
Interfacing ErgoJr with Creative Coding Platforms

Downloaded from: https://research.chalmers.se, 2025-10-19 08:14 UTC

Citation for the original published paper (version of record):
Caravati, M., Tatar, K. (2024). Interfacing ErgoJr with Creative Coding Platforms. ACM
International Conference Proceeding Series. http://dx.doi.org/10.1145/3658852.3659082

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Interfacing ErgoJr with Creative Coding Platforms
Matteo Caravati
ENSEIRB-MATMECA

Talence, France
mcaravati@bordeaux-inp.fr

Kıvanç Tatar
Chalmers University of Technology

Gothenburg, Sweden
tatar@chalmers.se

ABSTRACT
This paper introduces a project enabling non-coders to control a
Poppy Ergo Jr. robotic arm with Dynamixel servomotors. Originally
using a Raspberry Pi and Pixl board, various constraints related
to importation led to adopting a ROBOTIS OpenCM9.04 board. A
client-server architecture was implemented for remote control, with
creative coding platforms (p5.js, Processing, Pure Data, Python) as
clients.

The server, utilizing a two-layer architecture, manages commu-
nication and interfaces with the ROBOTIS OpenCM9.04 board. The
OSC and WebSocket protocols were chosen for communication due
to their flexibility and their ease of use. Clients were developed for
each platform, leveraging compatibility layers.

CCS CONCEPTS
• Human-centered computing→ Interaction design.

KEYWORDS
Robot control, Creative coding, OSC,WebSocket, C++, Python, p5.js,
Pure Data, Processing, OpenCM9.04
ACM Reference Format:
Matteo Caravati and Kıvanç Tatar. 2024. Interfacing ErgoJr with Creative
Coding Platforms. In 9th International Conference on Movement and Com-
puting (MOCO ’24), May 30–June 02, 2024, Utrecht, Netherlands. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3658852.3659082

1 INTRODUCTION
The idea kickstarting this project was to allow people who are not
really code-literates to control and program a robot built using
ROBOTIS Dynamixel servomotors, in the current case the Ergo Jr.
[16], a low-cost and open-source 6-DOF robotic arm for education
developed by the Poppy Project (see figure 1 for a mechanical
description of the robot).

The Poppy Ergo Jr. is composed of 6 x Dynamixel XL-320 ser-
vomotors [10], of a Raspberry 3B+ computer [20] to compute the
movements and to work as a human interaction device (HID), and
a PCB (Printed Circuit Board) that acts as the servomotors’ control
card and current regulator, called the Pixl board, that plugs directly
on the GPIO pins of the Raspberry Pi board. The Poppy Ergo Jr.
provides a custom Linux image for the Raspberry Pi with all the
required software for the programming and the control of the robot.

This work is licensed under a Creative Commons Attribution International
4.0 License.

MOCO ’24, May 30–June 02, 2024, Utrecht, Netherlands
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0994-4/24/05
https://doi.org/10.1145/3658852.3659082

Figure 1: Poppy Ergo Jr. axis representation

Due to constraints regarding the importation of the Pixl board,
the Raspberry Pi and the Pixl board were replaced by a ROBOTIS
OpenCM9.04 embedded development board [11], which is based
on an ARM Cortex-M3 32-bits processor and possesses 4 x MOLEX
53253-0370 connectors, whose are the connectors used by the Dy-
namixel XL-320 servomotors. The ROBOTIS OpenCM9.04 is com-
patible with the Arduino IDE, allowing the use of the Arduino
ecosystem and its libraries.

To interface the ROBOTIS OpenCM9.04 that controls the Poppy
Ergo Jr. with the multiple creative coding platforms, a suitable
software has been developed, based on a client-server architecture
for the users to be able to control the robotic arm remotely.

Computational creative tools are known to expand creative pos-
sibilities [19] and can have applications in numerous domains such
as medical rehabilitation [18] or psychological therapy [17]. They
favour art and expression rather than functionality, and creative

https://doi.org/10.1145/3658852.3659082
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658852.3659082
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658852.3659082&domain=pdf&date_stamp=2024-06-27

MOCO ’24, May 30–June 02, 2024, Utrecht, Netherlands Caravati and Tatar

platforms provide a simplified syntax for the programming lan-
guage they use as well as multi-media interfaces such as a graphic
interface or a sound interface. That is why they were chosen as the
client software.

The target platforms are:

• p5.js: built around JavaScript and primarily made to run on
a web page.

• Processing: standalone IDE (Integrated Development Envi-
ronment) with its own overlay for the Java language.

• Pure Data: a visual programming language for multimedia
that allows the development of custom features through
extensions called externals.

• Python: a general-purpose, high-level, interpreted program-
ming language.

2 CONTROL SERVER
The server has been conceived using a two-layers architecture (see
class diagram 2):

• The first layer takes care of the communication with the
clients through the local network: it is composed of a simple
abstract class allowing the implementation of a communica-
tion layer for multiple protocols by using class inheritance.

• Once received through the network, the commands are passed
to the second layer which is represented by an interface con-
taining the signatures of the operations that will be imple-
mented by the ROBOTIS OpenCM9.04 development board.
In our case, two classes implement this layer:
– A first class that is able to communicate with the ROBO-
TIS OpenCM9.04 development board using a USB serial
connection, allowing direct control of the robotic arm.

– A second class that is a straightforward dummy imple-
mentation of the robot, simply printing the commands it
receives on the standard output, for testing purposes.

3 FIRMWARE DEVELOPMENT
To be able to develop an efficient firmware, the Dynamixel2Arduino
[12] library was used for the communication and control of the
Dynamixel XL-320 servomotors. For a complete list of operations,
that were implemented by the firmware, see table 1.

A consideration in the design of the server / devboard protocol
was that the ROBOTIS OpenCM9.04’s processor (an ARM Cortex-
M3 32-bits processor) operates in little-endian format, so the deci-
sion was made to transmit data in this particular order, allowing
us to directly transfer "complex types" through the serial connec-
tion. By "complex types", we mean here 32-bits integers and 32-bits
floating-point numbers, as they are coded on more than one byte.
From the server side, the data is sent through the serial connec-
tion by encoding it using the Python struct library [15] in little
endian format[6]. The Arduino standard library allows the boards
to use the memcpy function, copying directly the data from the serial
stream in raw form to a variable’s address, this way the data can be
transferred as it is, without the need for manipulation or conversion
to make it compatible between the two devices.

4 CREATIVE CODING PLATFORMS LIBRARIES
The core library is composed of a shared interface that is imple-
mented by a class for each protocol that can be used to communicate
with the server (see class diagram 3).

To benefit from a robust language that has a strong typing system
and that has bindings to almost any popular and modern language,
C++ was chosen to write the core library. C++ also allows object-
oriented programming, providing the possibility to control multiple
arms at the same time.

The go-to protocol for the core library to use while communi-
cating with the server is the OSC (Open Sound Control) protocol,
because of its flexibility, its use in the art world, and because it is
a protocol running via UDP (User Datagram Protocol), allowing
faster transfer and processing times. For the core library to use the
OSC protocol, the tinyOSC library was used [3].

A Python client was developed by using a C/C++ to Python
compatibility layer. Here, the Boost’s Python [4] library was used,
allowing a simple seamless integration of the C++ class to Python’s
environment, as opposed to other existing layers such as the ctypes
[13] or the Python C API [14].

Developing a client for Processing was as straightforward; the
creative coding platform’s programming language is mainly a Java
overlay, so almost any vanilla Java code can be used with Processing.
In this case, javacpp was used as the compatibility layer between
C++ and Java [7] and Maven was used to wrap the building process
and dependencies management [9].

As explained earlier in this paper, Pure Data allows the creation
of custom features through externals. Multiple libraries and frame-
works exist for anyone to write externals, flext was used there [1],
allowing for the compilation of C++ code in Pure Data externals.

A JavaScript client was compiled for p5.js using Emscripten [2],
a C++ to WebAssembly compiler using LLVM [8]. WebAssembly
is a low-level and platform-independent binary instruction format
aimed for a stack-based virtual machine, supported by most modern
browsers and JavaScript runtimes such as Chrome, Firefox, Safari
or Node.js.

When a p5.js sketch is run on a web page, the code is executed
through the web browser’s JavaScript runtime. In this case, the OSC
protocol can not be used as modern web browsers impose security
constraints regarding the creation of UDP connections; to allow
p5.js to communicate with the server anyway, WebSocket will be
used.

WebSocket allows the creation of lightweight bidirectional con-
nections via TCP and do not send a packet header at each request as
opposed to other web-based TCP protocols such as HTTP, allowing
devices and programs to process messages faster and to achieve a
real-time control of the arm.

The peer-to-peer protocol WebRTC was also considered, but
while its API is well-documented and well-developed, the protocol
itself is a bit more complex than WebSocket and can it can be really
hard to grasp the internal concepts. WebRTC also uses third-party
web servers for the peers to establish a connection between one
another, such as signaling servers [5], complexifying the connection
process beyond what is needed here.

Interfacing ErgoJr with Creative Coding Platforms MOCO ’24, May 30–June 02, 2024, Utrecht, Netherlands

ControlServer

robotControl1

ControlServer

+ start(): void
+ stop(): void
forwardKinematicsHandler(motor: Integer, value: Float): void
motorLedHandler(motor: Integer, value: Boolean): void
torqueHandler(motor: Integer, value: Boolean): void
speedHandler(motor: Interger, value: Boolean): void

OSCServer

WebSocketServer

≪interface≫
RobotControl

+ setLedOn(motor: Integer): void
+ setLedOff(motor: Integer): void
+ setTorqueOn(motor: Integer): void
+ setTorqueOff(motor: Integer): void
+ setMotorSpeed(motor: Integer, value: Float): void
+ setMotorAngle(motor: Integer, value: Float): void

DummyRobotControl

SerialControl

Figure 2: The server’s class diagram

Operation name OP code Nb of arguments Arguments types
Toggle LED 0x01 2 Integer (motor ID) / Integer (1 for On, 0 for Off)

Toggle Torque 0x02 2 Integer (motor ID) / Integer (1 for On, 0 for Off)
Set speed 0x03 2 Integer (motor ID) / Integer (speed)
Set position 0x04 2 Integer (motor ID) / Float (angle)

Table 1: Operations implemented by the firmware

5 CONCLUSION
In summary, this project aimed to make easier the control and
programming of a low-cost robotic arm such as the Poppy Ergo Jr
by interfacing it with creative coding platforms. The original design
using a Raspberry Pi was adapted to the ROBOTIS OpenCM9.04
due to import constraints. A client-server architecture facilitated
remote control through the creative coding platforms like p5.js,
Processing, Pure Data, and Python.

A firmware was developed using the Dynamixel2Arduino library
to ensure efficient communication with the multiple Dynamixel
XL-320 servomotors. C++ was chosen to develop the core library,
using the OSC and WebSocket protocols for communication.

Client libraries were created for Python, Processing, Pure Data,
and p5.js, offering a range of programming options. This project
successfully merged creative coding with robotic control, making it
accessible to a wider audience. Future work could explore additional
platforms and enhance the server’s capabilities for broader usability.

ACKNOWLEDGMENTS
Thisworkwas partially supported by theWallenbergAI, Autonomous
Systems and Software Program – Humanities and Society (WASP-
HS) funded by the Marcus and Amalia Wallenberg Foundation.

REFERENCES
[1] 2004. Flext. https://svn.grrrr.org/public/pub/grill-2004-flext.pdf
[2] 2015. Main — Emscripten 3.1.52-git (dev) documentation. https://emscripten.org/
[3] 2018. TinyOSC. https://github.com/mhroth/tinyosc
[4] 2019. Boost.Python - 1.72.0. https://www.boost.org/doc/libs/1_72_0/libs/python/

doc/html/index.html
[5] 2021. Getting started with peer connections | WebRTC. https://webrtc.org/

getting-started/peer-connections
[6] 2023. Endianness. https://en.wikipedia.org/w/index.php?title=Endianness&

oldid=1191109382 Page Version ID: 1191109382.
[7] 2023. javacpp. https://github.com/bytedeco/javacpp
[8] 2023. The LLVM Compiler Infrastructure Project. https://llvm.org/
[9] 2023. Maven. https://maven.apache.org
[10] 2023. ROBOTIS e-Manual. https://emanual.robotis.com/docs/en/dxl/x/xl320/
[11] 2023. ROBOTIS e-Manual. https://emanual.robotis.com/docs/en/parts/controller/

opencm904/
[12] 2023. ROBOTIS-GIT/Dynamixel2Arduino. https://github.com/ROBOTIS-GIT/

Dynamixel2Arduino original-date: 2019-04-30T05:08:15Z.

https://svn.grrrr.org/public/pub/grill-2004-flext.pdf
https://emscripten.org/
https://github.com/mhroth/tinyosc
https://www.boost.org/doc/libs/1_72_0/libs/python/doc/html/index.html
https://www.boost.org/doc/libs/1_72_0/libs/python/doc/html/index.html
https://webrtc.org/getting-started/peer-connections
https://webrtc.org/getting-started/peer-connections
https://en.wikipedia.org/w/index.php?title=Endianness&oldid=1191109382
https://en.wikipedia.org/w/index.php?title=Endianness&oldid=1191109382
https://github.com/bytedeco/javacpp
https://llvm.org/
https://maven.apache.org
https://emanual.robotis.com/docs/en/dxl/x/xl320/
https://emanual.robotis.com/docs/en/parts/controller/opencm904/
https://emanual.robotis.com/docs/en/parts/controller/opencm904/
https://github.com/ROBOTIS-GIT/Dynamixel2Arduino
https://github.com/ROBOTIS-GIT/Dynamixel2Arduino

MOCO ’24, May 30–June 02, 2024, Utrecht, Netherlands Caravati and Tatar

Clients

≪interface≫
Client

+ connect(): Integer
+ disconnect(): Integer
+ set_motor(motor_id: Integer, angle: Float): Integer
+ toggle_led(motor_id: Integer, state: Boolean): Integer
+ toggle_torque(motor_id: Integer, stage: Boolean): Integer
+ set_speed(motor_id: Integer, speed: Integer): Integer
+ inverse_kinematics(x: Float, y: Float, z: Float): Integer

OscClient WebsocketClient

Figure 3: Clients’ class diagram

[13] 2024. ctypes — A foreign function library for Python. https://docs.python.org/
3/library/ctypes.html

[14] 2024. Extending Python with C or C++. https://docs.python.org/3/extending/
extending.html

[15] 2024. struct — Interpret bytes as packed binary data. https://docs.python.org/3/
library/struct.html

[16] Thibault Desprez, Stéphanie Noirpoudre, Théo Segonds, Damien Caselli, Didier
Roy, and Pierre-Yves Oudeyer. 2018. Poppy Ergo Jr : un kit robotique au coeur
du dispositif Poppy Éducation. 1. https://inria.hal.science/hal-01753111

[17] Sooyeon Jeong, Laura Aymerich-Franch, Sharifa Alghowinem, Rosalind W. Pi-
card, Cynthia L. Breazeal, and Hae Won Park. 2023. A Robotic Companion
for Psychological Well-Being: A Long-Term Investigation of Companionship
and Therapeutic Alliance. In Proceedings of the 2023 ACM/IEEE International

Conference on Human-Robot Interaction (Stockholm, Sweden) (HRI ’23). As-
sociation for Computing Machinery, New York, NY, USA, 485–494. https:
//doi.org/10.1145/3568162.3578625

[18] Elizabeth Jochum, Andreas Kornmaaler Hansen, and TDMurphey. 2023. Drawing
Robots for Rehabilitation. In Ergonomics in Robotics: Advances and Innovations
(ERGOROB). Springer.

[19] Daniel Lopes, Jéssica Parente, Pedro Silva, Licınio Roque, and Penousal
Machado. 2023. Can Creativity be Enhanced by Computational Tools?.
In International Conference on Computational Creativity, Waterloo, Canada.
https://computationalcreativity. net/iccc23/papers/ICCC-2023_paper_72. pdf.

[20] Raspberry Pi Ltd. 2023. Raspberry Pi. https://www.raspberrypi.com/

Received May 14, 2024

https://docs.python.org/3/library/ctypes.html
https://docs.python.org/3/library/ctypes.html
https://docs.python.org/3/extending/extending.html
https://docs.python.org/3/extending/extending.html
https://docs.python.org/3/library/struct.html
https://docs.python.org/3/library/struct.html
https://inria.hal.science/hal-01753111
https://doi.org/10.1145/3568162.3578625
https://doi.org/10.1145/3568162.3578625
https://www.raspberrypi.com/

	Abstract
	1 Introduction
	2 Control server
	3 Firmware development
	4 Creative coding platforms libraries
	5 Conclusion
	Acknowledgments
	References

