, and the top 10 continue to the next step. We decided 
to limit the number of candidates to 10 for our experiments 
to prevent the prompt from exceeding the usage quota and 
also reduce the runtime cost of utilizing the LLM API. A 
usage quota is a limit of tokens spent over some time. Quotas 
prevent a user of GPT-4 from accidentally paying too much 
money on prompts.

2.	 The next step is to convert the 10 candidates into a format 
that the LLM should be familiar with since that enables us to 
create a prompt without explaining the format. We decided 
to use JSON since that is a commonly used format when 
communicating over the Internet. Instead of creating an 
array, we decided to place each JSON structure on a separate 
line. Listing 5 shows an example of a prompt containing 10 
candidates encoded in JSON format.

3.	 The third step is to create a prompt that contains instructions 
on what we expect the LLM to do and what we would like as 
output. Listing 3 shows the prompt structure we used. The 
first 11 rows of the prompt contain one line of instruction 
and 10 lines of candidates in JSON format. We also provide 
a unique widget id (i.e., incremental count) with each candi-
date to simplify the output. Next, we add the instruction that 
we expect the LLM to return with the widget id to the can-
didate most similar to the desired properties, also converted 
into JSON format. Listing 4 shows an alternate prompt struc-
ture used when asking the LLM to provide us with motiva-
tions explaining why this candidate is considered the most 

FIGURE 4    |    The VON Similo LLM process.
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similar. We have included a more complete example of the 
second prompt version in Listing 5.

4.	 The final step is to send the prompt to the LLM. The widget 
id of the most similar candidate and, optionally, the moti-
vation of the choice, depending on the prompt used, are re-
trieved as output.

5   |   Methodology
This section presents the research design, the research questions 
and the research procedure of the empirical study performed to 
evaluate the benefits and drawbacks of VON Similo LLM com-
pared to VON Similo in terms of effectiveness and efficiency.

The first objective of the experiment is to evaluate the differ-
ence in effectiveness between VON Similo LLM and the VON 
Similo approaches (i.e., when finding web elements in two dif-
ferent releases of the same web application). The second objec-
tive is to compare the runtime performance (i.e., efficiency) of 
using the two approaches. Finally, the third objective is to eval-
uate the motivations returned from the LLM to explain why the 
LLM found the chosen candidate element to be the most similar 
match to the correct candidate.

5.1   |   Research Questions

The study aims to answer the following research questions:

•	 RQ1: What is the effectiveness of VON Similo LLM com-
pared to the VON Similo approach in terms of finding cor-
rect web elements?

•	 RQ2: What is the efficiency, measured as execution time, of 
VON Similo LLM compared to the VON Similo approach?

•	 RQ3: What main aspects does an LLM use to improve web 
element localization?

The first research question (RQ1) was answered by running both 
approaches on a set of 804 web element pairs extracted from old 
and new versions of 48 real-world web applications. With a new 
version, we refer to a later iteration of a particular web application 
that has been subject to changes to its code or visual appearance 
that differentiates it from the older version (further described in 
Section 5.2). Our hypothesis is that VON Similo LLM, using its rea-
soning capabilities, for example, of semantic equivalence, logical 

patterns or contextual information, would be able to correctly lo-
cate more correct candidates than VON Similo.

Next, research question 2 (RQ2) was answered by measuring the 
execution times of both approaches to determine the best match-
ing web element. We measured the execution time as the time 
taken from calling an approach (i.e., by providing it with the de-

sired and candidate properties) and returning the most similar 
candidate. Our hypothesis was that VON Similo would outper-
form VON Similo LLM in this aspect since VON Similo LLM 
utilizes the GPT-4 API (selected in Section 5), which, at the time 
of conducting the experiment, is relatively slow and restricted 
(i.e., in terms of requests per minute). In addition to the actual 
overhead cost, this metric is assumed to give insights to allow us 
to discuss the current technology's industrial applicability.

Finally, we answered research question 3 (RQ3) by conducting a 
qualitative content analysis of the motivations gathered from the 
LLM, which aims to explain why the LLM found one candidate 
to be more similar to the correct candidate with some desired 
properties.

5.2   |   Selecting Web Applications and Extracting 
Properties

The web applications chosen for this experiment are the same 50 
websites used by Nass et al. to evaluate previous versions of Similo 
[18], taken from the Alexa top 50 list. One of the applications from 
the top 50 list was deemed inappropriate due to its adult content, 
and one was a duplicate (i.e., two URLs pointing to the same 
web application), resulting in a final set of 48 web applications. 
Additionally, we used the same web application versions, a new 
one and one 12 to 60 months older, as in the previous study [18], 
accessed through the Internet Archive website (https://​web.​archi​
ve.​org). A scraping tool (developed in Java by the authors) was 
then applied to extract properties from all pairs of web elements 
that were perceived to be equivalent and available in both the old 
and new versions of each application. These elements were chosen 
manually through inspection of the applications and then used 
as oracles for the study. We manually included web elements for 
which the following criteria are met: (1) It is possible to perform 
an action on the web element, (2) the element can be used for as-
sertions or synchronization by an automated testing tool, (3) the 
element belongs to the core features of the AUT and (4) the element 
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is present in both versions of the AUT's homepage (i.e., the page 
that the main URL points at). Criteria (4) was necessary since the 
Internet Archive only stores static pages, meaning that javascript, 
databases and so forth do not always work. Because the pages 
are static, they often, unintentionally, have diverse behaviours 
to newer versions of the AUTs. Whilst this design choice of only 
using the homepage may delimit the generalizability of the results, 
we perceive this to be a minor threat since most homepages con-
tain the same elements as other pages of an AUT.

Furthermore, this selection process implies that if a human 
could identify the web element in both versions of the web ap-
plication, it was likely included. This further implies that some 
web elements, which had been changed beyond recognition but 
which were still available, may have been overlooked during 
sampling. However, due to the size of the sample set and the ef-
forts spent to capture all pairs in the extraction process, we find 
this threat to be negligible.

We wish to highlight that the experiment only concerns the 
web element finding ability of the approaches. We were not con-
cerned with the types of interactions that can be performed on 
the elements nor how to utilize them for synchronization.

5.3   |   Applying the VON Concept on the Extracted 
Properties

In the next step of the research procedure, we applied the VON 
concept, described in Section 3.3, on each of the 804 web ele-
ment pairs to add more values (i.e., from overlapping elements) 
to the target web element properties. Due to the VON concept, 
property values of visually overlapping web elements will be 
merged (i.e., using an ‘OR’ operation) if the ratio between the in-
tersection and the union of the areas exceeds the threshold value 
(i.e., 0.85 in our case). After applying the VON concept, many 
properties will contain several values (i.e., options) instead of 
just one, as when using the standard Similo approach.

5.4   |   Selecting the LLM

LLMs are evolving quickly, and new versions are frequently re-
leased. For our experiment, we decided that effectiveness (i.e., in 
identifying the correct candidate) was the most important aspect 
to evaluate (i.e., before efficiency and cost) since we expect the per-
formance, availability (i.e., allowed requests per minute) and price 
to change in time as the services mature. This design choice has a 
direct impact on RQ2, but we still perceive the results as valuable 
to get a snapshot of the currently available technology. We also ex-
pect the effectiveness of LLMs to improve, but evaluating the ef-
fectiveness today will still provide us with a baseline for the future. 
Therefore, we decided to select the most powerful LLM, in terms 
of effectiveness, available regardless of its efficiency, monetary cost 
(within reason) and limitations in requests per minute. We also 
decided to go for an LLM provided by OpenAI due to its reputation 
and ease of access. Table 2 contains a comparison between the dif-
ferent versions currently provided by OpenAI (in April 2023, when 
we initiated the experiment). As seen from Table 2, GPT-3.5-turbo 
is better in all aspects (e.g., cheaper and more requests allowed per 
minute), except for max tokens (4K vs. 8K for GPT-4).

The GPT-4 model is assumed to be significantly larger than 
GPT-3.5-turbo, hinting at enhanced capabilities and accuracy, 
but the parameter count is not described in the technical report 
[34]. In our case, the additional number of tokens available for 
GPT-4 is welcome since the prompts of the solution are quite large 
since they include many web elements, encoded in JSON format, 
with the prompt. We expect each JSON representation of one web 
element to be close to 1 K characters, meaning that each prompt, 
with 10 web elements, would constitute around 10 K characters or 
2500 tokens (1 token ∼ 4 characters). This size is also feasible when 
using GPT-3.5-turbo since it is less than the allotted 4 K tokens per 
prompt. However, since a JSON structure includes many special 
characters and digits, we expect a lower ratio than four characters 
per token (i.e., lower than the expected ratio for pure text). A ratio 
of two characters per token results in 5 K tokens for the 10 JSON 
representations alone, motivating our selection of GPT-4 that can 
receive 8 K tokens in one prompt. In conclusion, we choose to use 
GPT-4 in our experiment even with the drawback of a higher cost, 
lower RPM (i.e., requests per minute) and lower TPM (i.e., tokens 
per minute) since increased accuracy and max number of tokens 
are more important for our evaluation.

5.5   |   Prompt Engineering

Prompt engineering is the intentional construction and refine-
ment of prompts used in NLP tasks. It involves formulating precise 
instructions or queries to produce desired responses from LLMs.

We experimented with larger and smaller prompts with or with-
out examples to maximize the correctness of the output while try-
ing to keep the prompt length short enough to be of practical use 
(i.e., since the prompt size is limited and is associated with a cost).

Initially, the experiment was performed with a minimal prompt 
with no examples (zero-shot). Hence, each prompt only contained 
instructions, the 10 web element candidates and a target element 
in JSON format. Each JSON element contains the property names 
and values of one web element. We created the JSON elements 
from the following properties: Tag, Visible Text, Class, Id, Name, 
HRef, Location, Area, Shape, Alt, Is Button, XPath and Neighbor 
Text. Each candidate is also given a unique id to make it possible to 
ask GPT-4 to return with the id instead of the entire JSON element. 
The prompt asks GPT-4 to return the id of the candidate that is 
most similar to the target web element (also provided in JSON for-
mat) and specify a list of reasons for the decision. Listing 5 shows 
an example of such a prompt, including the response from GPT-4.

Next, we reran the experiment with a more descriptive prompt 
that contained one set of example inputs (one-shot) and the cor-
responding output. The one-shot approach was hypothesized 

TABLE 2    |    Comparison between OpenAI GPT-versions.

GPT-version
Max 

tokens RPM TPM
Cost 1 K 
tokens

GPT-3.5-turbo 4 K 3500 90,000 $0.002

GPT-4 8 K 200 40,000 $0.03
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to help train the LLM in how to perform the comparison and 
thereby provide a better result.

Table  3 presents our findings from evaluating the zero- and 
one-shot approaches. These were calculated on a subset of 70 
web element pairs where VON Similo failed to identify the cor-
rect target (i.e., by running VON Similo in all the 804 cases). 
These cases were chosen because they were perceived of higher 
complexity since the conventional algorithm failed to identify 
them. As can be seen from the last column in the table, includ-
ing one example improved the result from 37 to 41 (i.e., 52.9% 
to 58.6%), representing a 5.7% reduction in not located web ele-
ments. Based on this result, and since the additional data for the 
one-shot did not significantly extend the prompts' token size, we 
decided to include one example in all the prompts used in the 
full experiment, that is, all 804 web element pairs.

To improve the results even further, we tried to increase the num-
ber of candidates sent to the LLM (i.e., a larger list of top candi-
dates proposed by VON Similo). We observed several drawbacks 
with increasing the number of candidates: (1) increased cost due 
to a larger prompt, (2) failure to identify the most similar web 
element due to many candidates and (3) GPT-4 needed more de-
tailed examples sticking to the instructed output format (i.e., got 
confused by the increased prompt size and did not return with 
the widget id and motivations in the format specified by the 
prompt). Instead of exhaustively exploring (i.e., with a different 
number of candidates), we decided that 10 candidates and one 
set of examples (one-shot) would be sufficient for our experiment. 
Thus, concluding that finding an optimal balance of the num-
ber of elements is out of scope for this study. The impact of this 
design choice results in 13 cases where the correct web element 
(i.e., according to our oracle) was not part of the top 10 candi-
dates sent to the LLM. Hence, making it impossible for the LLM 
to select the correct web element. As a result, by increasing the 
prompt size, VON Similo LLM could, theoretically, have reported 
13 more identified web elements in this study. However, even 
doubling the number of candidates from VON Similo (i.e., from 
10 to 20) would have only resulted in five more instances where 
the correct element would have been part of the list of widgets 
sent to the LLM. As such, we concluded that the additional re-
sults would not outweigh the additional prompt size and cost of 
using the GPT-4 API.

TABLE 3    |    The number of located (and not located) web elements 
when using one or zero examples included in the prompt.

Type Total Located
Not 

located
% 

located

Zero-shot 70 37 33 52.9

One-shot 70 41 29 58.6
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5.6   |   Locating Web Elements
We created a tool (implemented in Java and included in the rep-
lication package) that uses the extracted web element properties 
(see Section 5.2) to compare the effectiveness and efficiency of 
the two approaches.

Figure 5 shows the process of locating a candidate web element 
among the candidates extracted from the newer web application 
version based on the target's desired properties extracted from 
an older version of the same application. For each of the 804 web 
elements that were previously extracted from the older versions 
of 48 web applications, the desired properties and all the avail-
able candidates for the web application homepage were submit-
ted as input to both approaches. VON Similo and VON Similo 
LLM then identify the candidate that holds properties most 
similar to the desired properties by comparing the properties of 
each candidate. Next, the XPaths of an identified candidate are 
compared with the Oracle XPath. Note that each candidate can 
have multiple XPaths due to the VON concept since a visual web 
element may consist of several DOM elements. The candidate is 
considered located if any of the candidate XPaths are identical to 
the Oracle XPath (and not located otherwise). Table 4 contains 
a summary of the two possible outcomes after a localization 
attempt.

We decided to divide the experiment into three phases. Figure 6 
contains an overview of the phases further explained below. 
The first and last phases target research questions RQ1 and 
RQ2, while we aim to answer RQ3 with results from the second 
phase. 

1.	 Initially, we attempted to locate all the 804 web elements 
using VON Similo, which resulted in 70 not being found (see 
Section 6) in the newer web application versions based on 
the properties extracted from older versions.

2.	 Next, we asked the LLM (i.e., GPT-4) to identify the cor-
rect web element and motivate that choice, given the 10 
top-ranked elements provided by VON Similo, for the 70 
cases where VON Similo failed. We analysed the motiva-
tions given by the LLM to tell if the motivations were based 
on semantic understanding, context awareness or using a 
standard comparison operator (i.e., like VON Similo). See 
definitions in Section  6. The three categories were coded 
based on literature that utilizes abilities in traditional 

algorithms, NLP or LLMs when comparing GUI elements 
or creating input for testing [18, 19, 23–25].

We decided to use a subset of the 804 cases to lower the cost of 
using the LLM API and to reduce the number of motivations 
to categorize. Selecting the cases where VON Similo failed 
has several benefits: (1) it is a significantly smaller sample 
(i.e., less costly), (2) the correct alternative is never the first 
candidate (i.e., since VON Similo failed), making the choice 
less evident, and (3) it is more valuable if the LLM can find 
the correct web element when the conventional approach 
(i.e., VON Similo) fails.

3.	 Finally, to evaluate VON Similo LLM, we extracted the 
top 10 elements that best match all of the 804 oracles 
(i.e., correct targets) using VON Similo and asked the LLM 
to select the candidate that is most similar to the oracle 
(i.e., the properties extracted from the older version) for 
all oracles. To optimize (i.e., reduce) the cost and time of 
the experiment, we did not ask the LLM to provide us with 
motivations, instead only to return with the id of the best 
candidate. This design greatly reduced the output from the 
LLM and, thereby, the execution time since each output 
character increases the execution time and cost of using the 
LLM API. To rule out the possible bias of providing the top 
10 elements in order of similarity (i.e., as returned by VON 
Similo), we performed an experiment where the order of the 
elements was randomized in the prompt. The result of the 
experiment was the same as when the elements were sorted 
on similarity, thereby allowing us to rule this out as a con-
founding factor.

FIGURE 5    |    The process of locating a candidate web element from desired properties using the two approaches.

TABLE 4    |    Description of the localization result.

Localization result Description

Located The approach is able to identify 
the correct candidate web 

element where one of the XPaths 
is identical to the oracle.

Not located The approach finds a match 
among the candidate web 

elements, but none of the XPaths 
are identical to the oracle.
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6   |   Results

In this section, we present the results of the experiment study. 
We present the results according to the order of the study's three 
research questions.

6.1   |   RQ1: Effectiveness

Table 5 contains the result when comparing the effectiveness, 
in terms of being able to locate the correct candidate based on 
desired properties, of the two approaches. When attempting to 
identify the correct candidate in 804 cases extracted from 48 
web applications, VON Similo failed to locate the correct candi-
date in 70 cases (i.e., 91.3% correctly located). In comparison, the 
VON Similo LLM approach (i.e., use an LLM to identify the best 
candidate among the 10 provided by VON Similo) only failed 
in 40 cases (i.e., 95.0% correctly located). Thus, resulting in a 
42.9% reduction of not-located web elements when using VON 
Similo LLM.

The Venn diagram in Figure  7 shows the number of located 
web elements by VON Similo and VON Similo LLM. Both ap-
proaches located 724 of the correct candidates. The VON Similo 
LLM approach located 40 candidates that VON Similo did not 
locate, and VON Similo located 10 candidates that VON Similo 
LLM failed to locate.

Because we instructed the LLM to only provide a widget id as 
output and no motivation, in this experiment, it is impossible 
to analyse why VON Similo LLM did not find the 10 cases VON 
Similo found (further elaborated on in Section 7).

6.2   |   RQ2: Efficiency

The Time/localization column in Table 5 shows the average time 
in milliseconds to locate one candidate using both approaches 
(29 vs. 1934 ms). Also, within parentheses, the standard devi-
ation is included for the VON Similo LLM approach (537 ms). 
We were unable to measure the standard deviation of the VON 
Similo approach due to the lack of precision (i.e., we could only 
measure whole milliseconds). As expected, the performance 
of the VON Similo algorithm is much higher (i.e., almost two 
magnitudes lower execution time) than the VON Similo LLM 
approach due to the slow response time of the GPT-4 API.

6.3   |   RQ3: What Main Aspects Does an LLM Use to 
Improve Web Element Localization?

The left pie chart in Figure 8 shows the results from our qualita-
tive content analysis of the 428 motivations provided by GPT-4 
for all the 70 cases (i.e., six motivations per case, on average) 
when VON Similo could not identify the correct candidate. The 
pie chart on the right shows the analysis results from 70 ran-
domly selected cases when VON Similo identified the correct 
candidate.

We defined three categories of motivations before the analysis 
(see Section 5.6) to be able to evaluate how frequently GPT-4 in-
corporates either of the aspects; comparison operator, semantic 
understanding or context awareness, in its motivations: 

•	 Comparison operator: Motivation based on conventional 
comparison operators (e.g., equals, Euclidean distance, 
Levenshtein distance). Hence, the only category that the 
VON Similo approach uses to identify elements.

•	 Semantic understanding: Motivation based on seman-
tic understanding. Semantic understanding refers to inter-
preting the meaning of information within its context. It 
involves understanding the relationships between words, 
sentences and concepts and the intended or implied mean-
ing behind them.

•	 Context awareness: Motivation based on context aware-
ness. Context awareness refers to the capability to perceive 
and understand the situational context (e.g., layout and posi-
tioning of elements in web applications, in our case).

We categorized 202 motivations (i.e., 47%) to be associated with 
context awareness, 72 motivations (i.e., 17%) to be associated 
with semantic understanding and 154 motivations (i.e., 36%) to 
be associated with the use of some form of conventional com-
parison operator (e.g., equals) in the cases where VON Similo 
was incorrect. For the cases where VON Similo was correct, we 
note that the motivations we classified as comparison operators 
increased from 36% to 45.4%. Some motivations could belong to 
more than one category. In those cases, we sorted the motivation 
into the nearest category (i.e., the most appropriate according to 

To summarize, for what concerns research question RQ1, 
using the VON Similo LLM approach instead of the conven-
tional VON Similo algorithm, we reduced the number of not 
located candidates from 70 to 40 cases, that is, 42.9%.

To summarize research question RQ2, the performance of 
the LLM approach at the time of writing is almost two mag-
nitudes slower than the conventional algorithm due to the 
long response time from the GPT-4 API (i.e., around 2 s on 
average). While we cannot generalize this result to all LLM 
solutions, it gives insights into a snapshot of the order of 
magnitude of time required when we conducted this study.

FIGURE 6    |    Overview of the three phases of the experiment.
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the authors). We did not encounter any motivations leading us 
to refine existing, or add new, categories while performing the 
analysis. Table 6 contains examples of motivations returned from 
GPT-4, categorized as associated with the comparison operator, 
semantic understanding or context awareness. Half of the moti-
vations were gathered from the first prompt responses, while the 
remaining examples were manually selected to show some al-
ternate or interesting motivations. When comparing motivations 
from GPT-4 when it was correct or incorrect (i.e., selected the 
correct candidate according to the oracle), we did not find any 
pattern in the motivations that would indicate when it was more 
or less confident of the selection of the most similar candidate.

7   |   Discussion

LLMs with human-like abilities such as semantic understand-
ing and context awareness have the potential to increase the 
effectiveness of identifying web elements. Instead of just com-
paring attributes and other properties (i.e., like a conventional 
algorithm), LLMs can relate to the meaning of neighbour texts, 
understand the purpose of an element and evaluate the struc-
ture (i.e., both the DOM and visually in terms of layout and 
element placement) to make more informed decisions when 
comparing and identifying web elements. One example is the 
following motivation from the LLM: ‘The “location” attribute 
indicates that they might be far apart in the layout of the web-
site, but the “neighbor_text” attribute has some overlapping 
words (e.g., “spotify,” “support,” “download,” “premium.”)’. 
This and the following examples can be found in Table  6. 

LLMs recognize common patterns such as menus, forms, foot-
ers or groups and use this contextual information to refine the 
identification process. For example, the LLM motivated one 
decision with the text: ‘The “xpath” and “neighbor_text” at-
tributes also show similarities, suggesting that they are part 
of the same group of links within the footer of the website’. 
Another example is: ‘Despite some differences in “xpath,” 
both elements seem to be part of the navigation menu, as sug-
gested by the “neighbor_text” attribute’. With almost human-
like abilities when identifying web elements, LLMs can reduce 
the need for manual intervention and script maintenance in 
tools and frameworks for web-based test automation. More 
reliable test scripts save time for the human testers, who can 
focus on more meaningful tasks like test strategies and explor-
atory testing.

There is also a downside to utilizing GPT-4 (i.e., the LLM used 
in our experiment) for web element localization. API requests 
are very slow today compared to a conventional algorithm like 
VON Similo. We measured the average API request to be around 
2 s, which would result in a noticeable delay even in an auto-
mated GUI script (i.e., that, in turn, is very slow compared to 
Unit tests). Although we expect future advancements of GPT 
and other LLMs to become faster, there might always be some 
delay that would affect the execution time of the automated test 
script in a noticeable way.

Using GPT-4 also comes with a cost in terms of a fee charged 
by OpenAI for utilizing the API. The cost is not easy to grasp 
since it is based on the number of tokens sent between the cli-
ent and server. According to our measurements, see Table 5, 
the cost is not negligible ($36 for 804 prompts, i.e., $0.045 per 
prompt) and needs to be taken into consideration when evalu-
ating if the price of using the API (i.e., runtime cost) is lower 
than the expected reduction in maintenance cost. Such a cal-
culation is complicated due to the many variables that affect 
the maintenance cost (e.g., software maturity, time between 
releases, number of test cases, size of the test cases and the sal-
ary of developers). However, assuming a test suite with an av-
erage maintenance time of 110 min per test case between two 
major versions, 47 localizations on average per test case and an 
estimated cost of 100 dollars per hour for an employee (as re-
ported in Alégroth et al. [35]), the LLM approach would likely 
provide a positive return on investment in just one software 
release cycle. The cost of test case maintenance would be 100 
* (110 / 60) = $183, and the cost of using the GPT-4 API would 
be 47 * 0.045 = $2. Since the cost of utilizing the GPT-4 API is 
negligible compared to the manual maintenance cost, the ad-
ditional robustness gained by the LLM approach would likely 
be more valuable. Assuming the same increase in robustness 
as in our results (40 vs. 70 not located), the maintenance cost 

To summarize research question RQ3, the result indicates 
that the LLM mainly uses context awareness or semantic 
understanding (64% of the cases when VON Similo was in-
correct and 54.6% otherwise) rather than relying on some 
form of comparison operation (i.e., like a conventional, 
non-AI algorithm).

TABLE 5    |    The total number of located (and not located) web elements for the two approaches.

Approach Total Located Not located % located API cost ($) Time/localization (ms)

VON Similo 804 734 70 91.3 0 29

VON Similo LLM 
(one-shot)

804 764 40 95.0 35.86 1934 (STD 537)

FIGURE 7    |    Venn diagram containing the number of correctly 
located candidates (i.e., web elements) for each approach.
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would be reduced to 183 * (40 / 70) = $105. Even though the 
calculations are based on industrial data, they only provide an 
indication since salaries for engineers differ globally.

However, the cost and payment plans will likely also change over 
time. There may even be adequate LLMs that are entirely free or 
that you can install locally, eliminating, at least, the cost aspect. 
A locally installed LLM would probably also impact the perfor-
mance but may not eliminate the problem that the API request 
delay has a noticeable effect on the test execution. That GPT-3.5-
turbo is considerably faster than GPT-3 is also an indication that 
we might expect to see a turbo version of GPT-4 in the future.

Since LLMs are based on artificial neural networks (ANNs) [36], 
we can only assume that the motivations provided by the LLM 
have anything to do with the candidate selected since a large 
ANN can be seen as a black box model (i.e., with inputs and 
outputs) that we cannot fully comprehend due to the complexity 
of the network. Ongoing discussion exists about whether LLMs 
are probabilistic models or if they truly learn to understand the 
world [37–39].

In summary, LLMs can be used to further improve web element 
localization due to their assumed semantic understanding and 
context awareness with the drawbacks of slower test execution 
and the cost of using the API. However, more research is needed 
to fully grasp the potential and shortcomings of using LLMs 
for web element localization and if the models actually possess 
knowledge about context and semantics.

8   |   Threats to Validity

To reduce the internal validity threat, we limited the influence 
of the selection of web elements on our experiment by select-
ing specific categories of web elements that could be used for 
actions, assertions or synchronization and that were available 
on both versions of the website's homepage. As we focused on 
investigating the web element finding ability only, we do not be-
lieve that the possibility that elements on the homepage differ 
significantly from other web elements is a substantial threat.

The choice of applications and versions analysed in the study 
may compromise its external validity. To address this issue, 

we opted to focus on the top 48 sites based on Alexa.com rank-
ings, as we have no control over the websites listed on that site. 
Additionally, the version of a website can impact the number of 
failed localization attempts, mainly since longer intervals be-
tween releases often result in more changes. To mitigate this 
concern, we selected the same interval (one to five years) for 
website versions as previous studies conducted by Leotta et al. 
[17] and Nass et al. [18].

The construct validity is low since the time between releases 
(i.e., between 12 to 60 months) should be compared with a 
typical case in the industry. However, industrial cases differ a 
lot. Some test suites are run every time the source code is up-
dated (i.e., several times per day), while some test suites are run 
with months in between. We decided to prioritize getting some 
changes (i.e., both larger and smaller) by picking a greater period 
between releases to reduce the risk of not finding any changes 
at all.

That we selected to use GPT-4 from OpenAI in favour of some 
other LLM can impact the construct validity since choosing a 
different LLM would likely give a different result. We tried to 
mitigate this threat by motivating our selection of LLM when 
focusing on effectiveness before efficiency and cost. Also, fu-
ture LLM versions will likely be even more capable, making this 
study merely a baseline for the future.

Limiting the number of candidates to 10 was made to prevent 
the prompt from exceeding the quota and reduce the API's run-
time cost. However, this design choice leads to 13 cases where 
none of the top 10 candidates are correct, resulting in inevita-
ble failure for the LLM. This threat to validity arises because 
the chosen constraint on the number of candidates potentially 
restricts the LLM's ability to provide accurate responses. By lim-
iting the available options, the experiment does not fully assess 
the LLM's ability to generate appropriate and correct responses. 
This limitation could lead to an underestimation of the LLM's 
performance, as it may have the potential to generate correct re-
sponses beyond the limited set of candidates. An alternative ap-
proach to mitigating this threat would have been to increase the 
number of candidates to 20, which would have included addi-
tional correct candidates in the top 10. However, concerns about 
the impact on prompt size and cost led to the decision against 
this option.

FIGURE 8    |    Motivations from the LLM classified as codes when VON Similo was unable (left) or able (right) to identify the correct candidate.
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TABLE 6    |    Example motivations from GPT-4 classified as comparison operator, semantic understanding or context awareness.

Examples that indicate that 
comparison operator is used to 
find the target

Examples that indicate that 
semantic understanding is 

used to find the target

Examples that indicate that 
context awareness is used 

to find the target

Both elements have ‘span’ as one of 
their ‘tag’ attribute.

The text ‘Beauty, Health & Hair’ in 
the element with widget_id ‘201’ is 
closely related to the text ‘Health & 

Beauty’ in the given element.

The ‘location’, ‘shape’, ‘is_button’ and 
‘neighbor_text’ attributes in both elements 

have similar values, indicating that they 
might be close to each other on the layout 

of the website and have a similar structure.

Both elements have ‘a’ or ‘span’ as 
their ‘tag’ attribute.

The text ‘Sign up’ in the element with 
widget_id ‘8065’ is closely related to the 

text ‘Log in’ in the given element, as both 
texts are related to account actions.

Although the given element has an ‘href’ 
attribute and the element with widget_id 

‘201’ does not, this could be a minor 
change during the evolution of the web 
application, and the overall similarity of 

other attributes makes it the best candidate.

The ‘class’ attribute values in 
both elements are very similar, 
containing ‘nav-logo-base’ and 
‘nav-sprite’.

The text ‘Order Status’ in the element 
with widget_id ‘1823’ is not exactly the 
same as the text ‘Shopping History’ in 
the given element, but both texts are 

related to account and order information, 
which leads to the assumption that 

they are similar in purpose.

Both elements have a similar 
‘location’ attribute, indicating that 
they might be close to each other 

on the layout of the website.

The ‘href’ attribute in both 
elements is the same, as they both 
point to the same URL (‘https://​
www.​cnn.​com/​us’).

The text ‘Account’ in the element with 
widget_id ‘1815’ is not exactly the same as 
‘Store Locator’ in the given element, but 
there is no other candidates with the text 

‘Store Locator’. In this case, ‘Account’ may 
represent a location-related functionality.

Both elements have relatively large 
‘area’ and ‘shape’ attributes, suggesting 

that they are both prominent 
elements on the webpage.

The ‘location’ attribute in both 
elements is the same: ‘20, 20’.

The text ‘Upgrade to premium’ in 
the element with widget_id ‘8817’ 
is closely related to the text ‘Get 
premium’ in the given element.

The ‘location’ attribute indicates that they 
might be far apart in the layout of the 

website, but the ‘neighbor_text’ attribute 
has some overlapping words (e.g., ‘spotify’, 

‘support’, ‘download’, ‘premium’).

The text ‘Enterprise’ is exactly the 
same in both elements.

The text ‘Start your free trial’ in the 
element with widget_id ‘3214’ is 

closely related to the text ‘Try free 
for 30 days’ in the given element.

Both elements have a similar ‘location’ 
attribute with only a minor difference 

in the x coordinate, indicating that 
they are situated near each other 

on the layout of the website.

The ‘id’ attribute in both 
elements is the same: 
‘hero-banner-get-office-link’.

The text ‘Support’ in the element with 
widget_id ‘10880’ is closely related to 
the text ‘Help’ in the given element. 

Both serve the same purpose of assisting 
users with issues or questions.

Despite some differences in ‘xpath’, 
both elements seem to be part of 

the navigation menu, as suggested 
by the ‘neighbor_text’ attribute.

The text ‘Find jobs’ in the element 
with widget_id ‘7973’ is identical 
to the text ‘Find Jobs’ in the given 
element.

The ‘neighbor_text’ attribute is 
similar in both elements, with both 

mentioning social platforms like 
‘twitter’, ‘instagram’, ‘snapchat’, 

‘youtube’ and ‘the espn daily podcast’.

The text ‘Items in cart’ in the given element 
is related to the functionality of a shopping 

cart, and the element with widget_id 
‘12341’ also has a cart-related functionality, 

although the text is not present.

Both elements share the same 
‘href’ attribute, which points to 
‘https://​www.​instr​ucture.​com/​’.

The text ‘Claims Support’ in the 
element with widget_id ‘11882’ is 

closely related to the text ‘Delivery 
Issues’ in the given element, as both 
deal with issues regarding deliveries.

The ‘xpath’ and ‘neighbor_text’ attributes 
also show similarities, suggesting that 

they are part of the same group of links 
within the footer of the website.

The text ‘Cart’ is present in both 
elements.

The text ‘Plans & Pricing’ in the element 
with widget_id ‘13858’ is closely related 
to the text ‘PLANS’ in the given element.

Although the ‘href’ attribute is different, 
the change could be due to the updated 

web application using a different method 
to handle account sign-in functionality.
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9   |   Related Work

While our primary focus is GUI-based test automation, the 
web localization technique used by Similo should also apply to 
Robotic Process Automation (RPA) [40] since both automate in-
teractions with software interfaces but serve distinct purposes. 
With GUI-based testing, we aim to identify software bugs and 
evaluate the quality of the SUT through automated test cases, 
while RPA automates repetitive business processes.

For GUI-based test automation, two categories of methodologies 
have emerged, each possessing contrasting yet non-contradictory 
characteristics: postrepair approaches that address locator fail-
ures by employing remedial measures and more preventive 
strategies that focus on generating resilient locators. Only a few 
of the current algorithms and approaches utilize NLP or LLMs. 
This Section covers them both, emphasizing the ones taking ad-
vantage of LLM or NLP.

9.1   |   Postrepair Approaches

This category of approaches aims to automatically repair the 
automated test execution or script after a failure has occurred 
(i.e., postexecution). Automatic repair reduces the costly manual 
labour of repairing test cases or scripts and has been researched 
by many, for example, [12, 41, 42].

Khaliq et  al. [43] proposed a novel automated GUI testing 
approach using a sequence-to-sequence transformer model 
in GPT-2, which perceives the application state through ele-
ment classification and generates test flows in English. Their 
model aims to repair flaky tests when the GUI is modified and 
automatically generate new test flows for regression without 
manual intervention. They showed that abstract English test 
flows could be converted into executable test scripts using a 
simple parser.

A more conventional approach (i.e., non-AI), named WATER, 
proposed by Choudhary et al. [12], compares the test execu-
tion on two software versions, one where the test succeeds 
and one when it fails. In common with Similo (and VON 
Similo), WATER uses weighted locator parameters when re-
pairing a broken locator. The WATER approach is, however, 
a postrepair technique and utilizes an entirely different set of 
locator parameters than Similo (i.e., XPath, coord, clickable, 
visible, index and hash) that are compared using equality or 
Levenshtein distance [44].

Another postrepair tool is WATERFALL [41]. WATERFALL is 
an advancement on WATER and uses the same heuristics for re-
pairs but can improve the effectiveness of script repair (by 209%) 
by taking advantage of the knowledge that minor versions occur 
between major versions in software releases.

COLOR, proposed by Kirinuki et  al. [42], is another approach 
that uses several attributes, positions, images and other properties 
to suggest a repair. Their experiments show that COLOR can be 
more effective than WATER (especially concerning more complex 
changes, like switching from one web page to another) and that 
the algorithm can identify the repair with 77% to 93% accuracy.

Repairing broken locators utilizing a DOM tree comparing algo-
rithm is an approach presented by Brisset et al. [45]. They com-
pared their tool, Erratum, with WATER and found that it has 
67% higher accuracy.

Grechanik et  al. [46, 47] proposed GUIDE, a tool for a non-
intrusive, platform- and language-independent repair algorithm 
for web applications by identifying changes occurring between 
two released software versions. The tool can be used for suggest-
ing repairs or providing guidance for test planning.

9.2   |   Resilient Locators

Resilient (i.e., robust) locators in GUI test automation refer 
to the challenge of reliably identifying and interacting with 
GUI elements during automated testing. Changes in GUI lay-
out and dynamic content can cause locators to fail, leading 
to test script failures. Researchers aim to develop techniques 
for generating robust locators tolerant to GUI changes, ensur-
ing efficient and reliable test automation. Many approaches 
have been proposed seeking to mitigate this problem in the 
literature.

A study by Kirinuki et al. attempts to solve the locator mainte-
nance problem by not relying on attributes and the structure of 
the DOM and instead leverages NLP with heuristic search to 
identify web elements in web pages from natural-language-like 
test cases [22]. An example of such a test step could be the follow-
ing: enter ‘admin’ in ‘username’. Evaluation of three open-source 
web applications showed a success rate of 94% in identifying web 
elements and correct identification in 68% of the test cases.

Another interesting approach that takes advantage of GPT (i.e., 
GPT-3 in this case) while avoiding the shortcomings of a tradi-
tional test script is GPTDroid, proposed by Zhe Liu et al. [24]. 
Utilizing the strengths of ChatGPT (i.e., understanding human 
knowledge), they formulate test steps in plain English and pass 
the GUI page content to the LLM. Next, the LLM responds with 
an instruction about what step to do next when asked: ‘What 
operation is required?’.

Zhe Liu et al. also proposed to use the power of an LLM to auto-
matically generate more realistic test scenarios that can interact 
with a GUI application more similar to a human tester, for ex-
ample, fill out forms with suitable content that makes it possi-
ble to progress to the next step. Their tool QTypist, can generate 
text input related to the GUI context and semantic requirement, 
thereby enabling better test coverage [23].

CrawLabel is a test-generation tool (a plugin for Crawljax) that 
utilizes grammar learning (i.e., NLP) to perform unsupervised 
end-to-end testing of web applications [48].

Among the more traditional algorithms (i.e., not utilizing some 
form of AI), we need to mention the approaches (i.e., Similo 
and VON Similo) we aim to advance in this paper. The different 
Similo approaches are covered, in detail, in Section 3.

Several approaches attempt to create robust XPath locators. The 
algorithm proposed by Montoto et  al. [13] is one of them and 
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uses a bottom-up strategy to generate a change-resilient XPath 
locator iteratively. Starting from a simple XPath expression, 
the algorithm concatenates sub-expressions until the resulting 
XPath can uniquely identify the target element. If the resulting 
XPath is not unique, the attribute values of the ancestors are 
considered until the root is reached.

Other approaches that generate robust XPaths are ROBULA 
[14] and ROBULA+ [15], proposed by Leotta et al. ROBULA+ 
improves upon the earlier ROBULA algorithm and is often con-
sidered state-of-the-art in generating resilient XPath locators 
for web applications. The idea behind ROBULA+ is to generate 
a short but robust locator as possible, given the content of the 
web page and heuristics about the robustness of various attri-
butes. ROBULA and ROBULA+ begin with a generic XPath that 
selects all the nodes in the DOM (i.e., similar to the Montoto 
approach). Next, the algorithms refine the XPath, using a set 
of transformations or prioritizations until only one element is 
selected.

While some solutions aim to increase the resilience of XPath 
locators (e.g., ROBULA+ and Montoto), other approaches in-
crease the number of information sources (e.g., attributes and 
other properties), thereby introducing voting mechanisms or 
triangulation when identifying the target web element. The 
multi-locator, proposed by Leotta et al., is an example that takes 
advantage of several locators (i.e., with diverse strengths and 
weaknesses) and uses a voting procedure to select the best can-
didate web element (i.e., the top-voted one) [17].

Another interesting approach, ATA-QV, proposed by 
Yandrapally et al. [49], is to take advantage of neighbouring web 
elements instead of only relying on attributes and properties of 
each web element. We can use the information extracted from 
neighbour web elements to triangulate the location of the tar-
get web element. For example, assume we have a text field with 
a label describing the text field on the left and a button on the 
right side. Even if the attributes and properties of the text field 
change entirely from one version to the other, it might still be 
possible to find it by utilizing the label on the left side and the 
button's caption on the right side. ATA-QV is an improvement to 
the technique and tool called ATA proposed by Thummalapenta 
et al. [16]. ATA is a commercial tool that was developed in col-
laboration with IBM that aims to increase the resilience of lo-
cators by relying more on labels (i.e., visual attributes) than the 
DOM structure.

Nguyen et  al. recently suggested an approach that can gener-
ate resilient locators by using a new way of constructing XPaths 
that relies on semantic structures and neighbour web elements 
and a rule-based method for selecting the best (i.e., most robust) 
one [50].

SIDEREAL is a tool for automated end-to-end (E2E) testing 
of web applications [51]. It addresses the problem of broken lo-
cators by using a statistical adaptive algorithm that learns the 
potential fragility of web element properties to generate robust 
XPath locators. Compared to the baselines (i.e., ROBULA+ 
and Montoto), SIDEREAL significantly reduces the number of 
broken locators, resulting in more reliable E2E testing for web 
applications.

There are also some commercial products that can learn and 
adapt their web element localization from existing applications 
or application versions, like Testitm (https://​www.​testim.​io/​
blog/​why-​testim/​) and Ranorex (https://​www.​ranor​ex.​com/​
blog/​machi​ne-​train​ed-​algor​ithm/​).

The Similo approach combines many of the techniques of these 
related works. For example, Similo utilizes multiple sources of 
information like the multi-locator approach by Leotta et al. and 
triangulating using neighbour web elements like the ATA-QV 
approach by Yandrapally et al. [49].

VON Similo LLM enhances standard Similo by adding a se-
mantic understanding of attributes (e.g., the caption) in web 
elements like the approaches proposed by Kirinuki et  al. and 
Zhe Liu et al. [24]. However, VON Similo LLM goes beyond the 
semantic understanding of web elements since GPT-4 displays 
some form of context awareness by relating to the possible use of 
web elements in a web page or application, taking it even further 
than the ATA-QV approach by Yandrapally et al. [49].

10   |   Conclusions

Accurate web element localization is crucial for robust auto-
mated scripts in web-based test automation. Traditional ap-
proaches lack semantic understanding and context awareness. 
The emergence of LLMs like GPT-4 offers human-like abil-
ities that can enhance web element localization. This study 
highlights the potential benefits (but also challenges) of using 
LLMs for web element localization in an automated GUI test 
case. Our results show that LLMs can be employed to under-
stand the purpose of elements, analyse neighbouring text and 
evaluate web page structures, enabling more accurate local-
izations. They can reduce manual intervention and script 
maintenance, freeing human testers' time for more meaning-
ful tasks. However, using LLMs through APIs like GPT-4 in-
troduces delays in test execution due to long response times. 
The cost of utilizing the API is another factor to consider, as 
it can be significant and needs to be weighed against the ex-
pected reduction in maintenance costs. Future advancements 
and alternatives, such as locally installed LLMs, may address 
these concerns. Overall, further research is necessary to fully 
understand the potential and limitations of using LLMs for 
web element localization.

11   |   Future Work

Even though the VON Similo LLM approach exceeds a 95% 
success rate when locating the correct candidate, there are still 
almost 5% to a perfect result. Still, we do not know how the ap-
proach compares to humans since they might not reach 100% 
success either. However, we expect LLMs to become even more 
capable in the future. They will also likely support more exten-
sive prompt length (i.e., more tokens), become faster (i.e., lower 
response times) and the cost of using the APIs will decrease.

As a next step, we envision an approach that only relies on an 
LLM without needing a conventional algorithm to narrow 
down the number of candidates (e.g., VON Similo) that have the 
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potential to enhance the effectiveness of web element localiza-
tion further. Since our results indicate that we can increase the 
effectiveness by utilizing an LLM to assess the similarity of a 
subset of the web elements on the web page, it would be interest-
ing to know if we can increase the effectiveness even further by 
allowing the LLM to select from all the web elements on the page. 
Such an approach could employ tournament selection [52] where 
all the visual web element candidates extracted from a web page 
attend, and the tournament winner is the selected candidate. 
For example, assume 200 visual web elements extracted from a 
web page. First, we divide the 200 candidates into 10 groups of 
20 candidates each. The winner of each group will attend the 
final that selects the most similar candidate on the web page. 
Our reasons for not trying such an approach today are as follows: 
(1) A tournament would take a long time to complete since it re-
quires many API requests, and (2) the cost would be high since 
the prompts will contain information gathered from all the web 
elements on the web page. However, as advancements in LLM 
technology continue and API efficiency improves, the viability of 
such an approach may increase, making it promising for future 
exploration. Given that the context window of a (future) model is 
large enough, submitting all the web elements to the LLM can be 
a preferable alternative since it would be a more straightforward 
solution and possibly more effective (i.e., provided the LLM per-
forms better than the traditional approach).

Another possible improvement is to provide the LLM with more 
information about the candidates to compare. One such exam-
ple could be a representation of the pictorial user interface (i.e., 
pixels) since that type of information is available to the human 
eye. We decided to leave that out of our experiments since gath-
ering and processing images from all visible images is likely 
time-consuming. Also, there are many ways of processing and 
analysing images, and exploring the alternatives would take lots 
of resources and time.

Instead of just asking the LLM once (i.e., one input returns 
one output) as in our experiment, we could employ other 
frameworks such as Chain of Thoughts (CoT) [53] or Three of 
Thoughts (ToT) [54] that try to improve the results using a pro-
cess of exploration of thoughts and self-evaluation [55] since a 
more structured prompting could improve the reasoning abil-
ities of the model. The drawback is that more extensive or ad-
ditional prompts increase the time and cost of using the API.

A possible way of increasing the efficiency and reducing the cost 
is to use VON Similo in cases when we expect it to be correct 
(i.e., a high probability) and only take advantage of the LLM in 
other cases. This approach involves comparing the similarity 
score of the highest-ranked candidate with the remaining can-
didates to determine if it stands out as an outlier (i.e., clearly 
separated from the rest). If a clear separation is detected, the 
top-ranked candidate from VON Similo is chosen as the result. 
However, if no outlier is identified, the LLM is employed to de-
cide among the top 10 (or more) candidates. This approach opti-
mizes efficiency and cost by using the most appropriate model 
based on the probability of correctness and the distinctiveness 
of the top-ranked candidate. The challenge with this approach 
is that imperfect detection of the outlier has a negative impact on 
the effectiveness since the LLM will not get the opportunity to 
find a better candidate.

The GPT API (all versions) is today provided as a cloud ser-
vice. One potential drawback of utilizing a cloud service is the 
inherent security risks associated with transmitting sensitive 
data to remote servers outside the company domain. Relying 
on a third-party cloud provider might be a reason for not tak-
ing advantage of the benefits an LLM can provide regarding 
script robustness due to the possible security risk. We might 
be able to solve this risk in the future by using an LLM that is 
powerful enough, and that can be locally installed, thus avoid-
ing a cloud service.
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