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Abstract
The urgent need to reduce greenhouse gas emissions has thrust electrification
to the forefront of sustainable solutions. Electric Vehicles (EVs), powered by
lithium-ion batteries (LiBs), o�er a promising pathway to reducing the trans-
port sector’s carbon footprint, which accounts for one-quarter of global CO2
emissions. However, these LiBs, which su�er from the so-called ”Goldilocks
syndrome”, exhibit complex nonlinear behaviour and their functionality is
strongly influenced by temperature. This necessitates a sophisticated thermal
management system capable of controlling the battery temperature within
desired limits, regardless of operating conditions. The challenge lies in bal-
ancing the trade-o� between minimising thermal gradients within the cell and
maintaining a low average temperature rise. Achieving this balance requires
an optimal combination of tab (terminal) and surface cooling methods to
leverage their unique individual strengths.

In this thesis, we present a new modelling framework for battery cells of
di�erent geometries by integrating Chebyshev spectral-Galerkin method and
model component decomposition. Consequently, a library of reduced-order
computationally e�cient two-dimensional battery thermal models is obtained,
characterised by di�erent numbers of states. The proposed models allow for
the independent control of tab and surface cooling channels for improved ther-
mal performance optimisation. Evaluations under real-world vehicle driving
and cooling scenarios demonstrate that these models accurately predict the
battery’s spatially resolved temperature distribution with minimal errors. Re-
markably, the one-state model proves to be both more accurate and computa-
tionally e�cient than the widely studied and commercially utilised two-state
thermal equivalent circuit (TEC) model. Consequently, the proposed model
can readily replace the TEC model in existing battery management system
applications for enhanced safety and lifetime management. As the developed
models enable targeted cooling control to any side of the cell, they are par-
ticularly suitable for battery temperature estimation and control in complex
cooling scenarios. Furthermore, using these models, the thesis formalises the
optimal integration of tab and surface cooling strategies as an optimal control
problem and solves it using the model predictive control (MPC) framework.
The evaluation of the MPC scheme demonstrates superior thermal perfor-
mance compared to conventional side and base battery cooling methods. Ul-
timately, our proposed model and optimal scheme not only enhance immediate
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thermal performance but also address long-term concerns regarding battery
lifespan, safety, and economic viability, representing a valuable advancement
in EV battery thermal management.

Keywords: Battery thermal management system, control-oriented thermal
modelling, spectral method, model predictive control, cooling control.
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CHAPTER 1

Introduction

1.1 Motivation

Many a traveller to the Mediterranean these recent summer months could not
have missed the intense heat waves that characterised their holidays. Such
phenomena illustrating broader environmental shifts are not isolated; from
devastating wildfires in Australia and the increasingly severe hurricanes expe-
rienced in the United States, the impacts of a warming planet are becoming
more apparent.

Human activities, primarily the burning of fossil fuels, have led to a sig-
nificant increase in atmospheric CO2 concentrations, rising from about 280
parts per million (ppm) in the 1850s-1900s, the pre-industrial times, to over
420 ppm today [1]. This 50% increase in CO2 levels has resulted in a global
average temperature rise of approximately 1.2°C since that period. For per-
spective, the global average surface temperature in April 2024 was 15.03°C,
which is 1.58°C warmer than the estimated average for the pre-industrial pe-
riod [2]. This warming has led to various climate change impacts, including
more frequent and intense heat waves, changes in precipitation patterns, and
rising sea levels [3], [4]. These changes are expected to continue and poten-
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Chapter 1 Introduction

tially intensify if greenhouse gas emissions are not significantly reduced, with
projections suggesting a global temperature increase of 1.5°C by 2050 under
current emission trajectories [5].

According to the United Nations [6], the transport sector, including cars,
trucks, buses, aviation, and shipping, contributes approximately one-quarter
of global greenhouse gas emissions. This is largely due to its heavy reliance on
fossil fuels, which account for over 90% of the sector’s energy consumption.
At this current time t and in the foreseeable future, electrification emerges
as the most promising resolution to address this significant environmental
impact. This resolve towards electrification requires a combination of strong
regulations, fiscal incentives, and significant infrastructure investments [7].

At the heart of this transition are electric vehicles (EVs), which o�er a
promising path to reducing emissions. However, the performance and e�-
ciency of EVs are critically dependent on their battery packs, typically com-
posed of lithium (Li)-ion cells. These Li-ion batteries (LiBs) exhibit complex
nonlinear behaviour, and their functionality is strongly influenced by tem-
perature. Temperature a�ects multiple aspects of the LiB, including safety,
electrochemical processes, charge acceptance, round-trip e�ciency, power and
energy capability, and lifetime [8]. Consequently, the need for a sophisticated
thermal management system [9] becomes apparent. This system should be
capable of controlling the battery temperature to desired values regardless of
operating conditions.

Subject to various thermal boundary conditions such as liquid or air con-
vection [10], battery cells can be thermally controlled at di�erent surfaces,
including the electrical connection tabs (terminals), cell surfaces, or both [11].
Prior literature studies have investigated the impact of tab and surface cool-
ing methods on battery thermal performance. Hunt et al. and Zhao et al.
concluded in [12], [13] that surface cooling can maintain Li-ion pouch cells at
a lower average temperature under high current rates than tab cooling. In
a case study, these authors also demonstrated that using tab cooling rather
than surface cooling extended the lifetime of a battery pack by three times.
Similar results were achieved in [14], [15] for cylindrical Li-ion cells, where
tab cooling was shown to reduce the internal temperature inhomogeneities by
about 25%.

It is clear that both surface and tab cooling have their individual strengths
and weaknesses. However, to the best of our knowledge, there is no battery
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1.2 Research questions

control framework in the state-of-the-art literature that systematically inves-
tigates the optimal integration of these two cooling methods for advanced
battery temperature management.

Thermal equivalent circuit (TEC) models with lumped parameters have
been extensively utilized for control-oriented modelling of batteries due to
their ease of implementation and computational e�ciency [16], [17]. However,
lumped parameter TECs can only predict average and surface temperatures
and their applicability is limited to cells with small Biot numbers. Physics-
based models [18] result in partial di�erential equations governing the under-
lying heat di�usion. They can predict the spatially distributed temperature
field throughout the cell but are typically implemented via computationally
expensive numerical methods, such as finite element (FE) and finite di�er-
ence (FD) methods, rendering them impractical for control purposes. Spectral
methods [19], [20] are alternative numerical methods for finding solutions to
PDEs. They belong to the class of weighted residual methods, and unlike FE
and FD methods, they make use of global (rather than local) approximating
functions in the discretization of the spatial domain, rendering them compu-
tationally e�cient. With this benefit in mind, the spectral method based on
the Galerkin approach is adopted to develop low-order two-dimensional (2D)
thermal models for cylindrical cells in [21] and for pouch cells in [22]. How-
ever, these models do not allow independent and targeted cooling control of
battery tabs and surfaces, preventing their use for optimally combining tab
and surface cooling for battery thermal management.

This thesis bridges the identified research gap by addressing the research
questions in the next section.

1.2 Research questions
• Can a unified thermal modelling framework be developed that accurately

captures both surface and tab cooling e�ects while remaining applicable
across various battery form factors and chemistries?

• Does a hybrid strategy o�er superior thermal performance and lifetime
extensions over traditional single-method cooling approaches?

• Can a control framework be designed to dynamically adjust the balance
between tab and surface cooling based on real-time thermal states and
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Chapter 1 Introduction

ambient conditions of the battery cells?

• How do the thermal performance and computational e�ciency of the de-
veloped spectral-based model compare to traditional lumped parameter
TEC models and PDE-based models?

1.3 Thesis contributions
Here, we present a comprehensive strategy that will enable us to address
the questions outlined in Section 1.2. Fig 1.1 presents a visual overview of
our research framework, illustrating the various work packages and research
problems that have been or are planned to be investigated. This research
is structured into two primary categories: battery thermal modelling and
control, each with various sub-categories branching o� to cover specific aspects
of the work.

This thesis focuses on the thermal modelling aspect, highlighted in the left
red box, along with its associated branches, which are shaded in brown. This
area forms the core of our research e�orts and is explored in-depth in the ac-
companying papers. While the thermal control component is still in progress,
we do touch upon one aspect of it — the optimal coolant split scheme. This
provides a glimpse into the potential applications and implications of our
thermal modelling.

1.4 Thesis outline
The thesis is organised as follows.

• Chapter 1 provides an introduction and motivation for the research
work.

• Chapter 2 presents a basic overview of LiBs and discusses how temper-
ature impacts their operation.

• In chapter 3, the key ideas pertinent to battery thermal management
systems are introduced.

• Chapter 4 delves into various aspects of LiB modelling, including a soft
introduction to spectral methods via a toy problem.
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1.4 Thesis outline

Control-oriented 
thermal modelling

First-principle (PDE) - based
 thermal modelling

Model-order reduction via 
Chebyshev spectral Galerkin

method
- State-space model

Thermal Control

Optimal coolant split between 
tab and surface of lithium-ion

batteries
- MPC

Model assessment against
existing thermal models

 

Cost (degradation) 
assessment of 
control scheme

Model-based applications 
and analysis 

Various cooling scenarios
Various driving conditions
Parameter (dimension) sensitivity 

TECs
FEM

Figure 1.1: Overview map representing the project work packages. The two main
project categories are shaded in red, while their sub-categories are rep-
resented in brown and green.

• Chapter 5 follows with a discussion on model-based applications of the
proposed thermal model, with highlights on the thermal control aspects.

• Chapter 6 summarises the accompanying papers, while

• Chapter 7 concludes the thesis and explores potential future research
directions.

7





CHAPTER 2

Lithium-ion batteries

A battery cell is the smallest electrochemical unit that generates voltage to
power a load, with its nominal voltage determined by its chemical composi-
tion. Cells are classified based on rechargeability and power-to-energy ratio
[23], [24]. Rechargeability divides them into primary (single-use) and sec-
ondary (rechargeable) cells. The power-to-energy ratio distinguishes between
high-power cells, which have thin electrodes for e�cient conduction, and high-
energy cells, which have thick electrodes to store more active material. Due
to these design di�erences, cells are typically optimized for either power or
energy, but not both. A battery, often confused with a cell, is technically a
combination of multiple cells connected in series or parallel. A battery module
consists of multiple such combinations, and a battery pack is an assembly of
several modules arranged to meet specific energy, power, and voltage require-
ments in EVs. For the purposes of this thesis, the terms battery and battery
cell will be used interchangeably to simplify terminology, while acknowledging
their technical distinctions.
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Chapter 2 Lithium-ion batteries

2.1 Operating mechanisms
LiBs operate through the movement of Li-ions between the positive and nega-
tive electrodes, as illustrated in Fig. 2.1. During discharge, Li-ions move from
the negative through the separator to the positive electrode. This ionic move-
ment occurs via the electrolyte, which consists of lithium salt dissolved in an
organic solvent. Simultaneously, electrons flow from the negative to the posi-
tive electrode through an external circuit, powering a connected load. During
charging, an external power source reverses this flow [25], [26]. The negative

Charging Discharging

Figure 2.1: Basic structure and working principle of LiBs [27].

electrode is typically made of graphite, with newer variations incorporating
silicon to enhance capacity. The positive electrode is commonly composed
of metal oxides, such as nickel-manganese-cobalt (NMC), or lithium-iron-
phosphate (LFP), which is a type of metal phosphate. A separator between
the electrodes prevents short circuits while allowing Li-ions to flow freely [28].
The formation of the solid electrolyte interphase (SEI) [29] occurs on the sur-
face of the negative electrode during the initial cycles of a LiB. The SEI layer
forms due to electrolyte decomposition and functions to protect the electrode
from further reactions with the electrolyte. While the SEI is essential for bat-
tery stability, its continuous growth and restructuring over time can lead to
ageing, notably through capacity loss as the layer thickens, consuming active
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2.2 Temperature e�ects and safety

Li and increasing cell impedance [30].

2.2 Temperature e�ects and safety
Few could have missed the recent media attention on LiBs due to safety con-
cerns. Earlier this year in Melbourne, two students narrowly escaped a fire in
their apartment after their LiB-powered mobile phone power bank exploded
[31]. In 2022, multiple reports from India highlighted incidents where mopeds
equipped with LiBs caught fire [32]. Similarly, Tesla’s stock took a hit when
several of their Model S EVs caught fire, and had to be recalled, with LiBs
identified as the cause [33]. What do these cases have in common? The LiBs
experienced thermal runaway.

Thermal runaway [34], [35] is a self-propagating, uncontrolled increase in
temperature that causes conditions that lead to a further increase in tem-
perature, creating a positive feedback loop. Fig. 2.2 illustrates the thermal
runaway propagation cycle. In LiBs, it occurs when the heat generation rate
exceeds the heat dissipation rate. This causes a rapid temperature rise, lead-
ing to a cascade of exothermic reactions and eventually to fire and explosion.
Thermal runaway can be triggered by various factors, including overcharg-
ing, mechanical trauma which can lead to short circuits, or exposure to high
ambient temperatures.

Figure 2.2: Thermal runaway cycle.

Operating batteries in extreme temperature conditions significantly a�ects
their performance, lifespan, and safety. Figure 2.3 illustrates these e�ects.
In cold environments, such as those in Scandinavia, low temperatures in-
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Chapter 2 Lithium-ion batteries

crease electrolyte viscosity, reducing ionic conductivity, and increasing inter-
nal impedance. This results in decreased capacity and power output [36]. At
subzero temperatures, the introduction of high currents may lead to Li plat-
ing. Li plating is the undesirable deposition of metallic Li on the negative
electrode surface during charging, which can lead to the formation of needle-
like structures called dendrites that may penetrate the separator, potentially
causing short circuits and triggering thermal runaway [37]. Conversely, in hot
climates like those in the tropics, elevated temperatures accelerate the growth
of the SEI layer, leading to accelerated degradation. Additionally, the sepa-
rator may rupture, and the electrolyte may decompose, creating the perfect
initiating recipe for thermal runaway [38].

Figure 2.3: Optimum temperature range of LiBs [39].

Advances in battery design and thermal management systems are crucial
for enhancing the safety and reliability of LiBs across various applications.
Implementing e�cient cooling and preheating strategies is key to maintaining
optimal temperatures, and ensuring battery longevity, safety, and enhanced
performance.
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CHAPTER 3

Battery thermal management systems

LiB battery packs are invariably equipped with a battery management sys-
tem (BMS), which functions as the intelligent brain of the pack. It integrates
hardware and software components to monitor, control, and optimize battery
performance [40]. Fig. 3.1 presents a general structure of a typical BMS.
As battery technology has advanced, the BMS has evolved from a simple
monitoring unit to a sophisticated, multi-functional system capable of execut-
ing complex algorithms and communicating with other vehicle systems [41].
Key functionalities of modern BMS include estimating critical battery states
such as state-of-charge (SoC) [42], state-of-health [43], and state-of-power [44].
Additionally, BMS perform energy equalisation [45], fault diagnosis [46], and
thermal management [9].

The battery thermal management system (BTMS) is particularly crucial
for enhancing battery performance and safety. This aspect will be further
explored in the subsequent sections.
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Chapter 3 Battery thermal management systems

Figure 3.1: High-level BMS structure [47].

3.1 Battery cooling

During operation, LiBs generate heat due to internal resistance and electro-
chemical reactions, particularly under high power demands, fast charging, or
discharging. Excessive heat can lead to thermal runaway, capacity degrada-
tion, and even catastrophic failure, making cooling a vital aspect of BTMS [9].
As shown in Fig 3.2, there are several cooling methods [9], [10], [48] employed
in battery thermal management, each with its advantages and limitations.
These methods can be broadly classified into passive, active, and hybrid cool-
ing methods, with the cooling media being air, liquid, or some phase change
materials.

Passive cooling utilizes natural convection and radiation to dissipate heat.
It is simple and energy-e�cient, suitable for applications with moderate heat
generation. However, its e�ectiveness is limited under high thermal loads.
Active cooling involves forced convection through the use of fans and/or pumps
to enhance heat dissipation. Lastly, hybrid systems integrate passive and
active cooling methods for optimal thermal performance. We explore below a
few cooling methods in the state-of-the-art, namely, air, liquid, phase change
material (PCM), heat pipe, and refrigeration cooling.
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3.1 Battery cooling

Figure 3.2: BTMS classification [49].

Air cooling
Air cooling [50] is often used due to its simplicity and cost-e�ectiveness. How-
ever, air cooling is generally less e�cient and may not be su�cient for high-
power applications or densely packed battery cells. This is due to air’s low
thermal conductivity compared to other heat transfer media such as liquid.
This method can either be passive, active, or combined with other methods
in a hybrid scheme to enhance battery heat dissipation. Fig 3.3 illustrates a
simple air cooling system.

Liquid cooling
Liquid cooling [52] provides superior thermal management compared to air
cooling. This method operates by circulating a coolant, such as water or
glycol-based fluid through the battery pack. Due to the higher thermal con-
ductivity of liquids, heat is removed more e�ectively even under high-stress
conditions of high ambient temperatures or rapid battery cycling. Liquid
cooling can be designed with the coolant in direct contact with battery cells
or indirectly with the coolant circulating through channels or cooling plates
adjacent to the cells. The latter is more common due to its safety and ease of
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Chapter 3 Battery thermal management systems

Figure 3.3: Air BTMS [51].

maintenance. A simple liquid cooling system is illustrated in Fig 3.4.

Figure 3.4: Liquid BTMS [51].

PCMs
Owing to its high latent heat, PCMs [53] can absorb enormous amounts of
heat produced by LiBs as the materials change phase, typically from solid to
liquid. This method is an e�ective passive cooling method, providing thermal
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3.1 Battery cooling

regulation without the need for moving parts. PCMs can be integrated into
battery modules to absorb heat during high-load operations. However, the
relatively low thermal conductivity of PCMs and the challenge of dissipating
heat over extended periods limit its application. Most literature studies on
PCMs mainly focus on improving the thermal conductivity of pure para�n
PCM by using additives such as metal foams, metal fins and expanded graphite
to form composite PCMs. Fig 3.5 shows a battery module surrounded by pure
para�n PCM.

Figure 3.5: A battery module embedded in pure para�n [54].

Heat pipes
Heat pipes [55] are passive cooling methods that use the principles of phase
change to transfer heat from the battery cells to a heat sink or the envi-
ronment. They have a super-high thermal conductivity making them highly
e�cient. They can also be integrated into battery packs to manage localized
hotspots. Their lightweight and compact nature makes them suitable for EV
applications, where space and weight are constraints. Fig 3.6 illustrates the
working principle of a heat pipe.

Refrigeration
Refrigeration [48], [56] is an active cooling method that has garnered a lot of
research attention in recent years due to it being the most e�ective method
for maintaining low operating temperatures, especially in high-power applica-
tions or in hot climates. It uses phase change material in a refrigeration cycle
to actively cool the battery pack. However, refrigeration systems are complex
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Chapter 3 Battery thermal management systems

Figure 3.6: Working principle of the heat pipe [47]. It functions through three
sections: evaporation, adiabatic, and condensation. The working fluid
evaporates when exposed to high temperatures, carries the heat to
the condensation section, where it releases the heat and condenses,
completing the cycle.

and costly, making their adoption in EVs a bit measured.

Selecting the appropriate cooling strategy depends on several factors, in-
cluding the specific application, battery pack design, cost, and environmental
conditions. As battery technologies continue to evolve, so will cooling meth-
ods.

3.2 Low-temperature battery heating
Low-temperature battery heating is essential for maintaining the performance
and safety of LiBs in cold environments [36]. At subzero temperatures, battery
performance deteriorates due to reduced electrochemical reaction rates and the
risk of Li plating, which can lead to operational di�culties and safety hazards
in EVs [57]. To address these issues, various battery preheating strategies have
been developed and can be categorized into external and internal methods, as
illustrated in Fig 3.7.

External heating
External heating [57], [58] involves transferring heat from an external source
to the battery using convective or conductive methods. This can include
air, liquid, heat pump systems, and resistance or Peltier-e�ect heating [59].
While e�ective, external methods can su�er from long warm-up times and
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3.2 Low-temperature battery heating

Figure 3.7: Existing preheating strategies [58].

energy ine�ciencies due to heat loss. Fig 3.8 illustrates an example of external
heating.

Internal heating
Internal heating [57] leverages the battery’s electrical resistance to generate
heat by applying a current, thereby warming the battery from within. This ap-
proach can be more e�cient and quicker than external methods but requires
careful management to minimize battery degradation. Recent innovations,
such as self-heating LiBs [60] and alternating current heating [61], aim to op-
timize the balance between heating e�ciency and battery health. An example
of internal heating is illustrated in Fig 3.9.

Heating strategies are part of broader BTMS designed to optimize battery
performance across di�erent temperatures and usage conditions.
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Chapter 3 Battery thermal management systems

Figure 3.8: Convective battery heating [57].

Figure 3.9: Self-heating LiB with multiple Nickel (Ni) foils inserted [60]. The Ni
foils are strategically inserted within the battery structure to facilitate
e�cient heat generation and distribution. ACT is an activation switch
that closes the heating circuit.
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CHAPTER 4

Battery Modelling

In academia and industry, the mathematical modelling of battery cells, re-
garded as multidisciplinary, has long been recognised as an important yet
di�cult problem. The complexity arises from the electrochemical reactions
[62] occurring within the cells, which are influenced by numerous factors and
uncertainties. These reactions and the associated electrical and thermal pro-
cesses exhibit strong time variations and nonlinear behaviour, making accurate
modelling non-trivial.

Battery models are essential for understanding and predicting the behaviour
of batteries under various operating conditions. These models typically involve
two key aspects, i.e., electrical and thermal [62]. The electrical model captures
the behaviour of the battery in terms of voltage, current, and SoC, while
the thermal model describes the heat generation [63], [64] and temperature
distribution within the battery. These two aspects are tightly coupled, as the
electrochemical reactions that govern the electrical behaviour also generate
heat, which a�ects the cell’s temperature-dependent reaction rates and other
properties.
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Chapter 4 Battery Modelling

Heat generation in batteries
Heat generation [63], [65], [66], q, in batteries, can be classified into reversible
and irreversible components and primarily arises from three sources. Namely,

• joule heating, also known as ohmic losses. This irreversible component
of q is the resistive heating due to the current flow through the battery’s
internal resistance. The rate of heat generation due to joule heating is
defined as

qj = I2R, (4.1)

where I is the current flowing through the battery, and R is the battery’s
internal resistance.

• reaction heat, which is the heat generated or absorbed due to electro-
chemical reactions occurring within the battery. This q is primarily
regarded as reversible, however, if the enthalpy change includes con-
tributions from irreversible processes such as side reactions and other
ine�ciencies within the cell, then the reaction q would be classified as
irreversible. The reaction q denoted here as qr can be quantified using
enthalpy change of the reaction,

qr = ˆG

ˆT
I, (4.2)

where G is the Gibbs free energy and T is the temperature.

• entropy heat, a reversible form of q, is associated with the entropy change
during the charge and discharge process. The entropy change per unit
charge transferred is expressed as

qe = ˆS

ˆT
IT, (4.3)

where S is the entropy of the system.

The total q within a battery is the sum of (4.1)–(4.3), namely, there exist

q = qj + qr + qe. (4.4)

In many practical modelling scenarios, some of these q components are often
simplified or ignored to reduce complexity. For instance, qe is frequently
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4.1 First-principles modelling

neglected in models when the temperature variations within the battery are
relatively small, as its contribution becomes negligible compared to qj . These
simplifications are typically valid in steady-state conditions or during low-rate
cycling, where the thermal e�ects are less pronounced.

The following sections delve into various approaches to battery modelling,
starting from first principles to more empirical and grey-box methods, while
also considering the numerical methods used for solving the associated partial
di�erential equations (PDEs).

4.1 First-principles modelling
First-principles modelling [67] of LiBs involves a detailed representation of the
physical and chemical processes occurring within the battery cells. This ap-
proach is often rooted in fundamental laws of physics and chemistry, such as
the conservation of mass, charge, and energy. The models typically capture
the electrochemical reactions, ion transport, and thermal dynamics within
the battery. These models can predict the battery’s internal states, such as
species concentration, electric potential distribution, and temperature profile.
The complexity of first-principles models makes them computationally inten-
sive but highly accurate, making them ideal for in-depth battery studies and
analysis.

Electrochemical modelling
Electrochemical models (ECMs) [62], [68], [69] focus on describing the internal
processes of the battery at the microscopic level, including the intercalation
and de-intercalation of Li-ions, the associated charge-transfer reactions, and
the transport of ions through the electrolyte. The most common ECM is the
Doyle-Fuller-Newman (DFN) model [70], based on porous electrode theory.
The DFN model uses a set of coupled PDEs to capture the intercalation
kinetics of Li-ions within electrode particles, electrolyte dynamics, and electric
potentials in the electrodes. The key DFN equations include the solid phase
electric potential, „s, governed by Ohm’s Law,

Ò · (‡Ò„s) = ≠asi, (4.5)
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where Ò, ‡, as, and i are the gradient, electronic conductivity of the electrode
material, specific interfacial area, and current density due to electrochemical
reactions, respectively. The electrolyte phase potential, „e,

Ò · (ŸÒ„e) = asi, (4.6)

where Ÿ represents the ionic conductivity of the electrolyte. Li concentration
in solid particles, cs, governed by the di�usion equation

ˆcs

ˆt
= 1

r2
ˆ

ˆr

A
r2Ds

ˆcs

ˆr

B
, (4.7)

where Ds and r are the di�usion coe�cient of Li-ions in the electrode ma-
terial, and radial coordinate within spherical particles, respectively. The Li
concentration in electrolyte, ce,

‘e
ˆce

ˆt
+ Ò · F = asi, (4.8)

where ‘e and F are the porosity of the electrode and molar flux of Li-ions
in the electrolyte, respectively. Lastly, the electrode-electrolyte interfacial
current density, represented by the Butler-Volmer equation

i = i0

5
exp

3
–aFa

RuT
(„s ≠ „e ≠ U)

4
≠ exp

3
≠ –eFa

RuT
(„s ≠ „e ≠ Vocv)

46
, (4.9)

where io is the exchange current density, which depends on material properties
and SoC, –a and –e are the anodic and cathodic transfer coe�cients, respec-
tively. Fa, Ru, T , and Vocv are Faraday’s constant, the universal gas constant,
absolute temperature, and the open circuit potential, which is a function of
SoC and material properties.

PDE-based thermal modelling
The heat conduction within the battery is typically modelled by the parabolic
PDE heat equation [71],

flCp
ˆT

ˆt
= Ò · (kÒT ) + q, (4.10)
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4.2 Phenomenological and grey box modelling

where fl, Cp, and k are the battery density, specific heat capacity, and thermal
conductivity, respectively. Assuming k is constant (homogenous material) for
simplicity, the first term on the right-hand side of (4.10) becomes

Ò · (kÒT ) = kÒ2T, (4.11)

where Ò2 is the Laplacian of the temperature T , which in a three-dimensional
Cartesian coordinate system (x, y, z) is given by

Ò2T = ˆ2T

ˆx2 + ˆ2T

ˆy2 + ˆ2T

ˆz2 (4.12)

Equation (4.10) represents the balance between heat accumulation, conduc-
tion, and generation.

First-principles models such as (4.5)–(4.12) require appropriate boundary
and initial conditions to solve them, typically via numerical methods.

4.2 Phenomenological and grey box modelling
In contrast to fundamental models discussed in Section 4.1, phenomenological
[72] and grey box [73]models use empirical data to infer system behaviour
without fully describing the underlying physics. These models provide the
input-output relationship of the cell, often using lumped parameters. Lumped
parameter modelling [62], [74] simplifies the behaviour of spatially distributed
systems into discrete entities, approximating the behaviour of these systems
under specific assumptions. With grey box models, input-output experimen-
tal data is fitted to a parameterized model with a known structure using
lumped parameters. Grey box models combine elements of white box models,
like fundamental models, with black box models. Black box battery models
[62], [75] are typically data-driven, employing machine learning approaches to
identify parameters to describe the relationship between some input variables
and their corresponding outputs.

While phenomenological models are generally less accurate than their first-
principles counterparts due to their inability to account for cell behaviour
across all operating regions in their basic form, they are less complex and often
represented by ordinary di�erential equations (ODEs). This simplicity makes
them computationally more e�cient and well-suited for real-time control and
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estimation applications, which is why they are widely used in commercial
BMS. The most common battery models in this category include equivalent
circuit models (EQM) and thermal equivalent circuit (TEC) models.

Equivalent circuit modelling
EQMs [16], [74] represent the battery using electrical components like resis-
tors, capacitors, and voltage sources, to simulate the battery’s response under
di�erent operating conditions. Fig. 4.1 illustrates examples of two EQMs
comprising n-resistor capacitor (RC) networks, commonly referred to as the
Randle model, where n denotes the number of RC branches. These branches
represent the polarisation and di�usion e�ects within the cell. Using the
Thevenin EQM as an example, the input-output relationship of the EQM is
derived based on Kirchho�’s voltage and current law as follows,
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Figure 4.1: Special cases of the Randle EQM. (a) Rint EQM with no RC branch.
(b) Thevenin EQM with 1 RC branch.

Ż = ≠mIB (4.13a)

V̇1 = ≠ V1
R1C1

+ IB

C1
, (4.13b)

VB = Voc ≠ V1 ≠ IBR0, (4.13c)
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4.2 Phenomenological and grey box modelling

where Z œ [0, 1], Voc, VB , R0, and IB are the normalised SoC, open-circuit
voltage, terminal voltage, and internal resistance, respectively. V1, R1, and
C1 are the polarization voltage, resistance, and capacitance of the RC network,
respectively. m = 1/3600Q with Q being the coulomb capacity.

Thermal equivalent circuit modelling
TEC models [16], [17], [65], [76] represent the thermal behaviour of the bat-
tery using lumped components analogous to those in EQMs, such as thermal
resistors that represent resistance to heat flow and thermal capacitors that
represent heat storage capacity. TEC models often assume a uniform temper-
ature distribution within each lumped component. This assumption is valid
when the Biot number [71],

Bi = hL

k
, (4.14)

is much less than 1, indicating that the internal thermal resistance is negligible
compared to the resistance at the heat transfer boundary. In (4.14), h, L,
and k are the convective heat transfer coe�cient, characteristic length, and
thermal conductivity of the battery. This assumption simplifies the model
to a single temperature node per component. TECs also assume linear and
time-invariant system properties, instantaneous thermal responses, and often
simplified boundary conditions, making them computationally e�cient but
potentially less accurate in complex, real-world scenarios. The TEC model
shown in Fig 4.2 has been extensively studied in the literature [16], [17] and
features lumped parameters and two states in the form

CcṪc(t) = q(t) + Ts(t) ≠ Tc(t)
Rc

, (4.15a)

CsṪs(t) = Tf ≠ Ts(t)
Ru

+ Ts(t) ≠ Tc(t)
Rc

, (4.15b)

where Tc, Ts, and Tf represent the core, surface and ambient temperatures,
respectively. Rc is the heat conduction resistance, which quantifies the heat
exchange between the core and surface. Ru is the convection resistance, which
measures the convection cooling along the battery surface and depends on the
pack geometry, coolant type, and flow rate. Cc and Cs denote the core and
surface (casing) heat capacity, respectively.
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Figure 4.2: Two-state TEC model [17].

In the accompanying paper B, we evaluated the e�cacy and applicability
of our developed model against (4.15). Our findings indicate that, unlike
our model, the TEC model is unreliable for predicting the local thermal be-
haviour and may be limited to applications with only small heat generation
in the battery cell. Additionally, we examined the computational times of our
proposed model across various states and compared them with that of the
TEC model. We concluded that our model even with only one state is more
e�cient than its TEC counterpart, achieving a 28.7% reduction in computa-
tional time. Models with higher orders also maintained computational times
within the same order of magnitude as the TEC model. These results suggest
that our model can readily replace (4.15) in existing BMSs to improve battery
thermal performance in the real world.

4.3 Numerical solutions of PDE-based thermal
models

Numerical methods are essential for solving PDE models, especially when
these models involve complex boundary conditions and spatially varying prop-
erties that are di�cult to handle analytically [77]. These methods are gener-
ally categorized into local and global approaches. The finite di�erence (FDM)
and finite element methods (FEM) are based on local arguments, whereas the
spectral method is global in character [19], [77].

In practice, FEM is particularly well-suited for handling problems with
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complex geometries and varying material properties, whereas spectral meth-
ods o�er superior accuracy, at the expense of domain flexibility [19]. FEM and
spectral methods are used to discretize and solve PDE-based battery thermal
models, providing insights into the temperature distributions and heat flows
within the battery under various operating conditions.

Finite element methods
FEM [78], [79] is a powerful numerical technique used to obtain approximate
solutions to boundary value problems for PDEs. FEM partitions the problem
domain into smaller subdomains, called finite elements, which are intercon-
nected at points known as nodes.

In FEM, Lagrange polynomials [78] are commonly used as basis functions
for approximating the solution within each element. These polynomials vary
from simple linear to higher-order polynomials depending on the complexity
and accuracy requirements of the problem. With the spatial variable x, the
general form for Lagrange polynomials Ni(x) in an element with n nodes is
given by,

Ni(x) =
nŸ

j=1,j ”=i

x ≠ xj

xi ≠ xj
. (4.16)

For a linear element, i.e., n = 2, (4.16) reduces to

N1(x) = x ≠ x2
x1 ≠ x2

, N2(x) = x ≠ x1
x2 ≠ x1

. (4.17)

These polynomials are designed such that

Ni(xj) = ”ij , (4.18)

where ”ij is the Kronecker delta, which means each polynomial is 1 at its node
and 0 at all others of the element.

Despite its many strengths, FEM is not typically suited for real-time bat-
tery control applications due to its computationally intensive nature. The
detailed meshing of complex geometries and the iterative solving of large sys-
tems of equations demand substantial computational resources and processing
time, which limits its practicality for dynamic, real-time scenarios. This limi-
tation is a key reason why alternative methods, such as spectral methods, are
considered in this thesis for more e�cient real-time analysis.
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Spectral methods

Spectral methods [19], [20] are another class of numerical techniques used
for solving PDEs. They belong to the family of weighted residual methods
(WRMs), which form the basis of many numerical methods including FEM,
spectral, and finite volume. WRMs represent a particular group of approxi-
mation techniques, which focus on minimizing residuals (or errors) in a sys-
tematic way, leading to specific formulations such as Galerkin and collocation
methods. Spectral methods are particularly known for their high accuracy,
especially when applied to problems with regular geometries and smooth so-
lutions.

A key feature that sets spectral methods apart from FEM and FDM is
the choice of trial (basis) and test functions. Spectral methods use glob-
ally smooth functions as trial and test functions [19]. Commonly employed
functions include trigonometric functions or orthogonal polynomials which
include Fourier, Chebyshev, Legendre, Laguerre and Hermite. The choice
of the test functions defines the type of spectral method. For instance, in
the spectral-Galerkin method (SGM), the test functions are the same as the
trial ones, whereas, in the spectral-collocation method, the test functions are
the Lagrange polynomials wherein the residuals are forced to zero at a set of
preassigned collocation points.

In this thesis, the SGM based on Chebyshev orthogonal polynomials is
used to develop a lower-order 2D thermal model for the cylindrical and pouch
battery cells. The detailed methodology and results are presented in the
accompanying papers A and B. For the benefit of the reader who might not
be conversant with the SGM, we introduce the solution process for a toy
problem, namely, the 1D heat equation of (4.10)–(4.12) here.

Model reduction of the 1D heat equation using Chebyshev
SGM

The governing 1D heat equation in Cartesian coordinates is given by

flCp
ˆT (x̃, t)

ˆt
≠ k

ˆ2T (x̃, t)
ˆx̃2 ≠ q(t) = 0, (4.19)
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where t is time and x̃ œ [≠1, 1] is the position coordinate. The convection
boundary conditions are given by

k
ˆT

ˆx̃
= h (T ≠ TŒ) at x̃ = 1, (4.20a)

k
ˆT

ˆx̃
= ≠h (T ≠ TŒ) at x̃ = ≠1, (4.20b)

where h is the convection coe�cient at the domain boundaries and TŒ is the
ambient fluid free-stream temperatures.

The starting point of the SGM is to approximate the solution of T in (4.19)
by a finite sum

T̂ (x̃, t) =
Nÿ

n=1
cn(t)„n(x̃) + TŒ, (4.21)

where cn are unknown expansion (solution) coe�cients, and „n is the n-th
Chebyshev basis (trial) function that must satisfy the boundary conditions of
(4.20). N is the number of Chebyshev basis functions, and n œ {1, · · · , N}.
N represents the order of the system, also referred to as the number of states.
It is a tuning parameter that depends on the required resolution of the model.

Let Pn(x̃) = cos (n◊), with ◊ = arccos (x̃). Here, Pn(x̃) represents the
Chebyshev polynomials of the first kind, of degree n. In spectral methods,
to enable e�cient solution computations and satisfaction of boundary condi-
tions, neighbouring orthogonal polynomials should be used to form the basis
functions. Therefore, we seek the basis functions as a compact combination
of Chebyshev polynomials in the form [19]

„n(x̃) = Pn(x̃) + an(x̃)Pn+1(x̃) + bn(x̃)Pn+2(x̃), (4.22)

where the coe�cients an and bn are defined according to Lemma 4.3 of [19].
Substituting (4.21) for T into (4.19) yields the residual denoted by R

R = flCp
ˆT̂

ˆt
≠ k

ˆ2T̂

ˆx̃2 ≠ q ”= 0, (4.23)

The principle of the CSG method is to force an integral of the resulting residual
R to zero as

ÈR, ÷Í =
KË

flCp
ˆT̂

ˆt
≠ k

ˆ2T̂

ˆx̃2 ≠ q
È
, ÷

L
= 0, (4.24)
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where we use the notation Èf, ÷Í to represent the inner product of f and a
test function ÷ in the domain, namely Èf, ÷Í =

s 1
≠1 f(x̃)÷(x̃)dx̃. For the SGM,

the test function ÷ must belong to the same set of Chebyshev basis functions,
thereby giving ÷ = „n.

Substituting (4.24) with the actual form of T̂ , we have

ÈR, ÷Í =
KË

flCp
ˆ

qN
n=1 cn(t)„n

ˆt
≠ k

ˆ2 qN
n=1 cn(t)„n

ˆx̃2 ≠ q
È
, ÷

L
= 0. (4.25)

Finally, rewriting (4.25) in matrix-vector notations gives

KC
flCp[„1, · · · , „N ]

S

WU
ċ1(t)

...
ċN (t)

T

XV ≠ k
#ˆ2„1

ˆx̃2 , · · · ,
ˆ2„N

ˆx̃2
$

S

WU
c1(t)

...
cN (t)

T

XV ≠ q

D
, ÷

L
= 0.

(4.26)

Equation (4.26) can be written in the compact form as

GẊ(t) = AX(t) + Bu(t), (4.27a)
Y (t) = CX(t) + Du(t), (4.27b)

where the states, inputs and system matrices are given by

X = [c1, · · · , cN ]T , (4.28a)

u = [q TŒ]T , (4.28b)
G = flCpÈ„n, ÷Í, (4.28c)

A = k

=
ˆ2„n

ˆx̃2 , ÷

>
, (4.28d)

B(:, 1) = Èq, ÷Í, (4.28e)
B(:, 2) = 0. (4.28f)

Choosing the temperatures at the left and right boundaries, T (x̃ = ≠1) and
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T (x̃ = 1) as the outputs of the system, we have

Y =
#
T̂ (≠1, t) T̂ (1, t)

$T
, (4.29a)

C(1, :) = „n(≠1), (4.29b)
C(2, :) = „n(1), (4.29c)

D =
5
0 1
0 1

6
. (4.29d)

The initial PDE-based thermal model governed by (4.19)–(4.20) has now
been approximated by the above ODE-based model using the Chebyshev
SGM.

Proposed 2D battery thermal model - brief summary
In this thesis, we propose a computationally e�cient 2D battery thermal
model for cylindrical and pouch LiBs, which is developed based on the Cheby-
shev spectral Galerkin approach. The proposed thermal model is well-suited
for online thermal performance optimisation thanks to its ability to indepen-
dently control the the tab and surface cooling channels of the battery. For
brevity, we discuss only the model for the cylindrical cell. The original gov-
erning PDE for temperature T (r, z, t) at time t and in the position (r, z) can
be represented by the following 2D boundary value problem [71]

flCp
ˆT (r, z, t)

ˆt
≠ kr

ˆ2T (r, z, t)
ˆr2 ≠ krˆT (r, z, t)

rˆr
≠ kz

ˆ2T (r, z, t)
ˆz2 = q(t) (4.30)

subject to the non-homogeneous convection Robin boundary conditions given
by

kr
ˆT

ˆr
= hs (T ≠ Ts,Œ) at r = Rout, (4.31a)

kr
ˆT

ˆr
= ≠hc (T ≠ Tc,Œ) at r = Rin, (4.31b)

kz
ˆT

ˆz
= ht (T ≠ Tt,Œ) at z = L, (4.31c)

kz
ˆT

ˆz
= ≠hb (T ≠ Tb,Œ) at z = 0, (4.31d)

where r, z, Rin, Rout, and L are the radial coordinates, axial coordinates, inner
radius, outer radius, and height, respectively, of the cylindrical cell. The
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subscripts s, c, t, and b denote the cell’s surface, core, top, and bottom,
respectively.

This 2D problem is more complex than the 1D problem discussed in Sec-
tion 4.3. It involves cylindrical rather than Cartesian coordinates, requires
non-dimensionalizing the physical domain into the range [≠1, 1], and the ho-
mogenization of the non-homogeneous boundary conditions is non-trivial due
to the 2D nature of the problem. Furthermore, we aim to incorporate the
boundary conditions into the control vector. Despite these complexities, the
solution processes in both the 1D and 2D cases are fundamentally equivalent.

The final 2D battery thermal model can also be approximated by an ODE-
based model in the state-space form of (4.27), and has the input vector

u(t) =
#
us(t) uc(t) ut(t) ub(t)

$T
, (4.32)

where
us(t) = hs(t)Ts,Œ(t), uc(t) = ≠hc(t)Tc,Œ(t), (4.33a)
ut(t) = ht(t)Tt,Œ(t), ub(t) = ≠hb(t)Tb,Œ(t). (4.33b)

Equations (4.32)–(4.33) are the cooling power applied to the surface, core, top
and bottom sides of the cell. The above cooling power can be considered as
the dynamic thermal system’s input. Each of these inputs can be influenced
by the coolant’s temperature and flow rate.
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Model-based applications and battery control

The developed models for battery cells in the form of (4.27) can be e�ec-
tively applied to various model-based applications, including rapid analysis
of di�erent cooling scenarios, real-time closed-loop temperature control, and
thermal optimization of cell design. These aspects are thoroughly explored
and detailed in the accompanying Paper B.

5.1 Model-based applications
Di�erent cooling scenarios analysis

Selecting the most appropriate cooling scenario can significantly impact key
thermal properties such as the average, maximum temperatures, and thermal
gradients. The analyses are conducted under the heat generation profile of
the worldwide harmonised light vehicle test procedure (WLTP) across the five
cooling scenarios outlined in Table 5.1. The results indicate that bTC results
in the highest average temperature while aTSC achieves the lowest average
and maximum temperatures. Notwithstanding aTSC’s advantage, it does not
provide the lowest thermal gradient, which is instead achieved by btTC due
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to its symmetric cooling from both the top and bottom sides of the cell.

Table 5.1: Cooling cases based on where cooling is imposed.
Cooling Scenario Label
Surface cooling SC
Bottom tab cooling bTC
Bottom tab and surface cooling bTSC
Bottom and top tabs cooling btTC
All-tabs and surface cooling aTSC

Furthermore, the cylindrical cell exhibits significantly higher thermal gra-
dients in the radial direction compared to the axial direction, attributed to
the lower radial thermal conductivity. This creates a bottleneck in heat trans-
fer, resulting in the core temperature being the highest. To enhance cool-
ing e�ciency, increasing the cooling flow rate and utilizing battery materials
with higher thermal conductivity are recommended. The analysis also reveals
that no single cooling scenario consistently outperformed the others across all
performance metrics, indicating that di�erent scenarios may excel in specific
aspects.

Evaluation and enhancement for cell design

The dimensions of a battery cell play a crucial role in determining its thermal
properties, necessitating an understanding of geometric parameters for opti-
mized cell design. By varying the length-to-radius ratio while maintaining
a constant cell volume, it was found that a higher value of L/Rout typically
leads to a more pronounced temperature rise and greater thermal gradients.
Shorter and bulkier battery cells are generally more favourable than taller
and slimmer designs. The analysis of current battery types in the market
indicates that the 4680 cell type o�ers the best thermal performance across
the five considered cooling scenarios.

Closed-loop temperature control

To address the performance trade-o�s, a simple closed-loop temperature con-
trol strategy is implemented using multiple proportional-integral (PI) con-
trollers as shown in Fig. 5.1. This strategy aims to maintain the average cell
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temperature at a predefined set-point of 20 ¶C. The control scheme is tai-
lored for each cooling scenario, allowing precise regulation of cooling power
to specific sides of the cell. The results demonstrate that btTC best balances
thermal gradients while under various C-rates.

PI

PI

PI

+
-

Estimator
(Thermal Model)

Control strategy

Figure 5.1: PI-based control scheme that tracks a given reference for the cylindrical
cell’s average temperature. T

ref
mean and T̂mean represent the set-point

and estimate of the average temperature, respectively, and Y
meas is the

cell’s measurable outputs. The cooling power applied to the surface,
top, and bottom, which are us, ut, and ub defined in (4.33), is regulated
by their corresponding PI controllers. Their design parameters are set
based on the specific cooling scenario. The blue and red-shaded areas of
the plant represent the tab and surface cooling channels, respectively.
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5.2 Optimal battery tab and surface coolant split
control scheme

In Section 1.3, we outlined that the project work packages are broadly classi-
fied into two main categories: battery thermal modelling and control. While
the latter is ongoing, we provide some key highlights here.

This work formalizes the integration of tab and surface cooling strategies
as an optimal control problem. Tab cooling o�ers the advantage of homoge-
neous cooling, reducing thermal gradients within the cell, while surface cooling
achieves a lower average cell temperature due to the larger surface area avail-
able for heat dissipation. Each strategy possesses distinct advantages and
limitations, necessitating an optimal combination to minimize both thermal
gradients and average temperature.

To achieve this, the problem is solved in a receding horizon fashion using the
model predictive control (MPC) framework, allowing for dynamic adjustments
based on real-time data. The objective is to optimally distribute the coolant
flow between the tabs and the surface of the cell to minimise the average tem-
perature rise and thermal gradients of the battery cell under various operating
conditions. Moreover, physical constraints such as battery dynamics, health,
and safety are observed in satisfying the objectives.

Reference Control Architecture
The BTMS in EVs comprises a coolant circulation system, where a mixture
of water and glycol, driven by a pump, flows through channels or pipes em-
bedded within or adjacent to the high-voltage battery pack. Cooling plates
and microchannels, attached either to the curved surface or base of cylindrical
cells, and to the surface in the case of pouch and prismatic cells, facilitate heat
absorption and removal. The heat absorbed by the coolant is then transferred
to a heat exchanger, which dissipates it to the ambient air or a secondary
cooling circuit, such as a heat pump.

Heat pumps [80] are considered state-of-the-art heat exchangers in the EV
industry due to their high e�ciency, exceeding 300% [81]. The green-dashed
box in Fig. 5.2 shows the schematic of a heat pump. Operating on the princi-
ple of thermodynamic heat transfer, a heat pump utilizes a refrigeration cycle
to either heat or cool a medium. In the cooling mode for the BTMS, heat is
extracted from the battery coolant into the refrigerant in the chiller (evapora-
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tor). Subsequently, the compressor increases the pressure and temperature of
the refrigerant, transforming it into a high-pressure super-heated vapour. The
hot refrigerant then flows to the radiator (condenser), where it releases heat
to the outside environment with a new state of high-pressure cooled saturated
liquid. Following this, the expansion valve reduces the pressure and tempera-
ture of the refrigerant, converting it back into a low-pressure, low-temperature
mixed liquid and vapour, thereby completing the cycle.

The next generation of EV battery packs is positioned to embrace the so-
called cell-to-pack technology [82], [83], o�ering increased volumetric energy
density, enhanced charging speed, extended range, and reduced production
costs. Cylindrical cells are the preferred choice for this advancement due to
their compatibility with this integration approach. Notably, prominent EV
manufacturers like Tesla, Lucid and Rivian already utilise cylindrical cells
in their vehicle designs. Furthermore, industry giants such as BMW [84]
and General Motors [85], [86] are considering a transition to cylindrical cells,
indicating a broader trend towards this innovative technology. Consequently,
the cooling strategy in this work is demonstrated for the cylindrical cell but
can be adapted to other cell form factors.

Our proposed optimal coolant split control strategy can be realised by the
active cooling architecture shown in the red-dashed box of Fig. 5.2. This dis-
tinctive architecture known as the integrated switched-battery cooling (ISBC)
system in this work, requires three separate cooling channels, each targeting
di�erent parts of the cell; the curved surface, top, and bottom sides. For sim-
plicity, we assume the coolant flows to the sides instantaneously, without any
input delay. Additionally, a three-way solenoid valve [87], [88], actuated by di-
rect current (DC)-DC power converters, is responsible for splitting the coolant
flow among the three individual channels. A more detailed ISBC system is
shown in Fig. 5.3. To achieve the desired thermal performance objectives,
the vehicle control unit (MPC) generates modulating signals udc,Ï(t) œ [0, 1],
where the subscript Ï œ {s, t, b}, with s, t, and b denoting the surface, top, and
bottom channels/sides, respectively. Subsequently, the modulating signals are
fed into a pulse width modulator (PWM), which produces binary (unipolar)
switching functions sÏ(t) œ {0, 1} to activate transistors within each power
converter controlling each channel. From the valve control viewpoint, the
variables, udc,Ï œ U ™ Rn, can be viewed as control knobs to generate valve
voltages Vsv,Ï(t) Ø 0.
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Figure 5.2: BTMS of an EV consisting of a heat pump with its refrigeration cy-
cle (green-dashed box) and the proposed integrated switched-battery
cooling (ISBC) system (red-dashed box). Centrifugal pumps drive the
water and glycol mixture through the coolant circulation system. The
red-coloured channels represent the hot coolant, the blue, the cooled
coolant, and the green the refrigerant.

MPC formulation
To solve the optimal coolant split problem, it is essential to establish an MPC
framework that includes all its critical components. This involves a detailed
battery thermal model, a state estimator, a well-defined cost function, and
constraints. The developed model in (4.27) is used as the predictive model
within this framework. The proposed objective function at time step k is
defined as follows,

J = min
udc,Ï

N≠1ÿ

i=0

5
w1ÎT̄max(k + i)Î2

Qm
+ w2Î”T (k + i)Î2

Q”
+ w3Î�udc,Ï(k + i)Î2

R

6
,

(5.1)
where ÎxÎ2

D := xT Dx denotes the weighted norm of vector x, {wi Ø 0 ; i =
1, · · · , 3} represent trade-o� weights, which are tuned to reflect the relative

40



5.2 Optimal battery tab and surface coolant split control scheme

Figure 5.3: The proposed ISBC system provides a variable coolant flow to the
surface, top, and bottom cooling channels by optimally actuating the
valves controlling each channel. The ISBC consists of the battery,
the model predictive controller, three power converters, a three-way
solenoid valve, and sensors that measure the temperature distribution
and heat generated by the cell.

importance of each objective.

T̄max(k + i) = Tref(k + i) ≠ T̄ (k + i), (5.2)

is the setpoint tracking error for the temperature rise of the cell, weighted by a
semi-positive definite matrix, Qm. Tref is a predefined reference temperature,
and T̄ is the average temperature of the cell given by

T̄ (k + i) = 1
n

nÿ

j=1
Tj(k + i), (5.3)

where Tj is the cell temperature distribution. ”T (k+i) is the thermal gradients
in the cell, defined as the derivative of the temperature with respect to the
radial and axial spatial variables r and z,

”T (k + i) = d(Tj(k + i))
d“

, where, “ œ {r, z}. (5.4)
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This term is weighted by a semi-positive definite matrix, Q”. The slew rate,

�udc,Ï(k + i) = udc,Ï(k + i + 1) ≠ udc,Ï(k + i), (5.5)

is the rate of change of control e�ort, penalised by the positive definite matrix
R.

The first term aims to keep the cell in an optimal working range, which is
essential for extending its overall lifetime. The second provides an enabling
environment for the cell to age homogeneously as current density inhomo-
geneities and temperature hotspots in the cell which be minimised. In addi-
tion, temperature strains and stresses in any spatial direction will be reduced.
It is desirable to achieve our objectives with minimum control e�ort and that is
handled by the last term. Additionally, rapid voltage and current transitions
can lead to switching losses and electrical stress on the ISBC components,
causing insulation breakdown, wear and tear, and fatigue. The last term en-
sures smooth switching of the converter leading to the extension of the ISBC’s
lifetime. We also note that (5.1) is subject to the thermal system’s dynamics,
initial conditions, and physical constraints of the ISBC system.

Evaluation setup of optimal control scheme
We evaluate the e�ectiveness of the optimal coolant split scheme against state-
of-the-art cooling methods used in EVs. Cylindrical battery cells are typically
cooled either along their lateral surface (side) or their base, but rarely both
simultaneously. These two conventional cooling approaches serve as bench-
marks for comparison with our optimal scheme. The evaluation is conducted
on a large format 45Ah lithium-ion-phosphate (LFP) battery with specifica-
tions similar to those described in attached papers A and B, under the original
heat generation profile of the urban dynamometer driving schedule (UDDS)
[89], which represents city driving conditions for light-duty vehicles. This com-
parison allows us to demonstrate the potential advantages of our optimized
cooling approach in practical, real-world scenarios.

The cooling schemes under evaluation can be characterized by their active
control inputs. The optimal coolant split scheme utilizes all three control
inputs simultaneously; surface (udc,s), top (udc,t), and bottom (udc,b), all of
which are actively controlled by the MPC. In contrast, the MPC in the side
cooling scheme actuates only udc,s, while both udc,t and udc,b remain inactive.
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Figure 5.4: Results of the optimal coolant split scheme and its benchmarks. (a)
Mean temperature, Tmean. (b) Max thermal gradients, ”Tmax. (c)
Control inputs, udc,Ï, Ï œ {s, t, b}, of optimal coolant split. (d) Control
inputs of benchmarks. The plot in red represents the surface cooling
control inputs, udc,s and the black, base cooling, udc,b.

Similarly, only udc,b is active in the base cooling while the other inputs are
inactive.

Results and discussions
Even under this low heat generation, our proposed scheme demonstrates su-
perior performance compared to conventional side and base cooling methods,
as illustrated in Fig 5.4. With a prediction horizon of 10s, the results show
significant improvements in both mean temperature and thermal gradients.
Using the optimal scheme, the mean temperature is reduced to approximately
15.5 ¶C, compared to 17.5 ¶C with side cooling and 19.5 ¶C with base cooling,
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as shown in Fig 5.4a. This represents a 21% reduction in mean temperature
compared to base cooling and an 11.43% reduction compared to side cooling.
Even more dramatic improvements are observed in thermal gradient results
in Fig 5.4b. The optimal scheme reduces the maximum thermal gradients
to about 0.25°C/m, compared to approximately 3°C/m for side cooling and
1.9°C/m for base cooling. This translates to a remarkable 92% reduction in
thermal gradients compared to side cooling and an 87% reduction compared
to base cooling.

Side cooling outperforms base cooling in reducing mean temperature due
to the larger cell surface area utilized for heat dissipation. Conversely, base
cooling is more e�ective in reducing thermal gradients because it allows all
the rolled electrode layers in the cylindrical cell to be cooled simultaneously,
resulting in a more homogeneous cooling e�ect. However, the optimal scheme
presented here successfully combines and balances these somewhat conflicting
objectives of minimizing both the average temperature rise and thermal gra-
dients, for enhanced overall thermal performance. The control inputs shown
in Figs 5.4c and d, demonstrate that the MPC respects the converter limits
of [0, 1], ensuring the practical applicability of the scheme.

This optimised cooling approach presented here has significant implications
for EVs and battery applications in general. By maintaining lower and more
uniform temperatures across the battery, it e�ectively slows down degrada-
tion processes and minimises hotspots that can accelerate battery wear and
reduce lifespan. Additionally, minimizing thermal gradients reduces the risk
of mechanical stress and potential thermal runaway hazards, ensuring safer
battery operation.
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CHAPTER 6

Summary of included papers

This chapter provides a summary of the included papers.

6.1 Paper A
Godwin K. Peprah, Torsten Wik, Yicun Huang, Faisal Altaf, Changfu
Zou
Control-oriented 2D thermal modelling of cylindrical battery cells for
optimal tab and surface cooling
Published in 2024 American Control Conference (ACC), Toronto, Canada
.

This work introduces a 2D thermal model for cylindrical LiBs, developed
using the Chebyshev spectral-Galerkin method. The model’s key innovation
lies in its ability to independently control tab and surface cooling channels, en-
abling e�ective thermal performance optimization. Validated against a high-
fidelity finite element model using real-world driving profiles, the research
demonstrates that even a reduced-order model with one state can accurately
predict spatially resolved temperature distribution throughout the cell. In ag-
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gressive cooling scenarios, increasing the model order to nine states improves
accuracy by about 84%. The study also reveals that while cooling all sides
of the cell achieves the lowest average temperature rise, cooling only the top
and bottom sides results in the lowest radial thermal gradient. Overall, the
developed model proves to be a valuable tool for designing and implementing
e�ective cooling strategies that minimize average temperature rise and ther-
mal gradients in LiBs. The findings advocate for the model’s integration into
existing BMSs to enhance thermal management and optimize performance.

6.2 Paper B
Godwin K. Peprah, Yicun Huang, Torsten Wik, Faisal Altaf, Changfu
Zou
Thermal modelling of battery cells for optimal tab and surface cooling
control
Submitted to IEEE Transactions on Control Systems Technology.

This study develops a computationally e�cient 2D thermal model for cylin-
drical and pouch cells, based on the Chebyshev spectral-Galerkin (CSG)
method and pertinent model component decomposition. This yields a library
of reduced-order battery thermal models, characterised by di�erent number
of states. These models allow for independent control of tab and surface
cooling channels, optimizing thermal performance while accurately predict-
ing spatially resolved temperature distributions with low errors. Notably, the
one-state model demonstrates superior accuracy and e�ciency compared to
the widely used two-state thermal equivalent circuit (TEC) model, achieving
a 28.7% reduction in computational time. The models have been validated
against high-fidelity finite element models and real-world driving scenarios.
Several cooling case studies reveal that exclusively cooling through the tabs
on the top and bottom sides of cylindrical cells results in the lowest thermal
gradients across various C-rates. Additionally, it shows that a lower length-to-
radius ratio enhances thermal performance in cylindrical cells. These versatile
models not only serve as a valuable tool for optimizing cooling strategies but
also inform battery design, suggesting that commonly used cylindrical cell
form factors may not be ideal for thermal management. Furthermore, the
generality of the CSG framework can be extended beyond battery systems
to other engineering fields involving partial di�erential equations with non-
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6.2 Paper B

homogeneous boundary conditions, such as heat transfer in electronics and
stress analysis in complex materials.
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CHAPTER 7

Concluding remarks and future work

This thesis has presented a thermal model and an optimal control scheme, in
line with the research framework discussed in Section 1.3. The proposed ther-
mal model and optimal control scheme represent a significant advancement
in BTMS. By combining a computationally e�cient battery thermal model
with an optimal control strategy, this work addresses critical challenges in
maintaining battery temperature within desired limits by balancing thermal
gradients and average temperature rise.

The thermal model was developed based on the Chebyshev spectral-Galerkin
method. This model is well-suited for online thermal performance optimisa-
tion, thanks to its ability to independently control signals to the battery’s tab
and surface cooling channels, while accurately predicting multi-spatial tem-
perature distribution in the battery cell. The modelling framework has been
presented here for both cylindrical and pouch cells and thoroughly evaluated
on a large format cylindrical cell through various combinations of tab and
surface cooling cases under real-world vehicle driving profiles. Additionally,
the generality of the proposed modelling framework extends beyond battery
systems. Its application extends to a wide range of systems governed by PDEs
with non-homogenous boundary conditions. This versatility of the framework
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in handling various geometries and boundary conditions makes it a powerful
tool across multiple engineering disciplines.

The thesis also demonstrated that the novel model can readily replace ex-
isting TEC models in commercial BMS applications, for enhanced safety and
lifetime applications. This stems from the developed model’s computational
e�ciency, coupled with higher accuracy compared to its TEC counterpart.

Through various case studies, the model’s utility in the design optimiza-
tion of battery cells was showcased. Using the cylindrical cell as an exam-
ple, findings revealed that a larger radius relative to the length of the cell is
favourable for enhanced thermal performance. This observation suggests that
typical cylindrical cell form factors prevalent in today’s market, may not be
ideally suited for thermal management. Given these insights, battery manu-
facturers and designers can make more informed decisions about cell geometry,
potentially leading to significant improvements in thermal performance.

Future extensions
This thesis has laid a solid foundation for advanced battery thermal manage-
ment. Future work will focus on several key areas, which include but are not
limited to the

• systematic investigation of the control problem under various real-world
battery usage conditions, explicitly studying the cost (degradation) as-
sociated with the control scheme,

• development of a closed-loop estimator with fast convergence and high
robustness, leveraging the developed model,

• explicit addressing of model-plant mismatches and estimation errors to
enhance control robustness, potentially through robust MPC techniques.

• extension of the model to pack level, allowing for more comprehensive
thermal management in large-scale battery systems,

• modelling of the coolant dynamics to further refine the thermal man-
agement strategy, and

• conducting experimental tests and demonstrations to validate the model
and control scheme in real-world conditions.
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By addressing these areas, more e�cient, safer, and long-lasting battery
systems that can be applied across a wide gamut of applications, from EVs to
grid-scale energy storage, to mention but a few, can be developed.
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