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1 Introduction

Extended geometry [1–4] is a general framework for geometrising duality symmetries in
gravitational theories, thus in a certain sense incorporating them in the full dynamics. Special
cases are provided by exceptional geometry [5–30].

Recently, it has been realised that a teleparallel formulation [31, 32] provides a version
of extended geometry that has several advantages. It is arguably more geometric than the
standard coset dynamics, and the connection to tensor hierarchy algebras [24, 33–38] gives
a possibility to construct [32] a full Batalin-Vilkovisky action [39]. In addition, since the
module of the embedding tensor [40] arises naturally (as torsion), the formalism is the most
natural one for obtaining gauged supergravities.

When gravity, or theories containing gravity, are dimensionally reduced to two dimensions,
an affine symmetry appears as a global symmetry, relating solutions to each other. This
is the so called Geroch symmetry [41]. It is the untwisted affine extension of the Ehlers
symmetry [42], which for pure d-dimensional gravity is Ad−3. In the presence of other massless
fields it can be extended; in string theory/M-theory the Ehlers symmetry is enhanced to
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E8 and the Geroch symmetry to E9 [43–45]. Affine extended geometry — geometrisation
of Geroch symmetry — has been constructed earlier [25, 26, 28], and applied to gauged
supergravity [46–48]. The present work provides a teleparallel reformulation. Apart from
the already mentioned possible applications, we view it mainly as a stepping stone towards
other cases with infinite-dimensional structure groups, in particular the geometrisation
of Belinskii-Khalatnikov-Lifshitz (BKL) symmetry [49–52] as extended geometry with (an
extension of) an over-extended Kac-Moody algebra as structure algebra. We comment more
on this issue in section 4.

The purpose of this paper is thus to construct and present the teleparallel version of
extended geometry with (a slight extension of) an untwisted affine algebra as structure algebra.
The use of the teleparallel formalism avoids the difficulties associated with eliminating the
spin connection by setting torsion to zero, and is more geometric than the coset dynamics
(where generalised diffeomorphisms are not manifest). In addition, it naturally connects to the
tensor hierarchy algebras, where the full Batalin-Vilkovisky fields of extended geometry are
identified as elements in a grading. We expect this to be even more useful as a guideline when
addressing larger structure algebras, and believe that some of the lessons learned presently
will facilitate that pursuit. Finally, the teleparallel Lagrangian is especially well suited
for generalised Scherk-Schwarz reduction [53]. In particular, the form of the supergravity
potential derived in [47] follows directly in the teleparallel formulation.

There are a few differences in conventions between the present paper and earlier work
on affine extended geometry [25, 26, 28]. The main one is that the extension of the affine
algebra (described in section 2.1) contains the Virasoro generator L1 instead of L−1, and that
the rôles of highest and lowest weight modules are interchanged. The reason for our choice
is that we want to adapt to established conventions for tensor hierarchy algebras (agreeing
with conventions for contragredient superalgebras), where grading with respect to some node
of a Dynkin diagram produces lowest weight modules at positive degrees. In this sense, our
conventions agree with and extend those of refs. [4, 31, 32, 35].

2 Affine algebras and representations

2.1 Algebra and notation

An untwisted affine Kac-Moody algebra g+ is a centrally extended loop algebra spanned by
generators TA,m and K. The index A labels a finite-dimensional semi-simple Lie algebra g,
m ∈ Z is a “mode number”, and K a central generator. The non-vanishing Lie brackets are

[TA,m, TB,n] = fAB
CTC,m+n + mηABδm+n,0K . (2.1)

Here, fAB
C are structure constants of g and ηAB its Cartan-Killing metric. We will always

consider the split real form. Generalisation to other real forms is straightforward [30].
The Sugawara construction provides Virasoro generators acting on modules with eigen-

value k of the central generator K according to

L(k)
m = 1

2(k + g∨)
∑
n∈Z

ηAB : TA,nTB,m−n : , (2.2)

where the T ’s are the respective representation matrices and g∨ is the dual Coxeter number
of g. They act on g+ as [Lm, TA,n] = −nTA,m+n. The central charge is c(k) = k dim g

k+g∨ .
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The “structure algebra” we will be working with is the semidirect sum p g+, where p

is the parabolic subalgebra of the Virasoro algebra spanned by L0 and L1. Generators of
p g+ are labelled by indices α, β, . . .. We use the values 0 and 1 of the index for L0 and L1,
respectively. (Occasionally, we will use indices α̂, β̂, . . . to label the extension of g+ with all
Virasoro generators.) The additional non-vanishing brackets in p g+ thus are

[L0, TA,m] = −mTA,m ,

[L1, TA,m] = −mTA,m+1 , (2.3)
[L0, L1] = −L1 . (2.4)

We will often refer to mode-shifted generators. Define a shift operator s by

sTA,m = TA,m+1 ,

sK = 0 , (2.5)
sLm = Lm+1 ,

and define T
(n)
α = snTα. We also allow n < 0 by letting s−1 have the same kernel as s. Note

that this produces results outside p g+. Mode-shift is not an automorphism. In particular,
it annihilates K. When mode-shifted generators are used later, e.g. in the construction of
torsion, this has to be compensated.

Generalised vectors are assigned to the lowest weight module R(−λ) at level k = 1. λ is
the fundamental weight dual to the affine root, and is light-like, (λ, λ) = 0. We label elements
in this module by an upper index M, N, . . ., i.e., V M . Most expressions and calculations
however use an index-free notation, where elements in this lowest weight fundamental module
are treated as bra vectors, ⟨V |, and elements in the dual highest weight module R(λ) are
ket vectors, |W ⟩. Representation matrices in this fundamental representation are written in
lowercase as tα, and ℓm is used for the representation matrices of Virasoro generators.

Although it is useful to introduce the whole Virasoro algebra, the theory is only invariant
under the Lie algebra p g+. Because this Lie algebra is unchanged under the automorphism
defined by

L0 7→ L0 − wK ,

L1 7→ L1 ,

TA,m 7→ TA,m (2.6)
K 7→ K ,

one can define its modules with an arbitrary weight w. Then one can define the affine
extension derivation d as acting on the basic module of weight w as d|W ⟩ = (ℓ0 − w)|W ⟩.
Irrespective of the weight, the highest weight state |0⟩ obeys ℓ0|0⟩ = 0. The standard weight
we will use for highest weight fundamentals (“covectors”) is w = 1, and for lowest weight
fundamentals (“vectors”) w = −1. The reason is tensorial transformation under generalised
diffeomorphisms, see section 3.4.

2.2 Involution and compact subalgebra

A generalised vielbein E parametrises the coset (G+ ⋊ P)/K(G+), where P is the parabolic
subgroup of SL(2) generated by L0 and L1. We parametrise it as E = e−ϕL1ϱ−de, where
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e ∈ G+. We will use the vielbein in the fundamental representation with w = 1. It should, as
usual, be seen as a matrix EM

A, where A is a “flat” index. It thus becomes

E = e−ϕℓ1ϱ−ℓ0+1e . (2.7)

The additional ϱ factor is present since we construct E as the group element in the w = 1
representation. Equivalently, it is introduced to ensure that EM

A transforms as a covector
under generalised diffeomorphisms, and not as a density (see section 3.4). The metric GMN

would formally be given as

G = EHE⊺ = ϱ2e−ϕℓ1ϱ−ℓ0gϱ−ℓ⊺0 e−ϕℓ⊺1 , (2.8)

with g = eHe⊺ being the G+ metric. H is the metric corresponding to the Chevalley involution

τH(T ) = −HT ⊺H−1 , (2.9)

such that the Lie algebra k ⊂ g+ defining K(G+) is invariant, i.e. τH has the eigenvalue 1 on k.
For finite-dimensional Lie algebras and representations, G is a well-defined group element.

However, since we now are dealing with an infinite-dimensional algebra, and its infinite-
dimensional highest or lowest weight representations, we must be more precise about the
definition of the group and its modules. The group element e parametrises the fields of the
theory and is defined in the maximal positive Borel extension of the Kac-Moody group [54].
This means that the generalised vielbein E includes elements in the universal enveloping
algebra of arbitrary high L0 degree, as for example in e−ϕL1 . When we write (G+ ⋊ P),
we always mean the maximal positive Borel extended group. The positive extended group
(G+⋊P) acts consistently on elements of the highest weight module R(λ) that have a maximal
L0 degree. Therefore vectors |W ⟩ ∈ R(λ) are always understood to only carry finitely many
non-zero components in a chosen basis. This is justified in the physical model because the
objects in this modules are derivatives of the fields that satisfy the section constraint [26].
On the contrary (G+ ⋊ P) acts consistently on elements of the completed lowest weight
module R(−λ), that include formal vectors with unbounded L0 degree and infinitely many
non-vanishing components in a given basis.1 These modules are naturally dual to each other
since the scalar product ⟨V |W ⟩ is always finite. We refer to [54–56] for the proper definition
of the maximal positive Borel completed group and its modules. This definition does not
allow to act with the generalised metric G on R(λ), and therefore we do not want to define
G as a group element. However, G−1 is a well defined bilinear form on R(λ). To understand
this, let us define H = hh⊺ for an element h of the minimal Kac-Moody group G+

0 generated
by finite products of real roots generators [55]. It is necessary to define h ∈ G+

0 because
K(G+) ⊂ G+

0 ⊂ G+, such as to act equivalently on highest and lowest weight modules. There
is a preferred basis ⟨eA| in which ⟨eA|H = ⟨eA| and one can define the inverse generalised
metric as an element of R(−λ) ⊗ R(−λ) in this preferred basis as

⟨⟨G−1|| = ⟨⟨H||(E−1 ⊗ E−1) = δAB⟨eA|E−1 ⊗ ⟨eB|E−1 . (2.10)
1This is again justified in the physical model because objects in R(−λ) are for example the two-dimensional

vector fields in exceptional field theory.
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Note that the equivalent definition for G does not belong to the module R(λ) ⊗ R(λ). In
components one may write the scalar product GMN VM WN that is well defined, whereas
GMN V M W N does not make sense with the definitions above. Note also, that the defini-
tion (2.10) coincides with the usual definition for the metric in finite-dimensional modules
of finite-dimensional algebras in components with GMN = δABEA

M EB
N . In practice one

may use the formal expressions, as long as one understands that all matrix multiplications
must be done in an order in which all expressions make sense at every step.

It will be convenient to define the Chevalley involution (2.9) conjugated by E as

τ(T ) = EτH(E−1TE)E−1 . (2.11)

Note that this operation is an involution on g+, but not on p g+. The involution singles out
the conjugate of the compact subalgebra k on which τH has the eigenvalue 1. The invariant
algebra under τ is a subalgebra of g+, but does not act equivalently on R(λ) and R(−λ).
This involution extends to the full (completed) algebra where g+ is extended by all Virasoro
generators, but it does not preserve the parabolic subalgebra p ⊂ Vir. The rôle of p is
to “twist” the involution on g+. Note that eq. (2.11) amounts to “flattening” the indices
of a matrix TM

N , then applying the Chevalley involution, and finally converting back to
“curved” indices. It thus formally coincides with the usual involution τ(T ) = −GT ⊺G−1 for
finite-dimensional algebras and modules.

Keeping the explicit parametrisation (2.8) in terms of L0 and L1, one readily arrives at

τ(T ) = e−ϕ ad(L1)ϱ−ad(L0)τe(ϱad(L0)eϕ ad(L1)T ) , (2.12)

where τe(T ) = eτH(e−1Te)e−1.
The involution τe can be seen as a g involution, varying over the circle. When e is

the unit element, it simply implies τ1(TA,m) = TA⋆,−m, where A⋆ expresses the Chevalley
involution of g, i.e., it becomes the Chevalley involution on g+.

We will have occasion to perform the involution on mode-shifted generators T (n), in
particular for n = −1. It is obvious from the above (since τe acts as a g involution locally
on the circle) that

τe(T (n)) = (τe(T ))(−n) . (2.13)

This will change with the introduction of L0 and L1, which are diffeomorphisms.
The easiest way to understand the impact of these diffeomorphisms on the involution

τ is to consider L0 and L1 as scaling and translation in a variable 1
z :

L0 = −z
d

dz
, L1 = −z2 d

dz
. (2.14)

Then,

ϱL0 : 1
z
7→ ϱ

z
,

eϕL1 : 1
z
7→ 1

z
+ ϕ . (2.15)
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Mode number is identified with degree of homogeneity in z Mode-shift by n units is identified
with multiplication by zn, and involution τ̃ as z 7→ 1

z . Using the decomposition of τ of
eq. (2.12),

1
z
7→ (e−ϕL1 ◦ ϱ−L0 ◦ τ̃ ◦ ϱL0 ◦ eϕL1)1

z
= ϕ + ϱ2 z

1− ϕz
≡ f(z) . (2.16)

This gives the modification of eq. (2.13):

τ(T (−n)) = (f(s))nτ(T ) (2.17)

where s is the shift operator, T + = sT . In particular,

τ(T−) = f(s)τ(T ) = ϕτ(T ) + ϱ2
∞∑

n=0
ϕn(τ(T ))(n+1) . (2.18)

Keeping expressions of this type under control will be instrumental for demonstrating local
K(G+) invariance of the action in section 3.8.

Involutory subalgebras of infinite-dimensional Kac-Moody algebras are more complicated
than for the finite-dimensional ones [57–61]. In particular, they are not semi-simple, and
the presence of non-trivial ideals allow the existence of e.g. finite-dimensional “spinor” rep-
resentations. Little is known even about the behaviour of highest weight modules of affine
Kac-Moody algebras under their compact subalgebra. Such knowledge would be ideally
suited for the present project. We will instead only assure that the dynamics we formulate
is invariant under local transformations in the compact subalgebra.

2.3 Invariant tensors and identities

We use the notation ∨ and ∧ for symmetric and antisymmetric tensor product, both for ele-
ments in fundamentals (“states”) and operators on the tensor product, with the normalisation
a⊗b = a∨b+a∧b. The permutation operator on states is denoted ς: ς(|U⟩⊗|V ⟩) = |V ⟩⊗|U⟩.

We will need some properties of tensor products of fundamentals. Consider a product of
highest weight fundamentals, ||W ⟩⟩ = |U⟩ ⊗ |V ⟩. Having k = 2, they are naturally acted on
by tensor product, Tα · ||W ⟩⟩ = (1⊗ tα + tα ⊗ 1)||W ⟩⟩. Since both L

(2)
m and 1⊗ ℓm + ℓm ⊗ 1

transform the generators in g+ the same way, the differences

Lcoset
m = 1⊗ ℓm + ℓm ⊗ 1− L(2)

m , (2.19)

which also generate a Virasoro algebra (with central charge 2c(1) − c(2) = 2 dim g
(1+g∨)(2+g∨)), are

invariant under g+. These coset generators thus provide invariant tensors, although not
under the whole p g+. We prefer to rescale them and use

Cm = (2 + g∨)Lcoset
m = 1⊗ ℓm + ℓm ⊗ 1−

∑
n∈Z

ηABtA,n ⊗ tB,m−n . (2.20)

Each of the Cm’s represents a possibility to extend g+ with a single Virasoro generator, and
obtain a Lie algebra with a non-singular shifted metric η(m), and can be written

Cm = −η(m)α̂β̂tα̂ ⊗ tβ̂ (2.21)
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using the respective metric. Note that they act on tensor products of highest weight
fundamentals; they carry index structure (Cm)MN

P Q. They manifestly have the property
ςCmς = Cm, where ς is the permutation operator, i.e., (Cm)MN

P Q = (Cm)(MN)
(P Q) +

(Cm)[MN ]
[P Q]. The commutators between Cm’s and the action of tα induced by tensor

product are

[Cm, 2(1 ∨ tα)] = δ0
αmCm + δ1

α(m − 1)Cm+1 , (2.22)

reflecting the invariance under the g+ subalgebra.
The tensor product of two fundamentals contains an infinite number of irreducible

modules organised in a (finite) number of modules of the coset Virasoro algebra. The details
of these modules of course depend on the central charge. A universal property (independent of
g) is that the leading symmetric module, which is the highest weight state in the corresponding
coset Virasoro module, is annihilated by Cm, m ≥ −1, and that the leading antisymmetric
module is annihilated by C0 − 2 and by Cm, m ≥ 1.

The commutators of the Cm’s with mode shifted generators are

[Cm, 1 ∨ t(n)
α ] = 1

2δ0
α(m − n)Cm+n + 1

2δ1
α(m − n − 1)Cm+n+1 . (2.23)

In many calculations, also the antisymmetrised product 1 ∧ tα will be needed. This alone
does not produce a result with a nice form. However, differences of such commutators obey

[Cm, 1 ∧ t(n)
α ]− [Cm−q, 1 ∧ t(n+q)

α ] = 2q(1 ∧ t(m+n)
α ) , (2.24)

which is straightforwardly derived from the explicit form (2.20) of the Cm’s. This equation
is a key to many of our calculations.

As stated above, the coset Virasoro generators are invariant only under the centrally
extended loop algebra g+. Under L0 and L1 they transform, see eq. (2.23). The L0 transfor-
mation is just by weight, which can still be considered covariant, but the L1 transformation is
non-trivial. So, the operators Cm are invariant if they are used with flat indices. With a covari-
antly constant vielbein E at hand, covariantly constant operators C̃m can be constructed as

C̃m = (E ⊗ E)Cm(E−1 ⊗ E−1) . (2.25)

Note that only the Virasoro generators in p are effective in this operation. For example,

C̃0 = C0 − ϕC1 ,

C̃1 = ϱC1 , (2.26)

C̃2 = ϱ2
∞∑

k=0
ϕkC2+k .

3 Affine extended geometry

3.1 The teleparallel complex

The teleparallel formulation of extended geometry has been developed in refs. [31, 32]. We
find certain advantages to this version over the traditional coset dynamics. Neither is fully
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geometric, in the sense that both diffeomorphisms and local k(g+) transformations are manifest
in a tensorial way. The teleparallel formulation has the advantage that fields of all ghost
numbers are identified from a tensor hierarchy algebra, and fit into a complex which is given
the structure of Batalin-Vilkovisky theory [39], i.e., dual to an L∞ algebra [62–65]. From
a more practical point of view, we expect the formalism to be the ideal starting point for
gauged supergravity and consistent truncations [46, 48].

One advantage with the problem of finding the correct dynamics in the teleparallel
framework is that the problem has a clear-cut algebraic formulation, which in addition is
present in its full form already in the linearised theory. This applies also to pure gravity.
It is a matter of finding the 1-bracket of a complex C . We will sketch the structure here,
and refer to ref. [32] for details.

ghost# = 2 1 0 −1 −2 −3

· · · V ′ V ĝ Θ k

k̄ Θ̄ ¯̂g V̄ V̄ ′ · · ·

d d d d d

d

ρ

d

σ

d

ρ⋆

d d

(3.1)

The fields in eq. (3.1) are arranged so that the horizontal position is ghost number as indicated,
and so that ghost number plus dimension (powers of inverse length) is 0 in the upper line
and −1 in the lower line. Let us first describe the content of the upper line of the complex.

Linearised physical fields are found at ghost number 0 as elements of the Lie algebra
ĝ = p g+. Generalised diffeomorphisms are in V (vectors), V ′ houses reducibilities of these,
etc. Antifields in the torsion modules are found in the vector space denoted Θ, while k contains
some Bianchi identity modules projected on the compact subalgebra as ghost antifields. These
(p g+)-modules are, at least for finite-dimensional structure algebras, obtained from the
level decomposition of the tensor hierarchy algebra S(g++) as described in section 3.2 [4].

The form of the 1-bracket in the upper line (except the rightmost arrow) can also be
obtained as a derived bracket. We will forego most of this translation (but see e.g. eq. (3.12)).
In fact, the structure shown in (3.1) is simplified, in that ancillary elements are left out.
Ancillary fields arise in order to cancel local cohomology of the 1-derivative 1-bracket just
described. Although essential for a correct description of the theory (for example, ancillary
transformations arise in commutators of generalised diffeomorphisms in a generic case), most
of the structure is not explicitly needed for the derivation of the dynamics of the physical fields.

A peculiar situation arises in the present case of (extended) affine structure algebra. As
we will see in section 3.5, the set of torsion modules is larger than predicted by the tensor
hierarchy algebra. Accordingly, also the set of Bianchi identities (section 3.7) is larger. We
do not know if this is due to the singular properties of affine algebras, or if the “enhancement”
will persist for further extended algebras. (Neither are we aware of any version of the tensor
hierarchy algebra containing these modules, but suspect that one may exist.) This affects the
modules Θ, Θ̄ in (3.1) and the set of ancillary fields (suppressed in (3.1)), not the existence
of the complex, which probably necessitates the additional modules.

The upper line is mirrored in the lower line, where conjugate modules (with respect to
integration, so in fact densities) are acted on by the natural dual of the 1-bracket of the upper
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line. The remaining parts of the 1-bracket (disregarding ancillary fields) are ρ, the embedding
of k in ĝ (defined by a background vielbein), its dual ρ⋆ and the “dualisation” σ. The latter
is the true unknown, barring the question of which combination of Bianchi identities should
be used for the last horizontal arrow in the upper line. In order for this to be a complex, the
1-bracket q = d + ρ + σ + ρ⋆ has to satisfy q2 = 0, which leads to the condition

dρ + σd = 0 . (3.2)

This should be seen as an algebraic condition on σ, which must be constructed as a sum
of multiples of the identity on the k-modules in Θ. With the natural pairing ⟨·, ·⟩ on the
complex, a linearised BV action for Ψ ∈ C is written as

S0 = 1
2⟨Ψ, qΨ⟩ . (3.3)

The form of σ is unchanged in the non-linear theory.
Elimination of fields occurring algebraically (in the modules Θ, k and their duals) amounts

to homotopy transfer to the cohomology of the diagonal arrows, resulting in the system

· · · V ′ V ĝ⊖ k

ĝ⊖ k V̄ V̄ ′ · · ·

(3.4)

with a 2-derivative equation of motion. This is the linearisation of the standard “coset
formulation” of extended geometry. Elimination of only Θ, Θ̄, i.e., transfer to the cohomology
of σ, leads to the system

· · · V ′ V ĝ k

k̄ ¯̂g V̄ V̄ ′ · · ·

d d d

dσ−1d

ϱ

d

ϱ∗

d d

(3.5)

This is the linearisation of the teleparallel formulation of extended geometry, with a kinetic
term that is quadratic in torsion, contracted by a matrix σ−1, i.e.,

S0 = 1
2⟨Θ(E), σ−1Θ(E)⟩ , (3.6)

Θ(E) = dE being the linearised torsion. Invariance under k now follows from eq. (3.2) as
dσ−1dϱ = −dσ−1σd = −d2 = 0. The step to the non-linear theory amounts to covariantisation.
The only other issue in going from the linear to the non-linear model is the restricted form
of the Bianchi identities, see section 3.7.

In section 3.8, we will use this form of the dynamics to derive the action for teleparallel
affine extended geometry. The method we will use is the covariant (non-linear) version of
the complex (3.5). Roughly speaking, all arrows in this complex, except the “curved” two-
derivative one, follow from the tensor hierarchy algebra, as we will review in section 3.2. The
covariant version of this is the construction of torsion in section 3.5. The arrows in (3.1) which
then are unknown are σ and the arrow Θ → k (and its dual). The former encodes the dynamics,
in the sense of eq. (3.6). The latter, although not present in (3.5), encodes which combination
of Bianchi identities into k are used in showing the invariance. Concretely, the dual arrow
k̄ → Θ̄ can be solved as d = −σ−1dϱ, and the arrow Θ → k is constructed as d = −ρ⋆dσ−1.
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3.2 Fields from the tensor hierarchy algebra

The fields appearing at different ghost numbers in the upper line of the complex of section 3.1
(also the ancillary ones) are identified using a tensor hierarchy algebra. This becomes
increasingly important when the structure algebra one starts from is infinite-dimensional.
It may then not be obvious what local symmetries, fields, fields strengths and Bianchi
identities should appear (including ancillary ones). The affine case treated in the present
paper is the first step to infinite-dimensional structure algebras, and the tensor hierarchy
algebra informs us that the algebra we should consider is larger, containing also L1. When
we continue to e.g. over-extended Kac-Moody algebras, simple guessing becomes virtually
impossible. Then, also e.g. the generalised diffeomorphisms get enriched with modules beyond
the lowest weight fundamental.

The principle is the following [4]: we first extend the affine Kac-Moody algebra g+ to an
over-extended Kac-Moody algebra g++ by adding a node to the Dynkin diagram (connected
to the affine node) and then to the tensor hierarchy algebra S(g++) by adding another
node (connected to the previous one), which is grey (⊗), meaning that the corresponding
diagonal entry in the Cartan matrix is zero, and that the associated generators are fermionic.
The tensor hierarchy algebra is thus a Lie superalgebra, defined by generators associated
to the nodes and relations involving a Cartan matrix that can be read off from the Dynkin
diagram. The corresponding extensions of finite-dimensional Lie algebras are related to
the Borcherds-Kac-Moody algebras used in [66, 67]. We will not review the construction
in detail, but refer to ref. [36].

One considers the double grading of S(g++) with respect to the two added nodes, which
we here label −1 and −2, so that the corresponding additional generators in the extension
from g+ to S(g++) include e−1 and ϵ−2, where e−1 is bosonic and ϵ−2 fermionic. In our
conventions for the double grading, the degree (p, q) is such that e−1 is found at degree
(1, 1) and ϵ−2 at degree (0,−1). In appendix A, relevant elements in this grading and their
brackets are tabulated.

All fields, non-ancillary as well as ancillary, are found as modules of the Lie algebra at
degree (0, 0) (which is p g+) at specific degrees. The module at (p, q) is dual to the one at
(−p, 1− q). The eigenvalue of K at (p, q) is k = −p. All elements come in pairs, related by
what we call lowering and raising [3, 35]. Lowering is defined as A♭ = −[A, ϵ−2], and raising
so that ♭♯ + ♯♭ = 1. Ghost number is p + q. Non-ancillary fields are at q = 0, and span the
subalgebra W (g+). Ancillary fields are found at q = 1. They are present at degree (p, 1)
when the module at degree (p + 1, 1) is larger than the one at (p + 1, 0), i.e., when there is
some module R(p+1,1) annihilated by ♭. It can then be written as R♭

(p+1,2). The ancillary field
at (p + 1, 1) is formed as [(Bp+1,2)M , F ♭M ], B being an element in a module R(p+1,2) with
an extra section-constrained index, and F ♭M is a basis element at (−1,−1). A part of the
1-bracket of the extended geometry is ♭. More information about the structure of S(g++)
at −2 ≤ p ≤ 2 is given in appendix A, including table A.1.

In affine extended geometry, we extract the field content from table A.1. The elements
at degree (1, 0) are ghosts of generalised diffeomorphisms, a vector in R(−λ). There are also
ghosts for ancillary transformations at degree (0, 1). These can be formed as [BM

N L♯
N , F ♭M ],

where the index M on BM
N is section-constrained, which means that BM

N together with a

– 10 –
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derivative satisfies the section constraint given below as a condition on pairs of derivatives.
These ghosts are of course important as local symmetries, but not explicitly used for the
construction in the present paper. (The invariance under generalised diffeomorphisms
implies invariance under ancillary transformations, arising in the commutator of generalised
diffeomorphisms.) At degree (0, 0) we find the (linearised) fields in the algebra p g+, and
at degree (−1, 1) the ancillary section-constrained field γ−

MΦ♯M = [γ−
M π♯, F ♭M ]. Antifields

in the torsion modules θM and Θ−
M with weight 1 and 2, respectively, are found at degree

(−1, 0) and Bianchi identities at (−2, 0).
It is, in retrospect, interesting to observe that the torsion we will use to construct the

dynamics contains more than what is found in the tensor hierarchy algebra, see section 3.5.

3.3 Coordinates, derivatives and section constraint

Extended coordinates belong to a lowest weight module R(−λ) of the structure algebra,
and derivatives to the conjugate, highest weight, module R(λ). Derivatives are subject to
a section constraint, which for extended geometry in general reads

Y |∂⟩ ⊗ |∂⟩ = 0 , (3.7)

where [2, 25]

Y = −ηαβtα ⊗ tβ + (λ, λ)− 1 + ς (3.8)

in a normalisation of roots and weights where long roots α satisfy (α, α) = 2. The derivatives
in eq. (3.7) can act on anything. Solutions of the section constraint, “sections”, are linear
subspaces S of the minimal orbit in R(λ) under the structure group. It states that the
product of any two vectors in the section S lies only in the highest symmetric product
R(2λ) and in the highest antisymmetric product R(2λ − α), where α is the root dual to
λ, in our case the affine root.

The affine algebra g+ does not have a non-degenerate metric. The correct choice (yielding
precisely the leading modules in the tensor product) is to extend by L0. The extension has
an invariant metric, and insertion into eq. (3.8) yields Y = C0 − 1 + ς. The leading modules,
with eigenvalues 1 − ς of C0, are also of course annihilated by all positive coset Virasoro
generators. The symmetric one is in addition annihilated by C−1. We thus have

Cm|A⟩ ∨ |B⟩ = 0 , m ≥ −1 ,

(Cm − 2δm,0)|A⟩ ∧ |B⟩ = 0 , m ≥ 0 , (3.9)

for |A⟩, |B⟩ ∈ S.
We notice that if the section constraint holds, it also holds expressed in flat indices,

and vice versa. Namely, let |A⟩, |B⟩ ∈ S and let E−1|A⟩ and E−1|B⟩ be the corresponding
vectors transforming under k(g+). Then,

Cm(E−1|A⟩ ⊗ E−1|B⟩) = (E−1 ⊗ E−1)C̃m|A⟩ ⊗ |B⟩ . (3.10)

Each C̃m is a linear combination of Cn, n ≥ m according to eq. (2.25). This proves the
statement, which can be understood as the invariance of the section constraint under the
full structure group G+ ⋊ P.
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3.4 Generalised diffeomorphisms

A generalised diffeomorphism takes the general form in extended geometry:

LξVM = ξN ∂N VM + ηαβtαM
QtβN

P ∂P ξN VQ + w∂N ξN VM . (3.11)

The first term is a transport term, the second and third ones transformations in the structure
algebra and scaling. We have chosen to display the action on a covector density V ; other
modules of the structure algebra follow. The weight w is arbitrary, the canonical value for a
covector is 1− (λ, λ). As a “derived bracket” from the underlying tensor hierarchy algebra
(see appendix A), this generalised Lie derivative is constructed as

LξA = [[ξ, F ♭M ], ∂M A♯]− [[∂M ξ♯, F ♭M ], A] , (3.12)

with ξ = ξN EN , when A is some object obeying A♭ = 0.
In affine extended geometry, (λ, λ) = 0. The correct choice for the inverse metric is again

the one obtained from the extension of g+ with L0, leading to

LξVM = ξN ∂N VM − (C0)MN
QP ∂P ξN VQ + w∂N ξN VM . (3.13)

Note that, due to the metric component (L0, K) = −1, weight is shift of the action of L0
(for a covector with a minus sign).

3.5 Connection and torsion

The generalised vielbein EM
A is covariantly constant,

DM EN
A = ∂M EN

A + ΓMN
P EP

A = 0 , (3.14)

if the connection is chosen as the right-invariant Maurer-Cartan form

ΓMN
P = −(∂M EE−1)N

P . (3.15)

This is the (generalised) Weitzenböck connection. Note that the covariant constancy does not
involve a spin connection. The connection has a derivative for its first index, which means
it is in section; it obeys the section constraint together with any other section-constrained
object. It fulfils the Maurer-Cartan equation

∂MΓN − ∂NΓM + [ΓM ,ΓN ] = 0 . (3.16)

The connection is thus flat, expressing teleparallelism.
In a generic case where the structure algebra is g ⊕ R for some (finite-dimensional)

Lie algebra g, the parts of the connection corresponding to g and R are extracted as
ΓM = tαΓM

α + wγM , where w is the weight of E and γM the scaling connection. In the
present case, however, with affine structure algebra, we have seen that weight is encoded in
the shifted action of d = ℓ0 − 1 (see e.g. eq. (A.4)). In covariant derivatives, ΓM

0 will be
accompanied by the representation matrix of d of the object it acts on, including weight.
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In order for the definition of the connection components to be independent of the weight
assigned to E = e−ϕℓ1ϱ−ℓ0+1e, we let

ΓM = ΓM
αtα − ΓM

0 . (3.17)

Then,

ΓM
αtα = −e−ϕad(ℓ1)ϱ−ad(ℓ0)(∂M ee−1) + ∂M ϱ

ϱ
ℓ0 +

(
∂M ϕ − ϕ

∂M ϱ

ϱ

)
ℓ1 . (3.18)

Torsion is by definition the tensorial part of the connection. From the tensor hierarchy
algebra, we expect torsion to appear as a covector (as usual) together with a minus-shifted
covector. The latter is what encodes the “big” torsion module appearing for finite-dimensional
structure algebras, and the former the “small” one in R(λ) (present in W (g+) but not in
S(g+)). The inhomogeneous part of the transformation of the connection under generalised
diffeomorphisms, ∆ξ ≡ δξ − Lξ, is

∆ξΓM
α = −η(0)αβtβN

P ∂M ∂P ξN ,

i.e., ∆ξ|Γα⟩ = −η(0)αβ(1⊗ ⟨ξ|)(1⊗ tβ)|∂ξ⟩ ⊗ |∂ξ⟩ . (3.19)

Subscripts on ∂ indicate the object they act on. If we form the fundamental

|θ⟩ = tα|Γα⟩ , (3.20)

this leads to

∆ξ|θ⟩ = (1⊗ ⟨ξ|)C0|∂ξ⟩ ⊗ |∂ξ⟩ = 0 , (3.21)

vanishing thanks to the symmetric section constraint.
The minus-shifted torsion should then tentatively appear as t−α |Γα⟩ (this is also the

result of the naïve 1-bracket derived from the tensor hierarchy algebra). However, K− = 0,
and we only obtain

∆ξ(t−α |Γα⟩) = (1⊗ ⟨ξ|)

ℓ−1 ⊗ 1−
∑
n∈Z

ηABtA,n ⊗ tB,−1−n

 |∂ξ⟩ ⊗ |∂ξ⟩ . (3.22)

In order to get the missing term to build C−1 and use the section constraint, we need
also to introduce an ancillary field |γ−⟩ with inhomogeneous transformation rule ∆ξγ−

M =
(ℓ−1)N

P ∂M ∂P ξN , and let

|Θ−⟩ = |γ−⟩+ t−α |Γα⟩ . (3.23)

|γ−⟩ is section-constrained. All this is precisely what is read off from the tensor hierarchy
algebra, section 3.2, and agrees with the nilpotent derived 1-bracket obtained from it (co-
variance of torsion is the non-linear version of the nilpotency of the 1-bracket starting at
diffeomorphism ghosts). Even if we do not find such torsion in the tensor hierarchy algebra, it
is clear from the procedure that it can be repeated with any shift n ≥ −1, so there is torsion

|Θ(n)⟩ = |γ(n)⟩+ t(n)
α |Γα⟩ , n ≥ −1 , (3.24)
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where |γ(0)⟩ = 0 and ∆ξγ
(n)
M = (ℓn)N

P ∂M ∂P ξN , n ≥ −1. The inhomogeneous part of variation
under generalised diffeomorphism of |Θ(n)⟩ then gives

∆ξ|Θ(n)⟩ = (1⊗ ⟨ξ|)Cn|∂ξ⟩ ⊗ |∂ξ⟩ = 0 , (3.25)

which vanishes for n ≥ −1 according to the section constraint (3.9).
The non-covariance of the shifts necessitates checking the transformations of the shifted

torsions under the Virasoro generator L1. Using, for any element A in the Virasoro-extended
affine algebra, that s[L1, A] = [L1, sA] + s2A, iterated to sn[L1, A] = [L1, snA] + nsn+1A,
this implies the off-diagonal action of L1 on shifted torsions:

L1 · |Θ(n)⟩ = ℓ1|Θ(n)⟩+ n|Θ(n+1)⟩ . (3.26)

This of course also applies to terms in covariant derivatives containing Γ1. Note that it
is in agreement with the brackets in the tensor hierarchy algebra, see e.g. eq. (A.9). The
off-diagonal elements of L1 in this module can be eliminated by forming new field-dependent
combinations2 (with good properties also under L0):

|Θ̃−⟩ = ϱ−1(|Θ−⟩ − ϕ|θ⟩); ,

|Θ̃+⟩ = ϱ
∞∑

i=0
ϕi|Θ(i+1)⟩ (3.27)

The covariant derivatives on |Θ̃±⟩ fulfil

|D⟩ ⊗ |Θ̃−⟩ = ϱ−1(|D⟩ ⊗ |Θ−⟩ − ϕ|D⟩ ⊗ |θ⟩) ,

|D⟩ ⊗ |Θ̃+⟩ = ϱ
∞∑

i=0
ϕi|D⟩ ⊗ |Θ(i+1)⟩ . (3.28)

A convenient way of deriving the Θ̃’s is the covariant procedure of “flattening” indices
with E−1, then shifting indices, and finally reverting to coordinate basis indices with E. We
have E−1|Θ⟩ = E−1tαE|E−1Γα⟩. Acting on generators, we define

T̃ + ≡ s̃T = Es(E−1TE)E−1 . (3.29)

Note that under involution

τ(T̃±) = τ(T̃ )∓ . (3.30)

We can again make use of the action of P of eq. (2.15). We find, on any function f(z),

f̃−(z) ≡ (e−ϕL1 ◦ ϱ−L0 ◦ s−1 ◦ ϱL0 ◦ eϕL1)f(z) = ϱ−1
(1

z
− ϕ

)
f(z) , (3.31)

f̃+(z) ≡ (e−ϕL1 ◦ ϱ−L0 ◦ s ◦ ϱL0 ◦ eϕL1)f(z) = ϱ
1
z − ϕ

f(z) = ϱ
∞∑

k=0
ϕkzk+1f(z) .

2And also |Θ̃(n)⟩ = ϱn
∑∞

i=0(
−n

i )(−ϕ)i|Θ(i+n)⟩ for n ≥ 2, which will not be used.
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We recognise the linear combinations from eq. (3.27). Thus,

|Θ̃(m)⟩ = |γ̃(m)⟩+ E(E−1tαE)(m)|E−1Γα⟩ . (3.32)

The relations (3.28) and (3.30) are now manifest.
In conclusion, we have found the torsion Θ− and θ with weights 2 and 1, respectively,

predicted by the tensor hierarchy algebra, but also Θ(n), n > 0, with weight 1 − n. The
field-dependent combinations that will be used in the construction of the action are Θ̃(n),
n = −1, 0, 1, all with weight 1. Of these, only the first two can be formed from the ones
in the tensor hierarchy algebra.

3.6 Weights and integration

An object with weight w, transforming as eq. (3.13) under generalised diffeomorphisms (with
the obvious extension to arbitrary g+ modules) is acted on with the covariant derivative

DM VN = ∂M VN + ΓM
αtαN

P VP − wΓM
0VN . (3.33)

The last term arises since the inhomogeneous transformation (3.19) gives ∆ξΓM
0 = ∂M ∂N ξN .

The scale parameter ϱ is a covariantly constant scalar density of weight 1 (thus subsuming
the rôle of the determinant of the metric). As is also seen from the list of weights in the
tensor hierarchy algebra, table A.1, (p, q) = (−1, 0), the weight of the unshifted torsion
|θ⟩ is 1, the tensorial value. Shifted torsion |Θ(n)⟩ carries weight 1 − n. All |Θ̃(n)⟩ are
tensors, and have weight 1.

If V M is a vector density with weight 0,

DM V M = ∂M V M − ΓM
αtαN

M V N = (∂M − θM )V M . (3.34)

So a naked divergence is covariant, and ∂M V M = (DM + θM )V M is a scalar density with
weight 1.

This is relevant for showing invariance, modulo a total derivative, of an action under
local rotations in k(g+). Let the Lagrangian density be L (of weight 1), and its variation
DMΥαZα

M , where Υ is the variation parameter.3 Then,

δΥL = DMΥαZα
M = ∂M (ΥαZα

M )−Υα(DM + θM )Zα
M . (3.35)

If we want the second term to vanish with the help of Bianchi identities, it follows that these
must contain D̄ ≡ D + θ. In terms of the teleparallel complex, the same observation follows
from the duality under integration of the 1-brackets in a given background [32].

3.7 Bianchi identities

It is clear already from the complex in section 3.1 that Bianchi identities are responsible
for the invariance under local rotations in teleparallel theories.

In the light of the considerations in section 3.6, we are interested specifically in Bianchi
identities which can be written on the form

(D + θ)P ZMN
P = 0 , (3.36)

3The variation parameter Υ̃∈ k(g+) is defined such that δE =EΥ̃=ΥE and δΓM =−E(∂M Υ̃)E−1 =−DMΥ.
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with Z being linear in torsion, and where the pair MN may be converted into an adjoint index.
All Bianchi identities do not have this form. From the example calculation in appendix B,
it is seen that the presence of θ actually simplifies many terms and makes the proof easier.
We have a conjecture that Bianchi identities of this type appear in the tensor hierarchy
algebra as modules which are not in the image of ♭, and expect that this may be proven
using the methods of refs. [37, 38].

A new feature, compared to finite-dimensional structure algebras, is that not only
antisymmetric Bianchi identities, but also symmetric ones, enter the proof that the action
is invariant modulo a total derivative under local rotations.

The following is a list of Bianchi identities of the desired form, expressed in terms of
shifted torsion, that will be used for showing invariance of the action.

C1|D̄⟩∧|Θ−⟩−(C0+2)|D̄⟩∧|θ⟩=0 ,

2C2|D̄⟩∧|Θ(n)⟩−3C1|D̄⟩∧|Θ(n+1)⟩+(C0−2)|D̄⟩∧|Θ(n+2)⟩=0 , n≥−1 ,

C1|D̄⟩∨|Θ(n)⟩−C0|D̄⟩∨|Θ(n+1)⟩=0 , n≥−1 , (3.37)

Cm|D̄⟩⊗|Θ(n)⟩−2Cm−1|D̄⟩⊗|Θ(n+1)⟩+Cm−2|D̄⟩⊗|Θ(n+2)⟩=0 , m≥ 3 ,n≥−1 .

Only the first identity uses the Maurer-Cartan equation for the connection, the other ones are
more “trivial”. All of course rely on the section constraint. There is also a Bianchi identity

(C0 − 2)|D̄⟩ ∧ |Θ−⟩ − C−1|D̄⟩ ∧ |θ⟩ , (3.38)

which is not used in the construction of the action. We refer to appendix B for the method
of proof of these Bianchi identities, and one explicit example.

The Bianchi identities that we eventually will use involve Θ̃±, not Θ±. We will now
demonstrate that Bianchi identities of the same form as above hold, if all Cm are replaced
by C̃m and Θ(m) by Θ̃(m), and vice versa.

Consider a term C̃m|D⟩ ⊗ |Θ̃(n)⟩. We can now use eq. (3.32) to write it as

C̃m|D⟩ ⊗ |Θ̃(n)⟩ = (E ⊗ E)Cm|E−1D⟩ ⊗ (|E−1γ̃(n)⟩+ (E−1tαE)(n)|E−1Γα⟩) . (3.39)

Furthermore, let E−1tαE = ξα
βtβ and Γ′α = ξβ

αΓβ. The first of these equations may look
confusing, since it seems to equate a left hand side carrying flat indices with a right hand
side carrying coordinate basis indices, but makes sense by just thinking of E as a group
element, then ξ−1 is the corresponding group element in the adjoint representation, and the
equation states invariance of representation matrices. Then,

C̃m|D⟩ ⊗ |Θ̃(n)⟩ = (E ⊗ E)Cm|E−1D⟩ ⊗ (|E−1γ̃(n)⟩+ t(n)
α |E−1Γ′α⟩) . (3.40)

Since ξ is a conjugation, Γ′ obeys the same Maurer-Cartan equation as Γ. The other
ingredients in the derivation of the Bianchi identities (3.37) are the commutators between
Cm and t

(n)
α and the section constraint. The shifted generators now stand next to Cm, just

like in Cm|D⟩⊗ |Θ(n)⟩, and the section constraint holds also for flattened indices (section 3.3).
Therefore, the same proof of Bianchi identities holds as in appendix B. The argument also
goes the other way.
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The proof is abstract enough to warrant some illustration. Consider, as an example,
the antisymmetric covariant Bianchi identity

2C̃2|D̄⟩ ∧ |Θ̃−⟩ − 3C̃1|D̄⟩ ∧ |θ⟩+ (C̃0 − 2)|D̄⟩ ∧ |Θ̃+⟩ = 0 . (3.41)

We will expand the left hand side in ϕ using the relations (3.27) and (2.26). This gives

2C̃2|D̄⟩ ∧ |Θ̃−⟩ − 3C̃1|D̄⟩ ∧ |θ⟩+ (C̃0 − 2)|D̄⟩ ∧ |Θ̃+⟩

= ϱ
∞∑

k=0
ϕk
(
2C2+k|D̄⟩ ∧ |Θ−⟩ − 2C1+k|D̄⟩ ∧ |θ⟩ (3.42)

− C1|D̄⟩ ∧ |Θ(k)⟩+ C0|D̄⟩ ∧ |Θ(1+k)⟩
)

.

The 4-term sum inside the parenthesis for a given k can, by repeatedly adding and subtracting
the same terms, be written as

2
k−1∑
ℓ=0

(
C2+k−ℓ|D̄⟩ ∧ |Θ(−1+ℓ)⟩ − 2C1+k−ℓ|D̄⟩ ∧ |Θ(ℓ)⟩+ Ck−ℓ|D̄⟩ ∧ |Θ(1+ℓ)⟩

)
+ 2C2|D̄⟩ ∧ |Θ(−1+k)⟩ − 3C1|D̄⟩ ∧ |Θ(k)⟩+ (C0 − 2)|D̄⟩ ∧ |Θ(1+k)⟩ , (3.43)

which vanishes thanks to the “untilded” Bianchi identities.
The Bianchi identities that will be used in section 3.8 are those involving only Θ̃−,

θ = Θ̃(0) and Θ̃+. They read:

C̃1|D̄⟩ ∧ |Θ̃−⟩ − (C̃0 + 2)|D̄⟩ ∧ |θ⟩ = 0 ,

2C̃2|D̄⟩ ∧ |Θ̃−⟩ − 3C̃1|D̄⟩ ∧ |θ⟩+ (C̃0 − 2)|D̄⟩ ∧ |Θ̃+⟩ = 0 ,

C̃1|D̄⟩ ∨ |Θ̃−⟩ − C̃0|D̄⟩ ∨ |θ⟩ = 0 , (3.44)
C̃1|D̄⟩ ∨ |θ⟩ − C̃0|D̄⟩ ∨ |Θ̃+⟩ = 0 ,

C̃m|D̄⟩ ⊗ |Θ̃−⟩ − 2C̃m−1|D̄⟩ ⊗ |θ⟩+ C̃m−2|D̄⟩ ⊗ |Θ̃+⟩ = 0 , m ≥ 3 .

Only the first and third of these identities contain torsion within the tensor hierarchy algebra,
and are present in it at level (p, q) = (−2, 0).

3.8 Teleparallel affine geometry

We search the explicit form of the “kinetic operator” σ−1 (see section 3.1), such that
the Lagrangian

L = 1
2ϱ(σ−1)MN

(m,n)Θ̃
(m)
M Θ̃(n)

N = 1
2ϱ⟨⟨(σ−1)(m,n)|||Θ̃(m)⟩ ⊗ |Θ̃(n)⟩ (3.45)

is invariant under local K(G+) rotations. Summation over m, n = −1, 0, 1 is understood. The
overall factor ϱ gives L weight 1 (all other objects are tensors), appropriate for integration.

The tools at hand for constructing the kinetic operator are the invariant tensors
of section 2.3 together with the metric G. We assume, without any restriction, that4

4All ket vectors carry indices that come from derivatives, i.e., from section-constrained covectors. In a
suitable basis, these are of finite depth, and contraction with G−1 is well defined.
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⟨⟨(σ−1)(m,n)|| = ⟨⟨G−1||X̃(m,n), so that the Ansatz (3.45) can be written as

L = 1
2ϱ⟨⟨G−1||X̃(m,n)|Θ̃(m)⟩ ⊗ |Θ̃(n)⟩ . (3.46)

Each X̃(m,n) is some element in End(⊗2F ), acting on the tensor product of (shifted) funda-
mentals. In the end, these will be linear combinations of the identity operator and coset
Virasoro operators C̃m. We will present (candidate) terms in X̃ as matrices; it should then
be remembered that each entry is an operator. Since all (G−1X̃)MN are symmetric in (MN),
we must have X̃(m,n) = ςX̃(n,m)ς. Since the identity and the coset Virasoro generators fulfil
O = ςOς, we arrive at X̃(m,n) = X̃(n,m). Letting the corresponding operators in flat indices
be X(m,n) = (E−1 ⊗ E−1)X̃(m,n)(E ⊗ E), the Lagrangian is written as

L = 1
2ϱ⟨⟨H−1||X(m,n)(E−1 ⊗ E−1)|Θ̃(m)⟩ ⊗ |Θ̃(n)⟩ . (3.47)

The transformations under local rotations with parameter Υ ∈ k(g+) is, as already
stated, δΥE = −EΥ, leading to

δΥΘ̃(m) = Ds̃(m)(EΥE−1) = D(EsmΥE−1) (3.48)

where s̃ is defined by (3.29). After partial integration, using eq. (3.35), this leads to terms5

(δΥL ) = ϱ⟨⟨H−1||X(m,n)(Υ(m) ⊗ 1)(E−1 ⊗ E−1)|D̄⟩ ⊗ |Θ̃(n)⟩ (3.49)

module a total derivative, where |D̄⟩ = |D + θ⟩ acts on the object to its right, |Θ̃(n)⟩.
There are two essential pieces of information that may be used in order to show invariance:

the property Υ ∈ k(g+) and the Bianchi identities. The former is expressed as τH(Υ) = Υ
(this is the Chevalley involution). Furthermore, using the general statement ⟨⟨H−1||(1⊗ T ) =
−⟨⟨H−1||(τH(T ) ⊗ 1), we can make use of eq. (2.13) to obtain

⟨⟨H−1||(Υ ∨ 1) = 0 ,

⟨⟨H−1||(Υ− ⊗ 1) = ⟨⟨H−1||(Υ+ ∧ 1)− ⟨⟨H−1||(Υ+ ∨ 1) . (3.50)

Before these identities can be set to work, and also before Bianchi identities can be
extracted, the coset Virasoro generators in X(m,n) must be moved past (Υ(m)⊗1) in eq. (3.49).
We thus need to deal with commutators [X(m,n),Υ(m) ⊗ 1]. Since Υ lies in the loop algebra,
the symmetric product commutes, [X(m,n),Υ(m) ∨ 1] = 0. For the antisymmetric product,
we need to rely on eq. (2.24).

Considering eq. (3.49), and only the terms linear in coset generators, we see that the
rows of the matrix X(m,n) need to be such that eq. (2.24) can be applied, i.e., the rows must
be sums of neighbouring (Cm,−Cm−1), and that the columns need to provide (non-constant
terms in) Bianchi identities. In addition, if this happens already before eq. (3.50) is applied,
an expression is trivial (or reduces to an expression without coset generators).

This puts strong restrictions on the matrices that can be used, but we need a starting point.
One piece of information can be gained from reducing to adjoint extended geometry. This is

5Here, it is essential that X̃ is covariantly constant, which it is when built from coset Virasoro generators
with flat indices and vielbeins, i.e., from C̃m’s.
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done by choosing a solution of the affine section constraint where |∂⟩ = |0⟩∂0 + tA,−1|0⟩∂A,
with the adjoint ∂A satisfying the section constraint of adjoint extended geometry, and
restricting the vielbein to an adjoint group element. We will not perform the complete
reduction. The only input we need here is the quite straightforwardly derived observation
that there must be a term ⟨⟨G−1||C̃2|Θ̃−⟩ ⊗ |Θ̃−⟩. This can also be deduced by a comparison
to the dynamics in the coset formulation [26].

In order for the rows to fulfil the above requirement (with a symmetric matrix), this
necessitates a term in X

N =

 C2 −C1 0
−C1 C0 0
0 0 0

 , (3.51)

where rows and columns are labelled by m, n = −1, 0, 1. However, while the second column
corresponds to symmetric and antisymmetric Bianchi identities (there will be remainders,
with the identity matrix), the first column does not. The matrix N must be combined
with something else in order to obtain Bianchi identities, after using eq. (3.50). The key
property is in fact that the symmetric and antisymmetric Bianchi identities (second and third
equations in (3.37)) contain different combinations of coset Virasoro generators, with the
right combinations arising from the different signs for (Υ+ ∧ 1) and (Υ+ ∨ 1) in eq. (3.50).
Another building block is

M =

 C4 −2C3 C2
−2C3 4C2 −2C1

C2 −2C1 C0

 . (3.52)

For this matrix, the first two columns give symmetric and anti-symmetric Bianchi identities,
while the last column does not.

Note that the sum of the first column in N and the third column in M gives the
coefficients of the antisymmetric Bianchi identity

C̃2(D̄ ∧ Θ̃−)− 3C̃1(D̄ ∧ Θ̃(0)) + 2(C̃0 − 2)(D̄ ∧ Θ̃+) = 0 , (3.53)

while the difference gives those of the symmetric Bianchi identity

C̃1(D̄ ∨ Θ̃(0))− C̃0(D̄ ∨ Θ̃+) = 0 . (3.54)

This is precisely what is obtained when Υ− is “folded” into Υ+ by eq. (3.50), which means
that the first column is added to (for antisymmetric product) and subtracted from (for
symmetric product) the third column. Then, only terms with the identity matrix remain.
A general Ansatz containing also such terms reveals that

X = N + M +

−1 0 −1
0 4 0
−1 0 −1

 . (3.55)

The equality of the first and third columns in the constant matrix guarantees that only Υ+ ∧1
is generated in the variation. Then, the resulting element −2 at position −+ compensates
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for the right hand side of using eq. (2.24) for the terms in the variation represented by the
first row of N , while the resulting −2 at position ++ provides the constant term (as in
C̃0 − 2) in the antisymmetric Bianchi identity. The 4 in the middle compensates both for
a term from (2.24) for the second row in N and for the constant in C̃0 + 2 in the Bianchi
identity of the second column.

3.9 Local invariance of ancillary fields

Compared to the content in the tensor hierarchy algebra, we have introduced one more
ancillary field. Instead of only |γ−⟩, we have both |γ̃−⟩ and |γ̃+⟩, to account for the correct
transformations under generalised diffeomorphisms of |Θ̃±⟩. We will now show that only
the combination |γ̃− + γ̃+⟩ appears in the action, implying a local symmetry δ|γ̃−⟩ = |Σ⟩,
δ|γ̃+⟩ = −|Σ⟩, with |Σ⟩ section-constrained. This symmetry can in principle be used to set
|γ̃+⟩ = 0. This implies that one only needs to introduce a single ancillary vector field |γ−⟩ to
define the theory. Such a choice is however inconvenient, as it interferes with the tensorial
properties of the torsion under generalised diffeomorphisms.

Consider first the terms in the action quadratic in ancillary fields. All Cm’s in the matrix
X of eq. (3.55) give 0 due to the symmetric section constraint. The only remainder comes
from the −1’s in the corner of the last matrix. The contribution to the action is

−1
2ϱ⟨⟨G−1|||γ̃− + γ̃+⟩ ⊗ |γ̃− + γ̃+⟩ . (3.56)

Next, the contribution linear in ancillary fields is (using the form (3.47))

ϱ⟨⟨H−1||
(
(C4 + C2 − 1)(1⊗ t−α )− (2C3 + C1)(1⊗ tα) + (C2 − 1)(1⊗ t+

α )
)

× |E−1γ̃−⟩ ⊗ |E−1Γ′α⟩

+ ϱ⟨⟨H−1||
(
(C2 − 1)(1⊗ t−α )− 2C1(1⊗ tα) + (C0 − 1)(1⊗ t+

α )
)

(3.57)

× |E−1γ̃+⟩ ⊗ |E−1Γ′α⟩ ,

where |Γ′α⟩ is defined after eq. (3.39). We want to use the section constraint with one |E−1γ̃±⟩
and one |E−1Γ′α⟩, and need to pull the Cm’s past the operators 1⊗ t

(n)
α . All commutators

with 1 ∨ t
(n)
α produce Cn, n ≥ 1, which yield 0 due to the (symmetric and antisymmetric)

section constraint. The commutators with 1∧ t
(n)
α cancel in the third line of eq. (3.57), but in

the first line there is a remaining [C2, 1∧ t−α ]− [C1, 1∧ tα] = 2(1∧ t+
α ). The section constraint

from the Cm factors, after having passed to the right of 1 ⊗ t
(n)
α , on the other hand, gives

0 in the first line, but in the third line C0 gives 1 − ς for the antisymmetric part. Taken
together, the terms linear in ancillary fields are

− ϱ⟨⟨H−1||
(
(1⊗ t−α ) + (t+

α ⊗ 1)
)
|E−1(γ̃− + γ̃+)⟩ ⊗ |E−1Γ′α⟩

= −ϱ⟨⟨G−1||
(
(1⊗ t̃−α ) + (t̃+

α ⊗ 1)
)
|γ̃− + γ̃+⟩ ⊗ |Γα⟩ , (3.58)

which proves the statement. Note however that the expressions (3.56), (3.58) are inconvenient
to use (except for deriving equations of motion), since they do not maintain manifest
symmetry under generalised diffeomorphisms.
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3.10 From coset dynamics to teleparallel dynamics

The coset dynamics was first formulated in [26] for G+. It is defined in terms of the coset
Maurer-Cartan form

PM = 1
2E−1∂M E − 1

2τH

(
E−1∂M E

)
− ϱ−1∂M ϱ = −1

2ΓM
αE−1(tα − τ(tα)

)
E , (3.59)

and its mode shifted version

P
(1)
M = sPM + χM , (3.60)

that depends on the ancillary field χM satisfying the same constraints as γ̃±
M .

We will now demonstrate the equivalence of that formulation and the one in the present
paper, by showing that the Lagrangians differ by a total derivative.

The Lagrangian [26, 47] can be written in our conventions6

LC = −ϱ⟨⟨H−1||
[(

ηαβ + 2δ0
β ⊗ tα + 4δ1

β ⊗ stα − 2tβ ⊗ tα
)
E−1|P α⟩ ⊗ E−1|P β⟩

+ 2tβ ⊗ tαE−1|P (1)α⟩ ⊗ E−1|P (1)β⟩
]

, (3.61)

where ηαβ is the inverse of η(0)αβ on gl1 g+ and zero for α = 1 (corresponding to L1). Here
we use that PM = PM

αtα. Recall that this is not true for ΓM = ΓM
αtα − ΓM

0. We first
want to relate |χ⟩ to |γ±⟩. For this we use the property that s commutes with G+ up to
a central element so that |χ⟩ exists such that

P
(1)
M = −1

2ΓM
αE−1(t̃+

α − τ(t̃−α )
)
E − 1

2(γ̃
+
M + γ̃−

M ) . (3.62)

We will now relate the coset formulation of [26] to the teleparallel formulation described
in this paper. We introduce the notation Gαβ for the generalised metric in the adjoint
representation, that is defined such that

GαβΓβ
τ = −ηαβΓβ , Γα

τ τ(tα) = Γαtα (3.63)

for Γα
τ the Chevalley conjugate to any Γα. Substituting (3.59) and (3.62) in the La-

grangian (3.61) one gets

LC =−ϱ

2 ⟨⟨G
−1||

[(
ηαβ+Gαβ+2δ0

β⊗tα+2tα⊗δ0
β+2δ1

β⊗ t̃+
α +2t̃−α ⊗δ1

β

−tβ⊗tα+1⊗tβτ(tα)−2(1⊗tβtα)
+ t̃+

β ⊗ t̃+
α −1⊗ t̃−β τ(t̃−α )+2(1⊗ t̃−β t̃+

α )
)
|Γα⟩⊗|Γβ⟩

+2
(
1⊗ t̃−α + t̃+

α ⊗1
)
|γ̃−+γ̃+⟩⊗|Γα⟩+|γ̃−+γ̃+⟩⊗|γ̃−+γ̃+⟩

]
. (3.64)

Using the algebraic identity [47, eq. (A.1)], one then computes that

− ϱ

2 ⟨⟨G
−1||

[(
Gαβ + 2tα ⊗ δ0

β + 2t̃−α ⊗ δ1
β + 1⊗ tβτ(tα)− 1⊗ t̃−β τ(t̃−α )

)
|Γα⟩ ⊗ |Γβ⟩

+ 2
(
1⊗ t̃−α

)
|γ̃−⟩ ⊗ |Γα⟩+ |γ̃−⟩ ⊗ |γ̃−⟩

]
= −ϱ

2 ⟨⟨G
−1|| |Θ̃−⟩ ⊗ |Θ̃−⟩+ ϱ

2 ⟨⟨G
−1|| tα|Γα⟩ ⊗ tβ |Γβ⟩ , (3.65)

6The Lagrangian as written in [26] differs by a redefinition of |χ⟩ with the one written here that uses the
conventions of [47].
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and

− ϱ

2 ⟨⟨G
−1||

[(
ηαβ + 2tα ⊗ δ0

β + 2δ1
β ⊗ t̃+

α − 2(1⊗ tβtα) + 2(1⊗ t̃−β t̃+
α )
)
|Γα⟩ ⊗ |Γβ⟩

+ 2
(
t̃+
α ⊗ 1

)
|γ̃−⟩ ⊗ |Γα⟩+ 2

(
1⊗ t̃−α

)
|γ̃+⟩ ⊗ |Γα⟩+ 2|γ̃−⟩ ⊗ |γ̃+⟩

]
= ϱ

2 ⟨⟨G
−1||

[
C̃2|Θ̃−⟩ ⊗ |Θ̃−⟩ − 2C̃1|θ⟩ ⊗ |Θ̃−⟩+ C̃0|θ⟩ ⊗ |θ⟩ − 2|Θ̃+⟩ ⊗ |Θ̃−⟩

]
− ϱ

2 ⟨⟨G
−1||(tα ⊗ tβ + tβ ⊗ tα)|Γ⟩α ⊗ |Γ⟩β . (3.66)

Using finally

− ϱ

2 ⟨⟨G
−1||

[(
t̃+
β ⊗ t̃+

α

)
|Γα⟩ ⊗ |Γβ⟩+ 2

(
t̃+
α ⊗ 1

)
|γ̃+⟩ ⊗ |Γα⟩+ |γ̃+⟩ ⊗ |γ̃+⟩

]
(3.67)

= ϱ

2 ⟨⟨G
−1||

[
C̃4|Θ̃−⟩ ⊗ |Θ̃−⟩ − 4C̃3|θ⟩ ⊗ |Θ̃−⟩+ 4C̃2|θ⟩ ⊗ |θ⟩

+ 2C̃2|Θ̃−⟩ ⊗ |Θ̃+⟩ − 4C̃1|θ⟩ ⊗ |Θ̃+⟩+ C̃0|Θ̃+⟩ ⊗ |Θ̃+⟩ − |Θ̃+⟩ ⊗ |Θ̃+⟩
]

,

one obtains that LC coincides with (3.46) up to a total derivative

LC = L + ϱ

2 ⟨⟨G
−1||(1⊗ tα + tα ⊗ 1)|∂⟩ ⊗ |Γα⟩ , (3.68)

where |∂⟩ acts on all terms.
Note that the expression of the Lagrangian in [26] involves naively infinitely many

terms associated to the infinitely many components of |Γα⟩ in the adjoint representation. In
the teleparallel formulation it is manifest that the Lagrangian only involves finitely many
components of |Γα⟩ for any solution to the section constraint. This was checked explicitly
in [26]. However, the exceptional field theory Lagrangian describing the entire dynamics in
2 + 9 or 2 + 8 dimensions does involve all the components of the coset fields and cannot be
written as a finite expression with manifest G+ symmetry [47].

4 Outlook

One main motivation for the present work is to identify features of extended geometry that
are inherent to infinite-dimensional structure groups, and may be used as guidelines when
searching for the appropriate formulation with e.g. hyperbolic groups, corresponding to BKL
symmetry, or even very extended groups, such as E11 [24, 68]. One such feature is the
presence of more generators than contained in the naive structure algebra. This is clear
already from inspection of the relevant tensor hierarchy algebra. In the present case, this
is the generator L1. Another interesting feature that distinguishes the present case from
finite-dimensional ones is the rôle of symmetric Bianchi identities for the demonstration of
local invariance. The possibility arises to form elements in the local compact subalgebra
from the symmetric product of fundamentals, not only antisymmetric. This will certainly
persist in any further extension of the structure algebra.

One phenomenon that makes predictions for further extended structure algebras more
difficult is the slight mismatch between the torsion predicted by the tensor hierarchy algebra
S(g++) and the one we have used. In particular, only Θ− and θ are found in the tensor
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hierarchy algebra, while we introduced also Θ(n), n > 0. In the end, torsion was packaged
into Θ̃−, θ and Θ̃+, which still accounts for one more fundamental than predicted by the
tensor hierarchy algebra. There are a couple of possible interpretations. One would be that
Θ̃+ in some sense is “auxiliary”, and that it is possible to formulate the dynamics without
it. We have tried, but have not been able to find such a formulation, for the simple reason
that the opportunity to relate the transformations of Θ̃− and Θ̃+ using τH(Υ) = Υ then is
lost. Another possibility is that the affine algebra is a particular, in some sense singular,
case, having some properties that disappear when further extending. Indeed, the Cartan
matrix of an affine Kac-Moody algebra is singular, as is that of the tensor hierarchy algebra
extension S(g++) of an over-extended Kac-Moody algebra. There is also the possibility that
the appropriate tensor hierarchy algebra is larger than what we have anticipated, but we are
not aware of such an algebra. In any case, we need to proceed with a certain awareness that
this kind of surprises may extend to situations with further extended structure algebras.

We have learnt that a useful way of forming invariants of the full extended structure
algebra (i.e., including L1), and to form tensors in a way that unmakes the indecomposable,
Jordan cell, type of transformations of the linear fields, is to use explicit conjugation with
the vielbein. This may well continue to be a valuable tool.

When investigating the level decomposition of a tensor hierarchy algebra S(g+++),
relevant to BKL geometry, one finds that the over-extended Kac-Moody algebra g++ is
complemented with a lowest weight fundamental V [36]. L1 can be seen as its lowest weight
state. The resulting extended structure algebra is g++ ⊕ V as a vector space, but is not a
semi-direct sum as a Lie algebra. Another new feature is the presence of extra generators
complementing the generalised diffeomorphisms in V with a subleading symmetric module.
An interesting step towards extended geometry with a very extended structure algebra has
been taken in ref. [29]. However, it lacks some of these ingredients. We expect the full
structure to be relevant, for example for an algebraic understanding of the emergence of
space (or space-time) in terms of gradient structures [69] in the algebra.
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A Tensor hierarchy algebra extensions of over-extended Kac-Moody
algebras

Tensor hierarchy algebras are constructed and investigated in refs. [24, 33–38], and their rôle
in extended geometry developed in refs. [3, 4, 32, 33]. We will in this appendix look closer at
the tensor hierarchy algebra S(g++) in the double grading with degrees (p, q) described in
section 3.2. The results in the appendix thus extends section 7.4 of ref. [36]. We refer to this
paper for other gradings and aspects of the tensor hierarchy algebra S(g++).
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q p = −2 p = −1 p = 0 p = 1 p = 2

3 A′♯
MN
4

2 π♯

1

L♯
M
2

A♯
MN
4

S′♯
MN

3

A′
MN
3

1 S̄MN

−2

Φ♯M

−1

K♯

1

π
0

L♯
1

0

T ♯A
m E♯

M
2

LM

1

S♯
MN

3

AMN

3

S′
MN

2

0 S̄♭MN

−3

ĀMN

−3

S̄′MN

−2

ΦM

−2

F M

−1

K
0

d
0

L1
−1

TAm EM

1

SMN

2

−1 Ā♭MN

−4

S̄′♭MN

−3

Ā′MN

−3

F ♭M

−2

ϵ−2
−1

−2 Ā′♭MN

−4

Table A.1. Basis elements for S(g++) for −2 ≤ p ≤ 2. The weights specifying the action of d are
given in red.

Modules of g++ are found at SW-NE diagonals (with constant p − q). The diagonal
p − q = 0 consists of the extension of g++, with basis elements

Tα = (. . . , Ā′♭MN , F ♭M , (TA,m, d, K), E♯
M , A♯

MN , . . .) , (A.1)

extended by its lowest weight fundamental, with basis elements

JM = (L1, LM , (S′♯
MN , A′

MN ), . . .) . (A.2)

The index M used for all fundamental or anti-fundamental modules is covariant under
the centrally extended loop algebra, i.e.,

[TA,m, XM ] = −(tA,m)M
N XN , [TA,m, Y M ] = (tA,m)N

M Y N ,

[K, XM ] = −XM , [K, Y M ] = Y M . (A.3)

The action of d depends on the weight/mode number shift:

[d, XM ] = −(ℓ0)M
N XN + w(X)XM ,

[d, Y M ] = (ℓ0)N
M Y N + w(Y )Y M . (A.4)

Note that d♭ = −[d, ϵ−2] = ϵ−2, so w(ϵ−2) = −1, and w(X♭) = w(X) − 1. There is an
arbitrariness in the assignment of weight due to redefinitions d 7→ d + aK. The convention
used here corresponds to canonical (tensorial) weights in the extended geometry.
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The modules at p = 2 with basis elements denoted S and A consist of all modules in
the symmetric and antisymmetric tensor products of the lowest weight fundamental except
the leading one.

From the over-extended Kac-Moody algebra on the diagonal, we have

[E♯
M , F ♭N ] = δM

N d + (ℓ0)M
N K −

∑
m∈Z

ηAB(tA,m)M
N TB,−m

= −η(0)αβtαM
N Tβ . (A.5)

Due to the non-invariance of η(0) under L1, the bracket (A.5) is not consistent on its own,
unless the action of L1 is modified. The Jacobi identity is not consistent with L1 acting as7

•[L1, E♯
M ] = −(ℓ1)M

N E♯
N and [L1, F ♭M ] = (ℓ1)N

M F ♭N . Then one would get

• [L1, [E♯
M , F ♭N ]]− [[L1, E♯

M ], F ♭N ]− [E♯
M , [L1, F ♭N ]]

= δN
M L1 + (ℓ1)M

N K −
∑
m∈Z

ηAB(tA,m)M
N TB,1−m (A.6)

= −η(1)αβtαM
N Tβ .

The remedy is to let

[L1, E♯
M ] = −(ℓ1)M

N E♯
N − LM , (A.7)

and

[LM , F ♭N ] = η(1)αβtαM
N Tβ . (A.8)

The action of d and L1 on this last commutator fulfil Jacobi identities. In the same way,
one obtains

[L1, F M ] = (ℓ1)N
M F N − ΦM (A.9)

and

[EM ,ΦN ] = η(1)αβtαM
N Tβ . (A.10)

We see that L1, which is the lowest state in the “extra” module appearing together
with the adjoint of g++ on the diagonal, transforms the states E♯

M in the adjoint both to
themselves and to LM , which is in the “extra” module. At a given (p, q), we have a module
of the (0, 0) subalgebra, which in general is not completely reducible, but has a Jordan cell
structure. For example, at (p, q) = (1, 1),[

L1,

(
E♯

M

LM

)]
= −

(
(ℓ1)M

N δM
N

0 (ℓ1)M
N

)(
E♯

N

LN

)
, (A.11)

and at (p, q) = (0, 1), [
L1,

(
K♯

π

)]
=
(
0 1
0 0

)(
K♯

π

)
. (A.12)

All this is of course precisely what is obtained from ref. [36].
7We use “•” to indicate an equation that does not hold.
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Brackets between p = 0 and p = ±1, beyond the ones that are covariant, or vanish
by consistency of the weights:

[K♯, EM ] = E♯
M , [K♯, F ♭M ] = F M ,

[K♯, LM ] = −L♯
M , [K♯,ΦM ] = Φ♯M ,

[T ♯
A,m, EM ] = (tA,m)M

N E♯
N , [T ♯

A,m, F ♭M ] = (tA,m)N
M F N

+ (tA,m−1)M
N LN , + (tA,m−1)N

MΦN ,

[T ♯
A,m, E♯

M ] = (tA,m−1)M
N L♯

N , [T ♯
A,m, F M ] = (tA,m−1)N

MΦ♯N ,

[T ♯
A,m, LM ] = −(tA,m)M

N L♯
N , [T ♯

A,m,ΦM ] = −(tA,m)N
MΦ♯N , (A.13)

[L♯
1, EM ] = (ℓ1)M

N E♯
N + (ℓ0 + 1)M

N LN , [L♯
1, F ♭M ] = (ℓ1)N

M F N + (ℓ0)N
MΦN ,

[L♯
1, E♯

M ] = (ℓ0)M
N L♯

N , [L♯
1, F M ] = (ℓ0 + 1)N

MΦ♯N ,

[L♯
1, LM ] = −(ℓ1)M

N L♯
N , [L♯

1,ΦM ] = −(ℓ1)N
MΦ♯N ,

[π, EM ] = −LM , [π, F ♭M ] = ΦM ,

[π, E♯
M ] = −L♯

M , [π, F M ] = Φ♯M ,

[π♯, EM ] = L♯
M , [π♯, F ♭M ] = Φ♯M .

Non-obvious brackets between generators at p = 0:

[K♯, π] = 0 ,

[K♯, L♯
1] = −π♯ ,

[T A
m, T ♯B

n ] = fAB
CT ♯C

m+n + ηABmδm+n,0K♯ + ηABmδm+n−1,0π , (A.14)
[T ♯A

m , T ♯B
n ] = −ηABδm+n−1,0π♯ .

The brackets between generators at p = 1 and p = −1 are all based on the η(0) and
η(1) structures:

[EM , F ♭N ] = δN
M e0 ,

[EM , F N ] = δN
M K − η(0)αβtαM

N Tβ ,

[E♯
M , F ♭N ] = −η(0)αβtαM

N Tβ ,

[E♯
M , F N ] = −δN

M K♯ ,

[EM ,ΦN ] = η(1)αβtαM
N Tβ ,

[EM ,Φ♯N ] = η(1)αβtαM
N T ♯

β − (ℓ0 + 1)M
N π ,

[E♯
M ,ΦN ] = −η(1)αβtαM

N T ♯
β − (ℓ0)M

N π , (A.15)

[E♯
M ,Φ♯N ] = −δN

M π♯ ,

[LM , F ♭N ] = η(1)αβtαM
N Tβ ,

[LM , F N ] = η(1)αβtαM
N T ♯

β + (ℓ0 + 1)M
N π ,

[L♯
M , F ♭N ] = η(1)αβtαM

N T ♯
β + (ℓ0)M

N π ,

[L♯
M , F N ] = δN

M π♯ ,

[LM ,ΦN ] = [LM ,Φ♯N ] = [L♯
M ,ΦN ] = [L♯

M ,Φ♯N ] = 0 .
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B Proof of Bianchi identities

Of the Bianchi identities among the ones we have stated, only the first one in eq. (3.37)
and eq. (3.38) rely on the Maurer-Cartan equation (3.16) for Γ. All rely on the section
constraint. The proofs are all analogous, so we take one example. The antisymmetric Bianchi
identity we want to display the proof of is

(C0 − 2)|D + θ⟩ ∧ |Θ−⟩ − C−1|D⟩ ∧ |θ⟩ = 0 . (B.1)

We check the Bianchi identity directly, by using the Maurer-Cartan equation for terms
|∂⟩ ∧ |Γα⟩ = −1

2fβγ
α|Γβ⟩ ∧ |Γγ⟩ and expanding the covariant derivatives as well as the

expressions for |Θ−⟩ and |θ⟩. The result is a sum of terms quadratic in connections. The
appropriate connection terms containing the weights of the shifted torsion components, as
well as the Jordan cell behaviour under L1 are of course needed. The proof of the identity
requires repeated use of eq. (2.24).

Let the torsion |Θ−⟩ and |θ⟩ be defined by eqs. (3.20), (3.23). Then,

|D⟩ ⊗ |Θ−⟩ = |∂⟩ ⊗ |γ−⟩+ (1⊗ tα)|Γα⟩ ⊗ |γ−⟩ − 2|Γ0⟩ ⊗ |γ−⟩
+ (1⊗ t−α )|∂⟩ ⊗ |Γα⟩+ (1⊗ tαt−β )|Γ

α⟩ ⊗ |Γβ⟩

− 2(1⊗ t−α )|Γ0⟩ ⊗ |Γα⟩ − (1⊗ tα)|Γ1⟩ ⊗ |Γα⟩ , (B.2)
|θ⟩ ⊗ |Θ−⟩ = (tα ⊗ 1)|Γα⟩ ⊗ |γ−⟩+ (tα ⊗ t−β )|Γ

α⟩ ⊗ |Γβ⟩ ,

|D⟩ ⊗ |θ⟩ = (1⊗ tα)|∂⟩ ⊗ |Γα⟩+ (1⊗ tαtβ)|Γα⟩ ⊗ |Γβ⟩ − (1⊗ tα)|Γ0⟩ ⊗ |Γα⟩ .

An important feature is that certain terms in |D + θ⟩ ⊗ |Θ−⟩ combine into symmetrised
tensor products:

|D + θ⟩ ⊗ |Θ−⟩ = |∂⟩ ⊗ |γ−⟩+ 2(1 ∨ tα)|Γα⟩ ⊗ |γ−⟩ − 2|Γ0⟩ ⊗ |γ−⟩
+ (1⊗ t−α )|∂⟩ ⊗ |Γα⟩+ 2(1 ∨ tα)(1⊗ t−β )|Γ

α⟩ ⊗ |Γβ⟩ (B.3)

− 2(1⊗ t−α )|Γ0⟩ ⊗ |Γα⟩ − (1⊗ tα)|Γ1⟩ ⊗ |Γα⟩ .

We can now check all terms in (C0 − 2)|D + θ⟩ ∧ |Θ−⟩ − C−1|D⟩ ∧ |θ⟩. Begin with the
ones containing |γ−⟩, which are

(C0 − 2)
[
|∂⟩ ∧ |γ−⟩+ 2(1 ∨ tα)|Γα⟩ ∧ |γ−⟩ − 2|Γ0⟩ ∧ |γ−⟩

]
. (B.4)

All three terms vanish, the first and last from the antisymmetric section constraint. In the
second term, [C0, 2(1 ∨ tα)] = −δ1

αC1, which also annihilates |Γα⟩ ∧ |γ−⟩.
Next, the terms with |∂⟩ ⊗ |Γα⟩ are[

(C0 − 2)(1 ∧ t−α )− C−1(1 ∧ tα)
]
|∂⟩ ∨ |Γα⟩

+
[
(C0 − 2)(1 ∨ t−α )− C−1(1 ∨ tα)

]
|∂⟩ ∧ |Γα⟩ . (B.5)

The first row gives (−[1 ∧ t−α , C0] + [1 ∧ tα, C−1] − 2(1 ∧ t−α ))∂ ∨ Γα using the symmetric
section constraint. This vanishes thanks to eq. (2.24). The first term in the second row
vanishes, since the only t−α not commuting with C0 − 2 is t−0 = ℓ−1, but |∂⟩ ∧ |Γ0⟩ = 0. The
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last term gives 1
2fβγ

αC−1(1 ∨ tα)|Γβ⟩ ∧ |Γγ⟩ through the Maurer-Cartan equation. For the
rest of the terms, it is convenient to consider |Γα⟩ ∨ |Γβ⟩ and |Γα⟩ ∧ |Γβ⟩ separately. The
terms containing |Γα⟩ ∨ |Γβ⟩ are:

(C0 − 2)
[
2(1 ∨ tα)(1 ∧ t−β )|Γ

α⟩ ∨ |Γβ⟩ − 2(1 ∧ t−α )|Γ0⟩ ∨ |Γα⟩ − (1 ∧ tα)|Γ1⟩ ∨ |Γα⟩
]

− C−1
[
2(1 ∨ tα)(1 ∧ tβ)|Γα⟩ ∨ |Γβ⟩ − (1 ∧ tα)|Γ0⟩ ∨ |Γα⟩

]
. (B.6)

The first term on the first row is rewritten as

2(1 ∨ tα)(C0 − 2)(1 ∧ t−β )|Γ
α⟩ ∨ |Γβ⟩ − C1(1 ∧ t−β )|Γ

1⟩ ∨ |Γβ⟩ , (B.7)

and the first term on the second row as

− 2(1 ∨ tα)C−1(1 ∧ tβ)|Γα⟩ ∨ |Γβ⟩+ C−1(1 ∧ tβ)|Γ0⟩ ∨ |Γβ⟩
+ 2C0(1 ∧ tβ)|Γ1⟩ ∨ |Γβ⟩ . (B.8)

The first terms in eqs. (B.7) and (B.8) cancel using eq. (2.24) and the symmetric section
constraint. The remaining terms from eq. (B.6) contain at least one |Γ0⟩ or |Γ1⟩:

2
[
−C0(1 ∧ t−α ) + C−1(1 ∧ tα) + 2(1 ∧ t−α )

]
|Γ0⟩ ∨ |Γα⟩

+
[
−C1(1 ∧ t−α ) + C0(1 ∧ tα) + 2(1 ∧ tα)

]
|Γ1⟩ ∨ |Γα⟩ = 0 . (B.9)

Finally, when we collect the terms with |Γα⟩ ∧ |Γβ⟩, the first connection term in |D⟩ ∧ |θ⟩
immediately cancels the contribution from the Maurer-Cartan equation above. Remaining
terms are

(C0 − 2)
[
2(1 ∨ tα)(1 ∨ t−β )|Γ

α⟩ ∧ |Γβ⟩ − 2(1 ∨ t−α )|Γ0⟩ ∧ |Γα⟩ − (1 ∨ tα)|Γ1⟩ ∧ |Γα⟩
]

+ C−1(1 ∨ tα)|Γ0⟩ ∧ |Γα⟩ . (B.10)

The second and third terms vanish. The first term is rewritten as

2(1 ∨ tα)(C0 − 2)(1 ∨ t−β )|Γ
α⟩ ∧ |Γβ⟩ − C1(1 ∨ t−β )|Γ

1⟩ ∧ |Γβ⟩

= (1 ∨ tα)C−1|Γα⟩ ∧ |Γ0⟩ − C0|Γ1⟩ ∧ |Γ0⟩ , (B.11)

so together with the fourth term we get

[C−1, 1 ∨ tα]|Γ0⟩ ∧ |Γα⟩+ C0|Γ0⟩ ∧ |Γ1⟩ = 0 . (B.12)

Open Access. This article is distributed under the terms of the Creative Commons
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