
The human population is constantly growing, leading to an 
increasing demand for food and goods. This significantly 
impacts our planet. Climate change is a major challenge we 
need to address through scientific discoveries and engineering 
innovations.

One such innovation is the development of microbial cell factories 
- designed (engineered) microorganisms that can transform a 
variety of sustainable biomasses into useful products such as 
foods or goods.

Yarrowia lipolytica, a promising cell factory, has gained attention for its ability to produce a wide 
range of valuable molecules used in the food, biofuel, and pharmaceutical industries. However, to 
fully leverage Y. lipolytica’s potential, more research is needed. 

In this thesis I investigated the underlying biology of a Y. lipolytica strain whose lipid synthesis 
is disrupted. This strain can be used for production of non-lipid molecules. However, disrupting 
lipid synthesis induced stress responses, suggesting that a downregulation of these processes 
might be a better strategy. I then explored the use of urea as an alternative and more sustainable 
nitrogen source, showing that it does not alter cell physiology and can also reduce issues 
related to media acidification. I leveraged this information to improve a fed-batch cultivation to 
produce high titres of itaconic acid, a chemical that finds applications in the food, textile, and 
pharmaceutical industries. Additionally, I laid the foundations for single-cell transcriptomics to 
explore cell heterogeneity in bioreactor cultivations and developed a computational framework to 
minimise the variability of cell cycle genes. 

Overall, this thesis explores and expands knowledge in relevant areas to develop Y. lipolytica as a 
microbial cell factory for the sustainable production of non-lipid chemicals.
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Multi-omics approaches to unravel regulatory dynamics in yeast bioreactor cultivations 
Simone Zaghen 
Division of Systems and Synthetic Biology, Department of Life Sciences 
Chalmers University of Technology 

Abstract 
Climate change is a multifaceted problem that requires multiple scientific discoveries and 
engineering innovations. Among the innovations that have emerged in recent years are 
microbial cell factories, engineered microorganisms that produce desired molecules through 
their metabolism.  

A promising microbial cell factory is Yarrowia lipolytica, an oleaginous yeast that has gained 
significant traction since it proved a versatile host to produce lipids as well as both bulk and 
fine chemicals. However, further research is needed to better understand this host and to 
design better bioprocesses. 

To improve the current understanding of Y. lipolytica as a microbial cell factory, I combined 
chemostat cultivations with transcriptomic analysis. I studied the underlying biology of a 
platform strain with disrupted lipid synthesis, revealing that abolishing storage lipids induces 
protein misfolding and stress responses. I then explored the use of urea as an alternative and 
more sustainable nitrogen source, demonstrating that it does not alter the cell transcriptome 
and can reduce media acidification. I combined this information to improve a fed-batch 
cultivation to produce high titres of itaconic acid.  

Meanwhile, I laid the foundations for single-cell transcriptomics to explore cell heterogeneity 
in bioreactor cultivations. I performed a proof-of-concept analysis in the well-characterized 
yeast Saccharomyces cerevisiae to understand the potential challenges in translating 
single-cell transcriptomics to Y. lipolytica. I found that cell cycle genes are a major source of 
variability that needs to be minimized.  

The work performed combines bioreactor cultivation with omics analyses to inform and guide 
future strain improvement. Overall, this thesis explores and expands knowledge in relevant 
areas to develop Y. lipolytica as a microbial cell factory for the sustainable production of 
non-lipid chemicals. 
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Introduction 
I remember studying biochemistry in high school and being intrigued by how complex and 
intertwined cell metabolism and regulatory networks are. The topic not only fascinated me, 
but also struck me for its complexity. It came very natural to study biotechnology, to try to 
understand and hopefully untangle some of this complexity. Fast forward a few years, I was 
learning the implications of biotechnology on society: from fighting climate change with 
microbial cell factories, to the ethical issues raised by genome editing. Which better 
combination than employing computational methods to improve microbial cell factories, and 
hopefully contribute to reducing our impact on earth? 

 

Modern-day challenges 

Climate change 

Think about the area where you grew up and compare it to how it was when you were a child. 
When I think about Pianura Padana (Padan Plain) during my childhood and teen years, I recall 
foggy winters and humid summers with rare showers. Nowadays, foggy winters are rare, and 
summers are increasingly marked by extreme weather events such as hailstorms. Given that 
intensive agriculture, and, in the northern part of the region, wine production, are important 
activities, consequences on the local economy are becoming evident.  

Climate change is the consequence of multiple human activities such as deforestation, farming 
livestock, and fossil fuel combustion1. These activities release significant amounts of 
greenhouse gases into the atmosphere, disrupting climate patterns and leading to rising global 
temperatures, melting ice caps, and increased frequency of extreme weather1. The impacts of 
climate change are profound, affecting not only ecosystems and weather patterns, but also 
societies. Vulnerable populations face disproportionate risks2, to the extent that the concepts 
of climate migrant and climate refugee emerged3.  

The urgency to address climate change is clear to (almost) everyone4. We intuitively know that 
it is essential not only to stop using fossil resources, but also to abandon the linear economical 
model of “take, make, dispose”5. We know that we should transition to a circular economy 
based on sustainable development. We know that resource efficiency, waste reduction, and 
the respect of natural systems is fundamental. We know that transitioning towards circular 
economy requires drastic changes in attitudes and habits towards resource extraction, energy 
use, production and consumption of goods, urban planning and transportation, diet, waste 
management, and so on6. But why, then, hasn’t this transition happened yet? 
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Wicked problems 

You may have guessed from the long list of problems I listed that shifting to a sustainable and 
circular economy is a complex and challenging task. The interconnectivity of the problems that 
need a solution and the multitude of actors involved make climate change a super wicked 
problem. Let’s first define a wicked problem, and then clarify the super part.  

The concept of wicked problem was introduced by Rittel and Webber in 1973 and it relates to 
problems that are inherently multifaceted and difficult to define and resolve, i.e. the 
characteristics of a wicked problem are intrinsic to the problem itself7. Rittel and Webber 
defined a series of characteristics typical of wicked problem, that were later summarized in six 
key points by Conklin8: 

I) The problem is not understood until after the formulation of a solution: climate change 
becomes clearer only as we develop and implement solutions, which frequently open 
other questions or problems. 

II) Wicked problems have no stopping rule: it is unclear when a solution is found, and 
there is no definitive end of when to stop addressing climate change. 

III) Solutions to wicked problems are neither right nor wrong, but only trade-offs: solutions 
can only partially address some issues of complex systems, while either failing or 
ignoring to address some other issues. 

IV) Wicked problems are essentially novel and unique. 
V) Every solution to a wicked problem is a one-shot operation, there is no possibility for 

trial and error, given that every attempt has lasting consequences that alter the 
formulation of the problem. 

VI) Wicked problems have no given alternative solutions. 

Now that we defined wicked problems, let’s understand why climate change is a super wicked 
problem. What makes a wicked problem super is the addition of extrinsic characteristics that 
are related to the agent trying to solve the problem. In 2012 Levin et al. defined four traits of 
super wicked problems9: 

I) The problem is time sensitive i.e. time is running out: at some point the problem might 
be too acute, and it might be too late to stop or reverse the problem.  

II) Those seeking to end the problem are also causing it: every person trying to reduce 
climate change has contributed to climate change, and everyday activities are major 
culprits. 

III) There is no central authority dedicated to finding a solution, i.e. decision makers do not 
have control over all the choices required to alleviate the climate change problem. 

IV) Policies often irrationally prioritize short-term policies over long-term benefits. 
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Sustainable development 

Now that we defined the scale of the problems, let’s talk about how to tackle them. We briefly 
touched upon sustainable development, but we have yet to define it. In 1987 The World 
Commission on Environment and Development published a report called Our Common Future, 
in which sustainable development is defined as “development that meets the needs of the 
present without compromising the ability of future generations to meet their own needs”10. 
This report also identified three important pillars to address climate change: environmental 
protection, economic growth, and social equality. Throughout the years the pillars and the 
goals evolved, until in 2015 the United Nations formulated the 17 Sustainable Development 
Goals (Figure 1)11. Each of the 17 goals is articulated in a list of targets, and each of the targets 
has one to four indicators to measure progress, providing a framework to achieve sustainable 
development.  

Climate change and sustainable development are multifaceted problems that require many 
solutions which need to co-exist and be implemented together. Wicked problems are 
intrinsically complex, and a single easy solution does not exist. Many scientific discoveries and 
engineering innovations were developed in recent years to tackle climate change; however, it 
remains uncertain which ones will prove successful. In the meantime, it is crucial to diversify 
research and development across multiple fields to increase the likelihood of funding and 
finding successful innovations. Among the many innovations that emerged in recent years we 
find bioprocessing and microbial cell factories. 

 
Figure 1: The 17 Sustainable Development Goals formulated by the United Nations in 2015. 
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Bioprocessing 

Bioprocessing is the use of biological entities or their components to produce desired 
products. Which, as sophisticated as it sounds, is an activity that humans have been doing for 
at least 8000 years12,13. Beer and wine production are among the many examples of 
bioprocesses that have been around for millennia. Cheese, tempeh, kimchi, sourdough bread, 
and surströmming, a Swedish delicacy, are also bioprocessing products. First employed 
(consciously or unconsciously) for food and beverage production, bioprocessing is now rapidly 
expanding to produce a wider range of products.  

One of the drivers for the expansion of bioprocessing is the characterization of novel 
microorganisms14. Of the small number of known microorganisms15, a wide variety produces 
secondary metabolites as evolutionary strategy to compete with other microorganisms 
present in the environment16. Over the years, scientists realized the potential of 
non-conventional organisms and the range of molecules produced by them: big is the interest 
in harnessing this biodiversity for medical, agricultural, and industrial purposes17. Another key 
driver for the expansion of bioprocessing is the development of genetic and metabolic 
engineering18–20, which resulted in the development and definition of microbial cell factories.  

These two approaches are not mutually exclusive. Selecting the proper host organism for a 
specific bioprocess is crucial for minimizing the amount of genetic engineering needed to 
develop a microbial cell factory, saving time and money that would otherwise be spent on 
engineering functions already present in other organisms. At the same time, selecting a host 
organism for which genetic tools are available is important to speed up the development of 
the microbial cell factory. 

 

Microbial cell factories 

Microbial cell factories are engineered microorganisms, designed to produce a desired product 
through their metabolic processes21. 

We can make an analogy between microbial cell factories and conventional factories. A 
traditional factory takes raw materials and energy as inputs, processes them with machinery, 
and produces a product, hopefully desired by consumers. Similarly, in microbial cell factories, 
the substrate (a carbon and energy source) act as raw material. Cell enzymes function as the 
machinery (native-existing pathway) that transform the input into the final product (Figure 2). 
The development of genetic engineering enabled scientists to modify the machinery within 
the factory: we can now remove or introduce new machinery, either from the same factory or 
from different factories; we are now getting to a stage where we can even design new 
machinery to produce novel products21 (Figure 2).  
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The appeal of microbial cell factories for sustainable bioproduction derives not only from the 
range of products that are possible to produce, but also from the type of substrates that can 
be used. Traditional factories generally rely on fossil fuel-derived inputs, such as petroleum, 
which are not sustainable and harmful for the environment. On the other hand, microbial cell 
factories can use a wide variety of sustainable raw materials, which can be classified in three 
generations22. First generation biomasses include sugars derived from corn, soy, and 
sugarcane. Even though these inputs are renewable, they compete with food production and 
supplies. Therefore, research has focused on second generation biomasses such as agricultural 
residues and forestry by-products, which do not compete with food supplies. Second 
generation biomasses promote a circular economy since waste material gets transformed into 
a valuable product. Third generation biomasses involve the use of greenhouse gases such as 
CO2, CO, methane, formate, and methanol as substrates for bioprocessing, capturing 
greenhouse gases and converting them into valuable products. 

Now that we’ve seen why microbial cell factories are important for sustainable development, 
we need to dive a bit deeper into how to engineer microbial cell factories to produce desired 
molecules at feasible titres, rates, and yields. 

 
Figure 2: Schematic representation of a microbial cell factory (source21). Circles indicate metabolites and arrows 
indicate pathways.  

Engineering biology 

Microbes evolved to increase the likelihood of their survival, but this objective frequently does 
not coincide with the production of molecules we desire. Even when evolution does coincide 
with the production of a molecule of interest, titres are generally too low for an industrial scale 
production that is economically feasible. That’s where metabolic engineering comes to the 
rescue.  
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Metabolic engineering involves the modification of metabolic pathways by introducing, 
removing, or modifying genes to fine-tune regulatory processes within cells23,24. The goal is 
generally to increase the production of a specific molecule or to introduce the production of 
novel molecules. Asides from production at high titres of the desired molecule, other 
characteristics are necessary for a microbial cell factory to achieve a viable bioprocess25. A 
microbial cell factory should: 

- Grow fast and at a high cell density to ensure high product titre, rate, and yield.  
- Be robust to a wide range of pH, temperatures, salt, and inhibitor concentrations to 

withstand different production conditions.  
- Be genetically stable over prolonged cultivation times to ensure consistent production. 
- Be genetically tractable to optimize metabolic pathways, enhance production, and 

introduce new functionalities. 
- Consume multiple carbon sources to enable more sustainable bioprocesses based on 

second or third generation biomasses.  
- Have efficient metabolic pathways to minimize by-product formation and energy loss 

in non-productive activities. 

While this might sound straightforward on the theoretical level, it is a complicated challenge. 
But why is engineering biology so complicated?  

Let’s make another analogy. Classic engineering involves designing and assembling systems in 
which the function of each component is known. For example, building a radio: each 
component has a well-defined function, a blueprint is available, and we have knowledge on 
how each component contributes to the final product.  

In contrast, engineering biology presents a unique set of challenges. Instead of using 
components with known function to build a system from scratch, we were gifted by evolution 
a complex “radio”, i.e. microorganisms. This biological radio operates through regulatory 
networks that we do not fully know or understand, and for which we do not have a blueprint. 
To further complicate this, we are trying to engineer new features in a not-completely-known 
system.  

Another reason why engineering biology is complicated is related to evolution: cells evolved 
regulatory networks to ensure homeostasis when external conditions change. Rewiring 
metabolism to produce a desired molecule needs to circumvent these regulatory networks 
that evolved for millennia, and that we do not yet completely know and understand. 
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Design, build, test, learn cycle  

As a result of the limitations and challenges described in the previous paragraph, developing 
economically viable microbial cell factories can require 6–8 years and over $50 million25. 
Engineering a cell factory involves an empiric approach: several rounds of trial and error are 
required, and a framework based on the design-build-test-learn cycle emerged over the 
years18,26,27.  

At the start of the cycle, scientists formulate the design of a microbial cell factory, producing a 
desired molecule or consuming desired substrates. The microbial cell factory is then 
constructed with the help of genetic engineering tools that have been developed in recent 
years. Following construction we have the testing phase, in which analytical chemistry and 
screening techniques are employed to test the microbial cell factory and compare the actual 
output against the expected output. This leads to the learning phase, where detailed analysis 
such as pathway and omics analysis are used to understand why there are some discrepancies 
between expected and actual outcomes.  

One of the goals of the learning phase is to clarify how the microbial cell factory functions to 
inform the next cycle iteration. Since we are engineering a system that we do not fully 
understand due to our incomplete knowledge, some modifications will produce unexpected 
outcomes which can be used to improve our understanding of the microbial cell factory. To 
accelerate and reduce the cost of the design-build-test-learn cycle, an increasing number of 
methods emerged over the years, including systems biology.  

 

Systems biology 

Systems biology aims to understand the emerging properties of a biological system that cannot 
be understood by studying their individual components in isolation. The goal is to understand 
how a biological system is built, which are its components, and how these components 
function and interact with each other. By building a holistic view of the biological system, 
systems biology can help guide experimental design to improve the design process and 
increase produduction18,28. This is accomplished by developing models that simulate and 
predict biological behaviour29,30.  

Applying environmental perturbations or genetic modifications can provide information on 
how various parts of cell metabolism interact with each other. One way to modify the systems 
is through genetic engineering, such as using CRISPR to edit the genome by inserting or 
removing specific genes. Another way to understand how different parts of the cellular system 
operate is by altering the environmental conditions in which the system is operating. 
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Thanks to omics technologies, combined with analytical methods, it is possible to measure the 
effects of modifications and perturbations, to identify how different genes, pathways, and 
biological processes are affected28,30. By understanding how each component contributes to 
the system's function and behaviour, we can gain insights into its functioning and optimize its 
performance.  

Multi-omics approaches, and integrating data from genomics, transcriptomics, proteomics, 
and metabolomics, can provide a comprehensive view of the molecular and cellular processes, 
enabling the identification of key regulatory networks and interactions within the microbial 
cell factory. This helps identifying specific targets for further genetic modifications and 
adjustments in environmental conditions, significantly accelerating the design-build-test-learn 
cycle to construct robust and economically viable microbial cell factories. 

 

Transcriptomics 

Let’s briefly define one of the reoccuring methods in this thesis. Transcriptomics aims to 
sequence and quantify the transcriptome, i.e. the complete set of transcripts in a cell. The 
central dogma of biology states that genes are transcribed into mRNA, which is then translated 
into proteins. These proteins perform different tasks within the cell thanks to their catalytical 
activity31. Transcriptomics measures the quantity of mRNAs and infers that an increase in 
transcript quantity corresponds to an increase in protein quantity and catalytical activity.  

Transcriptomics can be performed on a population of cells (bulk transcriptomics), or on a single 
cell (single-cell transcriptomics). Bulk transcriptomics measures the average gene expression 
of a large population of cells, providing a broad overview on their gene expression program, 
but potentially masking cell heterogeneity. Single-cell transcriptomics quantifies gene 
expression of individual cells, and can be used to reveal cellular heterogeneity, cell 
subpopulations, and dynamic regulatory processes. However, single-cell transcriptomics 
involves more complex data analysis, can be affected by higher noise and variability, and is 
significantly more expensive.   

Understanding the transcriptome is essential to interpret the functional elements of the 
genome, to reveal the molecular processes that are taking place in a cell, and to infer which 
regulatory mechanisms underline specific phenotypic responses. Bulk and single-cell 
transcriptomics offer complementary perspectives on gene expression and cellular function. 
Deciding which is more suitable depends on the scientific question and experimental design. 
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Models and their limits 

Before discussing which organism to transform into a microbial cell factory, I want to spend a 
few words on the role and limitations of models. I am particularly fond of the spherical cow 
metaphor: 

Milk production at a dairy farm was low, so the farmer wrote to the local university, asking for help 
from academia. A multidisciplinary team of professors was assembled, headed by a theoretical 
physicist, and two weeks of intensive on-site investigation took place. The scholars then returned 
to the university, notebooks crammed with data, where the task of writing the report was left to 
the team leader. Shortly thereafter the physicist returned to the farm, saying to the farmer, "I have 
the solution, but it works only in the case of spherical cows in a vacuum." 

Intuitively, approximating the cow to a spere and increasing its size might lead to an increase 
in milk production. However, this approach will only work within certain limits before other 
factors will become significant. For example, the body and the head of the cow, initially not 
modelled, will eventually need to be considered. Using geometrical approximations, body and 
head can be approximated as spheres, while the neck can be approximated to a cylinder. When 
increasing the size of the cow, body and head volume will grow with the cube of the radius 

(𝑉 = ସ
ଷ
𝜋𝑟ଷ), while the neck will grow with the square of the radius (𝑉 = 𝜋𝑟ଶℎ). At some point, 

the neck would not be able to sustain the head, and to use a euphemism, milk production 
would stop.  

Models can be good approximations of reality withing certain limits, but they can lack or 
oversimplify crucial elements. For instance, for a microbial cell factory we might not know 
about certain regulatory mechanisms, like the neck in the cow metaphor. "All models are 
wrong, but some are useful", George Box said32. Since models are approximations of reality, 
which we do not fully understand, we need to recognize that they are only valid under specific 
assumptions and within certain limits, of which we need to be aware of and not forget about. 

This is particularly relevant in biology, where our knowledge of the system is limited. This 
limitation forces us to build simplified models that work under certain assumptions and within 
specific boundaries. By revising models, challenging their assumptions, and pushing their 
boundaries, we can uncover aspects that we may have overlooked or oversimplified. A good 
model should aim to be simple enough, while maximizing accuracy within its underlying 
assumptions. 

 

Yarrowia lipolyƟca 

Now that we clarified the background and key principles of the thesis, let’s dive into which 
organism we will use for bioprocessing.  
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Many biological entities can be used for bioprocessing thanks to the sheer biodiversity we 
were gifted from nature and evolution. There is currently a big rise in research on 
non-conventional yeasts, and scientists are trying to find microorganisms with peculiar and 
desirable characteristics that can be leveraged to develop bioprocesses33,34.  

During my PhD I mostly focused on the non-conventional yeast Yarrowia lipolytica but also 
worked with the well-characterised yeast Saccharomyces cerevisiae. In the introduction I will 
mostly describe Y. lipolytica and provide an overview on why it is such an interesting 
microorganism. I will spend a few words on S. cerevisiae in Chapter 4. 

Historically classified as non-conventional yeast, Yarrowia lipolytica’s status is now changing 
due to several factors: extensive research being performed, genetic engineering making it 
easier to manipulate, used in a growing number of industrial applications, and receiving 
regulatory approval (generally regarded as safe, GRAS). However, some genes and regulatory 
mechanisms are still unknown, as we will see later, especially compared to the conventional 
organism S. cerevisiae. All the research performed on Y. lipolytica is not happening by chance, 
but for how promising Y. lipolytica is.  

Y. lipolytica raised interest several decades ago as host for heterologous protein production 
due to its ability to secrete high levels of proteins35–38. The initial enthusiasm rapidly evolved 
due to its oleaginous nature, i.e. the ability to produce high amounts of lipids. Since then, 
various genetic tools have been developed and optimized to allow the quick and precise 
genetic engineering, including CRISPR-CaS939,40.  

Today, Y. lipolytica is regarded as a promising microbial cell factory, well-suited for a wide range 
of biotechnological applications41,42. Several research groups are employing its metabolic 
capabilities and its ample acetyl-CoA supply for production of food oils43,44, flavonoids45,46, 
commodity chemicals47,48, pigments49,50, pheromones51–53, plastic degradation54, and so on. 
The field is rapidly expanding, and an increasing number of start-ups are leveraging Y. lipolytica 
as chassis strain, not only for lipid derived products, but also for non-lipid products42.  

Y. lipolytica is not only promising for the wide range of molecules it can produce. This yeast is 
also characterized by the ability to utilize a diverse array of sugars such as glucose, fructose, 
mannose, and other hydrophobic carbon sources such as fatty acids, alkanes, and glycerol55. 
Y. lipolytica can also withstand harsh industrial conditions, such as high temperatures and 
osmotic pressures, enhancing its utility in various processes. This highlights its adaptability and 
efficiency in various fermentation processes. 
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Aim of the thesis 

The overall goal of the thesis is to advance our understanding of Y. lipolytica as a microbial cell 
factory, contributing to efforts to address the wicked problem of climate change. 

In the early stages of my journey, collaborators developed a platform strain of Y. lipolytica in 
which the lipid synthesis is disrupted to redirect carbon flux towards itaconic acid. We thought 
it would be insightful to study this strain to guide future strain development. In paper I we 
combined chemostat cultivations with transcriptomic analysis, revealing that abolishing 
storage lipids induces protein misfolding and stress responses.  

To improve our Y. lipolytica’s bioprocesses, we explored the use of urea as an alternative and 
more sustainable nitrogen source, demonstrating that it does not alter the transcriptome and 
can reduce media acidification (paper II). We combined this information and by using urea as 
a nitrogen source we improved a fed-batch cultivation and increased itaconic acid titres (paper 
III).  

Meanwhile, my interest in omics analysis evolved, and I sought a collaboration at New York 
University to perform single cell transcriptomics (paper IV). The analysis was performed on the 
well-characterized yeast Saccharomyces cerevisiae as a proof-of-concept, with the goal of 
translating single-cell transcriptomics to Y. lipolytica. 
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Chapter 1 – Effects of disrupting lipid synthesis 

Summary 

Lipid biosynthesis requires high amounts of acetyl-CoA, and it wasn’t long before metabolic 
engineers diverted the acetyl-CoA flux from lipids towards commodity and added-value 
chemicals, such as flavonoids (naringenin45, eriodictyol56, taxifolin56), polyketides (triacetic 
acid lactone47, resveratrol45), and terpenoids (lycopene57, β-Carotene58, limonene59). 

Disrupting storage lipid accumulation is a justifiable strategy to enhance the production of 
desired chemicals in Y. lipolytica. However, the impact of these deletions on cell physiology 
and regulation has yet to be investigated. 

Here we show that under nitrogen limitation disrupting lipid synthesis leads an enrichment of 
the unfolded protein response, and an enrichment of several biological processes related to 
protein refolding and degradation. Additionally, cells with disrupted lipid synthesis show an 
altered lipid class distribution with an abundance of potentially cytotoxic free fatty acids under. 

Based on these results, we conclude that to optimize our platform strain of Y. lipolytica, it is 
preferable to downregulate the genes involved in lipid synthesis rather than delete them. This 
approach could ensure that these genes remain functional within the cell, maintaining 
homeostasis without being expressed to the extent that they consume acetyl-CoA, which can 
otherwise be utilized to produce other valuable products. 

 

Introduction 

Why disrupting lipid synthesis? 

Cell metabolism has a bow-tie structure, where all carbon sources are converted to 12 
precursor metabolites that are then used for the synthesis of all cellular building blocks and 
secreted metabolites25. A strain with a high flux through a molecule at the centre of the 
bow-tie can become a platform strain for synthesizing products derived from that same 
intermediate. For example, from acetyl-CoA, one of the 12 precursors, it is possible to 
synthetize lipids, polyketides, and many other bioproducts used in biochemical, biofuel, and 
pharmaceutical industries60.  

A platform strain with high supply of acetyl-CoA is desirable for many applications, and 
Y. lipolytica is an ideal candidate due to its high acetyl-CoA flux under nitrogen limitation61,62. 
While this flux goes towards storage lipid accumulation in wild-type strains, it can be redirected 
towards the production of other bioproducts at high titres thanks to metabolic engineering. 
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How to disrupt lipid synthesis 

Lipid production can be disrupted by deleting four genes (Figure 3): DGA1 (YALI1_E38810g), 
DGA2 (YALI1_D10264g), LRO1 (YALI1_E20049g), and ARE1 (YALI1_F09747g)63. 

- DGA1 and DGA2 encode enzymes that catalyse the final step of triacylglycerol 
formation, using acyl-CoA to convert diacylglycerols into triacylglycerols63,64. DGA2 has 
also been reported to affect the size and morphology of lipid droplets63.  

- LRO1 codes for a triacylglycerol synthase that is acyl-CoA independent and uses 
phospholipids as acyl-donors to convert diacylglycerols into triacylglycerols64.  

- Are1p is essential for sterol esterification, and the deletion of the encoding gene (ARE1) 
abolished sterol ester synthesis63.  

 
Figure 3: Lipid metabolism in Y. lipolytica, adapted from43. In red and marked with an asterisk are the genes 
deleted in the Q4 strain to disrupt lipid accumulation. DAG: diacylglycerol; DHAP: dihydroxyacetone phosphate; 
ER: endoplasmic reticulum; FAS: Fatty acid synthase; FFA: free fatty acid; G3P: Glyceraldehyde 3-phosphate; LPA: 
lysophosphatidic acid; PA: Phosphatidic acid; PL: phospholipid; SE: sterol ester; TAG: triacylglycerol; TCA: 
tricarboxylic acid cycle. 

Decreasing lipid accumulation by deleting one or more of these genes increases production of 
added-value and commodity chemicals. For instance, Shi et al. increased β-farnesene titres by 
56% after deleting DGA1 and DGA265. Similarly, itaconic acid titres were almost doubled by 
deleting DGA1, DGA2, LRO1, ARE148 (Paper III, figure 3A, strains JFYL023 vs JFYL013). 
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Goal of the project 

A Y. lipolytica strain with deletions of DGA1, DGA2, LRO1, and ARE1, known as Q4 strain, was 
previously reported63,66 and was used in Paper III to redirect the acetyl-CoA flux away from 
lipid synthesis and toward itaconic acid production.  

Eliminating storage lipid accumulation is a justifiable strategy to enhance the production of 
desired chemicals in Y. lipolytica. However, the impact of these deletions on cell physiology 
and regulation has yet to be investigated.  

Studying the effects of genetic and environmental perturbations is crucial to improve our 
understanding of the biological system, uncover unknown aspects of its function, and guide 
the next rounds of strain design. 

 

Experimental setup 

To elucidate the impact of disrupting lipid synthesis, we performed chemostat cultivations on 
the Q4 and on the wild-type strain (normal lipid phenotype). Since nutrient limitation impacts 
gene expression in Y. lipolytica61,62,67, we cultivated the strains under different C/N ratios. The 
C/N ratio is the molar carbon-to-nitrogen ratio, which is a crucial factor that influences 
microbial metabolism and growth. We tested carbon limitation (C-lim, C/N ratio 3) and 
nitrogen limitation (N-lim, C/N ratio 116). After at least four-volume changes we measured 
physiological parameters, lipid abundance, composition, class distribution and we sampled for 
transcriptomics. 

We selected a suitable C-lim C/N ratio by performing shake-flask cultivations with C/N ratios 
between 1.45 and 20 (Figure 4A). We tested the Q4 and a lipid overproducer strain (OKYL04968, 
∆are1, DGA1 overexpression) since they show opposite phenotypes that might affect the 
threshold between carbon and nitrogen limitation. We selected a C-lim C/N ratio of 3 from this 
experiment. We selected a N-lim C/N ratio of 116 based on literature66. 

We chose pH-controlled chemostat cultivations to ensure a highly controlled environment that 
increases reproducibility. Additionally, the two strains (OKYL029 and Q4) have different growth 
dynamics (Figure 4B) and a chemostat culture allows to control the growth rate by setting the 
dilution rate. This will reduce growth-related variability, and ensure comparable results 
between strains with different growth dynamics. 
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Figure 4: (A): Y. lipolytica was grown in delft media for 72 hours. The media composition was kept constant, but 
the glucose concentration was varied to produce C/N ratios. The OD600 was measured after 72h of cultivation and 
plotted against the C/N ratio. C/N ratios between 1.45 and 4.43 are carbon limiting for both strains. At higher C/N 
ratios, the nitrogen becomes limiting, and increasing the glucose concentration doesn’t have a major effect on 
OD600. Dots represent the average OD600 of triplicates, and error bars represent the standard deviation. (B) Strains 
OKYL029 and Q4 were cultivated in 96-wells plates with C/N ratio 3 (C-lim, left panels) or C/N ratio 116 (N-lim, 
right panels). OD600 was measured with the growth profiler every 30 minutes. The curves represent the average 
of triplicates, and the shadowed areas the standard deviation. 

Results and discussion 

Impact of gene deletions on cell physiology and lipid composition 

The first thing we examined is the effect that the gene deletions have on cell physiology and 
on lipid composition. We compared the two strains under both C-lim and N-lim to determine 
which metabolic processes and regulatory networks might be influenced by these deletions, 
and to identify under which conditions these effects can be observed. 

Under C-lim, we observed that cell dry weight and lipid content remained unaffected by the 
four deletions in the Q4 strain. Both strains had similar biomass yields, lipid yields, and specific 
glucose uptake rates (r-glucose) (Figure 5).  

Under N-lim, the Q4 strain showed a decrease in cell dry weight, lipid content, and lipid yield. 
Despite these, both strains maintained similar biomass yields and identical specific glucose 
uptake rates (Figure 5). 

We then investigated how the four deletions in the lipid pathway affect abundance and chain 
length of the lipid. We performed lipid extraction and converted the fatty acid chains of all 
lipids into fatty acid methyl esters (FAME). We then analyzed the distribution of the five most 
dominant fatty acids: palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic 
acid (C18:1), and linoleic acid (C18:2). The deletions affected the lipid composition in both C/N 
ratios. The C16:0 fraction showed no statistically significant difference between strains 
(p-value > 0.01), regardless of the C/N ratio. However, other fatty acids (C16:1, C18:0, C18:1, 
C18:2) are significantly different (p-value < 0.01) between the two strains, in both C/N ratios. 
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The scale of the change is generally larger in N-lim, but the direction of change is the same 
(either more abundant in both C/N ratios or less abundant in both C/N ratios).  

 
Figure 5: Physiological and lipid composition changes of the strains OKYL029 and Q4 in C-lim (C/N ratio 3) and 
N-lim (C/N ratio 116). Lipid content is calculated as % of the lipids on the cell dry weight, and the strains’ fatty 
acid composition is calculated as the % of each chain length on the total amount of lipids. Displayed are the 
average (dot) and standard deviation (error bar) of at least three replicates.  

The FAME analysis only provides insights into the changes in the overall lipid composition of 
the cell. However, it does not distinguish between various lipid classes, such as neutral lipids, 
free fatty acids, and phospholipids. Neutral lipids include diacylglycerols, triacylglycerols, and 
sterol esters; phospholipids are primarily found in cell membranes. Since the Q4 strain 
exhibited altered lipid chain abundances, we employed solid-phase extraction (SPE)69 to 
separate and quantify these distinct lipid classes (Figure 6).  

Under C-lim, SPE revealed no significant differences (p-value > 0.01) between the Q4 and 
wild-type strains (Figure 6) and both strains have similar proportions of phospholipids, nutral 
lipids, and free fatty acids. While the phospholipids fraction shows minor differences in chain 
length distribution (less than 5%), the neutral lipid fraction does not. In the free fatty acid 
fraction, the Q4 strain has more unsaturated lipids. However, free fatty acids constitute a small 
portion of the total lipid content (less than 7%). 

Under N-lim, the wild-type strain predominantly contained neutral lipid, while the Q4 had 
reduced neutral lipid and increased phospholipids. The free fatty acid fraction in the Q4 is three 
times larger than in the wild-type strain, indicating that the Q4 is synthesising free fatty acids 
but lacks the ability to incorporate them in triacylglycerols. Regardless of the lipid fraction, the 
Q4 strain has higher levels of C16:1 and C18:2, while C18:1 was more abundant in the 
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wild-type. The saturated fatty acids (C16:0 and C18:0) only show minor changes between 
strains.  

 
Figure 6: Solid phase extraction (SPE) of Q4 and OKYL029 in C-lim and N-lim conditions. Stacked bar charts (lipid 
class distribution) represent the share of each lipid class detected by SPE over the total amount of lipids present 
in the cell. The bar chart area is proportional to the total lipid content of the cell. The bottom three bar charts 
represent the fatty acid composition of each lipid fraction (free fatty acids, neutral lipids, and phospholipids), 
calculated as the % of each chain length on the amount of lipids in that specific lipid class. Displayed is the average 
and standard deviation of at least three replicates. 

Lipid homeostasis is maintained by balancing neutral lipid synthesis and lipid turnover, with 
free fatty acids stored as biologically inert neutral lipid to avoid potential toxic and 
membrane-disturbing effects70. In Y. lipolytica the neutral lipid fraction mainly contains 
triacylglycerols, and only small amounts of sterol esters63. However, the Q4 strain lacks four 
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genes responsible for triacylglycerol and sterol ester synthesis. In C-lim lipid synthesis is not 
stimulated and the genotypical difference is not visible in the phenotype. Under N-lim, the 
high flux through the lipid accumulation pathway highlights the absence of these enzymes in 
the Q4 strain, preventing free fatty acids from being incorporated into triacylglycerols. 

 

Impact of free fatty acid supplementation on growth 

A storage lipid-free Q4 strain of S. cerevisiae (∆are1, ∆are2, ∆dga1, ∆lro1) shows high 
sensibility towards free fatty acids, suggesting the important role triacylglycerols play in free 
fatty acid buffering and detoxification71. Free fatty acid could act as detergents, disrupting 
membrane integrity, or be incorporated into lipid species that are cytotoxic at high 
concentrations (ceramide, acylcarnitine, diacylglycerol)72. In wild-type strains excess free fatty 
acids are incorporated into triacylglycerols and stored into lipid droplets to prevent 
lipotoxicity70,73.  

The Q4 strain of Y. lipolytica cannot synthesize lipid droplets74 (Figure 7), and shows higher 
levels of free fatty acid under N-lim. We therefore investigated Y. lipolytica’s sensitivity to fatty 
acids by testing the highest concentrations that solubility allowed in our experimental setup, 
supplementing cultivations with up to 8 mM of unsaturated fatty acids and up to 1 mM of 
saturated fatty acids. 

 
Figure 7: Microscope images of Y. lipolytica strain OKYL029 (A) and Q4 (B) grown under N-lim and stained with 
Bodipy® Lipid Probe. In the wild-type strain OKYL029 (A) lipid droplets are visible. No visible lipid droplets were 
observed in the Q4 strain.  

The Q4 strain is more sensitive to high concentrations of unsaturated fatty acids, while the 
wild-type strain was unaffected even by high concentrations (Figure 8). Although the growth 
of the Q4 strain was affected by free fatty acid, it was able to grow in media supplemented 
with 8 mM free fatty acid. Notably, the Q4 strain of Y. lipolytica is less sensitive to fatty acid 
supplementation then the Q4 strain of S. cerevisiae, where concentrations of 0.5 mM delay or 
inhibit growth75.  
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Figure 8: Growth curves of Y. lipolytica strains Q4 and OKYL029 on delft media containing 2% ethanol and 1% 
tween-20. The media was supplemented with different concentrations of fatty acid. Strains were cultured in 
96-well plates and the OD600 was measured with the growth profiler every 30 minutes. The lines and shadows 
represent the average and standard deviation of five replicates. 

Integrating a pathway that uses acetyl-CoA as a precursor into the Q4 strain could redirect the 
acetyl-CoA flow towards the production of other compounds, preventing free fatty acids 
accumulation. To test this, we performed an SPE analysis on the itaconic acid producer strain 
JFYL014 (built in Paper III). Our analysis (unpublished data from Manuscript VII) reveales that 
the free fatty acid fraction decreased from 34% of the total lipid content in JFYL007 to 25% in 
JFYL014, under the same cultivation conditions (C/N ratio of 116 and dilution rate of 0.1 in 
chemostat). However, under these cultivation conditions the itaconic acid titer is low 
compared to fed-batch cultivation. These results suggest that redirecting the acetyl-CoA flux 
towards other molecules is a feasible strategy. However, the observed reduction in free fatty 
acids may be more significant under batch or fed-batch cultivation conditions, when higher 
titres of itaconic acid are produced. 

 
Figure 9: Solid phase extraction (SPE) of OKYL029, JFYL007, and JFYL014 (itaconic acid producer) in N-lim. Stacked 
bar charts (lipid class distribution) represent the share of each lipid class detected by SPE over the total amount 
of lipids present in the cell. The bar chart area is proportional to the total lipid content of the cell. 

0255075100OKYL029JFYL007JFYL014Lipid Fractions (%)Free Fatty AcidsNeutral LipidsPhospholipids
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Impact of gene deletions on the transcriptome 

To elucidate how the quadruple deletion impacts cell regulation, we performed a 
transcriptomic analysis (RNA-seq) on the Q4 and OKYL029 strains under carbon and nitrogen 
limitation. 

We explored differences between samples with principal component analysis (PCA) (Figure 
10A). Samples in C-lim cluster together, regardless of their genetic background, while samples 
are separated by genetic background in N-lim, when lipid accumulation is stimulated. These 
results align with phenotype and lipid measurements, where in C-lim both strains are very 
similar, while in N-lim the strains show major differences (Figure 5). 

We then performed differential gene expression analysis and compared the Q4 strain with the 
OKYL029 in C-lim and N-lim. 

- In C-lim we only detected 30 differentially expressed genes (absolute log2FC > 0.5 and 
adjusted p-value < 0.05) (Figure 10B) of which only 6 are associated with a function on 
UniProt. Three of these genes are related to lipid metabolism (“glycerophosphocholine 
phosphodiesterase”, “glycolipid 2-alpha-mannosyltransferase-domain-containing 
protein”, “triacylglycerol lipase”,), and might contribute to the small differences we 
observed in lipid composition between strains in carbon limiting conditions.  

- In N-lim, when nitrogen depletion triggers lipid accumulation, we observe major 
difference between strains. As expected from the PCA, 953 genes are differentially 
expressed (absolute log2FC > 0.5 and adjusted p-value < 0.05) (Figure 10). Out of the 
total 953 differentially expressed genes, 390 have a function annotated on UniProt.  

 
Figure 10: RNA-sequencing of Y. lipolytica strains Q4 and OKYL029 in carbon (C/N ratio 3) and nitrogen (C/N ratio 
116) limitation. Panel A: principal component analysis. Volcano plots for samples in carbon (B) and nitrogen 
limitation (C). NS: non-significative genes. Log2FC: genes with an absolute fold change greater than 0.5. Adjusted 
p-value: genes with an adjusted p-value below 0.05. Log2FC and adjusted p-value: genes with both adjusted 
p-value below 0.05 and absolute log2FC greater than 0.5.  
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To draw biological conclusions from the high number of differentially expressed genes in N-lim 
conditions, we performed a gene set analysis (GSA). A GSA leverages prior biological 
knowledge to determine whether a defined gene set shows significant differences between 
samples76. Gene sets can be defined using gene ontology (GO) terms77 which are generally 
divided into biological process, molecular function, and cellular component78: 

- A biological process represents a specific objective that the organism is genetically 
programmed to achieve and is carried out by specific gene products in a regulated 
manner. 

- A molecular function term describes activities that occur at the molecular levels and 
are carried out by individual gene products or by molecular complexes composed of 
multiple gene products. 

- Cellular component is the location occupied by a macromolecular machine when it 
carries out a molecular function. 

For each of these levels, we performed a GSA with the R package PIANO79 (Figure 11). The 
results suggest that a major alteration in lipid metabolism affects protein synthesis and 
functionality: 

- When the Q4 strain was cultivated under N-lim, we found several GO terms 
contributing to the unfolded protein response and four GO terms related to 
chaperones and ubiquitin-dependent activities enriched. Chaperones are proteins that 
assist the conformational folding of proteins during or after synthesis, and after partial 
denaturation80; ubiquitin-dependent activities are responsible for targeting proteins 
for degradation81,82. The Q4 strain shows enrichment of chaperone and 
ubiquitin-related related GO terms, indicating that the cells are experiencing folding 
stress.  

- This observation is further supported by the enrichment of Golgi-related GO terms: 
proteins are glycosylated in the Golgi apparatus before being targeted for delivery to 
their destination83. The genes in the “protein N-linked glycosylation” GO term are 
mainly downregulated, suggesting that newly synthesized proteins might be misfolded 
and targeted for degradation before being transported to the Golgi apparatus for 
glycosylation. The genes of the “Golgi organization” GO term are mainly upregulated, 
suggesting that a proper Golgi organization might be lacking.  

- The Q4 strain lacks the ability to synthesize lipid droplets74 (Figure 7) and displays 
alterations in the lipid quantity and distribution, activation of the unfolded protein 
response, and enrichment of several GO terms related to proteostasis. Cell 
homeostasis is linked with lipid droplet biology and functionality, as was previously 
shown in S. cerevisiae84. Lipid droplets not only act as lipid storage but also prevent 
lipotoxicity by buffering fatty acid stress71,85 and have an active role in membrane and 
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organelle homeostasis71,84,86. Lipid droplets are important in starvation-induced 
autophagy86,87, clearance of inclusion bodies88, and, ultimately, in proteostasis86,88.  

Deleting gene involved in lipid metabolism in Y. lipolytica results in cells that lack lipid droplets, 
which are important organelles in cell homeostasis. This results in cells with altered lipid 
composition and proteome, and with upregulation of the unfolded protein response. 

 
Figure 11: Gene set analysis (GSA) of Q4 vs OKYL029 in N-lim (C/N ratio 116). Gene sets are defined by GO terms 
(biological process, molecular function, cellular component). For each gene set that is significantly enriched, the 
direction of the relative changes in RNA levels (positive or negative fold change) is shown, and the genes in the 
gene sets are marked based on significative or non-significative adjusted p-value (cut-off 0.05). Genes are 
considered up or down in the Q4 strain, and the OKYL029 strain is the reference strain. The total number of genes 
in each gene set is reported on the right. 
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Conclusions and outlook 

Deleting lipid genes has proven a valid strategy to boost added value and commodity chemicals 
production in Y. lipolytica.  

However, under nitrogen limitation, disrupting lipid synthesis leads an enrichment of several 
biological processes related to protein refolding and degradation. Cells with disrupted lipid 
synthesis do not produce lipid droplets, which participate in many biological processes that 
guarantee cell proteostasis and prevent lipotoxicity. Furthermore, cells with disrupted lipid 
synthesis show an altered lipid class distribution with an abundance of potentially cytotoxic 
free fatty acids under. 

Based on our findings, we conclude that to optimize our Y. lipolytica platform strain, it would 
be preferable to downregulate rather than delete the genes involved in lipid synthesis. This 
strategy would aim at maintaining the functional integrity of these genes within the cell, 
preserving metabolic homeostasis, but without the expression of these genes consuming high 
quantities of acetyl-CoA, which can be directed towards production of other valuable 
compounds. This approach would ensure a balanced allocation of cellular resources between 
molecule production and physiological homeostasis. Although reducing available acetyl-CoA 
might limit the potential yield of target molecules, it could prevent energy-consuming stress 
responses and disruptions to cellular physiology. This metabolic strategy could promote a 
more efficient resource utilization, potentially enhancing cellular robustness. 
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Chapter 2 – Urea as a nitrogen source 

Summary 

Media components, including the nitrogen source, are significant cost factors in cultivation 
processes89. While ammonium sulphate is a widely used nitrogen source for cultivating 
microorganisms, its production requires vast amounts of energy and releases high amounts of 
greenhouse gases90. Urea on the other hand can be a sustainable and cheap alternative if 
produced from municipal waste91.  

However, the nitrogen source can influence and alter cell behaviour and production92,93: a 
microbial cell factory developed and tested using ammonium sulphate may not behave and 
produce the same on urea.  

To clarify whether to switch from ammonium sulphate to urea for our bioprocesses, we 
cultivated three phenotypically different strains of Y. lipolytica. We investigated the influence 
of urea as a nitrogen source compared to ammonium sulphate to study how Y. lipolytica might 
behave on urea.  

We found no significant coherent changes in growth and lipid production. Transcriptomics 
revealed no significant coherent changes, and the genes involved in urea uptake and 
degradation are not up-regulated on a transcriptional level.  

Our findings support urea usage, indicating that previous metabolic engineering efforts are 
likely translatable and can ease the way for urea as a cheap and sustainable nitrogen source in 
more applications, as we will also show in Chapter 3. 

 

Introduction 

Why urea as nitrogen source? 

The most used nitrogen source in microbial cultivation is ammonium sulphate, produced by 
sulfuric acid treatment of ammonia. Ammonia is mostly produced via the energy and carbon-
intense Haber-Bosch process that fixes atmospheric nitrogen with hydrogen at high 
temperature (400-500°C) and pressure (>100 bar)90. Ammonia production, combined with the 
energy needed to produce hydrogen and purified atmospheric nitrogen, accounts for 1% to 
2% of the global energy consumption94 and 3% to 5% of natural gas consumption95.  

Urea is currently produced through the energy intense Bazarov reaction which combines 
ammonia with carbon dioxide at high temperatures (170-220°C) and pressures (125-250 
bar)96. However, urea can be an interesting alternative nitrogen source for microbial cultivation 
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since it can be extracted from municipal waste in an economical and environmentally friendly 
way91, allowing for waste valorisation and bioprocess cost reduction. Additionally, unlike 
ammonium sulphate, urea consumption does not acidify the media, thus requiring less base 
addition during fermentation (Results and Discussion, Figure 13). 

 

Ammonium and urea assimilation 

The pathway for ammonium and urea utilization are well characterised in S. cerevisiae. Since 
Y. lipolytica contains homologous genes, we reconstructed the nitrogen and urea assimilation 
pathway in Y. lipolytica through homology (Figure 12). 

 
Figure 12: Schematic overview of ammonium and urea utilization in yeast. Arrows represent reactions, and gene 
names follow S. cerevisiae nomenclature. 

Ammonium is transported into the cell by MEP1,2,3. Intracellular ammonium then dissociates 
into ammonia, releasing a proton. The proton is then transported into the media by the plasma 
membrane H+-ATPase (PMA1), which consumes one ATP per proton and is responsible for the 
media acidification97.  

Urea is transported into the cell by DUR3 and converted into two ammonia molecules by a 
urea amidolyase (Dur1_2). DUR1_2 is a multifunctional enzyme with urea carboxylase and 
allophanate hydrolase activity. The first activity converts urea into allophanate by consuming 
one ATP and one bicarbonate. The second activity converts allophanate into two ammonia 
molecules by consuming water and releasing CO298.  Urea usage is more energy efficient than 
ammonium usage since it consumes one ATP to yield two ammonia molecules.  

The two pathways converge on ammonia, which can be incorporated into glutamate by the 
NADP-dependent glutamate dehydrogenase (GDH1) and into glutamine by the glutamine 
synthetase (GLN1). Glutamate and glutamine are both starting points for amino acid synthesis. 
Additionally, glutamate can be converted by the NAD-dependent glutamate dehydrogenase 
(GDH2) to ammonia and α-ketoglutarate, linking nitrogen metabolism to the tricarboxylic acid 
cycle99. 



 
 

26 

Goal of the project 

Urea can be a more sustainable nitrogen source than ammonium sulphate if produced from 
municipal waste91.  

However, changing the media composition can affect cell behaviour and impact the production 
performance of microorganisms92,93,100,101. A microbial cell factory developed and tested using 
ammonium sulphate may behave differently when using urea, potentially producing lower 
amounts of the desired product.  

In Y. lipolytica, lipid accumulation is triggered by nitrogen limitation62, and the fatty acid 
composition is crucial when producing lipid derivatives. It is important that changing nitrogen 
source does not alter the fatty acid profile or interfere with lipid accumulation.  

Additionally, in Y. lipolytica, the nitrogen source was linked to dimorphic growth102, which 
impacts bioreactor cultivations not only by causing line clogging, but also by altering cell 
physiology, leading to reduced product yield, titre, and rate. 

The goal of this study is to determine whether switching from ammonium sulphate to urea 
would negatively impact future bioprocesses. To address this, we investigated the influence of 
urea compared to ammonium sulphate on the physiology and transcriptome of Y. lipolytica. 

 

Experimental setup 

To understand the cells' reaction to different nitrogen sources, it is not sufficient to observe 
single parameters such as growth rate, lipid content, and metabolite production. Instead, it is 
necessary to monitor the whole cell system and the interactions between the modified 
environment and the altered cellular response. One comprehensive approach for studying cell 
behaviour on a genome-wide level is transcriptomic analysis.  

By comparing gene expression under different conditions, we can measure changes in cell 
behaviour, and gain deeper insights into how cells respond to various nitrogen sources.  

In this study, we performed transcriptomic analysis of Y. lipolytica cultivations to investigate 
whether a response to the nitrogen source might differ depending on the amount of lipid 
accumulation, either as a function of strain genotype or nutrient limitation.  

To address this, we varied three parameters:  

1. Y. lipolytica strains, differing in their lipid accumulation ability: 
i. OKYL029: normal lipid accumulation 

ii. JFYL007 or Q4: lipid synthesis disrupted (∆dga1, ∆dga2, ∆lro1, ∆are1) 
iii. OKYL049: lipid overproducer (DGA1 overexpression, ∆are1) 
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2. Nutrient limitation: 
i. carbon limitation (C-lim): C/N ratio 3, as established in Chapter 1 

ii. nitrogen limitation (N-lim): C/N ratio 116, as established in Chapter 1 
3. Nitrogen source: 

i. ammonium sulphate  
ii. urea   

 

Results and discussion 

Cell physiology  

We performed chemostat cultivations under C-lim or N-lim with urea or ammonium sulphate 
as equimolar nitrogen sources. We maintained the pH at 5 by automated addition of potassium 
hydroxide. Urea required significantly less base addition than ammonium sulphate (Figure 13), 
which can reduce the costs of a bioprocess since it does not dilute the final product, as we will 
see in Chapter 3.  

 
Figure 13: Addition of base to a steady-state cultivation (working volume 500 mL). Volume (mL) of base added 
per residence time (dilution rate 0.1, 10 hours residence time) in C/N ratio 3 and 116, normalized to cell dry weight. 
Dots and error bars represent the average and standard deviation of the replicates. 

Since nitrogen assimilation from ammonium sulphate costs 1 ATP per ammonia, while from 
urea ½ ATP per ammonia (Figure 12), we hypothesized that this might impact the biomass, 
lipid content, their corresponding yields, or on the specific uptake rate of glucose (r-Glucose).  

However, the cell physiology was largely unaffected by the nitrogen source (Table 1). Only the 
lipid overproducer OKYL049 showed significant changes in biomass in N-lim (p-value < 0.01), 
albeit in the opposite direction as anticipated. The other strains showed no statistically 
significant changes. We concluded that the nitrogen source does not significantly impact 
overall cell physiology. 
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Table 1: Physiological parameters of the strains in different C/N ratios and nitrogen sources (N-source). Displayed 
is the mean ± standard deviation of at least three replicates. Significance was calculated between the two nitrogen 
sources ammonium sulphate (AS) and urea (U), with a two-tailed homoscedastic t-test. ** indicates a 
p-value < 0.01. 

 

Since the fatty acid composition is of interest when Y. lipolytica is applied to produce lipid 
derivatives, we performed a FAME analysis to investigate whether the nitrogen source affects 
the fatty acid composition (Table 2). 

Table 2: Changes in the fatty acid composition (% of total fatty acid) in different C/N ratios and nitrogen sources 
(N-source) in strains OKYL029, OKYL049, and JFYL007 (Q4). Displayed is the mean ± standard deviation of at least 
three replicates. Significance was calculated between the two nitrogen sources ammonium sulphate (AS) and urea 
(U), with a two-tailed homoscedastic t-test. ** indicates a p-value < 0.01. 

 

Storage lipid production is not triggered under C-lim, and most of the extracted fatty acids are 
expected to originate from phospholipids. Under C-lim, we observed a significant change 
between urea and ammonium sulphate in C16:1 and C18:1 for OKYL029 and Q4 (JFYL007). We 
did not observe any significant changes under carbon limitation in OKYL049. The minor 
changes that could be observed, were most likely derived from changes in membrane fatty 
acids, which become visible when the contribution of the storage lipids to the lipid content is 
low. 
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Under N-lim, OKYL049 showed significant changes in C16:0 and C18:2 and we observed a 
change towards lower saturation and longer chain length (C16/C18) in urea compared to 
ammonium sulphate. The Q4 strain (JFYL007) showed significant changes in the C18:0 and 
C18:1 but no significant changes in saturation or chain length of the fatty acids.  

 
Overall urea does not seem to have a major impact on any of the measured parameters. 
However, the changes in fatty acid composition in the Q4 strain indicate that there might be 
some changes not captured with the measured parameters. Additionally, there might be 
changes in metabolites we did not measure. Therefore, we performed transcriptomics to 
analyse how gene expression is affected by urea.   

 

Transcriptomics analysis 

To probe whether any transcriptional changes occurred that might influence the phenotype 
beyond the parameters we measured, we clustered the RNA-sequencing result by samples 
through principal component analysis (PCA, Figure 14). 

We found that the nitrogen source only resulted in minor separation across the samples 
(Figure 14A). Meanwhile, as the C/N ratio affected cell physiology (e.g. lipid content, Table 1), 
it also significantly separated the samples in the PCA (Figure 14B). Cell physiology was also 
affected by the strain genotype in N-lim, with the JFYL007 (Q4) strain clustering further. In 
C-lim, the strains showed low variance, indicating that the nitrogen source has little effect 
when available in copious amounts.  

 
Figure 14: Principal component analysis (PCA) plot of RNA-sequencing samples. The panels display the same PCA 
result, but samples are labelled based on either (A) nitrogen source, (B) C/N ratio or (C) strain. 

We then identified the genes that are differentially expressed as an effect of the different 
nitrogen sources. The expression of each gene was compared between a sample cultivated in 
urea versus a sample cultivated in ammonium sulphate, while strain and nutrient limitation 
were kept constant. The results of each comparison were filtered to retain differentially 
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expressed genes with an adjusted p-value below 0.5 and a log2FC above 1. We then visualized 
the genes in a network plot and identified the most interesting clusters (Figure 15). 

 
Figure 15: Overlap of differentially expressed genes in different conditions. Displayed are the differentially 
expressed genes (adjusted p-value < 0.05, absolute fold change > 1) of each strain and C/N ratio in urea compared 
to ammonium sulphate. Numbers indicate the number of down/up-regulated genes. Clusters A to E contain groups 
of genes discussed in the results. The UniProt protein function of the corresponding genes is listed on the 
right-hand side. For visualization, the DiVenn web tool was used103. 

- Cluster A. A coherent response to the nitrogen source, irrespective of lipid phenotype, is 
indicated by genes that are differentially expressed in all strains and under all nutrient 
limitations. However, only two genes are in this cluster: one encodes a protein of 
unknown function, the other a protein with similarity to S. cerevisiae’s VPH2. VPH2 is 
essential for the vacuolar-type ATPase assembly, and its differential expression can be 
associated with the acidification caused by ammonium sulphate, but not urea104. 

- Clusters B and C. Since the C/N ratio had a significant impact on gene expression (Figure 
14B), we checked clusters between all three strains under either C-lim or N-lim. Cluster 
B contained three uncharacterized proteins. Cluster C contained two uncharacterized 
proteins and a S-(hydroxymethyl)glutathione dehydrogenase for which we could not find 
a link to the nitrogen source. 

- Clusters D and E. Since JFYL007 (Q4) showed a different behaviour than the other two 
strains (Figure 14C), we checked, for both C/N ratios, the clusters between strains whose 
behaviour was similar (OKYL029 and OKYL049). 16 of the 21 genes of clusters D and E 
were uncharacterized proteins, and for the remaining proteins we could not find a link 
to the nitrogen source. 
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The low variance identified in the PCA, the low number of differentially expressed genes, and 
the low overlap between differentially expressed genes indicate that the nitrogen source (urea 
or ammonium) has minimal effect on the overall transcriptome. Additionally, the number of 
uncharacterized proteins highlight one of the limitations of working with non-conventional 
yeast.  

 

Urea assimilation pathway 

Since the overall transcriptional changes between the two nitrogen sources is marginal, we 
investigated the expression of the genes of the urea and ammonium pathway (Figure 16). 

 
Figure 16: Potential homologous Y. lipolytica genes, and their expression changes when comparing the use of 
ammonium sulphate versus urea. The genes were identified from different sources, as listed in Table S1 of Paper 
II. Genes marked with ☒ have been removed during the filtering of the gene counts; genes marked with ⧄ did not 
show any significant change between the nitrogen sources (adjusted p-value < 0.05). 

Five genes of the pathway were filtered out due to low reads when processing raw 

RNA-sequencing data (marked with ☒ in Figure 16). Eleven were not significantly different 
(adjusted p-value > 0.05, marked with ⧄ in Figure 16). Two genes showed significant 
expression changes between the two nitrogen sources, either in carbon or nitrogen limitation, 
for one or more strains: an ammonium transporter (YALI1_B18292g) and a urea transporter 
(YALI1_B05609g).  

These results were unexpected since gene expression of both ammonium and urea pathways 
is regulated by the available nitrogen source in S. cerevisiae and C. albicans105,106. However, we 
only observed an upregulation of one of the four DUR3 homologs. This suggests that 
YALI1_B05609g is the true ScDUR3 homolog and has a similar regulation. However, this 
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hypothesis would require further studies for confirmation, for instance through the 
generation of knockout strains.  

The genes downstream of ammonia were not expected to be differently expressed since both 
ammonium and urea metabolism end in ammonia. 

 

Conclusions and outlook 

Switching nitrogen source to urea can decrease the cost of the bioprocess and increase its 
sustainability if urea is extracted from waste. The goal of this study was to investigate whether 
switching from ammonium sulphate to urea would negatively impact our bioprocess.  

In our study we found no significant coherent changes in growth or lipid production, and 
RNA-sequencing revealed no significant coherent changes in the transcriptome. The genes 
involved in urea uptake and degradation were also not up-regulated on a transcriptional level. 
Additionally, urea reduces media acidification and base consumption, making the process 
cheaper and more sustainable, especially if urea is sourced from waste materials. 

Our findings support urea usage, indicating that previous metabolic engineering efforts are 
likely translatable to urea. Although there are some minor non-coherent changes, switching 
from ammonium sulphate to urea is feasible, and can bring several advantages such as reduced 
fermentation cost, increased bioprocess sustainability, and lower base consumption.  

We will build on these advantages in Chapter 3, showing how using urea as a nitrogen source 
in a fed-batch cultivation decreases base consumption, resulting in lower bioreactor volume 
and higher titres.  
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Chapter 3 – Itaconic acid production 

Preface 

The project to produce itaconic acid in Y. lipolytica began before I started my PhD. Over the 
years, Jing Fu and collaborators developed a platform strain for non-lipid production (Q4, 
discussed in paper I), and subsequently engineered it for itaconic acid production.  

My contribution focused on lab-scale fed-batch cultivation in 1L bioreactors. I will primarily 
discuss this part in the results, while briefly outlining previous work in the introduction. 

 

Summary 

Itaconic acid ranks among the top 12 building block chemicals107 and has several applications 
in food, textile, and pharmaceutical industries108.  

Currently, the most promising microorganisms for itaconic acid production are Aspergillus 
terreus and Ustilago maydis109,110. However, they are pathogens and require costly bioprocess 
setups. Y. lipolytica, on the other hand, can be an economic alternative, as it is generally 
regarded as safe and genetic tools are available.  

After previous metabolic engineering efforts, we obtained a strain with high itaconic acid 
production in shake flask.  

This promising strain was cultivated in fed-batch bioreactors to increase production. Through 
trial and error, we identified the key factors to improve production: addition of yeast extract, 
continuous feeding, pH of 5.5, and urea as nitrogen source. 

By tweaking these parameters, we reached an itaconic acid titre of 130 g/L in fed-batch 
cultivations, a significant leap towards establishing Y. lipolytica for competitive itaconic acid 
production. 

 

Introduction 

Why producing itaconic acid in Y. lipolyƟca? 

Itaconic acid ranks among the top 12 building block chemicals107 and has several applications 
in food, textile, and pharmaceutical industries108. Itaconic acid is a platform chemical and can 
be transformed into various valuable bio-based products with remarkable properties111,112, 
e.g. shape memory polymers113, polymeric hydrogels for targeted drug delivery114,115, and 
anti-bacterial materials116,117. 
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Currently, the primary microorganism used for itaconic acid production is the filamentous 
fungus Aspergillus terreus, capable of producing 160 g/L109. However, A. terreus is 
pathogenic118, needs careful monitoring of fermentation parameters to prevent morphological 
switch119, and production is inhibited by low concentrations of manganese ions109,120. These 
issues increase operational costs and the risk of failed batches110.  

Another microorganism, Ustilago maydis, can produce 220 g/L of itaconic acid as solid calcium 
salt110. However, it is a corn pathogen121, its fermentation requires manual addition of calcium 
carbonate as suspension or powder, and in-situ precipitation of calcium itaconate to prevent 
product inhibition. These factors complicate scale-up efforts, making it costly. 

On the other hand, Y. lipolytica is generally recognized as safe122, has available genetic 
manipulation tools, and exhibits a high flux towards acetyl-CoA, citric acid and isocitric acid, 
which are itaconic acid precursors. Additionally, the formation of pseudo-hyphae in Y. lipolytica 
can be abolished by deleting mhy1123, making morphological control easier than A. terreus.  

 

How to produce itaconic acid in Y. lipolyƟca 

The metabolic engineering work and the fermentation improvement that were performed to 
produce high titres of itaconic acid in Y. lipolytica can be divided into 4 steps (Figure 17): 

1. In Step 1, cis-aconitate supply was enhanced by: 
a. removing carbon flux from lipid storage and sterol ester formation by deleting 

DGA1, DGA2, LRO1, and ARE1 (Q4 or JFYL007 strain, discussed in Chapter 1) 
b. interrupting the glyoxylate cycle (deletion of ICL1/2) and deleting the isocitrate 

dehydrogenase (IDP).   
2. In Step 2, the itaconic acid biosynthetic pathway was introduced and optimized. 

a. Itaconic acid production was tested in mitochondria and in the cytosol. Initially, 
the mitochondrial route showed higher titres. However, when a tricarboxylic 
acid transporter (MTT) was expressed to export cis-aconitate to the cytosol for 
subsequent transformation to itaconic acid, the titre surpassed that of 
mitochondrial production. Consequently, the strain with cytosolic production 
was selected for further engineering. 

b. Combining cytosolic production with a strain lacking ICL1/2, resulted in 
decreased production, while only disrupting lipid synthesis improved titre. A 
strain with cytosolic production, MTT transporter, and disrupted lipid synthesis 
was retained for further engineering. 

c. Itaconic acid production through the trans-aconitate pathway was also tested, 
but yields were lower than the cis-aconitate pathway.  
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d. Various promoters and copy numbers of MTT and CAD (cis-aconitate 
decarboxylase) from A. terreus were tested. The combination of six copies of 
pTef-AtCAD and one copy of pGPD-AtMTT was retained for further engineering. 

3. In Step 3, carbon distribution between cell growth and itaconic acid production was 
optimized. After respectively 4 and 8 days of cultivation, itaconic acid titres were similar 
in both nitrogen replete (NR), in which nitrogen is abundant, and nitrogen limiting (NL) 
conditions. However, while NL resulted in higher yield, productivity was lower. In NL, 
the activity of adenosine monophosphate (AMP) deaminase (AMPD) increases, leading 
to a decrease in AMP levels. Since the isocitrate dehydrogenase IDH is inhibited by low 
AMP levels, low IDH activity was mimicked to enhance production: 

a. The overexpression of native AMP deaminase did not increase production.  
b. Downregulating IDH using weaker promoters increased itaconic acid titre, yield, 

and productivity in NR conditions. The strain JFYL122 achieved similar titres and 
yields in both NR and NL conditions, but in NR it only took 4 days compared to 
8 days in NL, resulting in higher productivity. 

4. In Step 4, we optimised fermentation parameters for fed-batch bioreactor cultivations 
of strain JFYL122, as we will see in the Results and discussion section.  

 
Figure 17: Overview of the metabolic engineering efforts to produce itaconic acid. ACO, aconitase; ACOd, 
aconitase without mitochondrial leading sequence; ADI, aconitate isomerase; AMPD, AMP deaminase; ARE1, 
Acyl-CoA:sterol O-acyltransferase; CAD, cis-aconitate decarboxylase; DGA1, Acyl-CoA diacylglycerol O-
acyltransferase 1; DGA2, Acyl-CoA diacylglycerol O-acyltransferase 2; ICL1, isocitate lyase; IDH, NAD+ dependent 
isocitrate dehydrogenase; IDP, NADP+ dependent isocitrate dehydrogenase; LRO1, phospholipid:diacylglycerol 
acyltransferase; MDT, mitochondrial decarboxlic transporters; MTT, mitochondrial tricarboxlic transporters; TAD, 
trans-aconitate decarboxylase. 

 520 
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Fig. 1 Reprogramming Y. lipolytica metabolism for efficient synthesis of itaconic acid from flask to semi-pilot 522 
scale. The whole work could be divided into 4 steps. Step 1, to redirect sink flux, there were mainly two nodes, 523 
citrate and isocitrate. DGA1, DGA2, LRO1 and ARE1 were deleted to block the TAG and SE accumulation. 524 
ICL1 was deleted to block the glyoxylate cycle, and IDP was deleted to reduce the utilization of isocitrate. 525 
Step 2, enhance IA synthetic pathways. Step 3, the mechanism in NL was mimicked by down regulation of 526 
IDH by weak promoter exchange, CRISPRi and RNAi. Step 4, the scale-up from deep-well plates to bench 527 
top bioreactors and semi-pilot scale fermentation. ACO, aconitase; ACOd, aconitase without mitochondrial 528 
leading sequence; ADI, aconitate isomerase; AMPD, AMP deaminase; ARE1, Acyl-CoA:sterol O-529 
acyltransferase; CAD, cis-aconitate decarboxylase; DGA1, Acyl-CoA diacylglycerol O-acyltransferase 1; 530 
DGA2, Acyl-CoA diacylglycerol O-acyltransferase 2; ICL1, isocitate lyase; IDH, NAD+ dependent isocitrate 531 
dehydrogenase; IDP, NADP+ dependent isocitrate dehydrogenase; LRO1, phospholipid:diacylglycerol 532 
acyltransferase; MDT, mitochondrial decarboxlic transporters; MTT, mitochondrial tricarboxlic transporters; 533 
TAD, trans-aconitate decarboxylase. 534 
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Experimental setup 

JFYL122 is the most promising itaconic acid producer: its lipid synthesis is disrupted, it 
expresses 6 copies of AtCAD, one copy of AtMTT, and its IDH expression is modulated by a 
weak promoter. JFYL122 produces the highest itaconic acid titre (4.3 g/L) with a yield of 0.31 
mol/mol (itaconic acid/glucose) in shake flask.  

We cultivated this strain in 1L fed-batch bioreactors. Fed-batch cultivations allow to control 
environmental conditions such as pH, nutrient concentration, dissolved oxygen, etc. Fed-batch 
cultivations also allow the feed of media whenever the cultivation reaches a desired stage, for 
example when certain nutrients become limiting. Normally the limiting nutrient is fed as a high 
concentration solution to keep a low flow of liquid into the reactor, resulting in a low dilution 
rate and a low volume increase. A fed-batch cultivation extends a culture’s productive duration 
and enables formation of high product titers, which is important for decreasing the cost of 
downstream operations. However, inhibitory or toxic by-products may accumulate and 
compromise cell viability and productivity.  

 

Results and discussion 

The first tested strategy (NR -> NL) consists in starting the fermentation with NR condition, and 
having NL conditions generated whenever the nitrogen source is consumed during biomass 
formation. With this setup, significant amounts of the by-product citric acid started to 
accumulate after three days (Figure 18) and surpassed the itaconic acid titre.  

Citric acid accumulation is probably due to complex regulation mechanisms between absolute 
nitrogen amount, C/N ratio, and reaching low glucose concentrations. Glucose was fed during 
the cultivation but reached low concentrations multiple times during the fermentation. 
Nitrogen likely became limiting at day 3, when growth halted at OD600 120, and citric acid 
started to be secreted, indicating that it was not being converted to itaconic acid. 

 
Figure 18: Fed-batch cultivation of JFYL122. Media composition: 10 g/L (NH4)2SO4, 3 g/L KH2PO4, 0.5 g/L 
MgSO4•7H2O, 2 mL trace metals solution stock, and 1 mL of vitamin solution stock. 100 g/L initial glucose, pH 3.5. 
650 g/L glucose was fed when residual glucose is below 20 g/L. 
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To check if either nitrogen or other nutrient limitation was responsible for citric acid secretion, 
we tested phosphate limitation and sulphur limitation (Figure 19). Citric acid was not detected 
under phosphate limitation and sulphur limitation, but it was detected under nitrogen 
limitation and NL->NR conditions, indicating that nitrogen limitation should be avoided to 
prevent citric acid secretion.  

 
Figure 19: Testing different nutrient limitations in JFYL122. Media composition for NR -> NL: 10 g/L (NH4)2SO4, 3 
g/L KH2PO4, 0.5 g/L MgSO4•7H2O, 2 mL trace metals solution stock, and 1 mL of vitamin solution stock. 100 g/L 
initial glucose, pH 3.5. Nitrogen limitation: same composition as NR -> NL, but 2.5 g/L of (NH4)2SO4. Phosphate 
limitation: same composition as NR -> NL, but 0.2 g/L KH2PO4. Sulphur limitation: same composition as NR -> NL, 
but 0.1 g/L MgSO4•7H2O and 0.17 g/L MgCl2. 650 g/L glucose was fed when residual glucose is below 20 g/L. 

To avoid nitrogen limitation, we started feeding nitrogen together with the carbon source. 
Additionally, to prevent citric acid production, we tried not to reach very low glucose 
concentrations in the bioreactor. However, this could prove challenging since we cannot 
measure live glucose concentration and are unable to monitor the fermentation continuously. 

To increase itaconic acid production and prevent citric acid formation, we tested the effect of 
feeding yeast extract as a nitrogen source together with the media feed. Yeast extract has low 
production cost and is frequently used to improve cell growth and productivity124. After 
starting a cultivation with the NR -> NL media, we tested different yeast extract concentrations 
in the media feed. Feeding with 2.5 g/L yeast extract significantly increased the itaconic acid 
titre to 17.3 g/L (Figure 20) within 3 days. When feeding with less yeast extract, citric acid 
accumulated, indicating nitrogen source depletion. Furthermore, with 2.5 g/L yeast extract the 
glucose concentration did not get close to zero, also preventing citric acid secretion.  

 
Figure 20: Testing yeast extract effect. Media composition (NR -> NL): 10 g/L (NH4)2SO4, 3 g/L KH2PO4, 0.5 g/L 
MgSO4•7H2O, 2 mL trace metals solution stock, and 1 mL of vitamin solution stock. 100 g/L initial glucose, pH 3.5. 
650 g/L glucose was fed when residual glucose is below 20 g/L, together with 2.5, 1, 0.1, and 0 g/L yeast extract. 



 
 

38 

Since high osmotic pressure can inhibit yeast growth and decrease fermentation 
performance125, we tried to change feeding mode from pulses to continuous feed. This 
increased itaconic acid production to 24.5 g/L on the sixth day (Figure 21). However, cells had 
arrested glucose consumption and itaconic acid production at that point. In high-throughput 
microbioreactors (BioLector) an initial pH of 3.5 showed that 20 g/L of itaconic acid interrupts 
cell growth, while 60 g/L are tolerated with at pH 7126. We then decided to increase the pH of 
our cultivations from 3.5 to 5.5. Growth, glucose consumption, and itaconic acid production 
resumed (Figure 21), reaching 29.3 g/L of itaconic acid. We therefore decided for the next 
round of fed-batch to keep a pH of 5.5 and a continuous feed.  

 
Figure 21: Media composition (NR -> NL): 10 g/L (NH4)2SO4, 3 g/L KH2PO4, 0.5 g/L MgSO4•7H2O, 2 mL trace metals 
solution stock, and 1 mL of vitamin solution stock. 100 g/L initial glucose. 650 g/L glucose with 30 g/L yeast extract 
was fed continuously. Initial pH was 3.5 and was then increased to 5.5.  

The key factors that we identified are addition of yeast extract, continuous feeding, and pH of 
5.5. These conditions were combined in 1 L fed-batch cultivation: the pH was kept at 5.5, and 
600 g/L glucose combined with 20 g/L yeast extract were continuously fed into the reactor.  

Using ammonium sulphate as nitrogen source, we produced 68.1 g/L of itaconic acid in 16.75 
days (Figure 22). However, to maintain the pH at 5.5, large volumes of base were required 
(Figure 22). This drastically increased the cultivation volume, lowering the itaconic acid titre 
after 17 days, although the absolute amount of itaconic acid still increases (titre remained 
similar, but the volume increased: the total amount of itaconic acid increased).  

In Chapter 2 we learnt that ammonium sulphate consumption reduces the pH of the media, 
while urea consumption does not. A cultivation with urea reduced the volume of base required 
to keep a pH of 5.5 – significantly increasing itaconic acid titre and yield to 130.5 g/L and 0.320 
mol/mol glucose respectively (Figure 22).  
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Figure 22: Fed-batch fermentation with ammonium sulphate or urea. Media composition: 10 g/L (NH4)2SO4 or 4.5 
g/L urea, 3 g/L KH2PO4, 0.5 g/L MgSO4•7H2O, 2 mL trace metals solution stock, and 1 mL of vitamin solution stock. 
100 g/L initial glucose, pH 5.5. 650 g/L glucose with 30 g/L yeast extract was fed continuously. Base feed: 6M KOH. 

Conclusions and outlook 

The goal of this study was to establish and increase itaconic production in Y. lipolytica. Through 
metabolic engineering and by optimizing fermentation conditions, we substantially increased 
itaconic acid titres, reaching 130 g/L in fed-batch cultivations.  

The key parameters we identified to enhance itaconic acid production and minimize citric acid 
accumulation include the addition of yeast extract, continuous nutrient feeding, and 
maintaining a pH of 5.5.  

Building on the findings from Chapter 2, we switched the nitrogen source from ammonium 
sulphate to urea. This proved effective in maintaining the desired pH without excessively 
increasing reactor volume, further boosting itaconic acid titres and yields. Additionally, limiting 
base consumptions can reduce chemical expenses, lower waste treatment cost, and facilitate 
downstream processing. 

In Chapter 1 we learnt that disrupting lipid synthesis can induce protein misfolding and stress 
responses, potentially lowering cell robustness and productivity in industrial bioprocesses. It 
will be worth exploring the effect of downregulating DGA1, DGA2, ARE1, and LRO1 to see if 
this increases itaconic acid production.  

Future work will also need focus on (I) scaling up the fed-batch process to confirm that the 
identified parameters can be translated to larger scales, (II) optimizing downstream processing 
to recover itaconic acid from fermentation broths and lower costs, (III) investigating cheaper 
alternatives for yeast extract and other media components. 
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Chapter 4 – Single cell transcriptomics 

Preface 

During the years, my interest in omics analysis evolved, and I sought a collaboration at New 
York University to perform single cell transcriptomics.  

The analysis was performed on Saccharomyces cerevisiae because it is a well-established 
model organism with extensive genomic resources and abundant existing transcriptomic data, 
making data interpretation more straightforward. Additionally, several genetic engineering 
tools are available in S. cerevisiae, facilitating laboratory verification of omics results.  

The analysis performed on S. cerevisiae is a proof-of-concept and explores stochasticity in gene 
expression. The goal of the project, asides from investigating gene stochasticity in S. cerevisiae, 
it to identify key challenges in translating single-cell transcriptomics to Y. lipolytica. 

In the first part I will discuss gene stochasticity, and in the last section I will outline the 
challenges in translating this analysis to Y. lipolytica. 

 

Summary 

Genetically identical populations of cells exhibit phenotypic variation due to stochastic 
(random) gene expression127–130, which enables subpopulations of cells to survive adverse 
conditions such as antibiotic treatment131–134.  

In this study, we find that in actively dividing cells, a simplistic approach to identify genes that 
show the highest variance recovers genes that are differentially regulated through the mitotic 
cell cycle and is therefore uninformative.  

To mitigate this, we computationally assigned the cell cycle phase and a discrete cell cycle time 
to each cell. We then divided cells into three-minute intervals to minimize cell cycle variability.  

This approach allowed us to identify genes that show high variability, revealing an extensive 
landscape of variable gene expression that may underlie bet-hedging strategies used by cells 
to diversify their phenotype and increase their likelihood of surviving harsh conditions. 

 

Introduction 

Genetically identical populations of cells exhibit phenotypic variation due to stochastic 
(random) gene expression127–130. A stochastic gene is a gene whose expression is highly 
variable, leading to fluctuations in the gene expression level even under identical conditions. 
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This stochastic variability in gene expression can enable subpopulations of cells to survive 
adverse conditions such as antibiotic treatment131–134. Previous studies reported that single 
cell stochasticity in S. cerevisiae contribute to adaptation dynamics in response to nutrient 
shift and temperature and osmotic shock135.  

However, most studies could only focus on a handful of putative stochastic genes due to 
technical and technological limitations, as it was only possible to track specific mRNAs using a 
combination of automated microscopy, fluorescent reporter, and in-situ. 

The situation changed in recent years with the development of single cell RNA sequencing, 
which allows to unravel not only the heterogeneity and complexity of RNA transcripts within 
individual cells, but also to follow how RNA transcripts abundances change over time136. 

 

Experimental setup 

In this study we analyzed a published single cell transcriptomic dataset in S. cerevisiae 137 and 
develop a method for computationally identifying stochastic genes. 

The dataset contains the sequencing of 5843 mRNAs for approx. 175000 individual cells before 
and after they were subjected to rapamycin treatment. To minimize the interval between 
individual data points, the culture was continually pumped into excess saturated ammonium 
sulfate and RNAlater to collect and fix cells in separate samples over sequential 10 minute 
intervals. The adopted sampling design captured the transcriptome of individual cells over a 
continuous temporal distribution, unlike a standard discrete time point sampling.  

 

Results and discussion 

Cell cycle genes are a confounding variable 

We investigated if yeast has genes that are stochastically expressed under exponential growth 
conditions in rich media. To do this, we selected the 45000 cells from our dataset which are 
not treated with rapamycin, and computed the coefficient of variation (CV) for every gene in 
the dataset. 

The CV is the ratio between standard deviation and mean, and it measures of variability in 
relation to the mean. The CV can be used to identify highly variable genes across cell 
populations138. 

We fitted a linear model between log10(CV) and log10(mean) and calculated the residual values 
for each gene (Figure 23A). We reason that genes with positive residuals are more variable 
than expected, and are candidates for highly variable, stochastic expression. However, these 
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highly variable genes are enriched for cell cycle-related genes (Figure 23B) when compared to 
an annotated list of cell cycle genes (Spellman et al. dataset139). We found that 51 of the 100 
most variable genes are associated with the cell cycle (Figure 23B). However, cell cycle genes 
are not the target of our analysis, and therefore introduce a confounding factor in our analysis. 

 
Figure 23: (A) Red line represents the linear model between log10(CV) and log10(mean). Dots represent individual 
genes, and the distance between each dot and the linear model is the residual. (B) Gene annotations for the 100 
genes with highest residuals were matched against the Spellman et al. dataset139, revealing that 51 genes are 
associated with the cell cycle.  

Stochastic genes exhibit random fluctuations in expression due to inherent cellular noise, 
resulting in significant variability. In contrast, cell cycle genes have high variability due to 
periodic regulation which is timed and controlled by specific regulatory networks. Here, we 
want to extract the genes with highest residuals to reflect stochastic genes only, not genes 
with periodic regulation. Therefore, the variability of cell cycle introduces a confounding factor 
in our study, and to minimize its impact on our analysis we decided to: 

I) assign cell cycle phase and time in the cell cycle to each cell,  
II) divide cells into short time intervals along the cell cycle, under the assumption that if 

the intervals are short enough, cell cycle genes will not change in expression and will 
have low variability, 

III) extract genes that still show higher than expected variability in each time interval, 
IV) combine information across each time interval to extract the most variable and 

stochastic genes. 

We opted for this approach, instead of removing genes annotated to the cell cycle, since 
certain genes might not have explicit cell cycle annotations but could still be associated and 
correlate with it. 
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Assigning time in the cell cycle to individual cells 

To minimize the effect of the cell cycle as confounding variable, we assigned the cycle phase 
(G1, S, G2, M, M-G1) (Figure 24A) and the corresponding time within the cell cycle (1 to 90 
minutes) to each cell in the dataset (Figure 24B), following an approach previously 
developed137.  

This approach allowed us to computationally synchronize a large population of S. cerevisiae 
cells along the 90 minutes trajectory of the cell cycle (Figure 24B). Assigning a specific time in 
the cell cycle to individual cells will allow us to split cells in short intervals and, assuming the 
interval is short enough, to minimize the variability of cell cycle genes, since their expression 
will not significantly change. 

 
Figure 24: PCA of cells before rapamycin treatment. Cells were assigned (A) a cell cycle phase and (B) a continuous 
time from 1 to 90 minutes based on their gene expression program, according to markers from Spellman et al.139, 
and using an approach previously developed137. 

To divide cells into the smallest time intervals possible along the cell cycle without losing 
statistical power, we calculated the minimum number of cells needed to estimate a model that 
accurately represents the overall population dynamics.  

To do this, we employed a bootstrapping technique, subsampling the dataset with cell 
numbers ranging from 250 to 2000. Each subsample size was iterated 1000 times, and for every 
subsample size iteration we estimated a linear model and calculated the residuals of each 
gene. After calculating the average residual for each combination of sample size and gene we 
computed the Spearman’s coefficient of correlation for each combination of sampling size 
(paper IV, table 1). Our analysis reveals that, in our dataset, 750 to 1000 cells per time window 
yields models that closely align with the population model, with Spearman’s coefficients of 
0.947 and 0.961 respectively.  
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To minimize the variability associated with the cell cycle we then divided cells in three-minutes 
intervals, which is the shortest interval that guarantees at least 750 cells in each time bin 
(Figure 25A).  

For each time bin we computed the CV and mean for each gene across cells belonging to that 
time interval. After fitting a linear model and calculating the residuals for each gene, we ranked 
the genes according to their residuals, i.e. from genes whose variability is higher than expected 
to lower than expected. After repeating this process for each time bin, from 3 to 90 minutes, 
we combined the rank across all the time bins by summing the ranks of each gene across all 
time bins.  

We then checked the 100 highest ranking genes (Figure 25B) and found that 21 genes out of 
100 are associated with the cell cycle in the Spellman et al.139 dataset, a major improvement 
compared to the previous approach, where 51 genes out of 100 were annotated to cell cycle. 
This approach allowed us to extract the genes with highest residuals to reflect stochastic genes 
only, not genes with periodic regulation. 

 
Figure 25: (A) number of cells in each three-minute time bin. (B) gene annotations for the 100 genes with highest 
residuals were matched against the Spellman et al. dataset139.  

Extracting biological information from stochastic genes 

To extract biological information from the list of the putative stochastic genes, we performed 
a gene set analysis (GSA) on genes ranked based on the combined rank and with an average 
gene count across cells below 1 (Figure 26). This threshold was chosen because, in large 
systems, the addition or removal of a single molecule usually has minimal impact on system 
properties. However, in smaller systems, stochastic fluctuations can have more significant 
effects140. Among the enriched gene sets, we found gene sets related to: 

- secondary alcohol metabolism, essential for the detoxification of harmful compounds, 
- oxidoreductase activity, fundamental for cellular respiration and oxidative stress 

management, 
- metal binding and transport, critical for maintaining cellular homeostasis as metals are 

vital cofactors for many enzymes and structural proteins.  
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The enrichment of these gene sets indicates that a significant portion of the genes with high 
variability are involved in biological processes typically activated in response to external 
perturbations, suggesting that these genes play a pivotal role in how cells adapt to changes in 
their environment. Cells exhibiting stochastic expression of genes involved in these gene sets 
might be more resistant to sudden and unexpected perturbation, since the gene(s) to respond 
to those perturbation are already expressed. When subject to an external perturbation, cells 
stochastically expressing genes involved in the response pathways can react immediately, 
while cells that do not express these genes must first activate the specific transcription 
programs. This delay in response might reduce their ability to cope with the perturbation, 
impairing their survival.  

 
Figure 26: GSA using the package clusterProfiler141,142. The analysis focuses on genes ranked based on the 
combined rank and with counts less than 1. The dot colour represents the adjusted p-value (−log10(FDR)) and the 
dot size represents the number of DEGs in each GO term. The X-axis indicates the number of differentially 
expressed genes in each GO term relative to the total number of genes in the cluster. 

Among the enriched gene sets, we investigated the siderophore transport gene set. 
Siderophore transport is defined as “the directed movement of siderophores, low molecular 
weight Fe(III)-chelating substances, into, out of or within a cell, or between cells” by the Yeast 
Genome Database (May 2024)143 . Iron is an essential micronutrient because it participates as 
a redox cofactor in many cellular processes144. Iron-containing compounds need to cross the 
cell wall and the periplasmic space before uptake systems can shuttle the compounds through 
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the plasma membrane145. Among these, FIT1, FIT2, and FIT3 are important for the 
non-reductive iron import machinery144. 

FIT2 and FIT3 rank among the top 10 genes whose residuals are higher than expected across 
all timepoints. This indicates that cells are stochastically expressing different levels of these 
genes. Such variability in gene expression may function as a bet-hedging mechanism, a strategy 
that spreads risk by diversifying phenotypes within isogenic populations146. Some cells 
randomly maintain high expression levels of stochastic genes, which comes at the cost of 
spending energy to synthetize proteins that might not be required under current 
environmental conditions. However, upon a sudden environmental shift, a subpopulation 
synthetizing these proteins can have a selective advantage, since it might be more prepared 
to adapt and respond to the environmental fluctuation. In the case of FIT2 and FIT3 stochastic 
expression ensures that iron uptake can occur efficiently. This allows the population as a whole 
to survive and adapt to sudden changes in iron availability, preserving the gene pool of the 
population.  

 

We then tested for correlated behavior of stochastically expressed genes: we examined 
whether the expression level of any stochastic gene correlates with the expression level of 
other stochastic genes. We found that most genes do not show correlated behaviour and have 
a coefficient of determination below 0.2 (Figure 27A). However, we found that FIT2 and FIT3 
are exceptions. These two genes are stochastically expressed and exhibit unusually high 
correlated expression, with a coefficient of determination of 0.36 (Figure 27B), suggesting 
stochastic activity of a shared regulator.  

This result requires further elucidation of the nature of this regulation. Additional experiments, 
such as in situ hybridization, will be necessary to achieve this. These studies will enable us to 
track the expression patterns of FIT2 and FIT3 under various conditions, providing deeper 
insights into their regulatory dynamics and potential functional interactions. 

 
Figure 27: (A) density plot of the correlation coefficient calculated between gene counts of gene pairs, filtering for 
R-square above 0.01. (B) Marginal plot of FIT2 and FIT3 gene counts. Each dot represents an individual cell (45 000 
cells). The violin plots on the margins illustrate the distribution of gene counts for FIT3 (right) and FIT2 (top). 
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Conclusions and outlook 

In this study, we aimed to identify stochastic gene expression in S. cerevisiae by analyzing the 
transcriptomes of 175,000 individual cells continuously sampled over a one-hour period.  

We found that in actively dividing cells, a simplistic approach to identify genes that show the 
highest variance recovers genes that are differentially regulated through the mitotic cell cycle. 
This approach is therefore uninformative for us.  

To mitigate this, we computationally assigned the cell cycle phase and a discrete cell cycle time 
to each cell in the dataset. This allowed us to computationally synchronize a population of 
actively dividing cells. After grouping cells into three-minute intervals along the cell cycle we 
were able to identify stochastic genes whose expression is highly variable along the cell cycle. 

Through gene set analysis we revealed an enrichment in gene sets related to alcohol 
metabolism, oxidoreductase activity, and metal transport. Their stochastic expression may 
serve as a bet-hedging strategy for population survival, even at the cost of decreased fitness 
for single cells. We also found that the genes FIT2 and FIT3 are stochastically expressed but 
show high correlated expression, suggesting stochastic activity of their regulator.  

Our study establishes a method for studying stochastic gene expression in mitotic cells, 
revealing an extensive landscape of variable gene expression that may underlie bet-hedging 
strategies used by cells to diversify their phenotype and increase their likelihood of survival.  

 

Translating single cell transcriptomics to Y. lipolyƟca 

The second goal of this study was to identify the key challenges in translating single-cell 
transcriptomics to Y. lipolytica.  

The 10x Genomics147 method for single cell transcriptomics was originally developed for 
mammalian cells, but later adjusted by different groups to yeast cells148,149. The first step of 
the protocol consists in digesting the cell wall to obtain a spheroplast. In the group where I 
performed this work, we noticed that digesting the cell wall of different S. cerevisiae strains 
already required substantial changes to the protocol, and that applying the protocol to a 
different yeast species proved challenging on several occasions. Translating the protocol to Y. 
lipolytica will require protocol adjustment and troubleshooting. 

The framework developed here relies on cell cycle markers to identify the cell cycle phase and 
to calculate cell trajectory in the cell cycle. However, the genome of Y. lipolytica is less 
annotated than S. cerevisiae, which could pose challenges during analysis. Additionally, gene 
annotations are very important for inferring gene function, and the lack of extensive genomic 
resources Y. lipolytica can complicate data interpretation. 
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Summary, conclusions and outlook 
In the last chapter, I will outline the main findings of my thesis, summarizing what we learnt 
during this journey. In the second section I will highlight the limitations of this study and how 
they can be addressed. Finally, I will contextualize our study in a broader context and give an 
outlook on what lays ahead. 

 

What did we learn? 

The goal of this thesis was to improve our understanding of the yeast Y. lipolytica to deploy it 
as a microbial cell factory. Through a combination of transcriptomics and fed-batch cultivations 
we identified important factors that need to be considered for future rounds of strain design 
and fermentation improvement. 

In Chapter 1 we studied the effect of disrupting lipid synthesis to build a platform strain with 
high supply of acetyl-CoA. Several molecules that have acetyl-CoA as a building block can 
potentially be produced through this platform strain. We found that disrupting lipid synthesis 
negatively affects proteostasis and leads to an enrichment of protein misfolding and 
degradation. Based on these findings, we concluded that to improve our Y. lipolytica platform 
strain, it would be preferable to downregulate the genes involved in lipid synthesis instead of 
deleting them. This approach would ensure a balanced allocation of cellular resources 
between molecule production and physiological homeostasis. However, gene downregulation 
also presents challenges such as establishing an optimal downregulated expression level, 
achieving efficient and specific downregulation without off-target effects, and ensuring that 
the cells do not activate compensatory mechanisms. Additionally, fine-tuning gene expression 
based on one condition might reduce the strain’s adaptability to changing environments, 
which are for instance encountered during scale-up. 

In Chapter 2 we studied the effect of using urea as a nitrogen source instead of ammonium 
sulphate. Urea can be a cheaper and more sustainable nitrogen source if extracted from waste. 
In our study we found no significant coherent changes in growth and lipid production. We 
found no significant coherent changes neither in the transcriptome, nor in the genes involved 
in urea uptake and degradation. A previous study123 observed changes in the fatty acid profile 
of OKYL029 when cultivated with urea under nitrogen limitation. This is likely due to pH 
changes since ammonium consumption acidifies the media. Our chemostat cultures were 
pH-controlled, preventing any changes in pH. Our findings support urea usage, indicating that 
previous metabolic engineering efforts are likely translatable to urea, as we showed in Chapter 
3. Additionally, first experiments using synthetic and real human urine as nitrogen sources for 
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cultivating Y. lipolytica showed promising results, with growth and biomass formations similar 
to ammonium sulfate150. 

In Chapter 3 we improved a fed-batch cultivation of Y. lipolytica to enhance itaconic acid 
production. Itaconic acid ranks among the top 12 building block chemicals and has several 
applications in food, textile, and pharmaceutical industries. The key parameters we identified 
to improve our fermentation outcomes include addition of yeast extract, continuous nutrient 
feeding, and a pH of 5.5. Guided by the findings from Chapter 2, using urea as nitrogen source 
proved effective in maintaining the desired pH without excessively increasing reactor volume, 
further boosting itaconic acid titres and yields. This study represents a significant leap forward 
in establishing Y. lipolytica for the industrial production of itaconic acid. Additionally, due to 
the bow-tie structure of metabolism, a strain with high acetyl-CoA supply can be adapted to 
produce other organic acids thought pathways with similar enzyme regulation as itaconic acid. 
After appropriate genetic modifications, these fermentation conditions could offer a good 
foundation for optimising the production of other organic acids. 

In Chapter 4 we applied innovative single-cell transcriptomics to S. cerevisiae for studying 
stochastic gene expression. Until recently, most studies could only focus on the single-cell 
expression of a handful of genes due to technical and technological limitations. However, in 
recent years the development of single-cell transcriptomics allowed us to unravel the 
heterogeneity and complexity of RNA transcripts within individual cells. After finding that cell 
cycle genes are a confounding variable in identifying genes with stochastic regulation, we 
developed a framework to study stochastic gene expression in mitotic cells, and revealed an 
extensive landscape of variable gene expression in yeast that may underlie bet-hedging 
strategies. There are currently no reported applications of single-cell transcriptomics in yeasts 
other than S. cerevisiae151. However, developing this framework helped us identify the key 
challenges in translating single-cell transcriptomics to the non-model yeast Y. lipolytica.  

 

What can we improve? 

Let’s see which limitations are present in this thesis, and where there is room for improvement. 

 

Most of the work in this thesis focuses on transcriptomics, both bulk and single-cell. The 
central dogma of biology states that genes are transcribed into mRNA, which is then translated 
into proteins. These proteins perform different tasks within the cell31. Transcriptomics 
measures the quantity of mRNAs and infers that an increase in transcript quantity corresponds 
to an increase in protein quantity and catalytical activity.  
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However, this is a simplification. Multiple studies have shown that the correlation between 
transcriptome and proteome is insufficient in yeast152–154. For example, Lahtvee et al.154 
quantified absolute abundances of mRNAs and proteins under ten environmental conditions 
and demonstrated low correlation between mRNA and protein abundances in S. cerevisiae. 
Interestingly, the mRNA-protein correlation was higher for differentially expressed proteins. 
These discrepancies between mRNA and protein abundances can be attributed to various 
factors. For instance, due to different 3’ or 5’ untranslated regions, not all mRNAs are 
translated at the same rate or have the same stability155,156. Additionally, once translated, 
proteins can undergo post-translational modifications, such as phosphorylation, acylation, or 
ubiquitylation, which can affect their activity and stability157.  

By measuring mRNA abundance, we only capture the early steps in a long chain of regulatory 
events. Nevertheless, RNA sequencing has become an affordable tool to investigate the 
transcriptional changes of a cell, providing cost-effective insights into cell regulation. When 
necessary, transcriptomics can be integrated with other omics such as proteomics and 
metabolomics to increase the level of details to which a process is studied. Although 
multi-omics are more expensive, technological advances will likely reduce the cost in the 
upcoming years.  

 

Another limitation that we should be aware of for Y. lipolytica and other non-conventional 
organisms, is the limited gene annotation available. 

Strategies based on sequence homology, such as BLAST, have been extensively used over the 
years to infer protein function annotations158. These techniques rely on the assumption that, 
if proteins share similar sequence, they will likely have the same function. However, it was 
shown that proteins with sequence identity between 20-35% fall in the twilight zone, where 
remote homologs can be confused with random sequences159. Below 20% identity, in the 
midnight zone, homologous relationships cannot be determined with simple pairwise 
alignments. As sequence identity decreases, the accuracy of predictions made with 
sequence-homology drops rapidly when sequence identity decreases160.  

To solve this, several machine learning strategies were developed161. These strategies, instead 
of relying on sequence homology, aim to understand how protein structure and function are 
encoded in protein sequences. However, since specific proteins have been characterized more 
extensively, these models can be biased, and getting good predictions for less characterized 
proteins can still prove challenging.  

As a result of these limitations, a large portion of genes remains un-annotated. Out of the 7894 
entries for the Y. lipolytica W29 proteome (UP000182444) on UniProt, 3865 lack annotated 
functions.  
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Additionally, homology-based strategies can only annotate genes that are conserved across 
species. Since these conserved genes are not the only genes responsible for the unique 
phenotype traits of non-conventional yeasts, we are failing to observe genes that are 
differentially expressed and contributing to interesting phenotypes due to lack of annotations. 
For example, in Chapter 1 we saw that out of the total 953 differentially expressed genes, only 
390 had a function annotated on UniProt. 

The future is however promising: thanks to new technological developments and the 
involvement of many companies like DeepMind with AlphaFold, new tools that yield better 
protein structures and gene annotations are being developed. These advances will significantly 
improve gene annotations in the upcoming years, reducing the gap between conventional and 
non-conventional yeasts. 

 

Gene set analysis, a valuable method for interpreting transcriptomics data, faces similar 
limitations to gene annotations. The gene sets used for gene set analysis are grouped based 
on prior biological knowledge. As a consequnce, some un-annotated genes are not associated 
with any gene set. Additionally, certain pathways and biological processes are more studied 
and annotated than others, introducing a bias in the analysis. These over-represented 
pathways are more likely to be found as enriched.  

Furthermore, only few GO terms are manually annotated, while approx. 98% are 
computationally inferred162. This is done mostly through sequence similarity, structural 
similarity, or phylogenetic closeness: this leads to the same limitations we encountered in gene 
annotation. 

Despite these challenges, there are many ongoing efforts in gene annotations and pathway 
curation. New algorithms are constantly under development, and the reliability and 
applicability of gene set analysis will increase in the near future. 

 

In this thesis, we aimed to understand specific biological responses to gene deletions and 
environmental conditions. To do this, we analysed the transcriptome and built models that 
simplify the reality to be able to interpret our results. However, the conditions we tested are 
limited, making it hard to predict outcomes of different conditions. For instance, in Chapter 1 
we studied the effect of two C/N ratios in chemostat: it is still hard to predict which changes 
might occur in the transcriptome over the course of a batch fermentation, when the C/N 
changes as the carbon and nitrogen are consumed, without further experiments. We 
observed, modelled, and drew conclusions based on the tested conditions and the 
assumptions and constraints we applied. Different assumptions and constraints might have led 
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to different cellular behaviours, yet the most significant changes might remain consistent. 
Under different conditions cell behaviour might not be the same, but the most significant 
changes could be consistent. Only time and additional studies will tell which part of our results 
are specific to our experimental design, and which ones are a part of a general behaviour. 

 

Why is this relevant? 

Climate change is one of the biggest challenges that we need to solve. We will need to find 
sustainable ways to produce goods and foods and transition from an economy based on fossil 
fuels towards a circular economy. 

Of the many innovations that emerged throughout the years, microbial cell factories are a 
promising one. Microbial cell factories can produce goods and foods from renewable and 
sustainable sources, effectively enabling a green transition by reducing our dependence on 
finite resources and minimizing environmental impact. 

An increasing number of novel organisms are continuously discovered, expanding our Swiss 
Army Knife of microbial cell factories. Each newly characterised organism has unique metabolic 
features, enhancing the diversity of applications of microbial production. Additionally, thanks 
to the recent development in genetic engineering and systems biology, it is also becoming 
faster and cheaper to characterize, engineer, and fine-tune these novel organisms. 

The combination of novel organisms with peculiar characteristics and novel techniques will 
allow us to develop several organisms that are suitable for specific challenges, instead of 
relying on a few well-established organisms that might be suboptimal for a specific bioprocess. 
This tailored approach will ensure that the most appropriate organism is used for each 
application, enhancing productivity and both environmental and economical sustainability. 

This will result in an increasing number of applications of non-conventional organisms, such as 
Yarrowia lipolytica. Yarrowia lipolytica exemplifies how a non-conventional organism, with the 
peculiar characteristics of secreting lipases and accumulating lipids, can gain the attention of 
the biotech community. This organism is now extensively studied, applied across a wide variety 
of applications, and leveraged by many start-ups.  

The insights gained from studying Y. lipolytica can be translated to other non-conventional and 
oleaginous yeasts. The methodologies, frameworks, and findings can guide the engineering of 
novel yeasts with similar traits to Y. lipolytica. The knowledge generated expands the available 
toolkit for the sustainable production of goods and foods, providing valuable strategies to 
characterize and optimize diverse yeast species. 
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