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Control-Oriented 2D Thermal Modelling of Cylindrical Battery Cells
for Optimal Tab and Surface Cooling

Godwin K. Peprah, Torsten Wik, Yicun Huang, Faisal Altaf, Changfu Zou

Abstract— Minimising cell thermal gradients and the average
temperature rise requires an optimal combination of tab and
surface cooling methods to leverage their unique advantages.
This work presents a computationally efficient two dimensional
(2D) thermal model for cylindrical lithium-ion battery cells
that is developed based on the Chebyshev Spectral-Galerkin
method and allows the independent control of tab and surface
cooling channels for effective thermal performance optimisa-
tion. This obtained model is validated against a high-fidelity
finite element model under the worldwide harmonised light
vehicle test procedure (WLTP). Results show that the reduced-
order model with as few as two states can predict the spatially
resolved temperature distribution throughout the cell and that
in aggressive cooling scenarios, a model order of nine states
can improve accuracy by about 84%. It is also shown that
even though cooling all sides of the cylindrical cell achieves
the lowest average temperature rise, cooling only the top and
bottom sides provides minimum radial thermal gradients.

I. INTRODUCTION

Although the transportation sector has seen significant
efforts in gradually downsizing and transitioning from the
use of internal combustion engines to fully electric vehicles
(EVs), it is confronted with challenges, such as a limited
battery range, high costs, and thermal safety issues [1]. To
ensure efficient energy utilisation, a long lifetime, and curb
thermal safety phenomena, the battery needs a sophisticated
thermal management system [2] that controls the battery tem-
perature to desired values irrespective of operating profiles
and the ambient environment.

Battery cells can be thermally controlled at the electrical
connection tabs (terminals), cell surfaces, or both [3]. The
effects of tab and surface cooling on battery thermal per-
formance have previously been investigated in the literature.
Li et al., and Bolsinger showed in [4,5] that tab cooling could
reduce the internal temperature inhomogeneities by about
25%, but surface cooling can maintain the lithium (Li)-ion
cylindrical cell at a lower average temperature under high
current rates than tab cooling. Surface and tab cooling each
possess distinct advantages and drawbacks. However, to the
best of our knowledge, there is currently no battery control
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framework in the state-of-the-art literature that systematically
explores the optimal combination of these two cooling meth-
ods.

While lumped parameter thermal equivalent circuits
(TECs) have been extensively used for control-oriented mod-
elling of batteries [6,7], they can only predict average and
surface temperatures and their applicability is limited to
cells with small Biot numbers. Physics-based models [8]
result in partial differential equations (PDEs) that govern
the underlying heat diffusion. They can predict spatially
distributed temperatures throughout the cell but are typically
implemented via computationally expensive numerical meth-
ods, such as finite element methods (FEM), rendering them
impractical for control purposes.

A computationally feasible spectral method based on the
Galerkin approach was adopted to develop a low-order 2-
dimensional (2D) thermal model for cylindrical cells in [9].
However, this model does not allow independent and targeted
cooling control of battery tabs and surfaces, preventing its
use for optimally combining tab and surface cooling for
battery thermal management.

To bridge the identified research gap, we develop a new
2D battery thermal model that stems from a reformulation
of the model in [9]. Unlike [9], which used a lumped
lifting function that captured all sides of the cell in one go,
our model decomposes the lifting function into constituent
side components, enabling us to obtain independent controls
for each side of the battery. In addition, we investigate
different cooling scenarios and their effects on the thermal
performance of cylindrical battery cells.

The developed model can accurately predict the spatially
resolved temperature field throughout a cylindrical battery at
a similar computational cost as TECs. Hence, the model can
be useful for real-time optimal control of the cooling effort
applied on battery tabs and surfaces.

II. OVERVIEW

The cell geometry of the proposed battery thermal model
is shown in Fig. 1. The tabs placed on the top and bottom
sides of the cylindrical cell can have different sizes. Existing
designs make the tab’s area much smaller than the cell’s
top/bottom area. Studies in [4] have demonstrated that these
designs are not efficient for battery cooling merely from the
tabs. Consequently, our model considers the entire area of
the top/bottom as the tabs (all-tab/tabless cell design), as
illustrated in Fig. 1. In the following sections, we present the



governing heat PDE for the cell and its associated boundary
conditions. We proceed to employ the Chebyshev spectral
method, and finally present the reformulation of the model,
using a boundary-lifting algorithm [10].
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Fig. 1: Schematics of a cylindrical cell for the 2D thermal model.
The blue and red-shaded areas represent the tab and surface cooling
channels, respectively.

A. PDE-based Battery Thermal Model

The cylindrical cell’s multi-layer structure is considered a
homogeneous solid with anisotropic radial and axial thermal
conductivities. Convective heat transfer is presumed to occur
on the external surfaces, where the heat transfer coefficient
and fluid free-stream temperatures, may differ for each
surface. Heat generation is assumed to be time-varying but
uniformly distributed in space, and is considered an input
disturbance in our model. The governing heat equation for
the cylindrical cell and its non-homogeneous convection
boundary conditions are given by

ρCp
∂T

∂t
− kr

∂2T

∂r2
− kr∂T

r∂r
− kz

∂2T

∂z2
= q(t), (1)

kr
∂T

∂r
= hs (T − Ts,∞) , at r = Rout (2a)

kr
∂T

∂r
= −hc (T − Tc,∞) , at r = Rin (2b)

kz
∂T

∂z
= ht (T − Tt,∞) , at z = L (2c)

kz
∂T

∂z
= −hb (T − Tb,∞) , at z = 0 (2d)

where the coefficients ρ and Cp are the volume-averaged
density and specific heat capacity, respectively. T (r, z, t) is
the temperature distribution, t is time, r ∈ [Rin, Rout] and
z ∈ [0, L] are the position coordinates in the r and z-
directions, with Rin and Rout being the inner and outer radii,
respectively, and L being the length of the battery. kr and
kz are the anisotropic thermal conductivities in the r and z

directions, and q(t) is the volumetric heat generation rate.
The fluid free-stream temperatures are given by {Tφ;φ =
s, c, t, b} for the curved surface, core, top and bottom sides
of the battery, respectively. The corresponding convection
coefficients are given by {hφ;φ = s, c, t, b}. We note that
negligible cooling occurs in the core area of the cylindrical
cell and thus, hc = 0 in (2b).

We transform the scale from the physical, i.e., r ∈
[Rin, Rout], z ∈ [0, L] to {r̃, z̃} ∈ [−1, 1], to simplify the
use of the orthogonal polynomial basis functions, such as the
Chebyshev polynomials [11]. The scaled governing equation
is then given by

ρCp
∂T

∂t
− α2kr

∂2T

∂r̃2
− γ

∂T

∂r̃
− β2kz

∂2T

∂z̃2
= q, (3)

with the scaling factors α = 2
Rout−Rin

, γ = α2kr

1+αRin+r̃ , β = 2
L ,

and subject to the boundary conditions(
hs

−hc

)
T + b±

∂T

∂r̃
=

(
us

uc

)
at r̃ = ±1, (4a)(

ht

−hb

)
T + d±

∂T

∂z̃
=

(
ut

ub

)
at z̃ = ±1, (4b)

where b± = −αkr, d± = −βkz , us = hsTs,∞, uc =
−hcTc,∞, ut = htTt,∞, and ub = −hbTb,∞.

B. Solution to Governing Heat Equation

The solution to the heat equation, (3) is composed of two
parts as follows

T (r̃, z̃, t) = Th(r̃, z̃, t) + Tp(r̃, z̃, t), (5)

where Th is the unknown homogeneous solution that satisfies
the modified problem for the cylindrical cell as

ρCp
∂Th

∂t
− α2kr

∂2Th

∂r̃2
− γ

∂Th

∂r̃
− β2kz

∂2Th

∂z̃2

= q −

(
− α2kr

∂2Tp

∂r̃2
− γ

∂Tp

∂r̃
− β2kz

∂2Tp

∂z̃2

)
≜ q∗,

(6)

and has homogeneous boundary conditions(
hs

−hc

)
Th(±1, z̃) + b±

∂Th

∂r̃
(±1, z̃) = 0, (7a)(

ht

−hb

)
Th(r̃,±1) + d±

∂Th

∂z̃
(r̃,±1) = 0. (7b)

Tp is the particular solution that satisfies the original bound-
ary conditions (4). Tp is determined by a boundary lifting
function, which will be discussed in Section III-A. The
solution (5) is approximated by a finite sum TN , as

T ≈ TN = Th,N + Tp,N =

M∑
m=0

N∑
n=0

cmn(t)ϕ
r̃
mϕz̃

n + Tp,N ,

(8)
where Th,N and Tp,N are the approximated solutions of
Th and Tp, respectively, by a finite sum of functions. M
and N are the number of Chebyshev basis functions in



each dimension, and ϕr̃
m and ϕz̃

n are the corresponding basis
functions, which must satisfy the homogeneous boundary
conditions (7a) and (7b), respectively. cmn(t) are the un-
known solution coefficients. Details of the basis functions
can be found in [9,11]. Using the notation

(
f, η
)

=∫ 1

−1

∫ 1

−1
f(r̃, z̃)η(r̃, z̃)dr̃dz̃, which represents the inner prod-

uct weighted by a test function η in the domain r̃, z̃, the
standard Galerkin approximation of the modified problem
(6) is given by(

r
[
ρCp

∂Th,N

∂t
− α2kr

∂2Th,N

∂r̃2
− γ

∂Th,N

∂r̃

−β2kz
∂2Th,N

∂z̃2

]
, η

)
=
(
rq∗, η

)
,

(9)

where r = 1+r̃+αRin
α included on each side accounts for

the cylindrical coordinates. Next, we discuss the form of the
expansion of Tp,N in terms of the basis functions.

III. MODEL REFORMULATION

Unlike [9,10], which used a lumped boundary lifting
function that merged all the sides of the cell into a single
function, we show below our approach, which decomposes
the lifting function into its constituent side components. This
approach makes it possible to obtain independent control
signals for each side (tab and surface) of the cell. The
complete state space thermal model is derived afterwards.

A. Particular solution, Tp(r̃, z̃, t)

We derive the boundary lifting function Tp, that satisfies
the non-homogeneous boundary conditions (4). The bound-
ary conditions are fulfilled in a weak sense, i.e., as additional
basis functions are incorporated, the solution gradually ap-
proaches convergence, resulting in Tp ≈ Tp,N .

In this study, we propose that Tp,N is composed of the
constituent cell side components and can be expressed as

Tp,N (r̃, z̃, t) = T s
p,N + T t

p,N + T b
p,N , (10)

where we assume the surface, top, and bottom side compo-
nents are given by the expansions

T s
p,N =

N∑
n=0

(
ds,1n r̃ + ds,2n r̃2

)
ϕz̃
n, (11a)

T
{t,b}
p,N =

M∑
m=0

(
d{t,b},1m z̃ + d{t,b},2m z̃2

)
ϕr̃
m, (11b)

with
{
d
φ,{1,2}
{m,n} ;φ = s, t, b; {m,n} = 0, · · · , N

}
being the

coefficients to be determined. The core’s component T c
p,N =

0. We define the conditions at the vertical and horizontal
sides below. For the curved surface, we have

hsT
s
p,N + b+

∂T s
p,N

∂r̃
≈ us at r̃ = 1, (12)

where ≈ denotes weakly satisfying conditions. Substituting
(11a) into (12) and with r̃ = 1, gives

N∑
n=0

[
ds,1n (hs + b+) + ds,2n (hs + 2b+)

]
ϕz̃
n ≈ us. (13)

Replacing (13) with the weighted integral equation,〈
f, η
〉
z̃
=
∫ 1

−1
f(z̃)η(z̃)dz̃, gives

N∑
n=0

[
ds,1n (hs+b+)+ds,2n (hs+2b+)

]〈
ϕz̃
n, ϕ

z̃
i

〉
z̃
=
〈
us, ϕ

z̃
i

〉
z̃
,

(14)
for i = 0, · · · , N . Adopting a similar process for the top,
and bottom sides we have

M∑
m=0

[
d{t,b},1m

(
h{t,b} + d±

)
+ d{t,b},2m

(
± h{t,b} ± 2d±

)]
·
〈
ϕr̃
m, ϕr̃

i

〉
r̃
=
〈
u{t,b}, ϕ

r̃
i

〉
r̃
, (15)

for i = 0, · · · ,M , and
〈
f, η
〉
r̃
=
∫ 1

−1
rf(r̃)η(r̃)dr̃.

Defining matrices for the surface, top, and bottom sides, as

V s =

∫ 1

−1

ϕz̃
nϕ

z̃
i dz̃, and H{t,b} =

∫ 1

−1

rϕr̃
mϕr̃

i dr̃, (16)

and their corresponding source terms

Ss = us

∫ 1

−1

ϕz̃
i dz̃, and S{t,b} = u{t,b}

∫ 1

−1

rϕr̃
i dr̃, (17)

(14)-(15) are equivalent to the following linear systems

V s
[
ds,1n (hs + b+) + ds,2n (hs + 2b+)

]
= Ss

Ht
[
d{t,b},1m

(
h{t,b} + d±

)
+ d{t,b},2m

(
± h{t,b} ± 2d±

)]
= S{t,b},

(18)
which can be solved for the corresponding

{
d
φ,{1,2}
{m,n} ;φ =

s, t, b
}

vectors of unknown expansion coefficients given by

ds,1 = V4S
s(V s)−1, ds,2 = −V1

(v3
v1

)
Ss(V s)−1

dt,1 = H4S
t(Ht)−1, dt,2 = −H1

(h3

h1

)
St(Ht)−1

db,1 = −H4

(h2

h4

)
Sb(Hb)−1, db,2 = H1S

b(Hb)−1

(19)

where V{1,4} =
v{1,4}

v1v4−v2v3
, H{1,4} =

h{1,4}
h1h4−h2h3

,
{v1, v2, v3, v4} = {hs + b+, hs +2b+, hc + b−,−hc − 2b−},
and {h1, h2, h3, h4} = {ht+d+, ht+2d+,−hb+d−,−hb−
2d−}.

B. State space equation

Denoting the basis functions for the approximate solution
for Th by ξi = ϕr̃

mϕz̃
n and that from the test function by

ηj = ϕr̃
mϕz̃

n, for i, j = 0, · · · , N ; (9) is equivalent to the
state space equation

Gẋ = Ax+Bu+ Fw, (20)



where

x = [(c00, c10, · · · , cN0), · · · , (c0N , c1N , · · · , cNN )]
T (21)

u =
[
us ut ub

]T
, w = q, (22)

are the states, control inputs, and the disturbance, respec-
tively. The system matrices are defined below. The element
in the i-th row and j-th column of matrix G, and vector F
are given by

G(i, j) = ρCp

(
rξi, ηj

)
, F (i, 1) =

(
r, ηj

)
. (23)

Similarly, A(i, j) is given by(
r

[
α2kr

∂2ξi
∂r̃2

+ γ
∂ξi
∂r̃

+ β2kz
∂2ξi
∂z̃2

]
, ηj

)
(24)

and B(i, {1, 2, 3}) are given by(
r

[
α2kr

∂2T
{s,t,b}
p,N

∂r̃2
+ γ

∂T
{s,t,b}
p,N

∂r̃
+ β2kz

∂2T
{s,t,b}
p,N

∂z̃2

]
, ηj

)
(25)

Fig. 2 shows temperature locations in the cylindrical cell.
For brevity, we choose the outputs of the system as the
temperatures at the mid-surface Ts,m, mid-core Tc,m, mid-
top Tt,m, and mid-bottom Tb,m. The output equation is then

y = Cx+ Tp,N , (26)

where
y =

[
Ts,m Tc,m Tt,m Tb,m

]T
, (27a)

Tp,N =
[
T s
p,N T c

p,N T t
p,N T b

p,N

]T
, (27b)

C(1, i) = ξi(r̃ = 1, z̃ = 0), (28a)
C(2, i) = ξi(r̃ = −1, z̃ = 0), (28b)
C(3, i) = ξi(r̃ = 0, z̃ = 1), (28c)
C(4, i) = ξi(r̃ = 0, z̃ = −1). (28d)
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Fig. 2: Temperature locations in cylindrical cell.

IV. RESULTS AND DISCUSSION

A. Simulation Setup

A large format lithium-iron-phosphate cylindrical cell is
chosen for the simulation and validation. Its parameters
include dimension-related parameters, i.e. L = 198mm,
Rin = 4mm and Rout = 32mm [12], and thermodynamic
parameters, β = 1684 kJ/(m

3
K), kr = 0,67W/(mK) and

kz = 66,6W/(mK) [13]. The thermal model is validated
against an FEM model with an extremely fine mesh of 3610
triangular elements implemented in COMSOL Multiphysics
v6.0. The validation is conducted under the heat genera-
tion profile of the worldwide harmonised light vehicle test
procedure (WLTP) [14], representative of a wider range of
driving conditions in urban, suburban, and highway roads.
The volumetric heat generation rate q, is assumed to be given
by the simplified heat generation model

q = I(V − Vocv)/Vb, (29)

where I, V, Vocv , and Vb are the load current, terminal
voltage, open-circuit voltage, and cell volume, respectively.
(29) includes the ohmic heating and energy dissipated in the
electrode over-potentials. For more accurate modelling of q,
reversible heat, such as entropic heat can be included [7].

We simulate three different cooling scenarios, labelled
CS1-CS3, based on where the cooling action is imposed.
They involve cooling of the surface, and/or tab areas, and
are summarised in Table I. We also note that CS3 is rep-
resentative of immersion cooling [15]. In all cases, we set
all temperatures to 15 ◦C. Forced convection liquid cooling
(for instance, using a cooling plate) via water or glycol
which typically has a large convection coefficient h, of about
400Wm−2K−1 [16], is assumed to apply in areas where tab
or surface cooling occurs. Mild air convection with a small
h ≈ 30Wm−2K−1 occurs in areas not exposed to active
cooling.

TABLE I: Cooling scenarios, CS1-CS3, investigated.

Cooling Scenarios Label
Surface cooling only CS1

Tab cooling only (bottom + top sides) CS2

Tab (bottom + top sides) + Surface cooling CS3

B. Model Validation

The results of the three cooling scenarios, CS1-CS3, are
reported in Fig. 3. The absolute errors between model orders
N = 2, 4, 9 and 25, relative to the benchmark FEM are shown
below each scenario.

In CS1 (Fig. 3a), the max and mean absolute errors with N
= 2, are 0,22 ◦C and 0,10 ◦C, respectively, and with N = 25,
are 0,14 ◦C and 0,03 ◦C, respectively. Using the mean error,
N = 25 produces about 0,07 ◦C improvement in accuracy as
compared to N = 2, thus a marginal increase in accuracy. It
can be concluded that a model order of N = 2 states, captures
the thermal dynamics sufficiently well in CS1. In CS2 and



CS3, which have aggressive cooling because multiple sides
are cooled, it was observed that at least a model order of N =
4 was necessary to accurately capture the thermal dynamics.
For CS2 (Fig. 3b), N = 4 gives max absolute error of 0,11 ◦C
and a mean of 0,10 ◦C, whilst N = 25 gives no error. N = 9
gives 0,02 ◦C and 0,01 ◦C, which represents about 0,08 ◦C
improvement in accuracy compared to N = 4. In this case, a
model order of N = 4 is satisfactory. Finally, in CS3 (Fig. 3c),
where model orders of N = 9 and 25 were chosen to give
better resolution of the thermal dynamics, N = 25 gives a
marginal 0,12 ◦C improvement in accuracy compared to N
= 9, showing that N = 9 is sufficient.

To summarise, the thermal dynamics can be faithfully
captured with as few as N = 2 states in mild cooling
scenarios. However, using N = 9 in these mild scenarios only
gives a marginal accuracy improvement of about 0,072 ◦C.
With aggressive cooling (cooling multiple sides), N = 2 is
not sufficient but increasing the order to N = 9 substantially
enhances accuracy, achieving an improvement of about 84%.

C. Thermal Performance Discussion

We observe that in all scenarios, the cell experiences
higher radial thermal gradients Tg,r, than axial thermal gra-
dients Tg,z. This is due to the lower thermal conductivity in
the r-direction. Thus, Tg,r is used as a performance metric
instead of Tg,z in this work. The average temperature, T̄ =
15,81 ◦C in CS1 is the highest in all cases because it has
only one side exposed to cooling. More areas exposed to
cooling, as in CS3, result in higher heat removal and thus
the lowest average temperature (T̄ = 15,31 ◦C). However,
CS3 does not produce the lowest Tg,r. CS2 provides the
lowest (Tg,r = 1,25 °C/m) amongst all three cases, followed
by CS3 with Tg,r = 3,03 °C/m. The lowest Tg,r in CS2 can be
attributed to symmetric cooling on both the top and bottom
sides of the cell and twice as much area for tab cooling. In
addition, all electrodes get access to cooling at the same time
in CS2 because of the rolled electrode layer structure. On
the contrary, in the surface cooling scenario (CS1), the outer
layers get cooled first, before the internal layers, leading to
inhomogeneous cooling and consequently the highest (Tg,r
= 4,53 °C/m). CS2 also provides the lowest temperature
difference, (∆T = Tmax − Tmin = 4,23 ◦C), amongst all
cooling cases. Table II summarises the results of the three
cooling scenarios.

In summary, CS2 provides the most homogeneous cool-
ing effect and should result in more homogeneous ageing,
leading to an extended lifetime. It, however, does that at
the expense of a higher T̄ in the cell. Including surface
cooling, as in CS3, will decrease T̄ but will in turn increase
Tg,r. These two conflicting thermal performance objectives
motivate an optimal scheme selection, which the developed
model (20) and (26), will be pivotal in achieving. Our
control-oriented model will also be useful in providing
targeted control to any side of the cell. We note that CS3

gives the smallest temperature rise, (Tmax=18,79 ◦C), which

means, the chances of getting closer to the onset temperature
of thermal runaway will be reduced under cooling scenario
CS3. We also observe that in all cases, surface temperatures
are the lowest, and temperatures in the core exhibited the
highest values, as expected. After heat is generated from
different electro-chemical processes in the battery, the heat
is conducted mostly radially, via the solid material to the
battery surface and then dissipated to the cooling medium.
In the cylindrical cell, the radial thermal conductivity is two
orders of magnitude lower than that of the axial direction,
which presents a significant bottleneck in heat transfer to the
surface. This, aside from the absence of cooling in the core,
also accounts for why the core temperature has the highest
value. Factors such as an increased cooling flow rate and the
use of battery materials with a higher thermal conductivity
can increase the cooling efficiency and facilitate the lowering
of the core temperature. This suggests the need to develop
a control scheme that targets several relevant objectives and
constrains the core temperature to a safe limit. In addition,
the proposed model can be vital in monitoring and estimating
the core temperature, which is typically not measured by
sensors, helping to mitigate irreversible ageing and even
thermal runaway, in a timely fashion.

The computational complexity of the proposed thermal
model is mainly dependent on the number of basis functions
N , and temperature outputs of the model. In this work, the
model is run under the WLTP on a MacBook Pro with a
2,6GHz 6-Core Intel Core i7 processor and 16GB RAM.
Selecting the outputs in (27a), the elapsed time of the model
was on average about 0,11s and 0,59s for two and nine states
respectively, which is comparable to the TECs in [17]. This
is a good indication that the model can be used for real-time
optimal control and can be scaled to a module and pack level
with moderate computational efficiency.

TABLE II: Thermal performance merits of three scenarios.

Scenarios T̄ Max Tg,r Max Tg,z Tmax ∆T
CS1 15,81 4,53 0,14 20,14 5,20
CS2 15,73 1,25 0,69 19,11 4,23
CS3 15,31 3,03 1,55 18,79 4,47

V. CONCLUSION

This paper has presented a 2D battery thermal model,
which is based on the Chebyshev Spectral-Galerkin approach
and allows independent control signals for the tab and surface
cooling channels, making it suitable for online optimisation
of thermal performance. The developed model can predict
the spatially resolved full temperature distribution throughout
the cell at a low computational cost, which is comparable to
that of thermal equivalent circuits. The proposed modelling
approach was evaluated through various combinations of
tab and surface cooling scenarios under real-world vehicle
driving profiles. It has been shown that battery thermal
dynamics can be faithfully captured by a two-state reduced-
order model and that in aggressive cooling scenarios, a
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Fig. 3: Comparison of developed CSG thermal model of different orders N , against FEM with element number N = 3610, together with
the absolute errors for the three cooling scenarios investigated. The models were compared at the output temperature points (27a).

model order of nine states can improve accuracy by about
84%. Results also showed that cooling all sides of the cell
led to the lowest average temperature rise, while cooling
the top and bottom sides only resulted in the lowest radial
thermal gradient. The proposed model will be instrumental
in selecting the best cooling schemes to reduced cell average
temperature rise and thermal gradients.
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