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ABSTRACT The overall network volume in backbone optical networks is constantly growing, composed of
many smaller network services with increasing trends and various seasonality. Due to the recent advances in
machine learning algorithms, short- and long-term traffic fluctuations can be forecasted. Consequently, the
backbone optical network can be adapted to traffic changes aiming to improve its performance. However,
an important challenge lies in developing effective optimization methods capable of adapting to traffic
changes to leverage the knowledge about the traffic. To this end, this paper addresses the time-varying
traffic in spectrally-spatially flexible optical networks (SS-FONs), which are a promising technology to
mitigate backbone network requirements of vast traffic volume transmission. The main contribution of
this paper is twofold. Firstly, we introduce a new traffic prediction method using multioutput regression
and temporal features to forecast traffic between all node pairs and integrate this prediction method into
an optimization framework developed for dynamic resource allocation in translucent SS-FONs with time-
varying traffic. Secondly, we evaluate potential network performance improvements from periodic lightpath
reallocation through extensive numerical experiments. According to the results of experiments run on two
representative optical network topologies, the proposed approach with periodic resource allocation allows
achieving up to 7.8 percentage points reduction of bandwidth blocking compared to the reference scenario
without reallocation. Consequently, the network requires up to 23.4% fewer transceivers to deliver the same
traffic in considered scenarios and thus the power consumption savings are provided.

INDEX TERMS Machine learning, routing and spectrum allocation, translucent optical networks, time-
varying traffic, traffic prediction.

I. INTRODUCTION
According to many statistics and reports, the Internet traffic
carried in backbone optical networks connecting the world is
time-varying across the day. For instance, The Mobile Inter-
net Phenomena Report published by Sandvine [1] presents
hourly trends of various mobile services and applications,
including video streaming, social media, YouTube, TikTok,
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Snapchat, and Zoom.Moreover, theNokiaDeepfield Network
Intelligence Report [2] shows many examples of traffic
patterns from various service providers (aggregated traffic
and various categories of traffic) around the world, indicating
the 24-hour seasonality. Finally, the Seattle Internet Exchange
(SIX) [3] interconnecting hundreds of networks and data
centers and carrying more than 2 Tbps of peak bitrate
provides traffic reports since 1997 showing how the traffic
changes over the day. All these mentioned examples clearly
show that the optical network traffic is time-varying and
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changes over the day, which is a function of human
activity.

Meanwhile, numerous parameters of the networks are
profoundly monitored, thus generating enormous amounts
of valuable data. With the recent development of artificial
intelligence (AI), specifically machine learning (ML) tech-
niques, those measurements can be used to enhance various
aspects of network operation [4], [5]. In particular, quality
of transmission (QoT) estimation [6], [7], fragmentation and
defragmentation problems [8], [9], or link dimensioning and
bandwidth blocking estimation [10], [11] are just a few
examples of the currently explored research directions in the
networking community. However, one of the essential issues
is short- and long-term traffic prediction. Prior knowledge
about the future traffic can improve routing decisions, thus
reducing blocking probability and resource utilization [12],
[13], [14] or enabling accurate planning of long-term network
upgrades [15], [16].

Due to the fact that the overall Internet traffic increases
constantly, which can lead to incremental exhaustion of
available capacity and to facilitate the network operation,
several solutions for optical networks have been proposed in
recent years. Space division multiplexing (SDM) is an optical
network technology that exceeds the capacity provided
by spectrally-flexible (elastic) optical networks (EONs) by
supporting parallel transmission of co-propagating spatial
modes in properly designed optical fibers. Spectrally-
spatially flexible optical network (SS-FON) is a combination
of SDM with EON technologies. SS-FONs offer a number
of advantages, including a huge growth in transmission
capacity, translucent transmission of the optical signal with
regeneration in certain nodes of the route, flexibility in
resource management, and prospects of cost savings [17].
Moreover, in recent years, energy efficiency has become

a significant challenge for the entire ICT sector, including
optical networks. Therefore, research on optimizing optical
networks should address, among other requirements, how
to achieve power savings while maintaining a bandwidth
blocking ratio comparable to that of earlier approaches [18].

It should be noted that most of the previous research on
the optimization of optical networks has not addressed the
fact that the network traffic is time-varying and changes
throughout the day. Therefore, the main contribution and key
novelty of this paper is that we propose an effective optimiza-
tion approach for translucent SS-FONs that takes advantage
of the specific characteristics of time-varying traffic. This
is achieved in two ways. First, the proposed optimization
approach using periodic reallocation of lightpaths allows the
allocated SS-FON resources to adjust to the changing traffic
over time in order to improve network performance. Second,
based on the patterns included in the time-varying traffic
(e.g., seasonality), we enhance the proposed optimization
framework with traffic prediction based on ML methods.

The main contributions of the paper are as follows:
• Development of a new traffic prediction method for
traffic between all pairs of nodes based on multioutput

regression and temporal features. This method includes
two approaches for forecasting various reallocation
periods and is incorporated into an optimization frame-
work that allows dynamic allocation of resources in a
translucent optical network with time-varying traffic.

• Assessing the potential improvements in network
performance (higher network capacity and smaller
power consumption of transceivers) due to the periodic
reallocation of lightpaths through extensive numerical
experiments.

The rest of the paper is organized as follows. Section II
presents related works. Section III introduces the considered
network model and traffic model. Section IV describes the
proposed heuristic algorithm. Section V focuses on traffic
prediction. Section VI presents the results of numerical
experiments and discusses the results obtained. Finally, the
last Section VII concludes this work.

II. RELATED WORKS
In this Section, we discuss the literature related to various
aspects of our work, i.e., dynamic optimization methods
of translucent SS-FONs, consideration of the time-varying
nature of network traffic, and traffic prediction with traffic-
prediction-aided network optimization methods.

A. DYNAMIC OPTIMIZATION OF TRANSLUCENT SS-FONS
One of the fundamental operations in optical networks
is the provision of lightpaths for traffic requests. Despite
the routing decision, various other constraints may be
imposed depending on the applied network architecture.
To reduce network cost, previously opaque optical networks
are replaced with translucent (with O-E-O regeneration in
some nodes) or transparent (all-optical) ones [19]. If requests
are known in advance, the routing algorithms are called
as static or offline [20], while when the network serves
dynamically incoming traffic, or traffic that changes over
time without prior knowledge of those changes, the problem
is called as dynamic or online [21]. In the static case,
lightpaths are served on a semi-permanent basis, allowing the
use of advanced, time-consuming methods, such as integer
linear programming (ILP), for finding exact solutions [22],
or ILP relaxation [20] and metaheuristic algorithms [22]
(often without any optimality guarantee). On the contrary,
for dynamic traffic, the decision needs to be taken almost
immediately; thus, various heuristic approaches are often
used [21], [23].

In SS-FONs, the fundamental connection provisioning
problem is called routing, spectrum, and space assignment
(RSSA), where for each traffic request, a routing path and
a suitable optical corridor are assigned occupying one or
more spectrum slots and one or more spatial resources [17],
[24], [25], [26], [27]. If the transmission is realized over
specific spatially-enabled fibers [28], such as multi-core
fibers or multi-mode fibers, then the problem is called
routing, spectrum, and core assignment (RSCA) and routing,
spectrum, and mode assignment (RSMA) [23], respectively.
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In addition, modulation format selection can be incorporated
into the problem of creating routing, modulation, spectrum,
and core allocation (RMSCA) [29]. In the literature, one of
the approaches is to divide this problem into two smaller
subproblems, namely, the routing problem and the spectrum
(spatial) assignment problem [17], [30], [31], [32]. In the
routing subproblem, the available routes for the request
can either be precomputed (static) or calculated during the
execution of the algorithm (dynamic) based on the network
state (e.g., based on the congestion in network links).
Commonly used static routing algorithms are fixed routing
(e.g., shortest path), fixed alternate routing (e.g., k-shortest
paths), and least congested routing (with fixed precomputed
shortest paths on which congestion is evaluated at run-time),
while the dynamic one is adaptive shortest path routing
where the path is computed based on the current network
state parameters treated as graph weights. In the second
subproblem, namely, the spectrum assignment problem, the
decision is taken which spectral slots should be assigned to
the selected routing path to form the lightpath. The most
common approaches are first fit, random fit, last fit, first-last
fit, least used, most used, and exact fit [30], [32].

B. CONSIDERATION OF TIME-VARYING TRAFFIC
The traffic offered to the network, e.g., to the IP layer,
is composed of small requests for which the bit-rate fluctuates
over time [31]. These traffic volume fluctuations are often
correlated with time, and patterns can be observed based on
time horizons, e.g., day, week, month, year [2], [33], [34].
However, the majority of works do not consider time-varying
traffic and assume that it is constant over time. Nevertheless,
such changes can be either processed in IP layer by, e.g.,
grooming requests [35], [36], establishing sufficiently large
lightpaths in the optical layer [37], or by dynamically
changing spectrum in optical layer and sharing some spectral
resources [32]. Based on the flexibility in changing spectral
resources, one can distinguish fixed spectrum allocation
where request (requests) can utilize the whole or fraction of
the established optical corridor, and the spectrum assigned
to the lightpath does not change when the request’s bit-rate
changes. In semi-elastic spectrum allocation, the width of
the spectrum channel can change, but the central frequency
remains the same, and in elastic spectrum allocation, both the
spectrum width and the central frequency can change over
time [32].

C. TRAFFIC PREDICTION FOR NETWORK OPTIMIZATION
Recently, machine learning techniques for optical networking
have been attracting the attention of researchers [4], [5].
In particular, various traffic prediction methods, from sta-
tistical, including autoregressive integrated moving average
(ARIMA), to machine learning, including artificial neural
networks (ANNs), have been proposed [38], [39]. More-
over, data stream mining techniques were explored for
practical traffic prediction in a long-term perspective [40].

Furthermore, alongside traditional regression models of
forecasting exact bit values, classification approaches for
predicting traffic levels are considered [41]. Recent research
works have demonstrated how prior knowledge about future
traffic volumes from prediction models benefits routing
algorithms and decreases blocking probability. In particular,
traffic prediction can be used to calculate the maximum
expected bitrate between each pair of nodes in a given
period and use this number for link congestion estimation to
distribute the traffic evenly in the network [12]. Furthermore,
graph neural network models are considered to predict traffic
load on network links and enable considerable bandwidth
blocking probability reduction [14]. Moreover, deep learning
traffic prediction models allow for proactive and dynamic
allocation of network resources, thus enabling considerable
capacity savings and over-provisioning decrease at the cost
of a marginal traffic loss [42]. Finally, traffic prediction can
be used for periodic virtual network reallocations and result
in notable savings in transponder usage [13].

Traditionally, dedicated prediction models can be devel-
oped for traffic between each source-destination pair, traffic
class, or for each connection request (e.g., [18], [43], [44],
[45]). Moreover, the traffic load on all network links can
be predicted using a graph neural network model (e.g.,
[14], [46], [47]). Finally, the advantages of data aggregation
and clustering for simultaneous traffic prediction between
all pairs of nodes in large topologies have been studied
in our previous work [48]. However, to the best of our
knowledge, aggregated prediction models for backbone
networks considering various reallocation periods have not
been proposed in the existing literature.

III. NETWORK AND TRAFFIC MODEL
In this Section, we first outline our network model and then
provide the details of our time-varying traffic model.

A. NETWORK MODEL
The considered network is a translucent SS-FON using
a flexible spectrum grid of 12.5 GHz frequency slots. The
network nodes are equipped with coherent and reconfig-
urable transceivers that support various modulation formats,
namely, BPSK, QPSK, 8-QAM, and 16-QAM. In this work,
we assume that the SS-FON is composed of links built as
a bundle of single-mode fibers (SMFs). However, the network
model and the optimization algorithm presented below can be
adapted to apply other types of SDM fibers, e.g., few-mode
fibers (FMFs) or multi-core fibers (MCFs).

The main assumptions are analogous to our previous
papers focused on SS-FONs [49], [50]. In more detail,
a transceiver supports transmission of a signal on an optical
carrier (OC) that consists of three adjacent frequency slots
(i.e., the OC is 37.5 GHz wide). The bit-rate supported by
a single transceiver is a function of the modulation format
selected for a particular lightpath. If the request’s bit-rate
exceeds the maximum capacity of a single transceiver under
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the selected modulation format, the request is established
using several carriers, transmitted within one spectral super-
channel (SCh) with the same modulation format, and
allocated an adequate number of adjacent frequency slots.
Each SCh is separated from the adjacent SCh by a 12.5 GHz
guard-band. Table 1 shows the transmission reach and
supported bit-rate for modulation formats analyzed in this
paper and used in simulation experiments [51].

TABLE 1. Modulation formats - transmission reach and supported
bit-rate.

Since the considered optical network is translucent, signal
regeneration is supported at some transitional nodes of the
lightpath. To this end, transceivers connected in a back-to-
back (B2B) configuration are utilized [52]. In consequence,
in the considered network, transceivers are used for two
purposes: transmitting/receiving (add/drop) of the signal at
the origin/destination nodes and regeneration of the signal
at selected transitional nodes. Due to the B2B regeneration
approach, instead of the routing, spatial mode, and spectrum
(RSSA) optimization problem, a more demanding problem
is to be addressed that accounts for transceiver assignment
to end nodes of the lightpath and to the transitional nodes
with regeneration. Thus, each lightpath can be divided into
transparent segments, and each request can be realized in
the network with various regeneration options (i.e., various
nodes can be implemented with regeneration). In this paper,
we name these options configurations. For each transparent
segment of a particular configuration, the most efficient
modulation format is selected according to the segment length
and maximum transmission reach of the applied modulation
format. It should be stressed that a key issue in B2B
regeneration is that transceivers are used for add/drop of
the signal at the origin/destination nodes and regeneration
of the signal at transitional nodes. What is more, B2B
regeneration allows for spectrum conversion (continuity
constraints relaxation) in the node, i.e., after leaving the
node, the spectral super-channel assigned to the lightpath can
occupy a different part of the spectrum than the one that
entered the node.

B. TRAFFIC MODEL
Similarly to the traffic model in [53], traffic features are
based on time-varying trends extracted from real-world
measurements from Seattle Internet Exchange Point (SIX)
available in [3]. The idea is to obtain a generalized shape
of the traffic distribution over 24 hours or on a large scale
throughout the week, which will be used more as a base shape
for generating changes in time. For the sake of our custom
traffic generator, we assume that all expected traffic can be
divided into multiple services (each with an assigned share)

according to [54] such as: Internet videos, which occupy
51% of the total traffic; IP VoD with 22% share; web data
with 18% share; file sharing with 8% share; and gaming
with 1% share. Each of these services is characterized by
its own properties, such as different stochastic processes
with individual parameters, influencing and shaping traffic
generation. These features are essentially formed by com-
bining three basic stochastic processes, namely the Poisson
Process (PP), the Poisson Pareto Burst (PPBP) Process, and
constant traffic (CT) with uniform random offset distribution.
In addition to the widely used Poisson process, PPBP was
used to better model long-tail traffic modeling and constant
traffic to mimic the base traffic, which is not necessarily
influenced by time. For the stochastic processes mentioned
above, their combinations are assigned to each service. For
the Internet video service, the set of PPBP, CT, and two CTs
is chosen. Next, the IP VoD consists of PP, and the web
data traffic is generated by two PPs. The file sharing and
gaming services are represented by a single CT each. This
differentiation aims to capture the varied characteristics of
Internet traffic.

Another feature of our traffic generator is that the created
time-varying traffic can be adjusted to the parameters of a
given topology. This is performed by distributing requests
among the nodes of the given topology based on some
popularity metric. The first option, commonly employed as
the default traffic model in similar papers, entails evenly
distributing requests among all nodes to ensure equal traffic
between each pair of nodes (this scenario is referred to as
normal traffic). The second option takes inspiration from the
multi-variable gravity model proposed in [55], i.e., the traffic
depends on the distance between nodes. In more detail, the
total amount of traffic from one node to all others remains
the same as in the previous scenario uniform, however,
the traffic for each pair is inversely proportional to the
distance between them (this scenario is referred to as distance
traffic).

There is also an option to apply timezones for the
traffic inside the given topology with modeled time-varying
traffic, so the intensity across the day could be different
between different nodes representing cities, according to
given settings (e.g., peak hour between Seattle and Los Ange-
les can be different than between New York and San
Francisco).

IV. ALGORITHMS
The following Section describes the main components of
the allocation algorithm proposed to solve the problem of
periodic allocation of lightpaths in SS-FON based on the
incoming traffic. The input for the problem consists of an
SS-FON network and time-varying traffic. The SS-FON
network is characterized by its topology, along with the
specified quantity of spectrum resources (spectrum slots) and
transceivers located at network nodes. Moreover, the network
is able to perform the B2B regeneration as described in Sec-
tion III-A. In turn, the time-varying traffic is defined for each
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pair of nodes that exchange information. The optimization
problem consists of periodic solving of the RSSA problem.
The primary objective is to allocate traffic requests and
periodically reallocate the network in response to changes in
traffic. The goal is to minimize the bandwidth blocking prob-
ability (BBP), which is calculated as the volume of rejected
traffic divided by the volume of the total traffic offered to the
network.

A. OVERVIEW
In general, our algorithm consists of three main components.
The first is the periodic allocation, which controls how often
the allocation is made. This approach adjusts the allocation
of resources for each pair of nodes according to the traffic
required (or predicted) in the next allocation period. This
approach is a state-of-the-art method used for optimization of
time-varying traffic in optical networks, e.g., [56] and [57].
The method, along with examples, is presented in Sec-
tion IV-B. The second component is an order of processing
each of the nodes’ pairs that steers the way of saturating
the network with resource allocation. The inspiration for
using this approach comes from effective heuristic methods
developed for the routing and spectrum allocation problem
in EONs [58], [59], [60]. The rationale for the method and
several proposed approaches are described in Section IV-C.
The third component is the ARBR (Adaptive Routing with
Back-to-Back Regeneration) method [49], which controls the
routing and spectrum allocation for a lightpath, which is used
to provision the traffic for a given pair of nodes to minimize
the bandwidth blocking. According to the results reported
in [49] and [61], the ARBR algorithm outperforms other
reference methods in dynamic optimization of SS-FONs. A
detailed description of the ARBR method is presented in
Section IV-D.
The combination of the methods mentioned above results

in different capacities and provides one of the key contri-
butions of this work. The selection of these methods that
are adjusted to the network model and the traffic provided
gives a significant improvement in terms of the traffic served
without the need for modification or increasing the number
of resources available in the network.

The key concept of the proposed allocation algorithm is
the reallocation period (RP). In more detail, due to the time-
varying traffic considered in our work, the time scale is
divided into smaller periods for which the new allocation of
resources is performed, so the usage of those would be more
precisely adjusted to current requirements in the given time
period. More details about this part of the algorithm can be
found in Section IV-B.
Another key part of the algorithm is the information about

the incoming traffic in each RP, which is utilized during the
allocation process. As a baseline, we assume the ideal 100%
prediction to benchmark and configure the proper algorithm
settings. Then, we use the traffic prediction models, which
are described in Section V.

The general flow of the algorithm is shown in Fig. 1,
which presents each of the described parts and how they
interconnect with each other.

This article can be treated as a continuation and extension
of the work begun in [50], but also as a separate set of new
ideas that connect to concepts already researched. Work [50]
introduced the concept of a reallocation period and briefly
tested it in a smaller set of scenarios. In contrast to the above
work, this article takes into account more topologies, types of
traffic, routing algorithms, and different types of reallocation
periods. Also, in this paper, we introduce the concept of
configuration sorting methods other than the previously used
index_asc, which is a reference method in the simulations.
On top of that, all those concepts are combined, giving
a new method for managing network resources for time-
varying traffic in SS-FONs. The last difference when
compared to [50] is that in this work, we use the traffic
prediction models so as to mimic the complete real-world
scenario.

B. PERIODIC REALLOCATION
The allocation process is the process of reserving the
number of available resources (spectrum and transceivers).
To maximize the amount of served traffic and to minimize
the blocked traffic, our proposed allocation algorithm sets
up lightpaths periodically to adapt to changing traffic over
time. The RP occurs at a certain interval, with all resources
released to create a new configuration for each pair of nodes,
potentially resulting in a different selection of the lightpath
(in terms of routing paths and spectrum). Since the traffic is
to be established between each pair of nodes, the algorithm
is divided into individual runs for each pair of nodes.
In each step, the goal is to find a lightpath configuration that
meets the needed traffic while permitting effective resource
management for other node pairs. For instance, a basic
approach could be a method where the pairs are analyzed
in a lexicographic order, though this order can be altered
and can cause a different blocking for the same amount of
traffic and available network resources. This is discussed in
Section IV-C.
Since the main goal of our research is to provide an

overall verification of the concept of periodic reallocations
to take advantage of the specific characteristics of time-
varying traffic, we do not address the reconfiguration
time of resources. However, in our future plans we
want to address this issue and develop an optimization
framework for a hit-less reallocation scheme that will
account for time constraints of the network reconfiguration
process.

It should be underlined that the reallocation period of
24 hours (RP = 24 hours) is our reference scenario, called
one-time allocation approach. In more detail, the single
allocation approach assumes that there is no reallocation and
the network does not adjust to time-varying traffic and does
not utilize the fact that the traffic is different throughout
the day. Comparison of our optimization approach allowing
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FIGURE 1. Flow diagram of the proposed algorithm.

periodic reallocation against the single allocation approach
and evaluation of the potential benefits in terms of our is one
of the main goals of this paper.

We present the following example to illustrate the advan-
tage of frequent reallocation compared to just one allocation
allowed for a given amount of time. For instance, a certain
number of frequency slots must be reserved to fulfill the
traffic requirement for a given pair of nodes. Fig. 2 depicts
a request for traffic that varies over time for a given pair
(blue line). It can be seen that since the required bit-rate
changes over time, the number of frequency slots needed
also varies.

In the case of the one-time allocation approach, in which
only one resource allocation is done per day (purple dotted
line, RP = 24 hours), continuously reserving 400 Gbps
bandwidth is unnecessary. In the given example, only 4 hours
out of the 24 require 400 Gbps bit-rate. Reallocations with
lower RPs (represented by green and red dotted lines) which
fit the request in the allotted time permit the efficient
utilization of the free spectrum resources on lightpaths for the
remaining pairs of nodes. This example shows that frequent
reallocations are more efficient in making use of available
resources and can improve the capacity of the network since
further allocation for other pairs of nodes will be needed, and
potentially also with the use of gained resources. We assume
that the value of the RP parameter is constant throughout the
simulation.

FIGURE 2. Reserved bandwidth for different RPs depending on given
required traffic.

C. ORDERS
As described in Section IV-D, the cost function of each
configuration for a pair of nodes is calculated separately and
sequentially since the state of the network taken into account
depends on previously selected configurations. With that in
mind, the total capacity of the network may vary for different
orders of processing of pairs of nodes. On the basis of that,
we take into account various orders of processing, which can
be divided into three main groups.

110198 VOLUME 12, 2024



A. Włodarczyk et al.: ML Assisted Provisioning of Time-Varying Traffic in Translucent Optical Networks

The first type of order is based on the distance between
each pair of nodes, which corresponds to the length of the
shortest path between those and is measured in kilometers.
With these values, the list of node pairs to be processed by the
ARBR algorithm is sorted. In this case, we select two types of
orders, namely, ordering by distance in ascending order and
by distance in descending order, denoted by distance_asc and
distance_dsc, respectively. This approach assumes that the
best way to allocate resources is to start with the node pairs
located relatively close to each other so that the subsequent
heuristic computation is more suited to the state of the system.
In contrast, it could be preferable to start with the longest
distances between the analyzed node pair so that the most
demanding configurations are chosen first. In essence, these
methods focus on the resources that must be assigned in
relation to the distance, such as the number of hops or the
highest modulation format available.

The second considered type is based on lexicographic
order, that is, it sorts pairs of nodes based on the assigned
number of source and destination nodes. From this approach,
we distinguish two methods of sorting: by index in ascending
order (denoted by index_asc) and by index in descending
order (denoted by index_dsc). These are the benchmark
approaches with no real-world rationale, but rather to
compare to other methods, as it is a natural way of listing
the paths in a network. The index_asc sorting method is also
the only one used in our previous work [50].
The third group is the order by the amount of predicted

required traffic in the next RP for each pair of nodes. There are
also two possibilities here, namely, ordering from the pair of
nodes with the highest required bandwidth to the one with the
lowest, denoted by traffic_dsc. The other ranges from lowest
to highest, denoted by traffic_asc. The rationale behind these
is that maybe it is better to allocate the highest requested
bandwidth initially so to avoid the blockage for those as
a priority. Alternatively, maybe it would be better to handle
the smallest requests, so with a saturated system, the ARBR
algorithm would be better suited for those.

D. ARBR
In this Section, we describe the ARBR algorithm that was
proposed for the first time in [49] and then applied to various
optimization problems in SS-FONs with B2B regeneration,
for example, [61], [62]. The ARBR algorithm is used for
dynamic routing in SS-FON, and the goal of this algorithm is
to try to establish a request in order to minimize the blocking.

As we consider time-varying traffic and periodic reallo-
cations during which the resources can be reassigned, the
lifetime of each request for the ARBR algorithm is equal
to the reallocation period (starting at the same timestamp).
Between each pair of nodes, there is requested bandwidth
changing in time according to the traffic model described
in Section III-B. As the overall bandwidth is composed of
multiple services, traffic between each pair of nodes can be
treated by the ARBR either as a large single request with the

bit-rate equal to the accumulated bandwidth or divided into an
arbitrary number of smaller requests that can accommodate
the same total capacity if needed.

We assume that the SS-FON is modeled as a graph G =

(V ,E), where V denotes a set of optical nodes and E denotes
a set of fiber links composed as a bundle of K SMFs. In each
SMF k ∈ K the optical frequency spectrum is organized
as a set S = {s1, s2, . . . , s|S|} of 12.5 GHz frequency
slots. The available modulation formats are denoted as a set
M = {m1,m2, . . . ,m|M |}. Each modulation format m ∈ M
is described by a certain transmission reach and spectral
efficiency. A modulation format m ∈ M provides the
transmission of a bit-rate g(m) on a single carrier. Using
the data from the traffic prediction model (described in
Section V), a traffic request d is assigned with a bit-rate h(d)
to be transmitted in the network using a lightpath established
on a route p connecting the request’s end nodes and going
through a set of intermediate nodes V (p) ⊆ V . For each
request d , a set P(d) of candidate routing paths is available,
created using the k-shortest path algorithm. The set R(p)
contains allowable B2B regeneration options for path p.
A regeneration option r ∈ R(p) is described by a subset
V (r) ⊆ V (p) of regeneration points, which means that the
path p is divided into a set of consecutive path segments
r = {q1, q2, . . . , q|r|} and the path segments have end nodes
in regeneration points V (r). The best (in terms of the spectral
efficiency) modulation format m(q) ∈ M is chosen for
the SCh using path segment q ∈ r , guaranteeing that the
transmission reach of m(q) exceeds the length of the path
segment q. Let n(q, d) denote the number of OCs required for
path segment q of request d . Note that n(q, d) is a function
of the carried bit-rate and selected modulation format, that
is, n(q, d) = ⌈h(d)/g(m(q))⌉. In consequence, the width
(number of required frequency slots) of the path segment q
in request d is defined as c(q, d) = 3n(q, d) + 1, since –
according to the network model described in Section III-A –
every OC includes three frequency slots and one additional
frequency slot applied as a guard-band to isolate neighboring
SChs. Finally, notice that the number of transceivers assigned
to the request d on the path segment q corresponds to
n(q, d) since each OC is generated/received using a single
transceiver.

Now, we introduce some additional notation related to the
concept of configuration introduced in Section III-A. Let
π = (p, r) define a configuration where p denotes a routing
path and r denotes a regeneration option (i.e., a division
of the path p into path segments). Moreover, we assume
that r(π ) and p(π ) denote a regeneration option and path of
configuration π , respectively. Finally, let 5(d) denote a set
of configurations available for request d .

Next, we focus on the definition of a metric used to
measure the quality of various configurations for a request.
Let FS(π, d) =

∑
q∈r(π ) c(q, d)l(q) denote the total

number of frequency slots necessary to establish request
d using configuration π , where l(q) defines the number of
links (hops) of the path segment q. It should be stressed
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that FS(π, d) estimates the amount of spectrum resources
required to establish request d on configuration π . In more
detail, FS(π, d) counts frequency slots in all links applied to
realize configurations π necessary to provide the request d .
In an analogous way, let TR(π, d) =

∑
q∈r(π) t(q, d) denote

the number of transceivers necessary to establish request d
using configuration π .
Let cstatic(π, d) = FS(π, d) +

FSALL

TRALL TR(π, d) denote a
metric assigned to the configuration π for the request d ,
whereFSALL and TRALL denote the total number of frequency
slots and transceivers available in the network, respectively.
The rationale behind metric cstatic(π, d) is to measure how
much optical network resources (namely, spectrum and
transceivers) are necessary to establish request d using
configuration π . In the definition of cstatic(π, d), we apply
FSALL

TRALL to ensure a similar influence of both types of resources
(i.e., spectrum and transceivers).

Nevertheless, it should be noted that the metric cstatic(π, d)
measures only the static usage of resources in the network
and does not refer to the dynamic traffic scenario. In more
detail, in the dynamic traffic scenario, the usage of network
resources (i.e., spectrum and transceivers) varies over time
due to the dynamic allocation of resources to new requests
arriving to the network and the deallocation of resources used
by requests that are released from the network. Moreover,
using purely the cstatic(π, d) metric can trigger a scenario
when requests are tried to be provisioned on congested
links/nodes, and, in consequence, the requests are rejected
due to the lack of spectrum/transceivers. To address this
issue, we formulate a second metric that accounts for the
dynamic traffic scenario cdynamic(π, d) = MLU (π ) +

MNU (π ). Note that MLU (π ) estimates a maximum link
utilization considering all links included in configuration
π . Furthermore, MNU (π ) estimates the maximum node
utilization in terms of used transceivers, considering all nodes
included in configuration π . MLU (π ) and MNU (π ) metrics
are computed as proposed in [63], i.e., for 0−10% utilization
the metric is equal to 10, for 11 − 20% utilization is equal to
20, . . ., for 91 − 100% utilization is equal to 100. Finally,
combining the metrics cstatic(π, d) and cdynamic(π, d), we are
able to formulate the metric cadaptive(π, d) that is used to
measure the quality of the configuration π for requests d :

cadaptive(π, d) = (1 − α)cstatic(π, d) + αcdynamic(π, d),

where α is a tuning parameter applied to tune the impact of
static and dynamic metrics.

The workflow of the ARBR algorithm is as follows.
By processing the predicted traffic from the given prediction
model and iterating over each traffic request d , for every
configuration π ∈ 5(d) metric cdynamic(π, d) is calculated
accounting for the current situation in the network in
terms of spectrum and transceiver utilization. Next, all
configurations in 5(d) are processed in increasing order
according to metric cdynamic(π, d). In more detail, it is
checked if the request d can be provisioned in the network
using the currently analyzed configuration π . If possible,

the request d is allocated on configuration π , and the
algorithm stops. When none of the configurations allows
provisioning the request, the analyzed request is rejected.
Note that for spectrum allocation, the ARBR algorithm uses
the spectral first-fit spectrum allocation method. To speed
up the ARBR algorithm, allowable configurations for every
pair of nodes are precomputed, and thus it is not required
to compute configurations when a new request is to be
processed.

The computational complexity of the ARBR algorithm run
for a single request d is a result of three main elements.
First, the link and node metrics are to be computed to find
the value of metric cdynamic(π, d) for each configuration
π ∈ 5(d). This operation has complexity of O(|V | +

|S| |K | |E|), where |V | denotes the number of nodes, |S|

denotes the number of frequency slots, |K | denotes the
number of SMFs, |E| denotes the number of links. The
second element is due to the fact that all configurations
are sorted in increasing order of metric cdynamic(π, d).
Complexity of this operation isO(|5(d)| log(|5(d)|)), where
|5(d)| denotes the number of configurations available
for request d . The last element is responsible for pro-
cessing all configurations to check if request d can be
established using a particular configuration. Complexity of
this operation can be estimated as O(|5(d)| |S| |K | |E|).
Note that for each analyzed configuration the first-fit
spectrum allocation method is run having the complexity
of O(|S| |K | |E|).

In this work, we consider two types of ARBR algorithm.
The first uses α = 0.8 and is denoted in simulations by ARBR
(the italics refer to a particular implementation of ARBR
applied in the simulations). The chosen value of the α factor is
based on the algorithm tuning research in [49]. For the second
case, we use α = 0 and denote it by ARBR_static. The latter
can be described as the ARBR algorithm with only the static
part and is chosen because of its simplicity compared to the
full approach and as a reference to see the gain in terms of
proper configuration selection. For more details on the ARBR
algorithm, please refer to [49].

E. DISCUSSION
In this section, we discuss the proposed optimization
framework. Inmore detail, we report scalability of themethod
and present some limitations. Moreover, we briefly highlight
potential modifications and adaptations for other scenarios.

The complexity analysis presented in previous Sec-
tion indicates that the main element of the optimization
framework, i.e., ARBR algorithm, has polynomial com-
plexity, what provides scalability of the proposed solution
in larger, more complex network topologies. An important
parameter influencing the complexity is the number of
configurations (|5(d)|). However, this parameter can be
tuned according to the needs and expected scalability. Inmore
detail, the number of configurations is a function of the
number of candidate shortest routing paths and the number of
B2B regeneration options. In this work, we use 5 candidate
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shortest paths. However, this parameter can be tuned for the
purpose of the scalability. In a similar way, the number of
B2B regeneration options can be reduced. Other elements
of the proposed optimization framework also provide good
scalability and can be used for networks of various size.

The computational requirements of the proposed resource
allocation heuristics exhibit variation dependent on the
predicted traffic volume, network size, and available resource
quantity (including transceivers at topology nodes and cores
on topology arcs). On a single CPU with a clock speed of
3.8 GHz, the execution time ranges from 1.77 to 4.96 seconds
per one reallocation period, with an average value of
2.93 seconds.

It is worthy to underline, that the proposed optimization
framework can be adapted to various types of hardware.
To run numerical experiments, we made some assumptions
on the applied hardware (see Section III-A). However, the
developed algorithms (including the ARBR method) can be
modified to work with other models of transceivers with dif-
ferent values of the key parameters concerning the supported
modulation formats, transmission reach, number of used
spectrum slots. The proposed solution can be easily extended
to use either vendor specific connection planning tools or
by using analytical or ML-based models in disaggregated
optical networks to assure sufficient connection’s quality of
transmission.

It should be noted that this work is a preliminary research
with the main goal to explore potential benefits of using
dedicated strategies for leveraging the unique characteristics
of time-varying network traffic in translucent SS-FONs.
In operating network, periodic reconfiguration of optical
connections can result in connections downtime. End-to-
end optical path reconfiguration time can be on the order
of several hundred milliseconds causing transmission loss
[64]. However, we may expect that the reconfiguration
time will be decreased in the future optical networks [65].
In this work, to reduce complexity and the scope of research,
we made a simplification assumption that the time required
for the network reconfiguration is very small. In consequence,
the resources (i.e., transceivers and spectrum) used by
lightpaths in the previous reallocation period are available for
provisioning of new ligthpaths in the next reallocation period.
However, we would like to underline that the developed
optimization framework and obtained results can be adapted
for the hit-less reallocation approach that addresses more
detailed constraints of the network reconfiguration process.
In more detail, to account for a longer time required for the
network reconfiguration, the optimization framework can be
modified to change the moment when resources of lightpaths
of the previous reallocation period are released. In particular,
the new lightpaths are provisioned in the network before the
resources of previous ligthpaths are released. To facilitate
the reallocation process, the optimization framework can
reallocate only a fraction of all requests in a given moment
and thus reduce the negative impact of overlapping of
previous and new lightpaths.

Moreover, the proposed optimization approach can be
easily enhanced to address network resilience and protect
the network against potential failures. For this purpose,
each traffic request in the network should be assigned two
lightpaths using a pair of link-disjoint paths, which would
protect against a single link failure. The only element of the
proposed optimization framework that needs to be modified
is the routing, spectrum, and space assignment algorithm.
To this end the Adaptive Survivable Routing with Back-to-
Back Regeneration (ASRBR) algorithm proposed in [61] can
be applied.

V. TRAFFIC PREDICTION
In this article, we consider the time-varying traffic between all
pairs of nodes in a backbone optical network. For instance,
in a 28-node topology , that is, 756 separate time series.
It poses a challenge to forecast such a large amount of
targets simultaneously. A traditional approach uses dedicated
prediction models for each network link, source-destination
pair, traffic class, or for each connection request, e.g., [18],
[43], [44], and [45]. However, graph neural network models
are recently gaining popularity for predicting the traffic
in the whole network at once, e.g., [14], [46], and [47].
Nevertheless, such models are designed rather for forecasting
the utilization of specific links than for more versatile
predictions of traffic between node pairs. In the scenarios
considered in the literature, the network snapshot graphs
analyzed by the ML algorithms have less than 100 edges,
as they only contain actual links in the underlying backbone
network architecture. Note that such a framework infers some
routing algorithm placing individual connection requests into
specific lightpaths. More generic information about future
traffic between node pairs enables the creation of a more
informed routing algorithm that can adapt its decisions and
thus place more traffic into the network [12]. Furthermore,
a graph where all nodes are connected with each other has
a very regular structure and therefore is not an ideal use
case for graph neural networks [66]. On the contrary, training
individual prediction models for each pair of nodes makes the
task too complex for large network topologies.

The proposed traffic prediction model is inspired by our
research in [67], where we showed how information about
other types of traffic in the network improves the prediction
quality of a single traffic type. Following this idea, we create
a general, aggregated prediction model (APM), which uses
multioutput regression for simultaneous forecasting of the
traffic between all pairs of nodes. That way, we reduce the
number of necessary models to only one. As an added bonus,
since the relationships between targets are available to the
model, multioutput regression methods are known to yield
better predictive performance, in general, when compared to
the single-output methods [68].

Following our idea from [67], the proposed APM uses
additional temporal features created from past, highly
correlated samples of each timeseries (traffic measurements
between one pair of nodes). As also shown in [69], such
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FIGURE 3. APMpost illustration.

FIGURE 4. APMpre illustration.

features are very effective for traffic prediction, as they have
the highest contribution in the model decision compared to
other possible inputs. Furthermore, as shown in [40] and [70],
models based on such features can successfully adapt to
changing traffic patterns and unseen traffic types. Due to the
varying forecast span (more details in the next paragraph), for
each timeseries, we use two additional features: the amount
of traffic measured a day and a week before the forecasted
period. In turn, an aggregated multitarget model predicting
756 timeseries uses 2 · 756 = 1512 features. Note that this
is still a relatively small model compared to deep learning,
where dramatically more parameters are needed; thus, the
resulting models are much more complex [71].

We consider traffic forecasting a regression problemwhere
exact bit values are predicted. However, the proposed routing
algorithm employs the idea of RPs, where lightpaths are
established, considering the maximum expected traffic in
the next period. Nevertheless, as in real-world networks, the
operator has access to more granular traffic measurements,
which can be further used to train a more versatile prediction
model. In this work, we wish to compare two proposed
approaches. In the first one, called APMpost, the model is
trained on one-minute-sampled traffic data and outputs a
detailed minute-by-minute forecast for the coming period.
Then, the maximum predicted traffic is extracted from the
obtained forecast and passed to the routing algorithm. The
idea behind this model is illustrated in Fig. 3. In the second
approach, APMpre, the historical data is preprocessed by
extracting maximum traffic values from each period and
then training the model. In turn, the created model outputs
only one value, corresponding to the maximum traffic in the
subsequent period. The idea behind this model is illustrated in
Fig. 4. To the best of our knowledge, this is the first approach
to propose traffic prediction methods for various RPs in the
literature.

Note that our proposed APM is generic and thus can be
used with any ML algorithm. In this work, our ML algorithm
of choice is linear regression (LR). As shown by the authors of
a recent study [72], for optical-network-related tasks, the use

of LR can provide results of similar quality to deep learning
techniques at a notable complexity decrease, following the
green networking paradigm [73]. Similarly, in [40], the
LR-based streaming approach outperformed various neural
network models in long-term traffic prediction, and, in our
previous analysis [67], LR achieved the lowest prediction
errors across traffic types.

VI. RESULTS
In this Section, we first give an overview of the simulation
setup, then discuss the algorithm tuning. Finally, we dive into
the details of the results we obtained.

A. SIMULATION SETUP
For the experiment, we use two representative optical network
topologies: Euro28 (28 nodes, 82 links, average link length of
625 km) and US26 (26 nodes, 84 links, average link length
of 755 km) shown in Fig. 5 [60]. We use the network model
described in III-A. We assume that each link in SS-FON is a
bundle of 12 SMFs, where each SMF provides 320 frequency
slots, each of 12.5 GHz width. Network nodes are equipped
with the same number of coherent transceivers that operate at
a fixed baud rate, where each transceiver transmits/receives
an optical signal that occupies three frequency slots (i.e.
37.5 GHz). The total number of transceivers available in
the network is 10 000, 15 000, or 20 000, which are evenly
distributed for all nodes.

The main performance metric is bandwidth blocking
probability (BBP), defined as the volume of rejected traffic
divided by the volume of the whole traffic offered to the
network. Furthermore, we use a metric called accepted traffic
for 1% threshold of BBP. To obtain this metric, we simulate a
particular scenario for various values of traffic load expressed
to find the maximum traffic that can be provisioned in the
network with a BBP of 1%, a commonly acceptable threshold
for BBP.

The simulations were realized within the authors’ custom
software written in Python 3.11 programming language
using the standard module along with scipy, numpy, pandas
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FIGURE 5. Tested network topologies.

third-party libraries. The computations were parallelized
using the MPI protocol (each considered scenario occupied
a single core, giving a total of 12 separate and independent
runs at the same time).

The setup of the simulator depends on several control
parameters. The consider topology defines the main param-
eters, i.e., the number of nodes, the number and lengths of
links that connect them, and the overall number of pairs of
nodes. In our simulator every pair of nodes is taken into
account during the allocation process. Next parameters are
the setting of resources in a given topology, such as the
number of transceivers in each node and the number of SMFs
at each link. For the setting of allocation procedure and
the reallocation period duration, the routing algorithm and
the method of ordering possible lightpath configurations for
each pair of nodes are the key parameters. With the given
time-varying traffic that is quantified into chunks of required
traffic for each pair of nodes, the simulator iterates over
each pair of nodes (in order defined by the sorting method)
and tries to allocate resources that would provide a lightpath
that would provision the required traffic load in given time
range (defined by the reallocation period). If the required
traffic could not be provisioned for a given pair of nodes, the
simulator treats this traffic as a blocked traffic. At the end of
the simulation, simulator based on the total blocked traffic
and the with overall traffic computes the main performance
metric of BBP. Moreover, the simulator collects other metrics
such as number of used transceivers and used frequency slots.

B. ALGORITHM TUNING
The tuning stage was performed with the use of multiple
scenarios that could point to the best combination of ARBR
type and configuration sorting methods, that is:

• 2 topologies: Euro28 and US26.
• 4 types of traffic: normal and distance, with or without
timezones applied.

• 2 routing algorithms: ARBR and ARBR_static.
• 3 transceiver numbers: 10 000, 15 000 and 20 000.
• 2 reallocation periods: 15 minutes and 1 hour.
• 6 configuration sorting methods: distance_asc, dis-
tance_dsc, index_asc, index_dsc, traffic_asc, and traf-
fic_dsc.

The total number of scenarios to investigate is 576. From
these scenarios, the 12 main methods can be extracted,
which are characterized by the type of routing algorithm
and sorting methods. So, all of these 12 methods are tested
against 48 scenarios which are grouped into four groups
depending on the tested topology, namely Euro28 and US26,
and tested traffic type, named as distance and normal, which
are described in Section III-B.

Example methods’ benchmarks for given scenarios are
presented in Fig. 6 and 7 and show the performance of each
method in terms of BBP for 24 hours depending on the given
traffic. It can be seen that some methods perform noticeably
better compared to others and can provide a 1% BBP for the
higher required traffic. Recall that the reference method, used
in [50], is the ARBR index_asc and is the only such approach
known to the authors.

FIGURE 6. An example benchmark of methods for a test configuration
consisting of US26 topology with 15 000 transceivers, 15 min RP for
distance traffic with timezones.

FIGURE 7. An example benchmark of methods for a test configuration
consisting of Euro28 topology with 20 000 transceivers, 15 min RP for
distance traffic without timezones.

Through multiple tuning simulations, for each scenario,
the best method was found by comparing the highest, 24-
hour accepted traffic with 1% BBP, and according to that
amount of required traffic, the BBPs for other methods were
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TABLE 2. Tuning for the Euro28 topology.

calculated. We propose two types of ranking methods. The
first, denoted as R1, is to rank the methods for each scenario
in the given group from 0 to 11, where 0 denotes the lowest
BBP (that is, 1%) and 11 the highest. This means that the
method which is the best for all scenarios in a given group
would have a ranking R1 = 0, and similarly, the method
which is the worst for all cases would have R1 = 132 since
there are 12 scenarios for each group. The other ranking
method, denoted as R2, consists of assigning the difference
in BBP of a given method and the BBP of the method with
the lowest BBP. For example, if, for a given scenario, method
A has 1% BBP (and has the lowest BBP from all methods
for the given scenario) and method B has 7.8% BBP, then the
ranking R2 would equal 0 for method A, and 6.8 for method
B, respectively.

Tables 2 and 3 show the tuning results for the Euro28
and US26 topologies, respectively. Results are grouped for
the distance and normal metric (i.e., traffic type). The
columns 6R1 and 6R2 are sums of R1 and R2 for both
mentioned groups. As can be seen, for the Euro28 topology,
the method ARBR distance_asc outperforms other methods.
For the US26 topology, thementionedmethod is also the best.
However, in this case, the method ARBR traffic_dsc has close
ranking results.

C. TRAFFIC PREDICTION
To evaluate the quality of the proposed traffic prediction
models, first, we use the mean absolute percentage error
(MAPE), as it enables a direct comparison of the methods’
performance on traffic timeseries differing vastly in volume.
Moreover, it is a commonly used measure in the network
traffic prediction problem (e.g., [73], [74]).
Fig. 8 and 9 present the MAPE distribution across consid-

ered 756 pairs of nodes in Euro28 topology for different RPs
(given in minutes) for APMpre and APMpost, respectively.
The prediction quality is prominent, with average MAPE
values between 3-14%, depending on the model and RP.

FIGURE 8. MAPE distribution across pairs of nodes for different RPs for
APMpre, Euro28 topology.

FIGURE 9. MAPE distribution across pairs of nodes for different RPs for
APMpost, Euro28 topology.

Interestingly, the prediction quality trends regarding different
forecast horizons are quite the opposite between the models.
For APMpre, the average prediction error decreases with the
increase of the forecasted period, with a spike for the 60-
minute forecast period. That is not the case for APMpost,
where, on average, more accurate predictions were obtained
for shorter time windows. To recall, APMpre is trained on
preprocessed data, with the historical maximum traffic values
from each period available directly to the model. On the
contrary, APMpost outputs minute-by-minute forecasts, and
the maximum traffic values for the predicted periods are
extracted in post-processing. From a practical perspective, the
detailed predictions of APMpost can be more versatile as they
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TABLE 3. Tuning for the US26 topology.

allow the operator to calculate the maximum expected traffic
in any chosen horizon on-the-fly.

As our recent studies show, the choice of a traffic
prediction model can vary quite significantly between
metrics [40], [75]. For that reason, we further expand our
evaluation. In Fig. 10, we report the ratio of forecasted
timeseries that had more accurate predictions according to
four metrics for considered RPs. Such presentation enables
visual comparison of error measures dependent on the
traffic volume and thus not directly comparable between
traffic in different pairs of nodes. We consider the afore-
mentioned MAPE, two other standard regression metrics:
mean squared error (MSE), coefficient of determination
(R2), and a recently proposed allocation outside blocking
threshold (AOBT) [40], [75]. The latter is a parameterized
measure that links the problem of traffic forecasting with
bandwidth blocking probability (BBP). In this paper, we use
equal slope parameters of 2 and an acceptable blocking
threshold of 1%. For more information about the AOBT,
we refer to [40], [75].

The differences between the evaluation of different metrics
are apparent in Fig. 10. Nevertheless, some common trends
emerge between them. In particular, for almost all pairs of
nodes, for RP of 60 minutes, more accurate predictions were
given by APMpost, which is also true for RP of 15 minutes
in most cases. However, for larger RPs, APMpre provided
better forecasts. For RPs of 720minutes and 1440minutes (24
hours), almost all timeseries were predicted more precisely
with this model. It is the most notable for RP= 1440 minutes
using the R2metric – for all pairs of nodes, APMpre delivered
closer to perfect predictions. In summary, from the ML point
of view, APMpost is a better choice for smaller RPs, while
APMpre should be used for larger RPs.
As illustrated above, the proposed traffic prediction model

provides satisfactory forecast quality across network node
pairs. However, ML models tend to minimize standard met-
rics to obtain the lowest-possible errors without considering

the real-world application [40], [75]. The best-overall
regression function is thus sought to balance over- and
under-estimations. In turn, even for light traffic load, due
to little traffic underestimation, insufficient resources can
be prepared for the coming requests causing infeasible
solutions and blocking, despite still having free capacity
within the network. Therefore, as in related literature (e.g.,
[76]), the algorithm considers the predicted traffic values
with an additional 10% overhead to minimize the mentioned
unnecessary blocking when the resources are still available in
the network.

D. EVALUATION OF VARIOUS SCENARIOS
As shown in Section VI-B, in our tuning tests, the method
ARBR distance_asc performed the best. In this Section,
we evaluate a set of scenarios which test the performance
of that method for more RPs in terms of BBP and resource
usage.

This stage of numerical experiments consists of the
following scenarios:

• 2 topologies: Euro28 and US26.
• 4 types of traffic: normal and distance, with or without
timezones applied.

• 3 transceiver numbers: 10 000, 15 000 and 20 000.
• 9 reallocation periods: 15 minutes, 1 hour, 2, 3, 4, 6, 8,
12, 24 hours.

• 1 algorithm method: ARBR distance_asc, that is, ARBR
routing algorithm with a configuration sorting method
distance_asc.

The total number of scenarios to investigate is 216.
To recall, the one-time allocation approach with reallocation
period of 24 hours (RP = 24 hours) is as a reference scenario
used to verify what are the gains of using our optimization
framework that adjusts the network configuration to time-
varying traffic by utilizing the fact that the traffic is different
throughout the day. Fig. 11 presents two example sets of
scenarios for which the trends of changes in used resources
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FIGURE 10. Ratio of forecasted timeseries with more accurate predictions of APMpre and APMpost for various metrics.

and blocked traffic for different amounts of traffic in the
networks are presented. Of the total of six, there are two
groups of three graphs each. Those on the left-hand side
present a set of scenarios for Euro28 topology, distance (with
timezones applied) traffic type, and 15 000 transceivers in
the entire network. On the opposite side, there is a scenario
set for US26 topology, normal (without timezones applied)
traffic type and 15 000 transceivers in the whole network
as well. For given scenarios, the overall trend of network
capacity for different RPs is presented. As can be seen in the
first row, a lower RP gives a lower BBP and, furthermore,
a higher capacity of the network. The second row presents the
mean frequency slots usage (from the 24-hour traffic) along
with 1% BBP represented by dots on the lines as reference
points. The third row presents the mean transceiver usage
with reference 1% BBPmarkers. These plots show that, apart
from the higher capacity of the network for lower RPs, the
usage of resources is also smaller, which gives benefits on all
considered sides.

To verify the energy savings, we use the power con-
sumption model proposed in [18]. The example results are
presented in Fig. 12. We compared results for 1% BBP for
different RPs. It can be seen that the power consumption can

be reduced by 12.5 p.p. for RP = 15 minutes compared to
the reference scenario of one-time resource allocation over
24 hours while offering the higher volume of provisioned
traffic, i.e. 13.12 EB for RP = 15 minutes vs. 11.47 EB for
RP = 24 hours.
Tables 4 and 5 (see appendix) present an evaluation of

the BBP and the resources used in the Euro28 and US26
topologies, respectively, for various scenarios adjusted in
such a way that the input required group for each group
of scenarios (grouped by topology type, traffic type, and
number of transceivers) gives the 1% BBP for the lowest
RP considered, so the usage of resources can be compared.
For all the 24 scenarios presented, parameterized by the type
of topology and traffic type, the advantage of using RP is
clearly seen, compared to the base approach (no reallocation)
represented by RP = 1440 minutes (24 hours).

In terms of BBP, the 15-minute RP performs better
than the non-periodic approach with a gain varying from
2.4 p.p. (the lowest gain, US26 topology, traffic type normal
without timezones, 20 000 transceivers) to even 7.8 p.p. (the
highest gain, Euro28 topology, traffic type normal without
timezones, 15 000 transceivers). Overall, the mean gain in
BBP is approx. 5 p.p.
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FIGURE 11. Comparison of BBP, frequency slots usage and transceivers usage for example scenarios grouped in three figures on
left and right hand sides.

FIGURE 12. Energy savings for different reallocation periods for a test
configuration consisting of Euro28 topology with 15 000 transceivers for
distance traffic with timezones (for 1% BBP).

For mean transceiver usage, the 15-minute RP performs
better than the non-periodic approach with lower usage
varying from 16.7% (the lowest gain, Euro28 topology,

traffic type normal with timezones, 15 000 transceivers) to
23.4% (the highest gain, US26 topology, traffic type normal
without timezones, 20 000 transceivers). Overall, the mean
transceiver usage is lower by the mean value of 19.7%,
compared to the base method.

Finally, for mean frequency slots usage, the 15-minute RP
performs better than the non-periodic approach with lower
usage varying from 11.8% (the lowest gain, Euro28 topology,
traffic type normal without timezones, 15 000 transceivers) to
19.5% (the highest gain, US26 topology, traffic type normal
with timezones, 20 000 transceivers). In general, the mean
frequency slot usage is lower by the mean value of 16.3%,
compared to the base method.

All the results presented above used the baseline approach
where 100% traffic prediction is assumed (i.e., the future
traffic is known in 100%). The final point of our research
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FIGURE 13. BBPs of ARBR + distance_asc method used with APMpre (left side) and APMpost (right side) prediction models for different RPs.

TABLE 4. Euro28 topology. Evaluation of BBP and used resources: mean used transceivers (MUT), mean used frequency slots (MUFS) for different
reallocation periods (RP, in minutes) for method ARBR distance_asc. Results grouped by traffic type, number of transceivers (TN) and required traffic
(Req. Traffic [EB]) that would give 1% BBP for RP = 15 mins.
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TABLE 5. US26 topology. Evaluation of BBP and used resources: mean used transceivers (MUT), mean used frequency slots (MUFS) for different
reallocation periods (RP, in minutes) for method ARBR distance_asc. Results grouped by traffic type, number of transceivers (TN) and required traffic
(Req. Traffic [EB]) that would give 1% BBP for RP = 15 mins.

is to combine the tuned method ARBR distance_asc with
the prediction models proposed in Section V to verify
how the proposed, fine-tuned allocation algorithm performs
in the realistic scenario with incomplete knowledge about
the incoming time-varying traffic. To recall, the predicted
traffic, represented as the required bandwidths for each
node pair in a given RP, is used in the ARBR algorithm
as a parameter for allocating lightpaths according to those
predicted requests. For this case, we consider the Euro28
topology with a network of 15 000 transceivers along with
APMpre andAPMpostmodels tested for different traffic loads
with an additional 10% overhead of predicted values for each
pair of nodes, as described at the end of Section VI-C). The
results presented in Fig. 13 show that our proposed method
workswith traffic predictionmethods that preserve the gain in

network capacity depending on the applied RP and the trends
that occurred in the synthetic tests presented in previous
Sections.

VII. CONCLUSION
In this paper, we proposed an optimizationmethod to improve
the performance of the translucent elastic optical network
with traffic that varies in time. Based on extensive research,
including the analysis of different aspects of the optical
network resource optimizationmethods andmachine learning
methods, we designed the dynamic allocation algorithm
that manages the resources of the network using the traffic
prediction models. Starting from several semi-synthetic data
sets that mimic the real varying nature of the networking
demands, we introduced the concept of periodic allocation
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and enhanced versions of the dynamic routing ARBR
algorithm, which were tested against different scenarios,
including different topologies, traffic types, and number of
resources used in the network. Then, we focus on traffic
prediction methods that would provide reliable information
about incoming traffic in the next time range. Finally,
we combined all the elements mentioned to test our method
in simulations to prove that it works properly.

The proposed method performs better in terms of band-
width blocking probability and resource usage compared
to the standard one-time allocation approach (with RP =

24 hours). It is important to mention that this approach
does not require any additional resources in the given
network, so the application of such a method can be quickly
done in cognitive networks, e.g., software-defined networks.
We evaluated that the gain of usage our approach, in terms
of BBP, can be around 7.8 p.p., compared to a one-time
allocation approach (without reallocation), with the use of
23.4% less transceivers, 19.5% less frequency slots, and less
consumed power by transceivers.

The results presented above clearly confirm that the idea
of periodic reallocation of light paths due to changing traffic
provides benefits. However, in this work, as an initial study,
we made some simplifications, i.e., we assume that the
time required for network reconfiguration is not taken into
account. Therefore, in future work, we plan to propose and
evaluate an optimization framework for hit-less reallocation
scheme that will address more detailed constraints of the
network reconfiguration process. In addition, we will analyze
various criteria that can be used for triggering the reallocation
in the network, since this approach could reduce the number
of reallocations without reduction of the key performance
metrics.Moreover, we plan to focus on amore accurate traffic
prediction.

APPENDIX TABLES
Tables 4 and 5.
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