
Improving Web Element Localization by Using a Large Language Model

Downloaded from: https://research.chalmers.se, 2024-09-27 11:26 UTC

Citation for the original published paper (version of record):
Nass, M., Alégroth, E., Feldt, R. (2024). Improving Web Element Localization by Using a Large
Language Model. Software Testing Verification and Reliability, In Press.
http://dx.doi.org/10.1002/stvr.1893

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

1 of 18Software Testing, Verification and Reliability, 2024; 0:e1893
https://doi.org/10.1002/stvr.1893

Software Testing, Verification and Reliability

RESEARCH ARTICLE OPEN ACCESS

Improving Web Element Localization by Using a Large
Language Model
Michel Nass1   | Emil Alégroth2  | Robert Feldt2,3

1H. SERL, Blekinge Institute of Technology, Karlskrona, Sweden  |  2P. SERL, Blekinge Institute of Technology, Karlskrona, Sweden  |  3Software
Engineering, Chalmers University of Technology, Göteborg, Sweden

Correspondence: Michel Nass (michel.nass@bth.se)

Received: 2 October 2023  |  Revised: 28 March 2024  |  Accepted: 28 June 2024

Funding: This work was supported by the KKS foundation through the S.E.R.T. Research Profile project at Blekinge Institute of Technology. Robert Feldt
has also been supported by the Swedish Scientific Council (No. 2015-04913, ‘Basing Software Testing on Information Theory’).

Keywords: GUI testing | large language models | test automation | test case robustness | web element locators

ABSTRACT
Web-based test automation heavily relies on accurately finding web elements. Traditional methods compare attributes but do not
grasp the context and meaning of elements and words. The emergence of large language models (LLMs) like GPT-4, which can
show human-like reasoning abilities on some tasks, offers new opportunities for software engineering and web element localiza-
tion. This paper introduces and evaluates VON Similo LLM, an enhanced web element localization approach. Using an LLM, it
selects the most likely web element from the top-ranked ones identified by the existing VON Similo method, ideally aiming to get
closer to human-like selection accuracy. An experimental study was conducted using 804 web element pairs from 48 real-world
web applications. We measured the number of correctly identified elements as well as the execution times, comparing the effec-
tiveness and efficiency of VON Similo LLM against the baseline algorithm. In addition, motivations from the LLM were recorded
and analysed for 140 instances. VON Similo LLM demonstrated improved performance, reducing failed localizations from 70
to 40 (out of 804), a 43% reduction. Despite its slower execution time and additional costs of using the GPT-4 model, the LLM's
human-like reasoning showed promise in enhancing web element localization. LLM technology can enhance web element local-
ization in GUI test automation, reducing false positives and potentially lowering maintenance costs. However, further research
is necessary to fully understand LLMs' capabilities, limitations and practical use in GUI testing.

1   |   Introduction

Software testing plays a vital role in ensuring the quality of soft-
ware applications. However, testing is often a time-consuming
and expensive process in practice [1, 2]. By leveraging automa-
tion, organizations can run tests more frequently, improve test
coverage and thereby identify more defects faster, with positive
impacts on software lead times and software quality [3–5].

Automation is applied in various types of testing, but one of its pri-
mary uses in practice is in automated regression testing. Regression
testing allows testers to evaluate the quality of each software

release. Typically, at higher levels of system abstraction, such as
the graphical user interface (GUI) level, testers create a suite of test
scripts that simulate end-user scenarios and verify the application
under test's (AUT) correct behaviour by using automated oracles
[6, 7]. However, it is common for new software releases to intro-
duce changes that can break existing automated regression tests,
which require maintenance efforts and costs to update and repair
the test scripts. The maintenance cost is exceptionally high when
testing an application through its GUI, as GUIs frequently change
between releases [8–10]. In addition, GUI scripts are subject to
breaking from changes to the underlying logic and architecture of
the AUT that modifies its behaviour.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.

© 2024 The Author(s). Software Testing, Verification & Reliability published by John Wiley & Sons Ltd.

https://doi.org/10.1002/stvr.1893
https://doi.org/10.1002/stvr.1893
mailto:
https://orcid.org/0000-0002-8569-2290
mailto:michel.nass@bth.se
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fstvr.1893&domain=pdf&date_stamp=2024-08-15

2 of 18 Software Testing, Verification and Reliability, 2024

Furthermore, GUIs are primarily designed for human inter-
action (i.e., not machine-to-machine communication), which
presents additional challenges for automation, such as synchro-
nization between the test scripts and the AUT. These challenges,
although present, are not considered as prominent in lower level
testing techniques like unit testing [3].

Test script robustness is one of the most reported challenges
in web test automation [11]. The challenge involves making
tests resilient to smaller changes to the AUT that should not
affect the test execution while still allowing the tests to de-
tect significant differences that could potentially be defects.
Many solutions that increase the robustness of locating web el-
ements (i.e., web element localization) have been proposed for
mitigating this challenge [12–17]. Some of the more recent ap-
proaches use similarity scores to identify the most similar web
element to a target. This is done by using previously stored
properties (i.e., extracted from the corresponding web element
in a previous version of the web application) and comparing
the stored properties to the updated web elements [18, 19].
The web element with the highest score is assumed to be the
most likely web element to use in an interaction (e.g., a click
or type action). While conventional algorithms (i.e., non-AI)
can be used for finding similarities between web elements,
they still typically lack knowledge about how web applica-
tions work and the semantic meaning of texts (i.e., skills pos-
sessed by a human tester). Being able to tell if different words
or sentences have the same meaning or that two different web
elements have contextual similarities (e.g., are closely located
or are interchangeable solutions) could be a powerful feature
in a testing tool. For example, assume a button in a web in-
terface that changes the caption from ‘Submit’ to ‘Send’ in an
updated version. A script that relies on the button caption to
identify the next action would likely not find the new caption
identical to the old caption without some form of semantic un-
derstanding, causing a false positive (i.e., a failed script ex-
ecution). On the other hand, if a test tool could reason that
the captions still have the same meaning (i.e., in that specific
context), they could perceivably carry on without failing the
test execution.

Large language models (LLMs) are trained on vast amounts of
data and utilize deep learning techniques to capture linguistic
patterns and dependencies [20]. We have only begun to explore
the possibilities of using LLMs in test automation. One such ex-
ample is SocraTest, a vision of a framework for conversational
testing agents that could aid a human software tester by per-
forming tasks autonomously [21]. Recent studies utilize natural
language processing (NLP) with heuristic search and the doc-
ument object model (DOM) structure to identify web elements
in web applications [22] or use LLMs to generate text inputs for
GUI applications based on semantic understanding and GUI ap-
plication context [23–25]. The proposed solution in this paper is
based on the hypothesis that we can improve web element lo-
calization even further by combining an LLM with a traditional
algorithm to take advantage of some of the benefits of the LLM,
for example, its assumed semantic understanding and contex-
tual awareness, while utilizing the speed of the conventional
algorithm.

The specific contributions of this paper are as follows:

•	 A novel approach that can improve web element localization
by utilizing an LLM.

•	 An empirical study that shows the effectiveness and effi-
ciency of the proposed approach compared to the baseline
approach.

•	 A qualitative content analysis on the motivations gathered
from the LLM, explaining the main aspects used when com-
paring the similarity of two web elements.

This paper is structured as follows. Section 2 gives a short in-
troduction to LLMs. Section 3 covers the details of both pre-
vious versions and the proposed enhancement to the Similo
algorithm. The design, research questions and procedure of
the empirical study are presented in Section 5 and the results
in Section 6. We then discuss results in Section 7, conclusions
in Section 10 and future work in Section 11. Section 9 presents
related work.

A package for replicating the experiment is available for down-
load from [26].

2   |   LLMs

LLMs like Generative Pretrained Transformer 4 (GPT-4) have
revolutionized NLP by leveraging the transformer architecture
[20]. This groundbreaking approach replaced traditional recur-
rent neural networks (RNNs) with a self-attention mechanism,
enabling the models to capture long-range dependencies effi-
ciently. These models are pretrained on vast amounts of data,
allowing them to grasp the meaning of input prompts and gen-
erate text. Notable examples of recent LLMs include OpenAI's
GPT (GPT-3, GPT-3.5 and GPT-4) [27] and Google's Pathways
Language Model (PaLM) [28]. ChatGPT is a sibling model to the
InstructGPT model, which is an improved version of GPT-3 that
has been fine-tuned and trained with human feedback [29] to
improve its ability to follow instructions [30]. We can also use
ChatGPT as an interface to the newer GPT-4 model, which is
significantly larger than previous GPT models and performs
close to human-level on some tasks [27]. We have included a
more detailed comparison between the two latest versions of
GPT in Section 5.4.

3   |   Similo

Visually overlapping node (VON) Similo is a web element
localization algorithm that uses a multi-locator approach,
similar to previous works, for example, Leotta et al. [15]. In
contrast to single-locator solutions, multi-locators use multi-
ple properties of a web element, such as ID, XPath, label and
tag, to find a target. This is achieved by comparing the proper-
ties of each candidate web element on a webpage with the de-
sired properties of a target element (i.e., the correct candidate),
resulting in a similarity score. A heuristic is then applied that
the web element with the highest similarity is the most likely
candidate to be a match.

VON Similo also utilizes the concept of VONs, which makes
use of the hierarchical structure of web elements in modern

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1893 by Statens B

eredning, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

3 of 18

web applications and their representation in a DOM [31]. The
VON concept considers that multiple DOM nodes (i.e., web el-
ements) are often visually overlapping (i.e., displayed in the
same visual area in the web browser) and conjointly represent
the same visual web element to the user. These conjoint ele-
ments share or have similar properties, for example, overlap-
ping areas, coordinates and similar XPaths. This implies that
interactions (e.g., a click) on the area represented by any of
these overlapping nodes will yield the same GUI state transi-
tion (i.e., event). As such, any of the nodes can be used to exe-
cute an automated test case, effectively increasing the number
of valid web elements for an interaction from a single element
to the number of overlapping elements in a visual area. This
increase in targets improves the probability of finding a web
element after changes to the tested application, thereby in-
creasing the test execution robustness.

In this paper, we use the following nomenclature:

•	 Properties: attributes and other information (e.g., location,
size, XPath, etc.) that can be extracted from a web element.

•	 Candidate: a web element containing properties that can be
evaluated by VON Similo. Candidates are typically captured
from the currently active (i.e., visible) web page.

•	 Desired properties: the properties we are looking for in
a candidate. The desired properties are often captured or
recorded from a target in a previous version of the SUT
(i.e., when the test script was created or maintained).

•	 Similarity score: a score representing the distance in sim-
ilarity between two sets of properties, where a higher score
represents higher similarity between two web elements.

•	 Visual web element: one or many DOM nodes that overlap
visually, according to the Visual Overlap heuristics defined
by the VON Similo algorithm (described in Section 3.3).

3.1   |   Standard Similo

VON Similo is based on the initial version of the Similo multi-
locator algorithm proposed by Nass et al. [32]. Similo attempts
to identify the web element among a set of candidates that is
most similar to the desired properties. The desired properties

are often gathered or recorded from a previous release of the
same AUT but can be any set of properties. Candidate web ele-
ments are typically retrieved from the current (i.e., visible) web
page. The standard version of Similo used 14 properties, listed
in Figure 1. Each property is associated with a comparison op-
erator and a weight (also included in Figure 1). The compari-
son operator compares the property value of a candidate with
the desired property value and returns an output value between
zero and one (or binary zero or one). Using the output values, a
similarity score is then calculated for each candidate by summa-
rizing the weight multiplied by the result from the comparison
operator for all 14 properties (i.e., a weighted sum). After com-
parison of all candidate element scores, Similo then returns the
candidate with the highest similarity score, assumed to be the
most similar web element to the target element with the desired
properties. Optionally the algorithm can output a ranked list of
candidates from higher to lower similarity scores. More details
about the weights, operators and how the similarity score is cal-
culated can be found in the original Similo paper [32].

3.2   |   Example of Calculating a Similarity Score

As an example of calculating a similarity score, five locator
parameters are listed in Table 1. In this example, we use the
Levenshtein distance (normalized) as a comparison operator for
all the locator parameters (i.e., for simplicity). The comparison
operator returns one when comparing the newer and older ver-
sions of the Tag parameter since they are identical (SPAN). We
get the same result when comparing the Text parameters since
they are identical. Comparing the XPath parameters results in
a value between zero and one since the XPaths begin and end
similarly, even though they are not identical. The result is zero
when comparing the Class parameters since the older version is
missing. Assuming that (1) the comparison operator returns the
similarity specified in the Similarity column and (2) we use the
weights in Figure 1; the resulting similarity score would be 3.74
computed as (1 * 1.5 + 1 * 1.5 + 0.41 + 0.33 + 0).

3.3   |   VON Similo

The concept of VONs can be applied to Similo to increase the
likelihood of locating the correct web element (i.e., according to

FIGURE 1    |    Graphical representation of the computation of similarity score between two different sets of web element properties.

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1893 by Statens B

eredning, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

4 of 18 Software Testing, Verification and Reliability, 2024

the oracle) [33]. To illustrate the VON concept with an example,
Figure 2 contains a picture of the search bar on YouTube.

The light-blue area of the image contains two DOM elements in
a hierarchy. A simplified version of that DOM structure is visu-
alized in Figure 3 and detailed in Listing 1.

As can be seen from this example, what visually appears to be
only one element is actually represented by a div element con-
taining an input element (i.e., two DOM elements in a hierar-
chy). This exemplifies how modern web pages are structured and
presents a problem when selecting an oracle that represents the
correctly located DOM element (i.e., web element) since there is
more than one to choose from. The VON concept handles this

problem by treating both of the DOM elements as equally cor-
rect by merging the properties of both elements together into
one visual web element (i.e., a new virtual element). Listing 2
illustrates how such a visual web element could be represented
where the double pipe (i.e., ‘OR’ operator) denotes that an attri-
bute could have more than one value.

There are two benefits to the VON approach. First, it reduces
the number of candidate web elements (i.e., since there are typ-
ically fewer visual web elements than DOM elements on a web
page), resulting in a higher probability of locating the correct
one. Second, merging the properties of all the DOM elements be-
longing to the same visual web element will result in a higher (or
the same) similarity score than distributing the score on several
DOM elements in the hierarchy (i.e., any contributions to the
similarity score, when comparing the properties, is concentrated
on the same visual web element instead of being distributed over
several DOM elements).

Two web elements (W1 and W2) are considered to belong to the
same visual web element when the ratio between the overlap-
ping areas of the web elements on the web page, and the union of
the areas of the two web elements, is higher than a set threshold
value (0.85 was selected by Nass et al. [33]). The ratio can be
computed as

where R1 and R2 are the rectangular areas—Calculated using
the coordinates (i.e., x and y) and size (i.e., width and height)—
where the elements are visible on the web page. The intersection

∩ (R1,R2)

∪ (R1,R2)

TABLE 1    |    Example of locator parameters in newer and older versions of the same website.

Newer version Older version Similarity Weight

Tag: SPAN SPAN 1 1.5

Text: History History 1 1.5

XPath: /html[1]/body[1]/ytd-app[1]/div[1]/
ytd-mini-guide-renderer[1]/div[1]/

ytd-mini-guide-entry-renderer[5]/a[1]/
span[1]

/html[1]/body[1]/div[4]/div[4] /
div[1]/div[1] /div[1]/div[1]/div[1]/
ul[1]/li[1] /div[1]/ul[1]/li[3] /a[1]/

span[1]/span[2]/span[1]

0.41 1

ID-based XPath: id(“content”)/ytd-mini-guide-
renderer[1]/div[1]/ytd-mini-
guide-entry-renderer[5]/a[1]/

span[1]

id(“history-guide-item”)/a[1]/
span[1]/span[2] /span[1]

0.33 1

Class: title style-scope
ytd-mini-guide-entry-renderer

0 1

FIGURE 2    |    The YouTube search bar.

FIGURE 3    |    A visualization of a web element hierarchy represented
visually and from a DOM perspective. It shows that although W1 and
W2 are unique entities, they appear to be the same visual component or,
at least, overlap visually.

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1893 by Statens B

eredning, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

5 of 18

of these areas thereby represents the size (in pixels) of the com-
mon area occupied by R1 and R2, and the union represents the
size (in pixels) of the total area occupied by R1 and R2.

VON Similo (i.e., the VON concept applied on Similo) uses the
same set of properties as in Figure 1 with the difference that each
property value can take multiple values instead of just one, as in
the Similo case. A property that holds more than one value is
compared several times (i.e., one time per value). Assuming we
would like to compare the Tag property in the web elements W1
and W2, we would need to perform N*M comparisons assuming
that the Tag property in W1 contains N values and the Tag prop-
erty in W2 contains M values. The highest (i.e., best) comparison
outcome of the N*M comparisons is selected as the result and
appended to the similarity score. As such, the final score can be
comprised of the comparator outcomes of property values from
multiple DOM elements joined in the new virtual element.

For example, assume that the Tag property values are ‘div’ and
‘span’ for W1 and that the corresponding property values are
‘span’ and ‘button’ for W2. Comparing all the combinations (i.e.,
four) will result in a match (i.e., ‘span’) and return the value one
from the equals comparison operator (see Figure 1).

More details about the VON concept and how the similarity score
is calculated can be found in the original VON Similo paper [33].

3.4   |   Limitations of Similo and VON Similo

While Similo and VON Similo increase the tolerance to changes
(i.e., robustness), there are still situations where the algorithms
fail to find the web element specified by the human oracle. Our
hypothesis is that humans possess reasoning capabilities, for
example, semantic, logical or contextual, about language and
web applications that the algorithms lack. For example, assume
that a button changed the caption (i.e., visible text) from ‘Save’
to ‘Store’. A human would likely consider them to be equiva-
lent buttons since the semantic meaning (i.e., purpose) is still
the same, while the algorithm would struggle since the calcu-
lated distance between the two captions, for example, using
Levenshtein distance, would be quite large, negatively impact-
ing the similarity score. Another example is when a button
changes from {tag: ‘input’, type: ‘button’} to {tag: ‘button’}. If
the tags were compared using the equals comparator, or even a
distance comparator, the algorithm would not spot any similar-
ities, while a context-aware human might know that a ‘button’
is a common replacement for an input field of type ‘button’ (i.e.,
an older standard). The core hypothesis of this work is thereby
that LLMs (e.g., GPT-4), trained on a vast amount of texts and
websites, possess some form of reasoning, akin to humans,
which can complement conventional algorithms to improve
their robustness.

4   |   VON Similo LLM

VON Similo LLM is an attempt to take advantage of the speed
and determinism of a conventional algorithm, VON Similo, but
improved by the language understanding/processing and as-
sumed reasoning capabilities of a LLM. In VON Similo LLM, we
begin by ranking all the candidates present on the current web
page with VON Similo. This is done by comparing each element's
properties to the desired properties (i.e., properties stored when
creating or maintaining the test) of the target element. Next, we
extract the top 10 candidates from the ranked list of candidates
provided by VON Similo. Each candidate in the top 10 list and the
desired properties of the target are then converted into a suitable
format (i.e., we used JSON in the experiment since that should
be a format familiar to an LLM). A prompt is then generated for
the LLM (i.e., GPT-4 in our case) containing instructions for the
comparison, the 10 candidates and the desired properties of the
target. Figure 4 contains all the steps further detailed below.

1.	 The first step in the process is to extract all the candidate
web elements from the currently visible web page and rank
them, based on similarity, using VON Similo. VON Similo
compares the desired properties with the properties of each
of the candidates and produces a similarity score, as shown
in Figure 1. The candidates are now sorted on similarity
score, and the top 10 continue to the next step. We decided
to limit the number of candidates to 10 for our experiments
to prevent the prompt from exceeding the usage quota and
also reduce the runtime cost of utilizing the LLM API. A
usage quota is a limit of tokens spent over some time. Quotas
prevent a user of GPT-4 from accidentally paying too much
money on prompts.

2.	 The next step is to convert the 10 candidates into a format
that the LLM should be familiar with since that enables us to
create a prompt without explaining the format. We decided
to use JSON since that is a commonly used format when
communicating over the Internet. Instead of creating an
array, we decided to place each JSON structure on a separate
line. Listing 5 shows an example of a prompt containing 10
candidates encoded in JSON format.

3.	 The third step is to create a prompt that contains instructions
on what we expect the LLM to do and what we would like as
output. Listing 3 shows the prompt structure we used. The
first 11 rows of the prompt contain one line of instruction
and 10 lines of candidates in JSON format. We also provide
a unique widget id (i.e., incremental count) with each candi-
date to simplify the output. Next, we add the instruction that
we expect the LLM to return with the widget id to the can-
didate most similar to the desired properties, also converted
into JSON format. Listing 4 shows an alternate prompt struc-
ture used when asking the LLM to provide us with motiva-
tions explaining why this candidate is considered the most

FIGURE 4    |    The VON Similo LLM process.

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1893 by Statens B

eredning, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

6 of 18 Software Testing, Verification and Reliability, 2024

similar. We have included a more complete example of the
second prompt version in Listing 5.

4.	 The final step is to send the prompt to the LLM. The widget
id of the most similar candidate and, optionally, the moti-
vation of the choice, depending on the prompt used, are re-
trieved as output.

5   |   Methodology
This section presents the research design, the research questions
and the research procedure of the empirical study performed to
evaluate the benefits and drawbacks of VON Similo LLM com-
pared to VON Similo in terms of effectiveness and efficiency.

The first objective of the experiment is to evaluate the differ-
ence in effectiveness between VON Similo LLM and the VON
Similo approaches (i.e., when finding web elements in two dif-
ferent releases of the same web application). The second objec-
tive is to compare the runtime performance (i.e., efficiency) of
using the two approaches. Finally, the third objective is to eval-
uate the motivations returned from the LLM to explain why the
LLM found the chosen candidate element to be the most similar
match to the correct candidate.

5.1   |   Research Questions

The study aims to answer the following research questions:

•	 RQ1: What is the effectiveness of VON Similo LLM com-
pared to the VON Similo approach in terms of finding cor-
rect web elements?

•	 RQ2: What is the efficiency, measured as execution time, of
VON Similo LLM compared to the VON Similo approach?

•	 RQ3: What main aspects does an LLM use to improve web
element localization?

The first research question (RQ1) was answered by running both
approaches on a set of 804 web element pairs extracted from old
and new versions of 48 real-world web applications. With a new
version, we refer to a later iteration of a particular web application
that has been subject to changes to its code or visual appearance
that differentiates it from the older version (further described in
Section 5.2). Our hypothesis is that VON Similo LLM, using its rea-
soning capabilities, for example, of semantic equivalence, logical

patterns or contextual information, would be able to correctly lo-
cate more correct candidates than VON Similo.

Next, research question 2 (RQ2) was answered by measuring the
execution times of both approaches to determine the best match-
ing web element. We measured the execution time as the time
taken from calling an approach (i.e., by providing it with the de-

sired and candidate properties) and returning the most similar
candidate. Our hypothesis was that VON Similo would outper-
form VON Similo LLM in this aspect since VON Similo LLM
utilizes the GPT-4 API (selected in Section 5), which, at the time
of conducting the experiment, is relatively slow and restricted
(i.e., in terms of requests per minute). In addition to the actual
overhead cost, this metric is assumed to give insights to allow us
to discuss the current technology's industrial applicability.

Finally, we answered research question 3 (RQ3) by conducting a
qualitative content analysis of the motivations gathered from the
LLM, which aims to explain why the LLM found one candidate
to be more similar to the correct candidate with some desired
properties.

5.2   |   Selecting Web Applications and Extracting
Properties

The web applications chosen for this experiment are the same 50
websites used by Nass et al. to evaluate previous versions of Similo
[18], taken from the Alexa top 50 list. One of the applications from
the top 50 list was deemed inappropriate due to its adult content,
and one was a duplicate (i.e., two URLs pointing to the same
web application), resulting in a final set of 48 web applications.
Additionally, we used the same web application versions, a new
one and one 12 to 60 months older, as in the previous study [18],
accessed through the Internet Archive website (https://​web.​archi​
ve.​org). A scraping tool (developed in Java by the authors) was
then applied to extract properties from all pairs of web elements
that were perceived to be equivalent and available in both the old
and new versions of each application. These elements were chosen
manually through inspection of the applications and then used
as oracles for the study. We manually included web elements for
which the following criteria are met: (1) It is possible to perform
an action on the web element, (2) the element can be used for as-
sertions or synchronization by an automated testing tool, (3) the
element belongs to the core features of the AUT and (4) the element

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1893 by Statens B

eredning, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://web.archive.org
https://web.archive.org

7 of 18

is present in both versions of the AUT's homepage (i.e., the page
that the main URL points at). Criteria (4) was necessary since the
Internet Archive only stores static pages, meaning that javascript,
databases and so forth do not always work. Because the pages
are static, they often, unintentionally, have diverse behaviours
to newer versions of the AUTs. Whilst this design choice of only
using the homepage may delimit the generalizability of the results,
we perceive this to be a minor threat since most homepages con-
tain the same elements as other pages of an AUT.

Furthermore, this selection process implies that if a human
could identify the web element in both versions of the web ap-
plication, it was likely included. This further implies that some
web elements, which had been changed beyond recognition but
which were still available, may have been overlooked during
sampling. However, due to the size of the sample set and the ef-
forts spent to capture all pairs in the extraction process, we find
this threat to be negligible.

We wish to highlight that the experiment only concerns the
web element finding ability of the approaches. We were not con-
cerned with the types of interactions that can be performed on
the elements nor how to utilize them for synchronization.

5.3   |   Applying the VON Concept on the Extracted
Properties

In the next step of the research procedure, we applied the VON
concept, described in Section 3.3, on each of the 804 web ele-
ment pairs to add more values (i.e., from overlapping elements)
to the target web element properties. Due to the VON concept,
property values of visually overlapping web elements will be
merged (i.e., using an ‘OR’ operation) if the ratio between the in-
tersection and the union of the areas exceeds the threshold value
(i.e., 0.85 in our case). After applying the VON concept, many
properties will contain several values (i.e., options) instead of
just one, as when using the standard Similo approach.

5.4   |   Selecting the LLM

LLMs are evolving quickly, and new versions are frequently re-
leased. For our experiment, we decided that effectiveness (i.e., in
identifying the correct candidate) was the most important aspect
to evaluate (i.e., before efficiency and cost) since we expect the per-
formance, availability (i.e., allowed requests per minute) and price
to change in time as the services mature. This design choice has a
direct impact on RQ2, but we still perceive the results as valuable
to get a snapshot of the currently available technology. We also ex-
pect the effectiveness of LLMs to improve, but evaluating the ef-
fectiveness today will still provide us with a baseline for the future.
Therefore, we decided to select the most powerful LLM, in terms
of effectiveness, available regardless of its efficiency, monetary cost
(within reason) and limitations in requests per minute. We also
decided to go for an LLM provided by OpenAI due to its reputation
and ease of access. Table 2 contains a comparison between the dif-
ferent versions currently provided by OpenAI (in April 2023, when
we initiated the experiment). As seen from Table 2, GPT-3.5-turbo
is better in all aspects (e.g., cheaper and more requests allowed per
minute), except for max tokens (4K vs. 8K for GPT-4).

The GPT-4 model is assumed to be significantly larger than
GPT-3.5-turbo, hinting at enhanced capabilities and accuracy,
but the parameter count is not described in the technical report
[34]. In our case, the additional number of tokens available for
GPT-4 is welcome since the prompts of the solution are quite large
since they include many web elements, encoded in JSON format,
with the prompt. We expect each JSON representation of one web
element to be close to 1 K characters, meaning that each prompt,
with 10 web elements, would constitute around 10 K characters or
2500 tokens (1 token ∼ 4 characters). This size is also feasible when
using GPT-3.5-turbo since it is less than the allotted 4 K tokens per
prompt. However, since a JSON structure includes many special
characters and digits, we expect a lower ratio than four characters
per token (i.e., lower than the expected ratio for pure text). A ratio
of two characters per token results in 5 K tokens for the 10 JSON
representations alone, motivating our selection of GPT-4 that can
receive 8 K tokens in one prompt. In conclusion, we choose to use
GPT-4 in our experiment even with the drawback of a higher cost,
lower RPM (i.e., requests per minute) and lower TPM (i.e., tokens
per minute) since increased accuracy and max number of tokens
are more important for our evaluation.

5.5   |   Prompt Engineering

Prompt engineering is the intentional construction and refine-
ment of prompts used in NLP tasks. It involves formulating precise
instructions or queries to produce desired responses from LLMs.

We experimented with larger and smaller prompts with or with-
out examples to maximize the correctness of the output while try-
ing to keep the prompt length short enough to be of practical use
(i.e., since the prompt size is limited and is associated with a cost).

Initially, the experiment was performed with a minimal prompt
with no examples (zero-shot). Hence, each prompt only contained
instructions, the 10 web element candidates and a target element
in JSON format. Each JSON element contains the property names
and values of one web element. We created the JSON elements
from the following properties: Tag, Visible Text, Class, Id, Name,
HRef, Location, Area, Shape, Alt, Is Button, XPath and Neighbor
Text. Each candidate is also given a unique id to make it possible to
ask GPT-4 to return with the id instead of the entire JSON element.
The prompt asks GPT-4 to return the id of the candidate that is
most similar to the target web element (also provided in JSON for-
mat) and specify a list of reasons for the decision. Listing 5 shows
an example of such a prompt, including the response from GPT-4.

Next, we reran the experiment with a more descriptive prompt
that contained one set of example inputs (one-shot) and the cor-
responding output. The one-shot approach was hypothesized

TABLE 2    |    Comparison between OpenAI GPT-versions.

GPT-version
Max

tokens RPM TPM
Cost 1 K
tokens

GPT-3.5-turbo 4 K 3500 90,000 $0.002

GPT-4 8 K 200 40,000 $0.03

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1893 by Statens B

eredning, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

8 of 18 Software Testing, Verification and Reliability, 2024

to help train the LLM in how to perform the comparison and
thereby provide a better result.

Table 3 presents our findings from evaluating the zero- and
one-shot approaches. These were calculated on a subset of 70
web element pairs where VON Similo failed to identify the cor-
rect target (i.e., by running VON Similo in all the 804 cases).
These cases were chosen because they were perceived of higher
complexity since the conventional algorithm failed to identify
them. As can be seen from the last column in the table, includ-
ing one example improved the result from 37 to 41 (i.e., 52.9%
to 58.6%), representing a 5.7% reduction in not located web ele-
ments. Based on this result, and since the additional data for the
one-shot did not significantly extend the prompts' token size, we
decided to include one example in all the prompts used in the
full experiment, that is, all 804 web element pairs.

To improve the results even further, we tried to increase the num-
ber of candidates sent to the LLM (i.e., a larger list of top candi-
dates proposed by VON Similo). We observed several drawbacks
with increasing the number of candidates: (1) increased cost due
to a larger prompt, (2) failure to identify the most similar web
element due to many candidates and (3) GPT-4 needed more de-
tailed examples sticking to the instructed output format (i.e., got
confused by the increased prompt size and did not return with
the widget id and motivations in the format specified by the
prompt). Instead of exhaustively exploring (i.e., with a different
number of candidates), we decided that 10 candidates and one
set of examples (one-shot) would be sufficient for our experiment.
Thus, concluding that finding an optimal balance of the num-
ber of elements is out of scope for this study. The impact of this
design choice results in 13 cases where the correct web element
(i.e., according to our oracle) was not part of the top 10 candi-
dates sent to the LLM. Hence, making it impossible for the LLM
to select the correct web element. As a result, by increasing the
prompt size, VON Similo LLM could, theoretically, have reported
13 more identified web elements in this study. However, even
doubling the number of candidates from VON Similo (i.e., from
10 to 20) would have only resulted in five more instances where
the correct element would have been part of the list of widgets
sent to the LLM. As such, we concluded that the additional re-
sults would not outweigh the additional prompt size and cost of
using the GPT-4 API.

TABLE 3    |    The number of located (and not located) web elements
when using one or zero examples included in the prompt.

Type Total Located
Not

located
%

located

Zero-shot 70 37 33 52.9

One-shot 70 41 29 58.6

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1893 by Statens B

eredning, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

9 of 18

5.6   |   Locating Web Elements
We created a tool (implemented in Java and included in the rep-
lication package) that uses the extracted web element properties
(see Section 5.2) to compare the effectiveness and efficiency of
the two approaches.

Figure 5 shows the process of locating a candidate web element
among the candidates extracted from the newer web application
version based on the target's desired properties extracted from
an older version of the same application. For each of the 804 web
elements that were previously extracted from the older versions
of 48 web applications, the desired properties and all the avail-
able candidates for the web application homepage were submit-
ted as input to both approaches. VON Similo and VON Similo
LLM then identify the candidate that holds properties most
similar to the desired properties by comparing the properties of
each candidate. Next, the XPaths of an identified candidate are
compared with the Oracle XPath. Note that each candidate can
have multiple XPaths due to the VON concept since a visual web
element may consist of several DOM elements. The candidate is
considered located if any of the candidate XPaths are identical to
the Oracle XPath (and not located otherwise). Table 4 contains
a summary of the two possible outcomes after a localization
attempt.

We decided to divide the experiment into three phases. Figure 6
contains an overview of the phases further explained below.
The first and last phases target research questions RQ1 and
RQ2, while we aim to answer RQ3 with results from the second
phase.

1.	 Initially, we attempted to locate all the 804 web elements
using VON Similo, which resulted in 70 not being found (see
Section 6) in the newer web application versions based on
the properties extracted from older versions.

2.	 Next, we asked the LLM (i.e., GPT-4) to identify the cor-
rect web element and motivate that choice, given the 10
top-ranked elements provided by VON Similo, for the 70
cases where VON Similo failed. We analysed the motiva-
tions given by the LLM to tell if the motivations were based
on semantic understanding, context awareness or using a
standard comparison operator (i.e., like VON Similo). See
definitions in Section 6. The three categories were coded
based on literature that utilizes abilities in traditional

algorithms, NLP or LLMs when comparing GUI elements
or creating input for testing [18, 19, 23–25].

We decided to use a subset of the 804 cases to lower the cost of
using the LLM API and to reduce the number of motivations
to categorize. Selecting the cases where VON Similo failed
has several benefits: (1) it is a significantly smaller sample
(i.e., less costly), (2) the correct alternative is never the first
candidate (i.e., since VON Similo failed), making the choice
less evident, and (3) it is more valuable if the LLM can find
the correct web element when the conventional approach
(i.e., VON Similo) fails.

3.	 Finally, to evaluate VON Similo LLM, we extracted the
top 10 elements that best match all of the 804 oracles
(i.e., correct targets) using VON Similo and asked the LLM
to select the candidate that is most similar to the oracle
(i.e., the properties extracted from the older version) for
all oracles. To optimize (i.e., reduce) the cost and time of
the experiment, we did not ask the LLM to provide us with
motivations, instead only to return with the id of the best
candidate. This design greatly reduced the output from the
LLM and, thereby, the execution time since each output
character increases the execution time and cost of using the
LLM API. To rule out the possible bias of providing the top
10 elements in order of similarity (i.e., as returned by VON
Similo), we performed an experiment where the order of the
elements was randomized in the prompt. The result of the
experiment was the same as when the elements were sorted
on similarity, thereby allowing us to rule this out as a con-
founding factor.

FIGURE 5    |    The process of locating a candidate web element from desired properties using the two approaches.

TABLE 4    |    Description of the localization result.

Localization result Description

Located The approach is able to identify
the correct candidate web

element where one of the XPaths
is identical to the oracle.

Not located The approach finds a match
among the candidate web

elements, but none of the XPaths
are identical to the oracle.

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1893 by Statens B

eredning, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

10 of 18 Software Testing, Verification and Reliability, 2024

6   |   Results

In this section, we present the results of the experiment study.
We present the results according to the order of the study's three
research questions.

6.1   |   RQ1: Effectiveness

Table 5 contains the result when comparing the effectiveness,
in terms of being able to locate the correct candidate based on
desired properties, of the two approaches. When attempting to
identify the correct candidate in 804 cases extracted from 48
web applications, VON Similo failed to locate the correct candi-
date in 70 cases (i.e., 91.3% correctly located). In comparison, the
VON Similo LLM approach (i.e., use an LLM to identify the best
candidate among the 10 provided by VON Similo) only failed
in 40 cases (i.e., 95.0% correctly located). Thus, resulting in a
42.9% reduction of not-located web elements when using VON
Similo LLM.

The Venn diagram in Figure 7 shows the number of located
web elements by VON Similo and VON Similo LLM. Both ap-
proaches located 724 of the correct candidates. The VON Similo
LLM approach located 40 candidates that VON Similo did not
locate, and VON Similo located 10 candidates that VON Similo
LLM failed to locate.

Because we instructed the LLM to only provide a widget id as
output and no motivation, in this experiment, it is impossible
to analyse why VON Similo LLM did not find the 10 cases VON
Similo found (further elaborated on in Section 7).

6.2   |   RQ2: Efficiency

The Time/localization column in Table 5 shows the average time
in milliseconds to locate one candidate using both approaches
(29 vs. 1934 ms). Also, within parentheses, the standard devi-
ation is included for the VON Similo LLM approach (537 ms).
We were unable to measure the standard deviation of the VON
Similo approach due to the lack of precision (i.e., we could only
measure whole milliseconds). As expected, the performance
of the VON Similo algorithm is much higher (i.e., almost two
magnitudes lower execution time) than the VON Similo LLM
approach due to the slow response time of the GPT-4 API.

6.3   |   RQ3: What Main Aspects Does an LLM Use to
Improve Web Element Localization?

The left pie chart in Figure 8 shows the results from our qualita-
tive content analysis of the 428 motivations provided by GPT-4
for all the 70 cases (i.e., six motivations per case, on average)
when VON Similo could not identify the correct candidate. The
pie chart on the right shows the analysis results from 70 ran-
domly selected cases when VON Similo identified the correct
candidate.

We defined three categories of motivations before the analysis
(see Section 5.6) to be able to evaluate how frequently GPT-4 in-
corporates either of the aspects; comparison operator, semantic
understanding or context awareness, in its motivations:

•	 Comparison operator: Motivation based on conventional
comparison operators (e.g., equals, Euclidean distance,
Levenshtein distance). Hence, the only category that the
VON Similo approach uses to identify elements.

•	 Semantic understanding: Motivation based on seman-
tic understanding. Semantic understanding refers to inter-
preting the meaning of information within its context. It
involves understanding the relationships between words,
sentences and concepts and the intended or implied mean-
ing behind them.

•	 Context awareness: Motivation based on context aware-
ness. Context awareness refers to the capability to perceive
and understand the situational context (e.g., layout and posi-
tioning of elements in web applications, in our case).

We categorized 202 motivations (i.e., 47%) to be associated with
context awareness, 72 motivations (i.e., 17%) to be associated
with semantic understanding and 154 motivations (i.e., 36%) to
be associated with the use of some form of conventional com-
parison operator (e.g., equals) in the cases where VON Similo
was incorrect. For the cases where VON Similo was correct, we
note that the motivations we classified as comparison operators
increased from 36% to 45.4%. Some motivations could belong to
more than one category. In those cases, we sorted the motivation
into the nearest category (i.e., the most appropriate according to

To summarize, for what concerns research question RQ1,
using the VON Similo LLM approach instead of the conven-
tional VON Similo algorithm, we reduced the number of not
located candidates from 70 to 40 cases, that is, 42.9%.

To summarize research question RQ2, the performance of
the LLM approach at the time of writing is almost two mag-
nitudes slower than the conventional algorithm due to the
long response time from the GPT-4 API (i.e., around 2 s on
average). While we cannot generalize this result to all LLM
solutions, it gives insights into a snapshot of the order of
magnitude of time required when we conducted this study.

FIGURE 6    |    Overview of the three phases of the experiment.

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1893 by Statens B

eredning, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

11 of 18

the authors). We did not encounter any motivations leading us
to refine existing, or add new, categories while performing the
analysis. Table 6 contains examples of motivations returned from
GPT-4, categorized as associated with the comparison operator,
semantic understanding or context awareness. Half of the moti-
vations were gathered from the first prompt responses, while the
remaining examples were manually selected to show some al-
ternate or interesting motivations. When comparing motivations
from GPT-4 when it was correct or incorrect (i.e., selected the
correct candidate according to the oracle), we did not find any
pattern in the motivations that would indicate when it was more
or less confident of the selection of the most similar candidate.

7   |   Discussion

LLMs with human-like abilities such as semantic understand-
ing and context awareness have the potential to increase the
effectiveness of identifying web elements. Instead of just com-
paring attributes and other properties (i.e., like a conventional
algorithm), LLMs can relate to the meaning of neighbour texts,
understand the purpose of an element and evaluate the struc-
ture (i.e., both the DOM and visually in terms of layout and
element placement) to make more informed decisions when
comparing and identifying web elements. One example is the
following motivation from the LLM: ‘The “location” attribute
indicates that they might be far apart in the layout of the web-
site, but the “neighbor_text” attribute has some overlapping
words (e.g., “spotify,” “support,” “download,” “premium.”)’.
This and the following examples can be found in Table 6.

LLMs recognize common patterns such as menus, forms, foot-
ers or groups and use this contextual information to refine the
identification process. For example, the LLM motivated one
decision with the text: ‘The “xpath” and “neighbor_text” at-
tributes also show similarities, suggesting that they are part
of the same group of links within the footer of the website’.
Another example is: ‘Despite some differences in “xpath,”
both elements seem to be part of the navigation menu, as sug-
gested by the “neighbor_text” attribute’. With almost human-
like abilities when identifying web elements, LLMs can reduce
the need for manual intervention and script maintenance in
tools and frameworks for web-based test automation. More
reliable test scripts save time for the human testers, who can
focus on more meaningful tasks like test strategies and explor-
atory testing.

There is also a downside to utilizing GPT-4 (i.e., the LLM used
in our experiment) for web element localization. API requests
are very slow today compared to a conventional algorithm like
VON Similo. We measured the average API request to be around
2 s, which would result in a noticeable delay even in an auto-
mated GUI script (i.e., that, in turn, is very slow compared to
Unit tests). Although we expect future advancements of GPT
and other LLMs to become faster, there might always be some
delay that would affect the execution time of the automated test
script in a noticeable way.

Using GPT-4 also comes with a cost in terms of a fee charged
by OpenAI for utilizing the API. The cost is not easy to grasp
since it is based on the number of tokens sent between the cli-
ent and server. According to our measurements, see Table 5,
the cost is not negligible ($36 for 804 prompts, i.e., $0.045 per
prompt) and needs to be taken into consideration when evalu-
ating if the price of using the API (i.e., runtime cost) is lower
than the expected reduction in maintenance cost. Such a cal-
culation is complicated due to the many variables that affect
the maintenance cost (e.g., software maturity, time between
releases, number of test cases, size of the test cases and the sal-
ary of developers). However, assuming a test suite with an av-
erage maintenance time of 110 min per test case between two
major versions, 47 localizations on average per test case and an
estimated cost of 100 dollars per hour for an employee (as re-
ported in Alégroth et al. [35]), the LLM approach would likely
provide a positive return on investment in just one software
release cycle. The cost of test case maintenance would be 100
* (110 / 60) = $183, and the cost of using the GPT-4 API would
be 47 * 0.045 = $2. Since the cost of utilizing the GPT-4 API is
negligible compared to the manual maintenance cost, the ad-
ditional robustness gained by the LLM approach would likely
be more valuable. Assuming the same increase in robustness
as in our results (40 vs. 70 not located), the maintenance cost

To summarize research question RQ3, the result indicates
that the LLM mainly uses context awareness or semantic
understanding (64% of the cases when VON Similo was in-
correct and 54.6% otherwise) rather than relying on some
form of comparison operation (i.e., like a conventional,
non-AI algorithm).

TABLE 5    |    The total number of located (and not located) web elements for the two approaches.

Approach Total Located Not located % located API cost ($) Time/localization (ms)

VON Similo 804 734 70 91.3 0 29

VON Similo LLM
(one-shot)

804 764 40 95.0 35.86 1934 (STD 537)

FIGURE 7    |    Venn diagram containing the number of correctly
located candidates (i.e., web elements) for each approach.

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1893 by Statens B

eredning, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

12 of 18 Software Testing, Verification and Reliability, 2024

would be reduced to 183 * (40 / 70) = $105. Even though the
calculations are based on industrial data, they only provide an
indication since salaries for engineers differ globally.

However, the cost and payment plans will likely also change over
time. There may even be adequate LLMs that are entirely free or
that you can install locally, eliminating, at least, the cost aspect.
A locally installed LLM would probably also impact the perfor-
mance but may not eliminate the problem that the API request
delay has a noticeable effect on the test execution. That GPT-3.5-
turbo is considerably faster than GPT-3 is also an indication that
we might expect to see a turbo version of GPT-4 in the future.

Since LLMs are based on artificial neural networks (ANNs) [36],
we can only assume that the motivations provided by the LLM
have anything to do with the candidate selected since a large
ANN can be seen as a black box model (i.e., with inputs and
outputs) that we cannot fully comprehend due to the complexity
of the network. Ongoing discussion exists about whether LLMs
are probabilistic models or if they truly learn to understand the
world [37–39].

In summary, LLMs can be used to further improve web element
localization due to their assumed semantic understanding and
context awareness with the drawbacks of slower test execution
and the cost of using the API. However, more research is needed
to fully grasp the potential and shortcomings of using LLMs
for web element localization and if the models actually possess
knowledge about context and semantics.

8   |   Threats to Validity

To reduce the internal validity threat, we limited the influence
of the selection of web elements on our experiment by select-
ing specific categories of web elements that could be used for
actions, assertions or synchronization and that were available
on both versions of the website's homepage. As we focused on
investigating the web element finding ability only, we do not be-
lieve that the possibility that elements on the homepage differ
significantly from other web elements is a substantial threat.

The choice of applications and versions analysed in the study
may compromise its external validity. To address this issue,

we opted to focus on the top 48 sites based on Alexa.com rank-
ings, as we have no control over the websites listed on that site.
Additionally, the version of a website can impact the number of
failed localization attempts, mainly since longer intervals be-
tween releases often result in more changes. To mitigate this
concern, we selected the same interval (one to five years) for
website versions as previous studies conducted by Leotta et al.
[17] and Nass et al. [18].

The construct validity is low since the time between releases
(i.e., between 12 to 60 months) should be compared with a
typical case in the industry. However, industrial cases differ a
lot. Some test suites are run every time the source code is up-
dated (i.e., several times per day), while some test suites are run
with months in between. We decided to prioritize getting some
changes (i.e., both larger and smaller) by picking a greater period
between releases to reduce the risk of not finding any changes
at all.

That we selected to use GPT-4 from OpenAI in favour of some
other LLM can impact the construct validity since choosing a
different LLM would likely give a different result. We tried to
mitigate this threat by motivating our selection of LLM when
focusing on effectiveness before efficiency and cost. Also, fu-
ture LLM versions will likely be even more capable, making this
study merely a baseline for the future.

Limiting the number of candidates to 10 was made to prevent
the prompt from exceeding the quota and reduce the API's run-
time cost. However, this design choice leads to 13 cases where
none of the top 10 candidates are correct, resulting in inevita-
ble failure for the LLM. This threat to validity arises because
the chosen constraint on the number of candidates potentially
restricts the LLM's ability to provide accurate responses. By lim-
iting the available options, the experiment does not fully assess
the LLM's ability to generate appropriate and correct responses.
This limitation could lead to an underestimation of the LLM's
performance, as it may have the potential to generate correct re-
sponses beyond the limited set of candidates. An alternative ap-
proach to mitigating this threat would have been to increase the
number of candidates to 20, which would have included addi-
tional correct candidates in the top 10. However, concerns about
the impact on prompt size and cost led to the decision against
this option.

FIGURE 8    |    Motivations from the LLM classified as codes when VON Similo was unable (left) or able (right) to identify the correct candidate.

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1893 by Statens B

eredning, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

13 of 18

TABLE 6    |    Example motivations from GPT-4 classified as comparison operator, semantic understanding or context awareness.

Examples that indicate that
comparison operator is used to
find the target

Examples that indicate that
semantic understanding is

used to find the target

Examples that indicate that
context awareness is used

to find the target

Both elements have ‘span’ as one of
their ‘tag’ attribute.

The text ‘Beauty, Health & Hair’ in
the element with widget_id ‘201’ is
closely related to the text ‘Health &

Beauty’ in the given element.

The ‘location’, ‘shape’, ‘is_button’ and
‘neighbor_text’ attributes in both elements

have similar values, indicating that they
might be close to each other on the layout

of the website and have a similar structure.

Both elements have ‘a’ or ‘span’ as
their ‘tag’ attribute.

The text ‘Sign up’ in the element with
widget_id ‘8065’ is closely related to the

text ‘Log in’ in the given element, as both
texts are related to account actions.

Although the given element has an ‘href’
attribute and the element with widget_id

‘201’ does not, this could be a minor
change during the evolution of the web
application, and the overall similarity of

other attributes makes it the best candidate.

The ‘class’ attribute values in
both elements are very similar,
containing ‘nav-logo-base’ and
‘nav-sprite’.

The text ‘Order Status’ in the element
with widget_id ‘1823’ is not exactly the
same as the text ‘Shopping History’ in
the given element, but both texts are

related to account and order information,
which leads to the assumption that

they are similar in purpose.

Both elements have a similar
‘location’ attribute, indicating that
they might be close to each other

on the layout of the website.

The ‘href’ attribute in both
elements is the same, as they both
point to the same URL (‘https://​
www.​cnn.​com/​us’).

The text ‘Account’ in the element with
widget_id ‘1815’ is not exactly the same as
‘Store Locator’ in the given element, but
there is no other candidates with the text

‘Store Locator’. In this case, ‘Account’ may
represent a location-related functionality.

Both elements have relatively large
‘area’ and ‘shape’ attributes, suggesting

that they are both prominent
elements on the webpage.

The ‘location’ attribute in both
elements is the same: ‘20, 20’.

The text ‘Upgrade to premium’ in
the element with widget_id ‘8817’
is closely related to the text ‘Get
premium’ in the given element.

The ‘location’ attribute indicates that they
might be far apart in the layout of the

website, but the ‘neighbor_text’ attribute
has some overlapping words (e.g., ‘spotify’,

‘support’, ‘download’, ‘premium’).

The text ‘Enterprise’ is exactly the
same in both elements.

The text ‘Start your free trial’ in the
element with widget_id ‘3214’ is

closely related to the text ‘Try free
for 30 days’ in the given element.

Both elements have a similar ‘location’
attribute with only a minor difference

in the x coordinate, indicating that
they are situated near each other

on the layout of the website.

The ‘id’ attribute in both
elements is the same:
‘hero-banner-get-office-link’.

The text ‘Support’ in the element with
widget_id ‘10880’ is closely related to
the text ‘Help’ in the given element.

Both serve the same purpose of assisting
users with issues or questions.

Despite some differences in ‘xpath’,
both elements seem to be part of

the navigation menu, as suggested
by the ‘neighbor_text’ attribute.

The text ‘Find jobs’ in the element
with widget_id ‘7973’ is identical
to the text ‘Find Jobs’ in the given
element.

The ‘neighbor_text’ attribute is
similar in both elements, with both

mentioning social platforms like
‘twitter’, ‘instagram’, ‘snapchat’,

‘youtube’ and ‘the espn daily podcast’.

The text ‘Items in cart’ in the given element
is related to the functionality of a shopping

cart, and the element with widget_id
‘12341’ also has a cart-related functionality,

although the text is not present.

Both elements share the same
‘href’ attribute, which points to
‘https://​www.​instr​ucture.​com/​’.

The text ‘Claims Support’ in the
element with widget_id ‘11882’ is

closely related to the text ‘Delivery
Issues’ in the given element, as both
deal with issues regarding deliveries.

The ‘xpath’ and ‘neighbor_text’ attributes
also show similarities, suggesting that

they are part of the same group of links
within the footer of the website.

The text ‘Cart’ is present in both
elements.

The text ‘Plans & Pricing’ in the element
with widget_id ‘13858’ is closely related
to the text ‘PLANS’ in the given element.

Although the ‘href’ attribute is different,
the change could be due to the updated

web application using a different method
to handle account sign-in functionality.

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1893 by Statens B

eredning, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.cnn.com/us
https://www.cnn.com/us
https://www.instructure.com/

14 of 18 Software Testing, Verification and Reliability, 2024

9   |   Related Work

While our primary focus is GUI-based test automation, the
web localization technique used by Similo should also apply to
Robotic Process Automation (RPA) [40] since both automate in-
teractions with software interfaces but serve distinct purposes.
With GUI-based testing, we aim to identify software bugs and
evaluate the quality of the SUT through automated test cases,
while RPA automates repetitive business processes.

For GUI-based test automation, two categories of methodologies
have emerged, each possessing contrasting yet non-contradictory
characteristics: postrepair approaches that address locator fail-
ures by employing remedial measures and more preventive
strategies that focus on generating resilient locators. Only a few
of the current algorithms and approaches utilize NLP or LLMs.
This Section covers them both, emphasizing the ones taking ad-
vantage of LLM or NLP.

9.1   |   Postrepair Approaches

This category of approaches aims to automatically repair the
automated test execution or script after a failure has occurred
(i.e., postexecution). Automatic repair reduces the costly manual
labour of repairing test cases or scripts and has been researched
by many, for example, [12, 41, 42].

Khaliq et al. [43] proposed a novel automated GUI testing
approach using a sequence-to-sequence transformer model
in GPT-2, which perceives the application state through ele-
ment classification and generates test flows in English. Their
model aims to repair flaky tests when the GUI is modified and
automatically generate new test flows for regression without
manual intervention. They showed that abstract English test
flows could be converted into executable test scripts using a
simple parser.

A more conventional approach (i.e., non-AI), named WATER,
proposed by Choudhary et al. [12], compares the test execu-
tion on two software versions, one where the test succeeds
and one when it fails. In common with Similo (and VON
Similo), WATER uses weighted locator parameters when re-
pairing a broken locator. The WATER approach is, however,
a postrepair technique and utilizes an entirely different set of
locator parameters than Similo (i.e., XPath, coord, clickable,
visible, index and hash) that are compared using equality or
Levenshtein distance [44].

Another postrepair tool is WATERFALL [41]. WATERFALL is
an advancement on WATER and uses the same heuristics for re-
pairs but can improve the effectiveness of script repair (by 209%)
by taking advantage of the knowledge that minor versions occur
between major versions in software releases.

COLOR, proposed by Kirinuki et al. [42], is another approach
that uses several attributes, positions, images and other properties
to suggest a repair. Their experiments show that COLOR can be
more effective than WATER (especially concerning more complex
changes, like switching from one web page to another) and that
the algorithm can identify the repair with 77% to 93% accuracy.

Repairing broken locators utilizing a DOM tree comparing algo-
rithm is an approach presented by Brisset et al. [45]. They com-
pared their tool, Erratum, with WATER and found that it has
67% higher accuracy.

Grechanik et al. [46, 47] proposed GUIDE, a tool for a non-
intrusive, platform- and language-independent repair algorithm
for web applications by identifying changes occurring between
two released software versions. The tool can be used for suggest-
ing repairs or providing guidance for test planning.

9.2   |   Resilient Locators

Resilient (i.e., robust) locators in GUI test automation refer
to the challenge of reliably identifying and interacting with
GUI elements during automated testing. Changes in GUI lay-
out and dynamic content can cause locators to fail, leading
to test script failures. Researchers aim to develop techniques
for generating robust locators tolerant to GUI changes, ensur-
ing efficient and reliable test automation. Many approaches
have been proposed seeking to mitigate this problem in the
literature.

A study by Kirinuki et al. attempts to solve the locator mainte-
nance problem by not relying on attributes and the structure of
the DOM and instead leverages NLP with heuristic search to
identify web elements in web pages from natural-language-like
test cases [22]. An example of such a test step could be the follow-
ing: enter ‘admin’ in ‘username’. Evaluation of three open-source
web applications showed a success rate of 94% in identifying web
elements and correct identification in 68% of the test cases.

Another interesting approach that takes advantage of GPT (i.e.,
GPT-3 in this case) while avoiding the shortcomings of a tradi-
tional test script is GPTDroid, proposed by Zhe Liu et al. [24].
Utilizing the strengths of ChatGPT (i.e., understanding human
knowledge), they formulate test steps in plain English and pass
the GUI page content to the LLM. Next, the LLM responds with
an instruction about what step to do next when asked: ‘What
operation is required?’.

Zhe Liu et al. also proposed to use the power of an LLM to auto-
matically generate more realistic test scenarios that can interact
with a GUI application more similar to a human tester, for ex-
ample, fill out forms with suitable content that makes it possi-
ble to progress to the next step. Their tool QTypist, can generate
text input related to the GUI context and semantic requirement,
thereby enabling better test coverage [23].

CrawLabel is a test-generation tool (a plugin for Crawljax) that
utilizes grammar learning (i.e., NLP) to perform unsupervised
end-to-end testing of web applications [48].

Among the more traditional algorithms (i.e., not utilizing some
form of AI), we need to mention the approaches (i.e., Similo
and VON Similo) we aim to advance in this paper. The different
Similo approaches are covered, in detail, in Section 3.

Several approaches attempt to create robust XPath locators. The
algorithm proposed by Montoto et al. [13] is one of them and

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1893 by Statens B

eredning, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

15 of 18

uses a bottom-up strategy to generate a change-resilient XPath
locator iteratively. Starting from a simple XPath expression,
the algorithm concatenates sub-expressions until the resulting
XPath can uniquely identify the target element. If the resulting
XPath is not unique, the attribute values of the ancestors are
considered until the root is reached.

Other approaches that generate robust XPaths are ROBULA
[14] and ROBULA+ [15], proposed by Leotta et al. ROBULA+
improves upon the earlier ROBULA algorithm and is often con-
sidered state-of-the-art in generating resilient XPath locators
for web applications. The idea behind ROBULA+ is to generate
a short but robust locator as possible, given the content of the
web page and heuristics about the robustness of various attri-
butes. ROBULA and ROBULA+ begin with a generic XPath that
selects all the nodes in the DOM (i.e., similar to the Montoto
approach). Next, the algorithms refine the XPath, using a set
of transformations or prioritizations until only one element is
selected.

While some solutions aim to increase the resilience of XPath
locators (e.g., ROBULA+ and Montoto), other approaches in-
crease the number of information sources (e.g., attributes and
other properties), thereby introducing voting mechanisms or
triangulation when identifying the target web element. The
multi-locator, proposed by Leotta et al., is an example that takes
advantage of several locators (i.e., with diverse strengths and
weaknesses) and uses a voting procedure to select the best can-
didate web element (i.e., the top-voted one) [17].

Another interesting approach, ATA-QV, proposed by
Yandrapally et al. [49], is to take advantage of neighbouring web
elements instead of only relying on attributes and properties of
each web element. We can use the information extracted from
neighbour web elements to triangulate the location of the tar-
get web element. For example, assume we have a text field with
a label describing the text field on the left and a button on the
right side. Even if the attributes and properties of the text field
change entirely from one version to the other, it might still be
possible to find it by utilizing the label on the left side and the
button's caption on the right side. ATA-QV is an improvement to
the technique and tool called ATA proposed by Thummalapenta
et al. [16]. ATA is a commercial tool that was developed in col-
laboration with IBM that aims to increase the resilience of lo-
cators by relying more on labels (i.e., visual attributes) than the
DOM structure.

Nguyen et al. recently suggested an approach that can gener-
ate resilient locators by using a new way of constructing XPaths
that relies on semantic structures and neighbour web elements
and a rule-based method for selecting the best (i.e., most robust)
one [50].

SIDEREAL is a tool for automated end-to-end (E2E) testing
of web applications [51]. It addresses the problem of broken lo-
cators by using a statistical adaptive algorithm that learns the
potential fragility of web element properties to generate robust
XPath locators. Compared to the baselines (i.e., ROBULA+
and Montoto), SIDEREAL significantly reduces the number of
broken locators, resulting in more reliable E2E testing for web
applications.

There are also some commercial products that can learn and
adapt their web element localization from existing applications
or application versions, like Testitm (https://​www.​testim.​io/​
blog/​why-​testim/​) and Ranorex (https://​www.​ranor​ex.​com/​
blog/​machi​ne-​train​ed-​algor​ithm/​).

The Similo approach combines many of the techniques of these
related works. For example, Similo utilizes multiple sources of
information like the multi-locator approach by Leotta et al. and
triangulating using neighbour web elements like the ATA-QV
approach by Yandrapally et al. [49].

VON Similo LLM enhances standard Similo by adding a se-
mantic understanding of attributes (e.g., the caption) in web
elements like the approaches proposed by Kirinuki et al. and
Zhe Liu et al. [24]. However, VON Similo LLM goes beyond the
semantic understanding of web elements since GPT-4 displays
some form of context awareness by relating to the possible use of
web elements in a web page or application, taking it even further
than the ATA-QV approach by Yandrapally et al. [49].

10   |   Conclusions

Accurate web element localization is crucial for robust auto-
mated scripts in web-based test automation. Traditional ap-
proaches lack semantic understanding and context awareness.
The emergence of LLMs like GPT-4 offers human-like abil-
ities that can enhance web element localization. This study
highlights the potential benefits (but also challenges) of using
LLMs for web element localization in an automated GUI test
case. Our results show that LLMs can be employed to under-
stand the purpose of elements, analyse neighbouring text and
evaluate web page structures, enabling more accurate local-
izations. They can reduce manual intervention and script
maintenance, freeing human testers' time for more meaning-
ful tasks. However, using LLMs through APIs like GPT-4 in-
troduces delays in test execution due to long response times.
The cost of utilizing the API is another factor to consider, as
it can be significant and needs to be weighed against the ex-
pected reduction in maintenance costs. Future advancements
and alternatives, such as locally installed LLMs, may address
these concerns. Overall, further research is necessary to fully
understand the potential and limitations of using LLMs for
web element localization.

11   |   Future Work

Even though the VON Similo LLM approach exceeds a 95%
success rate when locating the correct candidate, there are still
almost 5% to a perfect result. Still, we do not know how the ap-
proach compares to humans since they might not reach 100%
success either. However, we expect LLMs to become even more
capable in the future. They will also likely support more exten-
sive prompt length (i.e., more tokens), become faster (i.e., lower
response times) and the cost of using the APIs will decrease.

As a next step, we envision an approach that only relies on an
LLM without needing a conventional algorithm to narrow
down the number of candidates (e.g., VON Similo) that have the

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1893 by Statens B

eredning, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.testim.io/blog/why-testim/
https://www.testim.io/blog/why-testim/
https://www.ranorex.com/blog/machine-trained-algorithm/
https://www.ranorex.com/blog/machine-trained-algorithm/

16 of 18 Software Testing, Verification and Reliability, 2024

potential to enhance the effectiveness of web element localiza-
tion further. Since our results indicate that we can increase the
effectiveness by utilizing an LLM to assess the similarity of a
subset of the web elements on the web page, it would be interest-
ing to know if we can increase the effectiveness even further by
allowing the LLM to select from all the web elements on the page.
Such an approach could employ tournament selection [52] where
all the visual web element candidates extracted from a web page
attend, and the tournament winner is the selected candidate.
For example, assume 200 visual web elements extracted from a
web page. First, we divide the 200 candidates into 10 groups of
20 candidates each. The winner of each group will attend the
final that selects the most similar candidate on the web page.
Our reasons for not trying such an approach today are as follows:
(1) A tournament would take a long time to complete since it re-
quires many API requests, and (2) the cost would be high since
the prompts will contain information gathered from all the web
elements on the web page. However, as advancements in LLM
technology continue and API efficiency improves, the viability of
such an approach may increase, making it promising for future
exploration. Given that the context window of a (future) model is
large enough, submitting all the web elements to the LLM can be
a preferable alternative since it would be a more straightforward
solution and possibly more effective (i.e., provided the LLM per-
forms better than the traditional approach).

Another possible improvement is to provide the LLM with more
information about the candidates to compare. One such exam-
ple could be a representation of the pictorial user interface (i.e.,
pixels) since that type of information is available to the human
eye. We decided to leave that out of our experiments since gath-
ering and processing images from all visible images is likely
time-consuming. Also, there are many ways of processing and
analysing images, and exploring the alternatives would take lots
of resources and time.

Instead of just asking the LLM once (i.e., one input returns
one output) as in our experiment, we could employ other
frameworks such as Chain of Thoughts (CoT) [53] or Three of
Thoughts (ToT) [54] that try to improve the results using a pro-
cess of exploration of thoughts and self-evaluation [55] since a
more structured prompting could improve the reasoning abil-
ities of the model. The drawback is that more extensive or ad-
ditional prompts increase the time and cost of using the API.

A possible way of increasing the efficiency and reducing the cost
is to use VON Similo in cases when we expect it to be correct
(i.e., a high probability) and only take advantage of the LLM in
other cases. This approach involves comparing the similarity
score of the highest-ranked candidate with the remaining can-
didates to determine if it stands out as an outlier (i.e., clearly
separated from the rest). If a clear separation is detected, the
top-ranked candidate from VON Similo is chosen as the result.
However, if no outlier is identified, the LLM is employed to de-
cide among the top 10 (or more) candidates. This approach opti-
mizes efficiency and cost by using the most appropriate model
based on the probability of correctness and the distinctiveness
of the top-ranked candidate. The challenge with this approach
is that imperfect detection of the outlier has a negative impact on
the effectiveness since the LLM will not get the opportunity to
find a better candidate.

The GPT API (all versions) is today provided as a cloud ser-
vice. One potential drawback of utilizing a cloud service is the
inherent security risks associated with transmitting sensitive
data to remote servers outside the company domain. Relying
on a third-party cloud provider might be a reason for not tak-
ing advantage of the benefits an LLM can provide regarding
script robustness due to the possible security risk. We might
be able to solve this risk in the future by using an LLM that is
powerful enough, and that can be locally installed, thus avoid-
ing a cloud service.

Acknowledgements

This work was supported by the KKS foundation through the S.E.R.T.
Research Profile project at Blekinge Institute of Technology. Robert
Feldt has also been supported by the Swedish Scientific Council
(No. 2015-04913, ‘Basing Software Testing on Information Theory’).

Data Availability Statement

The data that support the findings of this study are available at GitHub
(https://​github.​com/​miche​lnass/​​Simil​oLLM).

References

1. M. Grechanik, Q. Xie, and C. Fu, “Maintaining and Evolving
GUI-Directed Test Scripts,” in Proceedings of the 31st International
Conference on Software Engineering (IEEE Computer Society, 2009),
408–418.

2. M. Grechanik, Q. Xie, and C. Fu, “Creating GUI Testing Tools Using
Accessibility Technologies,” in International Conference on Software
Testing, Verification and Validation Workshops, ICSTW'09 (IEEE,
2009), 243–250.

3. M. Olan, “Unit Testing: Test Early, Test Often,” Journal of Computing
Sciences in Colleges 19, no. 2 (2003): 319–328.

4. A. Adamoli, D. Zaparanuks, M. Jovic, and M. Hauswirth, “Auto-
mated GUI Performance Testing,” Software Quality Journal 19, no. 4
(2011): 801–839.

5. E. Alegroth, R. Feldt, and H. H. Olsson, “Transitioning Manual Sys-
tem Test Suites to Automated Testing: An Industrial Case Study,” in
2013 IEEE Sixth International Conference on Software Testing, Verifica-
tion and Validation (IEEE, 2013), 56–65.

6. G. Liebel, E. Alégroth, and R. Feldt, “State-of-Practice in GUI-Based
System and Acceptance Testing: An Industrial Multiple-Case Study,” in
2013 39th Euromicro Conference on Software Engineering and Advanced
Applications (IEEE, 2013), 17–24.

7. J. Mahmud, A. Cypher, E. Haber, and T. Lau, “Design and Industrial
Evaluation of a Tool Supporting Semi-Automated Website Testing,”
Software Testing, Verification and Reliability 24, no. 1 (2014): 61–82.

8. P. Tonella, F. Ricca, and A. Marchetto, “Recent Advances in Web
Testing,” in Advances in Computers, Vol. 93 (Elsevier, 2014), 1–51.

9. E. Alégroth and R. Feldt, “On the Long-Term Use of Visual GUI Test-
ing in Industrial Practice: A Case Study,” Empirical Software Engineer-
ing 22, no. 6 (2017): 2937–2971.

10. F. Dobslaw, R. Feldt, D. Michaëlsson, P. Haar, F. G. de Oliveira Neto,
and R. Torkar, “Estimating Return on Investment for GUI Test Auto-
mation frameworks,” in 2019 IEEE 30th International Symposium on
Software Reliability Engineering (ISSRE) (IEEE, 2019), 271–282.

11. M. Nass, E. Alégroth, and R. Feldt, “Why Many Challenges With
GUI Test Automation (Will) Remain,” Information and Software Tech-
nology 138 (2021): 106625.

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1893 by Statens B

eredning, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/michelnass/SimiloLLM

17 of 18

12. S. R. Choudhary, D. Zhao, H. Versee, and A. Orso, “Water: Web Ap-
plication Test Repair,” in Proceedings of the First International Work-
shop on End-to-End Test Script Engineering (2011), 24–29.

13. P. Montoto, A. Pan, J. Raposo, F. Bellas, and J. López, “Automated
Browsing in Ajax Websites,” Data & Knowledge Engineering 70, no. 3
(2011): 269–283.

14. M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Reducing Web Test
Cases Aging by Means of Robust Xpath Locators,” in 2014 IEEE Inter-
national Symposium on Software Reliability Engineering Workshops
(IEEE, 2014), 449–454.

15. M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Robula+: An Algo-
rithm for Generating Robust Xpath Locators for Web Testing,” Journal
of Software: Evolution and Process 28, no. 3 (2016): 177–204.

16. S. Thummalapenta, S. Sinha, N. Singhania, and S. Chandra, “Auto-
mating Test Automation,” 2012 34th International Conference on Soft-
ware Engineering (ICSE) (IEEE, 2012), 881–891.

17. M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Using Multi-Locators
to Increase the Robustness of Web Test Cases,” in 2015 IEEE 8th In-
ternational Conference on Software Testing, Verification and Validation
(ICST) (IEEE, 2015), 1–10.

18. M. Nass, E. Alégroth, R. Feldt, M. Leotta, and F. Ricca, “Similarity-
Based Web Element Localization for Robust Test Automation,” ACM
Transactions on Software Engineering and Methodology 32, no. 3 (2022):
1–30.

19. M. Nass, R. Coppola, E. Alégroth, and R. Feldt, “Robust Web
Element Identification for Evolving Applications by Considering Visual
Overlaps,” (2023), arXiv preprint arXiv:2301.03863.

20. A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention Is All You
Need,” Advances in Neural Information Processing Systems 30 (2017):
5999–6009.

21. R. Feldt, S. Kang, J. Yoon, and S. Yoo, “Towards Autonomous Test-
ing Agents via Conversational Large Language Models,” (2023), arXiv
preprint arXiv:2306.05152.

22. H. Kirinuki, S. Matsumoto, Y. Higo, and S. Kusumoto, “Web
Element Identification by Combining NLP and Heuristic Search
for Web Testing,” in 2022 IEEE International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER) (IEEE, 2022),
1055–1065.

23. Z. Liu, C. Chen, J. Wang, et al., “Fill in the Blank: Context-Aware
Automated Text Input Generation for Mobile GUI Testing,” (2022),
arXiv preprint arXiv:2212.04732.

24. Z. Liu, C. Chen, J. Wang, et al., “Chatting With GPT-3 for Zero-Shot
Human-Like Mobile Automated GUI Testing,” (2023), arXiv preprint
arXiv:2305.09434.

25. J. Wu, A. Swearngin, X. Zhang, J. Nichols, and J. P. Bigham, “Screen
Correspondence: Mapping Interchangeable Elements Between UIs,”
(2023), arXiv preprint arXiv:2301.08372.

26. “Replication Package,” (2023), https://​github.​com/​miche​lnass/​​Simil​
oLLM.

27. S. Bubeck, V. Chandrasekaran, R. Eldan, et al., “Sparks of Artificial
General Intelligence: Early Experiments With GPT-4,” (2023), arXiv
preprint arXiv:2303.12712.

28. A. Chowdhery, S. Narang, J. Devlin, et al., “Palm: Scaling Language
Modeling With Pathways,” (2022), arXiv preprint arXiv:2204.02311.

29. P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D.
Amodei, “Deep Reinforcement Learning From Human Prefer-
ences,” Advances in Neural Information Processing Systems 30 (2017):
4300–4308.

30. L. Ouyang, J. Wu, X. Jiang, et al., “Training Language Models to
Follow Instructions With Human Feedback,” Advances in Neural Infor-
mation Processing Systems 35 (2022): 27730–27744.

31. L. Wood, A. Le Hors, V. Apparao, et al., “Document Object
Model (DOM) Level 1 Specification,” W3C Recommendation 1 (1998):
1–212.

32. M. Nass, E. Alégroth, R. Feldt, M. Leotta, and F. Ricca, “Similarity-
Based Web Element Localization for Robust Test Automation,” ACM
Transactions on Software Engineering and Methodology 32, no. 3 (2023):
1–30.

33. M. Nass, E. Alégroth, R. Feldt, and R. Coppola, “Robust Web Ele-
ment Identification for Evolving Applications by Considering Visual
Overlaps,” in 2023 IEEE Conference on Software Testing, Verification
and Validation (ICST) (2023), 258–268.

34. J. Achiam, S. Adler, S. Agarwal, et al., “GPT-4 Technical Report,”
(2023), arXiv preprint arXiv:2303.08774.

35. E. Alégroth, R. Feldt, and P. Kolström, “Maintenance of Automated
Test Suites in Industry: An Empirical Study on Visual GUI Testing,”
Information and Software Technology 73 (2016): 66–80.

36. A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial Neural Net-
works: A Tutorial,” Computer 29, no. 3 (1996): 31–44.

37. B. A. y Arcas, “Do Large Language Models Understand Us?,” Daeda-
lus 151, no. 2 (2022): 183–197.

38. S. Min, X. Lyu, A. Holtzman, et al., “Rethinking the Role of Demon-
strations: What Makes In-Context Learning Work?,” (2022), arXiv pre-
print arXiv:2202.12837.

39. Y. Razeghi, R. L. Logan IV, M. Gardner, and S. Singh, “Impact of
Pretraining Term Frequencies on Few-Shot Reasoning,” (2022), arXiv
preprint arXiv:2202.07206.

40. P. Hofmann, C. Samp, and N. Urbach, “Robotic Process Automa-
tion,” Electronic Markets 30, no. 1 (2020): 99–106.

41. M. Hammoudi, G. Rothermel, and A. Stocco, “Waterfall: An In-
cremental Approach for Repairing Record-Replay Tests of Web Appli-
cations,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016 (New
York, NY, USA: Association for Computing Machinery, 2016), 751–762,
https://​doi.​org/​10.​1145/​29502​90.​2950294.

42. H. Kirinuki, H. Tanno, and K. Natsukawa, “Color: Correct Loca-
tor Recommender for Broken Test Scripts Using Various Clues in Web
Application,” in 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER) (2019), 310–320.

43. Z. Khaliq, S. U. Farooq, and D. A. Khan, “Transformers for GUI
Testing: A Plausible Solution to Automated Test Case Generation and
Flaky Tests,” Computer 55, no. 3 (2022): 64–73.

44. “Levenshtein,” http://​leven​shtein.​net.

45. S. Brisset, R. Rouvoy, L. Seinturier, and R. Pawlak, “Erratum:
Leveraging Flexible Tree Matching to Repair Broken Locators in Web
Automation Scripts,” Information and Software Technology 144 (2022):
106754.

46. M. Grechanik, C. W. Mao, A. Baisal, D. Rosenblum, and B. M. M.
Hossain, “Differencing Graphical User Interfaces,” 2018 IEEE Interna-
tional Conference on Software Quality, Reliability and Security (QRS)
(IEEE, 2018), 203–214.

47. Q. Xie, M. Grechanik, C. Fu, and C. Cumby, “Guide: A GUI Differen-
tiator,” in 2009 IEEE International Conference on Software Maintenance
(IEEE, 2009), 395–396.

48. Y. Liu, R. Yandrapally, A. K. Kalia, S. Sinha, R. Tzoref-Brill, and A.
Mesbah, “Crawlabel: Computing Natural-Language Labels for UI Test
Cases,” in Proceedings of the 3rd ACM/IEEE International Conference on
Automation of Software Test (2022), 103–114.

49. R. Yandrapally, S. Thummalapenta, S. Sinha, and S. Chandra,
“Robust Test Automation Using Contextual Clues,” in Proceedings of the
2014 International Symposium on Software Testing and Analysis (2014),
304–314.

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1893 by Statens B

eredning, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/michelnass/SimiloLLM
https://github.com/michelnass/SimiloLLM
https://doi.org/10.1145/2950290.2950294
http://levenshtein.net

18 of 18 Software Testing, Verification and Reliability, 2024

50. V. Nguyen, T. To, and G.-H. Diep, “Generating and Selecting Resil-
ient and Maintainable Locators for Web Automated Testing,” Software
Testing, Verification and Reliability 31, no. 3 (2021): e1760.

51. M. Leotta, F. Ricca, and P. Tonella, “Sidereal: Statistical Adaptive
Generation of Robust Locators for Web Testing,” Software Testing,
Verification and Reliability 31, no. 3 (2021): e1767.

52. T. Blickle and L. Thiele, “A Mathematical Analysis of Tournament
Selection,” ICGA, Vol. 95 (Citeseer, 1995), 9–15.

53. J. Wei, X. Wang, D. Schuurmans, et al., “Chain-of-Thought Prompt-
ing Elicits Reasoning in Large Language Models,” Advances in Neural
Information Processing Systems 35 (2022): 24824–24837.

54. S. Yao, D. Yu, J. Zhao, et al., “Tree of Thoughts: Deliberate Problem
Solving With Large Language Models,” Advances in Neural Information
Processing Systems 36 (2024): 11809–11822.

55. S. Yao, D. Yu, J. Zhao, et al., “Tree of Thoughts: Deliberate
Problem Solving With Large Language Models,” (2023), arXiv preprint
arXiv:2305.10601.

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1893 by Statens B

eredning, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

	Improving Web Element Localization by Using a Large Language Model
	ABSTRACT
	1   |   Introduction
	2   |   LLMs
	3   |   Similo
	3.1   |   Standard Similo
	3.2   |   Example of Calculating a Similarity Score
	3.3   |   VON Similo
	3.4   |   Limitations of Similo and VON Similo

	4   |   VON Similo LLM
	5   |   Methodology
	5.1   |   Research Questions
	5.2   |   Selecting Web Applications and Extracting Properties
	5.3   |   Applying the VON Concept on the Extracted Properties
	5.4   |   Selecting the LLM
	5.5   |   Prompt Engineering
	5.6   |   Locating Web Elements

	6   |   Results
	6.1   |   RQ1: Effectiveness
	6.2   |   RQ2: Efficiency
	6.3   |   RQ3: What Main Aspects Does an LLM Use to Improve Web Element Localization?

	7   |   Discussion
	8   |   Threats to Validity
	9   |   Related Work
	9.1   |   Postrepair Approaches
	9.2   |   Resilient Locators

	10   |   Conclusions
	11   |   Future Work
	Acknowledgements
	Data Availability Statement

	References

