
��
��
��
��
��
�

�
�
��
�
�
���
�
�
�
�
�

��
��
��
��
��
�

�
�
��
�
�
���

�
��
������

�
�
�
�

�
��
��
�
��
��
�

���
��
��
��
�

��
��
��

�
��
��
��
�
�
�
�

�
��
��
�
�
�
�

�
�
�
�
���
�

�
��
��
�
�
�
��
��
�

���
���

�
��
��
�
����

�

��
��
��
��
��
�

����
����

��

��������

�
��
�����

��
�

��������

�
�
�
�
�
�

�����

��
��
��

�
�
��
�
�
���
�
�
�
�
�

�
��
��
�
�
�
����

�

�
�
�
�
�
�

�
�
��
�
�
���
�
�
�
�
�

��������

�
��
��
�
��
��
�

�
��
��
�
�
�
��
��
�

��
��
��

�
��
��
�
�
�
����

�

�
����������

�
��
�

�������������

�������������

�
�
�
�
�
�

�������������

�
�
��
�
�
����

�
�
�
�

�
��
������

�
�
�
�

�
��
������

�
�
�
�

�����������

�
�
�
��
�
�
�
�
�
��
�

�
�
�
��
�
�
�
��
�

���
����

���
���

�
�
��
�
�
���
�
�
�
�
�

��������

�
�
��
�
�
���

��
��
��
��
��
��
�

�
��
��
�
�
�
�

���

�������������

�
��
��
��
��
��

����������

���
��

�
��
��
�
�
�
����

�

�
��
��
�
��
��
�

��
��
��
��
��
��
�

��
�

����������
�

�
�
��
�
�
���

��
��
��
��
��
�

�
��
��
�
����

�

�������������

�
��
��
�
����

�

�
��
��
��
�
�
�
�

�
��
��
�
�
�
����

�

��
��
��
��

�����������

������
�����

��

���
����

����

������

�
��
��
�
�
�
����

�

��������

�����

�
��
��
��
��
��

����
����

��

�
�
��
�
�
���
�
�
�
�
�

�
�
��
�
�
���
�
�
�
�
�

��������

���
����

���
�

��
��
���
��
��
��

���

�
��
��
�
��
��
�

�
��
��
�
����

�

������
�����

�
��
��
��
��
��

�
�
��
���
�

�
��
��
�

��������

��������
���������

�
��
��
��
�
�
�
�

�
��
��
�
����

�

�
��
��
�
�
�
����

�

�����������

��
��
��
��
��
��
�

�
��
��
�
�
�
����

�

�
����������

�
�
��
���
�
�
�
�
�
�

��
��
��
��
��
�

�
�
��
���
�
�
�
�
�
�

���
����

����

�
��
��
��
�
�
�
�

��
��
��
��
��
���

�
��
��
��
�
�
�
�

��
��
��
��
��
��
�

�
��
��
�

��������

����������

��
��
��
��
��
�

�
��
��
��
�
�
�
�

�
�
��
���
�

�������
����

����������

�
�
��
�
�
���

�
��
��
�

�
��
��
�

�
��
��
�
�
�
����

�

��������

���

��
��
��
��
��
�

��
��
��
��
��

�
��
�

�
��
��
�
�
�
����

�

��������

�
�
��
���
�
�
�
�
�
�

�
��
�

�����

�
��
��
�
��
��
�

�
���

�
��
��
�
�
�
�

��������

��
��
��
��
��
��
�

�
�
��
�
�
����

�
�
�
�

��
��
�

��
��
��
��
��
��
�

��������

�
��
�����

������

���

���
���

���
��

�
��
��
�
�
�
��
��
�

�
��
��
�
��
��
�

��
��
��
��
��
��
�

�
��
��
�
�
�
��
��
�

��
��
��

���

��������

���

�
��
��
�
����

�

��
��
�
��
��

��������

�
�
�
��
�
�
�
�
�
��
�

���
���

��

��������

�����������

�
�
�
�
�
�

�
�
�
��
�
�
�
�
��
�
�

�
��
��
�

���

�����

���

��
�

��
��
�
��
��

���

�
��
��
�
��
��
�

��
��
�
�
�
�

�����

�
��
��
�
�
�
����

�

�
�
��
�
�
���

��
��
��
��
���

���
���

���
����

���
���

���
��

���

�
��
��
�
�
�
��
��
�

��
�

���
���

����
�

�
��
��
��
��
��

�����

�
�
��
�
�
���

�
��
��
�
��
��
�

���
��

��������

�������������

�
��
��
�
�
�
����

�

���
���
��

�
��
��
�

�
��
��
�
����

�

�
��
��
�
����

�

���

����
����

��

�
�
�
��
�
�
�
�
���

�

����������

From Trees to Graphs: Advancing
Regression Analysis through Model-
Centric AI, Data-Centric AI, and
Active Learning

PETER SAMOAA

Department of Computer Science and Engineering
Division of Data Science and AI
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2024

Thesis for the degree of Doctor of Philosophy

From Trees to Graphs: Advancing Regression
Analysis through Model-Centric AI, Data-Centric

AI, and Active Learning

Peter Samoaa

Department of Computer Science and Engineering
Division of Data Science and AI

CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2024

From Trees to Graphs: Advancing Regression Analysis through Model-Centric AI,
Data-Centric AI, and Active Learning
Peter Samoaa
ISBN 978-91-8103-101-0

© Peter Samoaa, 2024.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 5559
ISSN 0346-718X

Department of Computer Science and Engineering
Chalmers University of Technology
SE–412 96 Göteborg, Sweden
Telephone + 46 (0) 31 – 772 1000

Typeset by the author using LATEX.

Printed by Chalmers Reproservice
Göteborg, Sweden 2024

To my parents, sisters, and brother, I am your permanent ambassador to the
future and your hope that you will never be disappointed.

I want to dedicate this to my countries, England and Italy, where I always feel at
home. These countries gave me the right to live. I will always be grateful for that.

I also want to thank the British Royal Family Institute, which supported me for
15 years through my school studies.

I would dedicate this to the memory of our gracious queen, Her Majesty Queen
Elizabeth II. There can simply be no finer example of dignified public duty and
unstinting service. We all owe our sincere gratitude for her continued devotion, living
every day by the pledge she made on her 21st birthday. Her dedication to our country
has been incomparable, and, as such, she leaves an enduring legacy.

Special appreciation goes to my early line manager, Ivica Crnkovic, for the
kindness, inspiration, unlimited support, and for being like a father. I will always
remember you.

Abstract
Context: Trees and graphs are fundamental data structures that are extensively
utilized for modelling relationships and facilitating efficient data organization and
retrieval. In research, these structures underpin a wide variety of algorithms and
theories, especially in fields like Artificial Intelligence (AI), where they are crucial
for understanding and optimizing learning processes. In real-world applications,
trees and graphs have profound impacts. For instance, trees are at the heart of
decision-making processes, from simple decision trees in machine learning to complex
game trees in AI strategies for games like chess. Graphs, on the other hand, are vital
in networking, whether in social networks, neural networks, or logistical networks,
helping to map and optimize connections and flows. The versatility of these structures
in modelling complex systems makes them indispensable in both theoretical research
and practical applications, impacting industries from technology to transportation
and beyond. This dual significance not only underscores the theoretical importance
of our study but also enhances its applicability in solving real-world problems.

Problem: The main issue is that regression for trees and graphs is still not well
explored in the literature. Many real-world problems for trees and graphs involve
regressions, like predicting drug efficacy for molecular drugs or evolutionary outcomes
for evolutionary biology trees.

Goal: In this thesis, we aim to enhance the regression analysis by proposing and
utilising AI models on trees and graphs.

Solution Approaches: To that aim, we analysed the behaviour of different
Tree-Based Neural Networks (TBNNs). Thus, Graph Neural Networks (GNNs),
Tree-Convolutional Neural Networks (TreeCNN), path-based attention models, and
transformer-based models are used. Then, we enhanced the behaviour of the
transformer-based model by proposing our dual transformer based on cross at-
tention as a model-centric AI approach to have a better representation. Then, we
enhanced the regression analysis by focusing on data instead of the model. Thus,
data-centric AI is used to augment the tree by adding more edges to represent more
information. In this way, the augmented tree is converted into graphs, and then the
same GNN models used in the previous analytical framework have better regression
prediction by having a richer representation. Then, through data-centric AI, we
improve the data by acquiring better labelling through interactive learning. Thus,
we defined a unified active learning framework for labelling graphs for regression
tasks. Through this framework, we select informative, representative, and diverse
batches of samples for labelling.

Results: The results show that the effective TBNN models for classification tasks
fail to generalise for regression tasks. Thus, our proposed model outperforms all other
TBNN models as well as GNN models through different settings and experiments.

v

Moreover, The same GNN models used in the tree setting achieve higher Pearson
correlation scores when we augment the tree and convert it into a graph, which shows
that adding more information improves the prediction. Our results also show that
the active learning framework can provide efficient query strategies for labelling the
regression value on the entire graph level.

Keywords: Graph Neural Networks (GNNs), Active Learning, Tree-Based Neural
Networks (TBNNs), Tree-Convolutional Neural Networks (TreeCNN), Transformers,
Model-Centric AI, Data-Centric AI, Neural Tangent Kernel (NTK)

vi

Acknowledgments

First and foremost, I extend my deepest gratitude to my supervisors, Morteza Haghir
Chehreghani and Philipp Leitner. Morteza, words cannot fully capture the profound
impact you have had on my journey. Without your unwavering guidance and support,
I would not be where I am today. You have been more than a supervisor; you have
been a true mentor, a leader, and a friend. Your relentless drive to push me to my
fullest potential has elevated my standards and reshaped my approach to research
and life. I am deeply grateful for your time, attention, and genuine care. Your belief
in me charged me every day with hope and passion, and every piece of advice you
offered has been a cornerstone not only in the completion of this PhD but in the
broader journey of my life. Your brilliance as a supervisor is beyond words, but it is
your mentorship, support, and invaluable insights that have profoundly shaped the
research presented in this thesis. I will forever cherish the wisdom you have imparted
and the inspiration you have provided.

Philipp, thank you for your invaluable support as my line manager and for your
guidance as a supervisor, especially during the initial stages of my PhD. Your admin-
istrative assistance and scholarly input were crucial in setting a strong foundation
for my research journey.

I also extend my sincere thanks to my examiner, Prof. Miroslaw Staron, for the
constructive feedback that helped refine my work. I am grateful to Prof. Giovanna
Guerrini for accepting the invitation to lead the discussion on my research and to all
the committee members for their willingness to be part of my PhD defence. A special
thank you to Ashkan Panahi for being on the committee and for all the friendly
chats that provided much-needed encouragement.

I am deeply appreciative of the supportive and inspiring environment fostered by
the Data Science and AI division. A heartfelt thank you to my office mates, Firooz,
Mehrdad, Milad, and my friend Arman, for creating a friendly and vibrant working
atmosphere that made every day enjoyable.

To my soul friend, Walaa, I thank you from the bottom of my heart for your
endless support, care, and unwavering presence, regardless of the circumstances.

Khalid & Jounama, Mazen & Reem, Rudi & Berwin, thank you for welcoming
me with open arms from the very first day of my arrival in Sweden. You made me
feel at home, providing me with a loving family away from home.

My acknowledgement and gratitude also go to my bro, Benjamin Johnson, for all
the funny and crazy special moments we shared in life and at the gym.

My dear friend Adham Tala, thank you for being a true brother and for all the
love and support you showed me during my time in Sweden.

vii

My friend of the beautiful days, Murad Ahmad, thank you for always being by
my side.

A special thanks to the closest friend to my heart and the best scriptwriter ever,
Bouthina Awad, for being a constant and steadfast part of my life.

I am grateful for the collaboration with Antonio Longa, Linus Aronsson, and
Firas Bayram, and I look forward to continuing our work together in the future.

To Linda Erlinhov, thank you for all your help and support during my stay in
Lindholmen.

Everything began in Italy at the University of Genoa, and I am deeply grateful
to the incredibly supportive people there, including Prof. Barbara Catania, Prof.
Alessandro Veirri, Prof. Giovanna Guerrini, and Prof. Giorgio Delzanno. Your
guidance and encouragement were instrumental in setting the foundation for my
academic journey.

This work received financial support from the Swedish Research Council VR
under grant number 2018-04127 (Developer-Targeted Performance Engineering for
Immersed Release and Software Engineering).

Peter Samoaa
Göteborg, September 2024

viii

List of Publications

This thesis is based on the following appended papers:

Paper 1. Peter Samoaa, Firas Bayram, Pasquale Salza, and Philipp Leitner. A
systematic mapping study of source code representation for deep learning in
software engineering. IET Software Journal, 2022, 351-385.

Paper 2. Peter Samoaa, Mehrdad Farahani, Antonio Longa, Philipp Leitner,
Morteza Haghir Chehreghani. Analyzing the Behaviour of Tree-Based Neural
Networks in Regression Tasks. IEEE Transactions on Neural Networks and
Learning Systems - 2024.

Paper 3. Peter Samoaa, Antonio Longa, Mazen Mohamad, Morteza Haghir
Chehreghani, and Philipp Leitner. TEP-GNN: Accurate Execution Time
Prediction of Functional Tests using Graph Neural Networks. PROFES’22, the
International Conference on Product-Focused Software Process Improvement
(November 2022).

Paper 4. Peter Samoaa, Linus Aronsson, Antonio Longa, Philipp Leitner, Morteza
Haghir Chehreghani. A Unified Active Learning Framework for Annotating
Graph Data For Regression Task. Journal of Engineering Applications of
Artificial Intelligence - 2024.

Paper 5. Peter Samoaa, Linus Aronsson, Philipp Leitner, Morteza Haghir Chehreghani.
Batch Mode Deep Active Learning for Regression on Graph Data. International
Conference on Big Data (BigData) - 2023.

The following publications were published during my PhD studies or are currently in
submission/under revision. However, they are not appended to this thesis due to
their contents overlapping those of appended publications or their content being not
related to the thesis.:

Peter Samoaa, Marcus Vukojevic, Morteza Haghir Chehreghani, Antonio Longa.
Broadening the Scope of Graph Regression: Introducing A Novel Dataset with
Multiple Representation Settings. Submitted to LOG 2024: Learning on Graphs
Conference.

ix

Peter Samoaa Linus Aronsson, Morteza Haghir Chehreghani. Optimizing Meta
Graph Learning for Regression with Active Learning Strategies. Submitted to
International Conference on Big Data (BigData) - 2024

Peter Samoaa and Philipp Leitner. An Exploratory Study of the Impact of Parame-
terization on JMH Measurement Results in Open-Source Projects. Proceedings
of the ACM/SPEC International Conference on Performance Engineering
ICPE’21 (April 2021), 213–224.

Peter Samoaa and Barbara Catania. A Pipeline for Measuring Brand Loyalty
Through Social Media Mining SOFSEM 2021: Theory and Practice of Computer
Science. (January 2022).

x

Research Contribution

I (Peter Samoaa) was the main driver and contributor of the all papers. A summary
of the contributions is presented in Table 1.

Role Paper I Paper II Paper III Paper IV Paper V
Conceptualization X X X X X
Data curation X X X X
Problem Formulation X X X X X
Investigation X X X X X
Methodology X X X X X
Implementation NA X P X X
Validation X X X X X
Visualization X X X P X
Writing - original draft X X X X X

Table 1: The Individual Contributions of this thesis’ author to the appended
papers (Allen et al. 2019).

Note: "P" in the table denotes Partial/shared contribution.

xi

List of Acronyms

AI – Artificial Intelligence
GNN – Graph Neural Networks
TBNN – Tree Based Neural Networks
TreeCNN – Tree Based Convolutional Networks
NTK – Neural Network Kernel
NN – Neural Network
GP – Gaussian Process
GPR – Gaussian Process Regressor

xiii

Contents

Abstract v

Acknowledgments vii

List of Publications ix

Research Contribution xi

List of Acronyms xiii

I Introductory chapters 1

1 Introduction 3

2 Background 9
2.1 Graphs and Trees . 9
2.2 Model-Centric AI . 9
2.3 Data-Centric AI . 10
2.4 Graph Neural Networks (GNNs) . 12
2.5 Active Learning . 13

3 General Overview of The Papers 17
3.1 Exploration of Tree and Graph Representation 17

3.1.1 Analyzing Trees and Graphs as Intermediate Representations . 18
3.1.2 Exploring the Integration of Multiple Representations 21

3.2 Tree Regression Analysis and Model-Centric AI for Trees 21
3.2.1 Behaviour of TBNN models in Regression Context 22
3.2.2 Model-Centric AI for Trees . 23
3.2.3 Error and Correlation Analysis for TBNN models on Regression 24

3.3 Data-Centric AI for Graphs . 24
3.3.1 From Tree to Graph over Data-Centric AI 25
3.3.2 Validating the Data-Centric AI Approach 26

3.4 Active Learning for Graphs . 27
3.4.1 Informativeness and Representativeness 28
3.4.2 Diversity . 29

xv

CONTENTS CONTENTS

3.5 Contributions . 30
3.6 Limitations and Challenges . 31

4 Concluding Remarks and Future Works 33
4.1 Conclusion . 33
4.2 Future Work . 33

II Appended papers 43
Paper 1: A systematic mapping study of source code representation for

deep learning in software engineering 45
Paper 2: Analysing the Behaviour of Tree-Based Neural Networks in

Regression Tasks . 83
Paper 3: Tep-gnn: Accurate execution time prediction of functional tests

using graph neural networks . 101
Paper 4: A Unified Active Learning Framework for Annotating Graph Data

For Regression Task . 119
Paper 5: Batch Mode Deep Active Learning for Regression on Graph Data 159

xvi

Part I

Introductory chapters

Chapter 1

Introduction

Graphs and trees are fundamental data structures that play a critical role in vari-
ous applications within artificial intelligence (AI). These structures enable efficient
organization, modelling, and retrieval of complex data, forming the backbone of
numerous algorithms and theoretical frameworks essential for advancing AI. Trees
are pivotal in decision-making processes, including applications such as biological
taxonomies (Cramer et al. 2020; Adams and Collyer 2019), genealogical trees (Suissa
et al. 2023; He et al. 2021), genetic information (Whitehouse et al. 2024) and game
trees used in AI strategies for games like chess and Go (Sironi 2019; Thangaramya
et al. 2024). Conversely, graphs are indispensable in a multitude of networking
contexts, encompassing social networks (Min et al. 2021; Jain et al. 2023), molecular
structures in drug discovery (Ye et al. 2022; Bongini et al. 2021), and road networks
for optimizing transportation logistics (Åkerblom et al. 2023; Ren et al. 2019).

However, regression analysis is still poorly explored for tree and graph data
structures. Thus, we will enhance the regression analysis for trees and graphs i) from
the model perspective by improving the capability of the model in predicting scalar
values with a low margin of error ii) and from data perspectives by improving the
quality of data representation as well as gaining more labelled data.

Through that aim, we first explore tree regression models by building an analytical
framework for regression analysis using the existing tree-based models in the litera-
ture. These models are graph-based (Talak et al. 2021), convolutional-based (Roy
et al. 2020), path-based attention (Peng et al. 2021) and sequential-based tree trans-
formers (Sun et al. 2020). However, all these models are used for classification but
not for regression. When we put these models in the context of regression, they tend
to have poor efficiency despite their remarkable performance in the classification
tasks. This indicates the models’ weakness in exploring an unlimited number of
prediction options, as in predicting scalar values of regression. To handle this gap,
we follow the model-centric AI (Hamid 2022) by enhancing the behaviour of the tree
transformer model by adding more components that manipulate the extra context
of information alongside cross-attention (H. Lin et al. 2022), which leads to a way
better efficiency and make our model performs remarkably better than all other
models.

Enhancing data quality can improve regression analysis for trees, either by

3

4

improving the representation to have a richer representation that can help the model
to detect more patterns from the data, and that can be done by following data-centric
AI (P. Samoaa 2023) or by enhancing the quality of the labels through the usage of
active learning (Settles 2009).

Throughout data-centric AI, we move from trees to graphs to enhance the
regression analysis by augmenting the tree with more edges that describe more
information. By augmenting the tree, the tree is then converted into a graph, which
is a richer representation. The augmentation strategy can be different according to
the domain and case study. Thus, we augment the tree for a specific case study
in the thesis. The GNN models are then applied to the resulting graphs for a
better regression prediction. We observe a remarkable improvement in the behaviour
of GNN models in the augmented trees compared to the original trees before the
augmentation.

Conversely, the data-hungry problem, characterized by insufficiency and low-
quality data, poses obstacles for deep learning models (Bi et al. 2023). Thus, based
on the generated graphs from the augmented trees, we aim to address the quality
issue of the data, which is the lack of labelled data. For data-hungry models like
GNNs, the more labelled data we have, the more the model can detect and learn
from these patterns, ultimately enhancing the regression analysis. For that aim,
we tackle the active learning problem for graphs (Hu et al. 2020). Active learning
is an online learning process (Cacciarelli et al. 2024) that aims to define the most
informative samples for labelling iteratively (Hsu and H.-T. Lin 2015). Thus, instead
of asking the oracle to label all graphs, we can select only the most informative
graphs for labelling where the used models are uncertain about the informative graph
samples. To the best of our knowledge, active learning for graphs and regression
is still not well explored in the literature since most of the attention goes toward
the investigation of active learning for classification (Caramalau et al. 2021; Miller
et al. 2022; Q. Wang et al. 2021). In active learning, informativeness is measured
by the uncertainty quantification of the models. In classification, measuring the
uncertainty is straightforward through the softmax layer of the model. However, such
methods are not directly applicable when it comes to regression. A straightforward
uncertainty quantification mechanism is absent in regression settings that yield scalar
outputs. This gap is bridged by using Gaussian Process (GP), a Bayesian technique
that computes uncertainties via kernel methods. Another issue with active learning
for graphs is that the investment for active learning at the entire graph level is not
explored in the literature. In many domain cases, the label is mapped to the entire
graph instead of nodes or edges. Thus, several approaches have been proposed to
address active learning for graphs on node-level tasks (Cai et al. 2017; Y. Wu et al.
2020) but not for the entire graph level. To handle all the previous issues, we design
a unified active learning framework for graph-level learning on regression tasks. The
following three criteria are generally considered for selecting batches (D. Wu 2019):

• Informativeness: The selection method should select samples where the model
is mostly uncertain about the label.

• Diversity: The selection methods must ensure that the samples in the batch

Chapter 1. Introduction 5

must be diverse and different from each other.

• Representative: The training set selection should be concentrated on the region
where the pool data distribution has high density.

The Matern kernel of the GP and Neural Tangent Kernel (NTK) with neural
networks are used as base kernels for that aim, in addition to utilising supervised
and unsupervised learning for the entire graph level. Our framework is task-agnostic,
allowing for applying any regression method and active learning query strategy
available in the literature. The obtained results are promising, meaning that our
framework can be adapted to any graph domain, not only for our case study.

Through this thesis and to have more informative results, we decided to invest
in predicting the scalar value of the execution time of the source code as a case
study. The main reason for investing in this case study is that the source code can
be represented as both tree and graphs simultaneously, meaning we have multiple
intermediate representations for the same data sample. Moreover, real-life source
code files are widely available on GitHub without any restrictions or constraints on
access.

In this thesis and through the included papers, we are trying to address the
following research questions:

RQ1 What is the information that trees and graphs as intermediate representations
convey?

For this question, we will systematically investigate the tree and graph repre-
sentation for the used case study. In addition to the semantic meaning of the
structure of each representation for the models in addition to the information
that trees and graphs convey for the case study.

RQ2 Is it feasible to combine more than one representation?

In this question, and through the systematic and mapping study, we inves-
tigate the methods, approaches, and consequences of using trees and graphs
simultaneously for different learning tasks and the impact of that usage.

RQ3 What is the behaviour of TBNN models in regression context?

For this question, we focus more on the tree representation and the behaviour
of the different deep-learning architectures used for tree classification. We inves-
tigate the literature, select the most successful TBNN models for classification,
use them for regression, and detect their efficiency in that context. We build a
framework that analyzes the behaviour of TBNN models for regression.

RQ4 How to improve the behaviour of TBNN models for regression?

In this research question and based on the results of the behaviour of the TBNN
in RQ3, we will try to improve the behaviour of one of the TBNN models to
have better behaviour for regression prediction. To address this question, we

6

will rely on model-centric AI to improve the model architecture and learning
and utilise extra information that supports the learning process for the model
on the tree. On that basis, we extend the analytical framework for TBNN by
adding our model.

RQ5 What is the impact of error analysis and other metrics?

In this question, and through the framework built in RQ3, RQ4, we will use
different error metrics and also Pearson correlation to compare the TBNN
models from the perspective of different error and correlation score metrics
since every metric can deliver different semantic to analyze the behaviour of
the TBNN models.

RQ6 How to enhance the regression analysis from a data perspective rather than the
model?

In this research question, we wanted to enhance the regression analysis using
data-centric AI by enhancing the tree representation to have more information.
Thus, we combine the tree and graph representation to have one representation
of learning that holds the information conveyed by trees and graphs. The way
to do that is by keeping the tree presentation and augmenting it by adding
the graph edges that describe different semantics. The augmented tree is then
converted into a graph accordingly as a result of the augmentation.

RQ7 How well can a hybrid representation approach that combines tree and graph-
based approaches perform for regression?

For this question, we will validate the graph generated as a result of the RQ6
by investigating different architectures of GNN that learn basically based on the
edge types as initial information for learning. Then, we compare the behaviour
of the GNN for the augmented tree by data-centric AI with their behaviour for
the tree in RQ3.

RQ8 What is the impact of batch mode active learning for graph level learning?

In this research question, we will try to enhance the quality of our graph data
generated in RQ6 by acquiring labels to extend our datasets. In this question,
we try to acquire labels for the most informative and representative samples
using active learning query strategies.

RQ9 What is the impact of using neural network and corresponding kernels of the
quality of active learning for regression tasks?

This question enhances the approach used to address the question RQ8 by
selecting the batch of samples based not only on the informativeness and repre-
sentativeness used in RQ8 but also the diversity. Thus, we will try to address
the impact of incorporating the neural network and the corresponding kernels
with query strategies to select the batch of samples based on representativeness,
informativeness, and diversity.

Chapter 1. Introduction 7

RQ10 How robust is the active learning framework when the graphs are expanded
and updated?

The graphs generated in RQ7 are extended by adding more nodes and edges
that express extra information related to our case study. Thus, through this
question, we would check whether the unified framework we had provided for
active learning for graphs on regression task cases is robust when the graphs
are updated and expanded.

Chapter 2

Background

2.1 Graphs and Trees
A graph is a mathematical structure used to model relational data across various
domains such as social networks (Lachi et al. 2023; Nguyen et al. 2022), biological
networks (Huber et al. 2007), interaction networks (Longa, Cencetti, Lehmann, et al.
2024; Arregui-García et al. 2024; Longa, Cencetti, Lepri, et al. 2022), and mobility
networks (Mauro et al. 2022; Cardia et al. 2022). It is represented as a pair (V, E)
where V is the set of vertices or nodes and E is the set of edges between the nodes,
E ⊆ {(u, v) | u, v ∈ V }. The graph can be undirected if it lacks self-loops and has a
symmetric adjacency matrix, or directed otherwise. A path P = {v1, . . . , vk} is an
ordered sequence of connected nodes, with its length being the number of nodes it
contains, and the shortest path between two nodes is the path with the minimal
length connecting them. The node neighborhood of a node v in graph G = (V, E) is
the set of nodes adjacent to v, and the degree of a node is the number of its neighbors.
The density of a directed graph is defined as Density = |E|

|V |(|V |−1) . A triad in a graph
is a subset of three connected nodes, classified as closed if it forms a triangle with
three edges, otherwise open.

Rooted in graph theory, a tree is a type of graph that is connected and acyclic,
featuring nodes (or vertices) connected by edges (or links) with no cycles, making
them a natural fit for representing data with inherent hierarchical relationships. A
tree consists of nodes connected by edges, with one node designated as the root. Every
node other than the root is connected by exactly one incoming edge from another
node. Each node can have zero or more children nodes, leading to a hierarchical
structure with levels that denote the depth of nodes from the root. Trees are
particularly useful in applications where data is organized hierarchically or needs to
be processed in a hierarchical manner.

2.2 Model-Centric AI
Model-centric AI represents a traditional approach that has dominated the AI
research and application landscape. This paradigm focuses primarily on developing

9

10 2.3. Data-Centric AI

ModelData

Model-Centric AI

Figure 2.1: Model-Centric AI Paradigm (Figure adapted from (Jakubik et al.
2024)

and optimising machine learning models, using fixed datasets to benchmark and
improve model performance. As in Figure 2.1, the dataset is always fixed, and
the model is iteratively improved. Model-centric AI is defined by its emphasis on
selecting and refining the appropriate machine learning models, architectures, and
hyperparameters to solve specific problems (Jakubik et al. 2024). This approach
aims to build AI systems that are both effective and efficient, leveraging a wide array
of potential models to find the best fit for the given data and task.

Historically, the model-centric approach has propelled the advancement of AI
through extensive research on model types and architectures, accompanied by rigorous
hyperparameter tuning to enhance performance. This method has been prevalent in
both academic settings and practical applications, where AI models are evaluated
and compared using benchmark datasets. Such datasets facilitate scientific and
statistically sound comparisons across different methods, significantly accelerating
the evolution of AI capabilities.

However, the exclusive focus on model optimization has shown diminishing
returns over time, especially as improvements plateau for many datasets. In real-
world applications, merely advancing model complexity often does not translate into
significant performance gains (Baesens et al. 2021). This is particularly evident when
custom problems arise for which no public datasets or pre-trained models are readily
available. Moreover, this model-centric focus overlooks the equally crucial role of the
data that feeds these models. In conclusion, while model-centric AI has significantly
advanced the field of artificial intelligence by refining computational models, the
evolving landscape of AI development is increasingly acknowledging the critical role
of data. This holistic view promises to enhance the robustness, applicability, and
effectiveness of AI systems in diverse real-world settings.

2.3 Data-Centric AI
Data-centric AI is an emerging paradigm that emphasizes the importance of high-
quality data in developing and deploying artificial intelligence systems. Unlike the
traditional model-centric approach, which focuses on refining models while keeping
the dataset fixed, data-centric AI aims to engineer and maintain datasets to improve

Chapter 2. Background 11

ModelData

Data-Centric AI

Figure 2.2: Data-Centric AI Paradigm (Figure adapted from (Jakubik et al. 2024)

AI performance systematically (Zha, Bhat, et al. 2023). Thus, as in Figure 2.2, the
model is fixed, and we enhance the data quality to improve the model’s performance.
This approach ensures that the data used for training and inference is of the highest
quality, which is critical for developing robust and reliable AI systems. The shift
towards data-centric AI is driven by several factors:

1. Model Transferability and Generalizability: Traditional model-centric
AI often struggles with transferring and generalizing models across different
datasets. Enhancing data quality helps to address this issue, leading to more
adaptable models.

2. Reduction of Data Cascades: Poor data quality can lead to a cascade of
negative effects (Sambasivan et al. 2021), including biases and inaccuracies in
AI systems. Focusing on data quality helps mitigate these risks.

3. Efficiency in High-stakes Domains: In domains such as healthcare and
finance, the cost of errors is high. Ensuring data quality can significantly
enhance model reliability and performance in these critical areas.

Data-centric AI organizes its pursuits around three principal goals: training
data development, inference data development, and data maintenance. Each goal
encompasses specific tasks tailored to enhance the data’s role in improving AI
outcomes. Training data development focuses on curating and refining data that
teaches AI models to behave predictably and effectively. Inference data development
involves crafting data sets that accurately test and challenge AI models, ensuring they
are capable of performing under varied or unexpected conditions. Data maintenance
is critical for sustaining the data’s accuracy, consistency, and relevance, which is
vital for the long-term reliability of AI systems.

In data-centric AI, the balance between automation and human involvement
is critical. Automation in data-centric AI aims to streamline processes like data
labelling and augmentation (Zha, Lai, et al. 2022; H. P. Samoaa, Longa, et al.
2022), reducing the need for intensive human labour while enhancing efficiency and
consistency. Conversely, human expertise remains indispensable, particularly in tasks
requiring nuanced judgment and decision-making, such as validating data quality
or managing complex data integration scenarios. This interplay ensures that while

12 2.4. Graph Neural Networks (GNNs)

AI systems can operate independently, they also benefit from human oversight and
intervention, leading to more trustworthy and aligned AI outcomes.

In essence, data-centric AI represents a transformative approach that redefines
the priorities of AI development, advocating for a data-first strategy that promises to
enhance the efficacy, fairness, and adaptability of AI systems across various sectors.

2.4 Graph Neural Networks (GNNs)
If the source code is to be represented as a graph, then Graph Neural Networks
(GNNs) are the right model to handle this type of representation.

Graphs are complex structures, and verifying if two graphs are identical (also
known as the isomorphism test) is an important and difficult task. It is unknown if
the problem can be solved in polynomial time or if it is computationally intractable
for large graphs. A fast heuristic to verify if two graphs are the same is the k-
Weisfeiler-Leman test (Weisfeiler and Leman 1968). The algorithm produces a
representation for each graph. Then, if the representations of two graphs are not
equivalent, the graphs are not considered isomorphic. However, there is the possibility
that two non-isomorphic graphs share a representation. Thereby, this test might
not provide conclusive evidence that the two graphs are isomorphic. GNN network
can be as powerful as the k-Weisfeiler-Leman test with k equal to 1, in which the
representation propagates the information by nodes. With k greater than 1, the
information is propagated among substructures of order k. A higher-order graph
convolution layer (k-GNN) is also proposed, wherein messages are exchanged among
nodes, edges and substructure with tree nodes (triads). Once messages are exchanged
among substructures, each node has a latent representation. In order to predict the
property of the graphs (i.e., the execution time of a graph representing Java code),
node embeddings are globally aggregated (pooling step) with an invariant ordering
function (i.e. sum, max, mean). In particular, k-GNN is defined as: given is an
integer k the k-element subset [V (G)]k over V (G). Let s = {s1, s2, . . . } be k-set in
[V (G)]k, then the neighborhood of s is defined as:

N(s) = {t ∈ [V (G)]k||s ∪ t| = k − 1} (2.1)

In Equation 2.1, the neighbour of a k-set is defined as the set of k-set such that the
intersection of their cardinality is equal to k− 1. The local neighbourhood is defined
as:

NL(s) = {t ∈ N(s)|(u, w) ∈ E(G) with u ∈ s/t and w ∈ t/s} (2.2)
The local neighbourhood defined in Equation 2.2 is a subset of the neighbour
(Equation. 2.1). Finally, the k-GNN is defined as:

f
(l)
k,L(s) = σ(f (l−1)

k,L (s) ·W (t)
1 +

∑
u∈NL(s)

f
(t−1)
k,L (u) ·W (t)

2) (2.3)

The l-th layer of the k-GNN computes an embedding of s, using the non-linear
activation function σ of the summation over the substructure itself in the previous
layer (i.e., layer l− 1) and the summation over the previous layer embedding of each
local neighbourhood of the substructure s.

Chapter 2. Background 13

Figure 2.3: Pool Based Active Learning (Settles 2009)

2.5 Active Learning
Active Learning is a subset of machine learning where the algorithm selectively
queries the most informative data points to label, optimizing the learning process
using fewer training examples. This method is particularly useful in scenarios where
labelled data are scarce, costly, or time-consuming to acquire.

Given set of N data points X = {x1, . . . , xN}. Assume that we have m ≪ N
labeled data points L = {(x1, y1), . . . , (xm, ym)}. Then, let U = {xm+1, . . . , xN} be
the remaining data points for which we have no labels. In the field of machine
learning, we categorize techniques based on how they utilize data:

• Supervised learning: This paradigm learns from a dataset that includes
input-output pairs, focusing on mapping function from inputs to outputs. It
requires a fully labelled dataset L.

• Unsupervised learning: Unsupervised techniques infer patterns from a
dataset without referring to known or labelled outcomes. They are useful for
discovering the underlying structure of data. They learn from all available
available data features X.

• Semi-supervised learning: Semi-supervised learning falls between supervised
and unsupervised learning. It uses both labelled and unlabeled data (i.e., L
and U .) to improve learning accuracy with a minimal set of labelled instances.

• Active Learning: Particularly useful when labels are costly or difficult to
obtain. They iteratively query an oracle (e.g., human annotator) for labels of
the data points in U in an efficient way. Learn from L and additional labels
queried so far, thus integrating human oversight directly into the learning
process.

14 2.5. Active Learning

Figure 2.3 shows the iterative process of active learning explained in detail in
Algorithm 1. We have an initially labelled dataset L0 := L and an initial unlabeled
dataset U0 := U . We also have a model fθ, parameterized by θ. Given this, an
iterative active learning procedure works based on training the model iteratively and
detecting the most informative samples in each iteration, then extending the labelled
dataset L and training the model on the extended labelled dataset.

Algorithm 1 Train model using active learning
1: i← 0
2: repeat
3: Train fθ on L
4: Query the label y of the most informative data point x ∈ U based on the

current model fθ

5: L ← L ∪ {(x, y)}
6: U ← U \ {x}
7: i← i + 1
8: until some stopping criterion is met

As in Algorithm 1, we query the label y of the most informative data point using
different query strategies. A query strategy can consider one or both of the following
notions of informativeness:

• Uncertainty: This corresponds to selecting the data point x ∈ U for which
the current model fθ is the most uncertain.

• Representative: This corresponds to selecting a data point x ∈ U that is
representative of U .

As for uncertainty, the strategies differ in that they are based on sampling
for probabilistic models, query by committee, or expected model change. As for
Uncertainty Sampling for Probabilistic Models, if the model fθ is probabilistic, we
assume that it estimates the posterior probability Pθ(ŷ | x).

• Least confident: Choose data points where the model’s prediction is least
certain. Thus, x∗

LC = argmax
x

(1− Pθ(ŷ | x)), where ŷ = argmaxy(Pθ(y | x)).

• Margin sampling: Select data points where the difference between the first
and second most probable class labels is minimal. So x∗

M = argmin
x

(Pθ (ŷ1 | x)−
Pθ (ŷ2 | x)), where ŷ1 and ŷ2 are the first and second most probable class labels
under the model, respectively.

• Entropy: Focus on data points with the highest prediction entropy across
possible outcomes. That described mathematically as:
x∗

H = argmax
x

(−∑i Pθ (yi | x) log Pθ (yi | x)), where yi ranges over all possible
labelings.

Chapter 2. Background 15

As for Query by Committee (QBC) approach, it involves maintaining a committee
C = {fθ(1) , . . . , fθ(C)} of models which are all trained on the current labelled set L,
but represent competing hypotheses.

Given this, there are a number of ways to select a sample, and one possibility is
the vote entropy:

x∗
V E = argmax

x
−
∑

i

V (yi)
C

log V (yi)
C

where yi again ranges over all possible labellings, and V (yi) is the number of "votes"
that a label receives from among the committee members’ predictions, and C is the
committee size. This can be thought of as a QBC generalization of entropy-based
uncertainty sampling.

Expected model change selects the data point that would impart the greatest
change to the current model if we knew its label. An example query strategy in this
framework is the “expected gradient length” (EGL). In theory, the EGL strategy
can be applied to any learning problem where gradient-based training is used.

Let ∇ℓθ(L) be the gradient of the objective function ℓ with respect to the model
parameters θ. Now let ∇ℓθ(L ∪ ⟨x, y⟩) be the new gradient that would be obtained
by adding the training tuple ⟨x, y⟩ to L. Since the query algorithm does not know
the true label y in advance, we must instead calculate the length as an expectation
over the possible labellings:

x∗
EGL = argmax

x

∑
i

Pθ (yi | x) ∥∇ℓθ (L ∪ ⟨x, yi⟩)∥ ,

where ∥ · ∥ is, in this case, the Euclidean norm of each resulting gradient vector.
As for representativeness, expected error reduction is another decision-theoretic

approach that measures not how much the model is likely to change but how much
its generalization error is likely to be reduced. The idea is to estimate the expected
future error of a model trained using L∪ ⟨x, y⟩ on the remaining unlabeled instances
in U (which is assumed to be representative of the test distribution, and used as a
sort of validation set), and query the instance with minimal expected future error
(sometimes called risk). One approach is to minimize the expected 0/1-loss:

x∗
0/1 = argmin

x

∑
i

Pθ (yi | x)
(

U∑
u=1

1− P
θ+(x,yi⟩

(
ŷ | x(u)

))
,

where θ+⟨x,yi⟩ refers to the new model after it has been re-trained with the training
tuple ⟨x, yi⟩ added to L.

Expected error reduction is often intractable. Variance reduction attempts to
approximate it. The expected future error can be decomposed in the following way:

ET

[
(ŷ − y)2 | x

]
=E

[
(y − E[y | x])2

]
+ (EL[ŷ]− E[y | x])2

+ EL
[
(ŷ − EL[ŷ])2

]

16 2.5. Active Learning

The main idea is that informative instances should be not only uncertain but
also "representative" of the underlying distribution (i.e., inhabit dense regions of the
input space). Therefore, we wish to query instances as follows:

x∗
ID = argmax

x
ϕA(x)×

(
1
U

U∑
u=1

sim
(
x, x(u)

))β

.

Here, ϕA(x) represents the informativeness of x according to some "base" query
strategy A, such as an uncertainty sampling or QBC approach. The second term
weights the informativeness of x by its average similarity to all other instances in the
input distribution (as approximated by U), subject to a parameter β that controls
the relative importance of the density term.

Active learning involves several practical considerations:

• Batch-Mode Learning: How to efficiently query multiple instances at once.

• Noisy Oracles: Dealing with inaccuracies in the labels provided by human
annotators.

• Variable Labeling Costs: Managing the differing costs associated with
labelling various data points.

• Multi-Task and Multi-Class Scenarios: Extending the active learning
framework to handle multiple related tasks or classification problems.

• Stopping Criteria: Determining when the model has learned sufficiently to
cease active querying.

By addressing these practical considerations and employing robust query strate-
gies, active learning can significantly enhance learning efficiency, especially in scenarios
where labelled data are scarce or expensive to obtain.

Chapter 3

General Overview of The Papers

This section will present the main components discussed in this thesis in order to
address the research questions mentioned earlier. The ultimate aim is to enhance
the regression analysis for both trees and graphs data structure. To that aim
and as in Figure 3.1, we start by exploring the behaviour of the trees and graphs
representations and the information they convey. Then, we analyse the regression
for trees by analyzing the behaviour of TBNN models for the regression task. Then,
based on this analysis, we enhance the behaviour of TBNN for regression by proposing
a new model based on model-centric AI. Then, we move to graphs from the trees by
augmenting the trees with extra edges based on data-centric AI to convert the tree
into a graph. Then, GNN models enhance the regression for our generated graphs.
Finally, we invest in interactive learning and active learning for graphs to enhance
the data quality for regression analysis.

To achieve the mentioned goal, we use the source code analysis for scalar value
prediction of execution time as a case study. The reason is that i) source code
can be represented as trees and graphs simultaneously. ii) the source code files are
available on public host platforms like GitHub for free iii) since the source code can
be available for free, then we don’t need to care so much about the privacy issue
since we are not dealing with sensitive data like patients records or human biological
trees or even the graph of molecular where each company has its own drug. Above
all that, execution time prediction is an important task since it gives the developer
an early indication of the complexity of the source code before it runs.

3.1 Exploration of Tree and Graph Representation

This section will answer the research questions RQ1, RQ2. To that aim, we
conducted a systematic literature review and systematic mapping study in our first

Tree and Graph
Representation explorations

Tree Regression Analysis and
Model-Centric AI

Graph Regression Analysis
and Data-Centric AI

Active Learning for Graphs on
Regression

Figure 3.1: General Overview of the Thesis

17

18 3.1. Exploration of Tree and Graph Representation

paper titled: "A systematic mapping study of source code representation for deep
learning in software engineering" (H. P. Samoaa, Bayram, et al. 2022).

RQ1 What information do trees and graphs convey as intermediate representa-
tions?

Answer: The source code can be represented as token-based, tree-
based, and graph-based. As for tree representation, it represents the
syntactical information. On the other hand, graph representation
conveys the semantic information of the code.

RQ2 Is it feasible to combine more than one representation?

Answer: Notably, a substantial number of publications use a hybrid
representation approach, combining multiple different representations.

3.1.1 Analyzing Trees and Graphs as Intermediate Repre-
sentations

In this section, we will dig deeply into the answer to research question RQ1. Through
that, we discuss the intermediate representation of the source code for the deep learn-
ing models. The first step in the deep learning process is proper data representation.
We must represent the source code in a format suitable for the model and the task
of interest. Thus, the literature mainly classifies code representation approaches into
three categories: token-based, Tree-based, and Graph-based. Every form maps the
source code’s syntactical and semantic aspects to a specific data structure. These
representations can then be embedded in a neural network so that they can use source
code as input. Source code is originally a text encoding representing a program. This
can be processed and further transformed into different representation forms. In
this section, we describe three well-known representations, each one mapping certain
aspects of the original source code. We use the C snippet depicted in Listing 3.1 as
a running example. This example has originally been proposed by Yamaguchi et
al. (Yamaguchi et al. 2014)

Listing 3.1: Example of C code (Yamaguchi et al. 2014).
void f oo () {

int x = source () ;
i f (x < MAX) {

int y = 2∗x ;
s ink (y) ;

}
}

Chapter 3. General Overview of The Papers 19

Token-Based Representation This representation treats code as free text. Thus,
it converts the code into a list of tokens where each word (e.g., "void") is a token,
but each special character (e.g., ’(’) is also a token (rather than considering it as
part of a word). An example is given in Listing 3.2.

Listing 3.2: Token Representation for the code in Listing 3.1.
[’ void ’ , ’ foo ’ , ’ (’ , ’) ’ , ’ { ’ , ’ int ’ , ’ x ’ , ’= ’ ,

’ source ’ , ’ (’ , ’) ’ , ’ ; ’ , ’ i f ’ , ’ (’ , ’ x ’ , ’ < ’ ,
’MAX’ , ’) ’ , ’ { ’ , ’ int ’ , ’ y ’ , ’= ’ , ’2∗x ’ , ’ ; ’ ,
’ s ink ’ , ’ (’ , ’ y ’ , ’) ’ , ’ ; ’ , ’ } ’ , ’ } ’]

Then, each token will be encoded into a numerical vector using different statistical
language models, such as word embedding (Teller 2000) or n-grams (Niesler and
Woodland 1996). In principle, word embedding is a learned representation for text
where words that have the same meaning get a similar representation. Technically,
word embeddings are a class of techniques where individual words are represented as
real-valued vectors in a predefined vector space. Each word is mapped to one vector,
and the vector values are learned in a way that resembles a neural network. Hence
the technique is often lumped into the field of deep learning. N-grams are several
words appearing together. They are useful abstractions for modelling sequential data
such as text, where there are dependencies among the terms in a sequence. However,
a corpus of code can be regarded as a sequence of sequences, and corpus-based
models such as n-grams learn conditional probability distributions from the order
of terms in a corpus. Corpus-based models can be used for many different types of
tasks, such as discriminating data instances or generating new data characteristics
of a domain. Embeddings can be considered a way to represent words and help the
DL model learn the source code’s representation. An embedding can be trained to
represent n-grams or just individual words.

Tree-Based Representation This representation captures the abstract syntactic
structure of the source code. Abstract syntax trees (ASTs) are a kind of tree
representation approach that is widely used by programming language tools.

Figure 3.2 shows an example of an AST representation. The nodes of the AST
tree are related to constructs or symbols of the source code. In comparison to
the token-based approach, AST representation is abstract and does not include all
available details, such as punctuation and delimiters. Theoretically, ASTs can be
used to illustrate the lexical information and the syntactic structure of source code,
such as the function name and the flow of the instructions (for example, in an if or
while construct).

Graph-Based Representation This approach represents source code as a graph
at many different levels. Levels of representation define the type of the representation
graph. Thus, a control flow graph (CFG, see 3.3 (a)) describes the sequence in which
the instructions of a program will be executed. Thus, the graph is determined by

20 3.1. Exploration of Tree and Graph Representation

Foo

x IF

int =

x CALL

source

PRED

<

x max

STMT

DECL CALL

int =

y *

2 x

sink ARG

y

Figure 3.2: Abstract syntax tree (AST) for the code snippet in Listing 3.1 (Yam-
aguchi et al. 2014).

ENTRY

int x = source()

if (x< MAX)

int y = 2 * x

sink (y)

EXIT

true

false

a) Control flow graph (CFG)

int x = source()

Dx

sink (y)

int y = 2 * xif (x< MAX)

Dx

Dy
Ctrue

Ctrue

b) Program dependence graph (PDG)

Figure 3.3: Graph-based representations for the code snippet in Listing 3.1 (Yam-
aguchi et al. 2014).

conditional statements, e.g., if, for, and switch statements. In CFGs, nodes denote
statements and conditions, and directed edges connect them to indicate the transfer
of control.

Alternatively, the representation might be a variable-oriented data flow. Thus, a
data flow graph (DFG) is used to follow and track the usage of the variables through
the CFG. A DFG edge represents the subsequent access or modification of the same
variables. The call flow graph (CallFG) captures the relation between a statement
which calls a function and the called function (Cummins et al. 2020). Finally, the
entire program can be represented as a graph using a program dependence graph
(PDG, see 3.3 (b)), where the nodes can characterize statements and predicate
expressions. In this study, we differentiate between tree-based and graph-based
approaches since each representation retrieves a different level of information from
the source code. Thus, the tree-based approach, such as using the AST, extracts
syntactical information from the source code, whereas graph-based approaches, such
as CFG or DFG, extract semantic information.

Chapter 3. General Overview of The Papers 21

3.1.2 Exploring the Integration of Multiple Representations

This section will deeply investigate the research question RQ2. As we observed in our
first paper (H. P. Samoaa, Bayram, et al. 2022), some studies have utilized a hybrid
approach for code representation to capture more information on the source code.
This is often promising as tree-based approaches capture syntactical information,
graph-based approaches better retain semantics, and token-based approaches preserve
lexical information. Thus, studies like (J. Hua and H. Wang 2021; Z. Li et al. 2021;
Fang et al. 2020) combined representations from all three groups. The most common
hybrid approach combines token- and tree-based approaches. Combinations of
the tree- and graph-based approaches are also fairly popular. The problem with
all mentioned combined representation approaches is that they are separated into
multiple representations, not combined in one representation. These separated
representations constitute multiple inputs for either one deep learning model or
multiple models (each with one input representation) to address one or more tasks.
Thus, we do not have one rich representation approach that compresses all the
information from the source code. More details about these results can be found in
Section 8.2 in Paper I.

3.2 Tree Regression Analysis and Model-Centric
AI for Trees

This section will be dedicated to answer the research questions RQ3, RQ4, and
RQ5. For that purpose, in our second paper titled: "Analysing the Behaviour of
Tree-Based Neural Networks in Regression Tasks" (P. Samoaa, Farahani, et al. 2024),
we conduct a comparative and empirical study. We will first provide a brief answer
for each research question and then discuss each question in depth.

RQ3 What is the behaviour of TBNN models in the regression context?

Answer: The TBNN models failed to deliver an efficient performance
despite their remarkable efficiency in classification tasks.

RQ4 How to improve the behaviour of TBNN models for regression?

Answer: Model-centric AI is then used to improve the behaviour
of the tree-based transformer model. The improvement is proposed
as an alternative dual-transfer based on cross-attention. In the dual
transformer, a token-based input is also utilised beside the tree, which
improves the transformer’s behaviour as TBNN in regression.

RQ5 What is the impact of error analysis and Pearson correlation metrics?

22 3.2. Tree Regression Analysis and Model-Centric AI for Trees

Tree
Generation

Regression
Prediction
& Analysis

Update The Experiment &
Information utilised

Decide
Information &
Experiment to

Incorporate

Tree
Representation

Learning

Graph-Based Models

Convolutional Based Models

Path-Based Attention Models

Sequential-Based Models

Figure 3.4: Tree Based Neural Networks Analytical Framework

Answer: The discrepancy between Pearson correlation and error
metrics like MSE and MAE in different models like GNNs and other
TBNNs can be attributed to the nature of the models and the type
of data they process. GNNs often exhibit good Pearson correlation
because they effectively capture the overall patterns and relationships
in trees through their structural and node-level interactions, making
them adept at predicting trends accurately. However, they might
not minimize individual prediction errors effectively, leading to less
efficient MSE and MAE scores. Conversely, some TBNN models
might achieve lower Pearson correlation but better error metrics. This
could occur if these models are very accurate on average (hence low
MSE/MAE) but fail to effectively capture the underlying patterns or
dependencies between the predicted and actual values, particularly in
complex or noisy datasets where structural nuances significantly impact
model performance. This suggests a trade-off between capturing
overall trends and minimizing point-specific errors, highlighting the
importance of choosing the right model based on the data’s specific
analytical requirements and characteristics.

3.2.1 Behaviour of TBNN models in Regression Context
This section will deeply investigate the research question RQ3. Extracting the tree
representation for the source code is easier and straightforward since we need to parse
the code without running it, so we start with the AST, the tree representation of the
source code, for regression analysis. Recently, some approaches have combined neural
networks and ASTs to constitute tree-based neural networks (TBNNs) (Zhang et al.
2019). Given a tree, TBNNs learn the vector representation by recursively computing
node embeddings in a bottom-up way. Popular TBNN models are the Recursive
Neural Network (RvNN) (White et al. 2016), Tree-based CNN (TBCNN) (Mou et al.
2016), and Tree-based Long Short-Term Memory (Tree-LSTM) (Wei and M. Li 2017).
Based on Figure 3.4, many TBNN architectures are used for regression analysis like
GNNs Convolutional models, Code2Vec (Alon et al. 2019), which is a Path-Based
attention model, and sequential-based transformer (W. Hua and Liu 2022). All the

Chapter 3. General Overview of The Papers 23

Embedding Layer

Positional
Encoding

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Embedding Layer

Positional
Encoding

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Cross Attention

Add & Norm

Input: Source Code
Tokens Input: AST Nodes

Linear

Regressor

Figure 3.5: The architecture of the Dual-Transformer model. The framework
features two transformer encoders: NLEncoder for source code tokens and AS-
TEncoder for AST nodes, each with layers for embedding, multi-head attention,
and feed-forward networks, complemented by add & norm layers for stabilization.
Their outputs are merged via cross-attention and passed to a linear regressor for
error prediction, leveraging both textual and syntactical insights.

details for the aforementioned models are reported in Section 4, Paper 2. We chose
these models because they have achieved a remarkable performance for classification
tasks. Thus, we want to try them for regression-related tasks.

Hence, to address RQ3, we designed an analytical framework 3.4 that examines
the behaviour of different TBNN architectures in a regression context. These models
do not deliver the same efficiency in regression tasks, specifically for transformer-based
models. In this model, the tree nodes are flattened, and then the sequences of the
nodes will be the input for the model, leading to a limitation in dealing with extended
sequence lengths. Moreover, we realise that one of the issues in the transformer-based
tree model is the inability to effectively capture the interplay between the different
types of input data, such as textual and structural representation of the code.

3.2.2 Model-Centric AI for Trees
This section addresses the gap in the poor behaviour of different TBNN models in
regression and thus answers the research question RQ4 regarding the possibilities to
enhance the behaviour and efficiency of TBNN in a regression context.

Thus, by model-centric AI, we enhance the transformer model by proposing our
dual transformer model 3.5. In this model, we use the transformer block for the tree
and another transformer block for the source code token. Thus, we also utilise the

24 3.3. Data-Centric AI for Graphs

token-based representation of the source code alongside the tree representation. Then,
we modify the AST transformer block by adding cross attention to understand the
impact of each code token on the tree node as in Figure 3.5. More details about our
model are in Section 5, Paper 2. Our model shows efficiency across all architectures
of TBNN models on all used metrics.

3.2.3 Error and Correlation Analysis for TBNN models on
Regression

This section will address the research question RQ5. Throughout the comparative
study of the TBNN used in regression, we will analyze the metrics used to evaluate
the used models in our analytical framework. There is a general discrepancy between
the error metrics used, such as MSE and MAE, and the Pearson correlation that finds
the correlation between the predicted value and the true one over the test set. GNN
models demonstrate good Pearson correlation but may not perform as well on error
metrics, indicating that while they can capture the trend of the data well, they might
still make large individual errors. On the other hand, certain TBNN models (code2vec,
TreeCNN, and Tree-based Transformer) may show strong performance in minimizing
error metrics but exhibit lower Pearson correlation compared to GNN, suggesting
that these models, while accurate on average, may fail to capture underlying trends
or dependencies in the data effectively. However, Our dual-transformer model shows
the best scores in error and correlation metrics, showing its ability to detect patterns
from the data and minimise the error.

This variation highlights the importance of selecting appropriate metrics based on
the specific requirements and goals of the analysis. For instance, when precise error
minimization is critical, focusing on MSE and MAE might be preferable. However,
for applications where understanding the strength of relationships within the trees
is more important, Pearson correlation becomes a crucial metric. Understanding
these metrics in conjunction helps in refining model selection and tuning, ensuring
that the chosen models are not only accurate but also align well with the specific
analytical objectives of a study.

3.3 Data-Centric AI for Graphs

This section will answer the research questions RQ6 and RQ7. For that purpose, in
our third paper titled: "TEP-GNN: Accurate Execution Time Prediction of Functional
Tests Using Graph Neural Networks" (H. P. Samoaa, Longa, et al. 2022), we conduct
an empirical study. We will first provide a brief answer for each research question
and then discuss each question in depth.

RQ6 How to enhance the regression analysis from a data perspective rather than
the model?

Chapter 3. General Overview of The Papers 25

Answer: We must improve the tree representation to have a richer
representation so the model can learn and detect more patterns from
the new representation. Thus, we follow the data-centric AI to en-
hance the quality of the tree representation by adding more edges
that can add more information to the tree structure, which leads to
better learning for the models, especially for regression tasks. Con-
necting this approach with our case study, we merged the tree and
graph representations discussed in Section 3.1.1 in one solid and rich
representation. By doing so, we address the gap of misuse of all
representations together, as we had discussed in Section 3.1.2

RQ7 How well can a hybrid representation approach that combines the tree and
graph-based methods perform for regression?

Answer: The outcome of the tree augmentation and having a hybrid
representation of tree and graphs in RQ6 will lead to having a graphs
data structure. Thus, GNN models are used to examine the quality of
the produced graphs in a regression context. Using the same datasets
and metrics used to examine the GNNs in tree contexts, the GNNs
tend to have a way better performance for error metrics and also
Pearson correlation. This leads to the conclusion that improving
the quality of data representation will certainly improve the model
behaviour for regression tasks.

3.3.1 From Tree to Graph over Data-Centric AI
This section will deeply investigate the research question RQ6. As we saw in
Section 3.2, we enhanced the regression analysis by improving the models based
on Model-Centric AI. In this Section, we enhance the regression analysis by only
focusing on the data. Thus, we will follow the data-centric AI to improve the tree
representation to have a richer representation that can deliver more information
and patterns to the model. From a case study point of view, we manipulated the
token-based and tree-based representations in our dual transformer in 3.2.2, but we
still do not use the graph-based representations. As we clarified in Section 3.1, the
graph representations might have different topological structures depending on the
semantic information the graph delivers. Thus, we have control flow graphs that
explain the semantics of the execution and data flow graphs that describe how the
data is updated through the logic of the code. However, one of the issues is that
each statement is represented as a node as in Figure 3.3. That means that we have
fewer edges compared to the tree, which leads to less information being exchanged
throughout the structure of the graph, so there is less ability for the GNN models to
learn from these graphs. Moreover, generating these graphs requires running each
code in order to extract the corresponding flow graphs, which is more time, effort,
and computational resources consuming. To extract the tree, we need to parse the
code. Thus, we decided to stick with the tree representation and augment the tree

26 3.3. Data-Centric AI for Graphs

Figure 3.6: Schematic Overview of Data-Centic AI Approach to Enhance the
Regression Analysis

representation only by adding edges that explain the control and data flow graphs.
We called the new graphs generated from trees Flow-Augmented AST (FA-AST).
We designed the augmentation strategies for each control statement in addition to
designing strategies for tracking the data flow through the tree. Then, we tackled the
nodes of the trees that describe the control and data statements and attached the new
edges according to our strategies. Each edge is assigned a label that describes the
functionality of these edges. Section 2.3 of Paper 3 provides a deeper understanding
of how we generate the graphs of FA-AST with motivation examples, in addition to
the augmentation of different control and data statements.

3.3.2 Validating the Data-Centric AI Approach

This section will deeply investigate the research question RQ7.
As Figure 3.6 illustrates, we build FA-AST graphs and store them as PyTorch

Geometric1 objects. Then, GNN models can be directly used to examine the quality
of the transformed graphs in a regression context. Applying the GNN models on the
same datasets and using the same evaluation metrics previously used in tree contexts
makes it evident that GNNs exhibit significantly improved performance, both in error
metrics and Pearson correlation. This stark improvement confirms that refining data
representation quality directly contributes to more effective model performance in
regression tasks, highlighting the potential of hybrid structures to optimize predictive
accuracy and model reliability in complex data environments. Out of all used GNN
architectures, Graph Conv (Spectral Graph Convolution) (Defferrard et al. 2016)
achieved the highest efficiency both in error and Pearson correlation metrics. We
refer to Section 2.4 in Paper 3 for further details about the model.

1https://pytorch-geometric.readthedocs.io/en/latest

Chapter 3. General Overview of The Papers 27

3.4 Active Learning for Graphs

This section will answer the research questions RQ8, RQ9, and RQ10. For that
purpose, in our fourth paper titled: "A Unified Active Learning Framework for
Annotating Graph Data For Regression Task" (P. Samoaa, Aronsson, Longa, et al.
2023), and in the fifth paper titled: "Batch Mode Deep Active Learning for Regression
on Graph Data" (P. Samoaa, Aronsson, Chehreghani, et al. 2023), we conduct an
empirical study to use active learning for acquiring labels for graphs and extend
the labelled dataset for best investment of learning models on graphs. We will first
provide a brief answer for each research question and then discuss each question in
depth.

RQ8 What is the impact of batch mode active learning for graph level learning?

Answer: Through our unified active learning framework designed for
graphs in the regression context, we find out that the active learning
selection method efficiently selects batches containing informative
and representative samples. However, the effectiveness of the selec-
tion methods depends on the embedding techniques used for graph
representation learning.

RQ9 What is the impact of using a neural network and corresponding kernels on
the quality of active learning for regression tasks?

Answer: On top of the graph models used for graph embeddings, a
fully connected neural network is also used to transform the embedding
from one feature space to another. Then, in the last neural network
layer, the NTK kernel is used to measure the similarities between the
vectors of the embedded data points. Then, the kernel is manipulated
in the GP, which is involved in active learning query strategies to
preserve the diversity of the selected samples in each batch. Through
that aim, we iteratively add one new data point to the batch based
on the current GP, then retrain the GP with the selected data point
and learned kernel based on the parameters of the neural network to
select a new data point that is different from the first one, leading to
diversity. So, each selected data point in the batch takes the previous
ones into account. When a neural network is used, the framework
tends to be batch mode deep active learning on graphs for regression
tasks.

RQ10 How robust is the active learning framework when the graphs are expanded
and updated?

28 3.4. Active Learning for Graphs

Graphs

Building

Gaussian
Process

Update data based on queries

Decide
Informatio

n to
Incorporate

Graph
Representatio
n Learning

Active
Learning
Query

Strategy

Figure 3.7: Active Learning Framework for Graphs in Regression settings

Answer: We have a case where the graphs can be expanded and
updated, keeping the same regression value. Thus, we test the robust-
ness of our framework for this scenario. Throughout our experiment,
we find that the benefit of active learning increases for the expanded
versions of the graphs (i.e., when the data is more complex). Arguably,
this is when active learning is the most important.

3.4.1 Informativeness and Representativeness
In this section, we will dive deeply into the research questions RQ8 and RQ10,
where we investigate the behaviour of our active learning framework in terms of
representativeness and informativeness for original graphs and the expanded version
of the graphs.

Starting from the graphs created by the data-centric AI in Section 3.3, we tackle
the problem of insufficient data, which is a lack of quality and availability of labels.
Thus, we will use active learning as an interactive learning approach to acquire labels
for our generated graphs. Through active learning, each iteration selects the most
informative samples for labelling. Active learning for graphs is widely investigated
in the literature, mostly for classification and at the node level. However, to our
knowledge, active learning for graph-level and regression has still not been explored
well in the literature. Since we have to map the entire graph to a regression value,
it is important to invest the query strategies of active learning for the entire graph
instead of one single node. To tackle this issue, we provided a unified active learning
framework for graph annotation for the entire graph level and regression task. In
active learning, we only access a small portion of labelled data. Then, a model is
trained based on the labelled data and updated based on the acquired labelled data
through active learning. On that basis, for active learning, we have three datasets:
Labelled set Li, Unlabelled pool Ui, and Test set T . In principle, the information
that can be used to perform the active learning are the labels and features of these
datasets, i.e., XLi

, XUi
, XT , Y Li

, Y Ui
and Y T .

As in Figure 3.7, and based on graphs generated in Section 3.3, we manipulate
different information for active learning, like training features XLi

and test set
features XTi

, besides the initially available labels Y Ti
. We get the features of the

graphs by learning the representation of the graphs using unsupervised based on
graph shallow embedding, supervised based on GNN, and manual embedding, which
is based on the graph metrics without the need for any learning process (more

Chapter 3. General Overview of The Papers 29

information about the used approach for graph learning used in our framework is
available in Section 4.4 of Paper 4). Regression tasks inherently lack a natural measure
of uncertainty, which is often straightforward in classification tasks through softmax
layers. Computing uncertainties in regression, therefore, becomes less straightforward,
necessitating the use of kernel methods. Therefore, we admit a Gaussian Process (GP)
framework (Rasmussen and Williams 2005) in order to investigate and utilize different
notions of uncertainty due to their probabilistic nature (Rasmussen and Williams
2005). Through the GP, we learn the Matern kernel for entropy measurement. This
uncertainty model allows us to define natural acquisition functions that can be used
in an active learning setting. It is also worth mentioning that GP is also used for
regression prediction to obtain the Pearson correlation. Then, active learning query
strategies are used to select samples for labelling. In our framework, we manipulated
different query strategies:

• Coreset (Sener and Savarese 2018): It preserves the representativeness based
on the distance in the feature space of the graph embeddings.

• Variance: It is based on uncertainty estimations provided by GP.

• Query-by-committee (QBC): This corresponds to fitting n estimators to
subsets of the labelled data. If the estimators disagree strongly about a data
point, this indicates large uncertainty and, thus, informativeness.

More details about the query strategies are in paper 4, section 4.7.
Results have shown the efficiency of the query strategies employed in our frame-

work for graph-level learning in the regression. It is worth mentioning that the
embedding quality determines the effectiveness of each query strategy. Thus, for
our dataset, the unsupervised embedding using the graph2vec approach delivers the
best results for the original and extended graphs. As for the supervised embeddings
through the GNN models, the efficiency of query strategies is delivered only for the
original graphs, whereas, for expanded graphs, the embedding quality is drastically
decreased, affecting the active learning acquisition functions behaviour. As for the
behaviour of selection methods, they tend to be close to each other, especially in
supervised embeddings. Details about the results can be found in paper 4, section
5.5.2 and appendix B.3 in the same paper.

3.4.2 Diversity
This section will intensely discuss the research question RQ9. Matern kernel is
a model-based kernel commonly used for GP, but it might not be the best for a
particular task. We use the Matern kernel with GP to approximate the uncertainty
for the selection methods in active learning. Our framework so far is able to select
the batch of samples based on the informativeness and representativeness of the
samples elected from the unlabelled pool. Thus, we select the batch of top-|B| data
points from Ui according to:

σ(x): B∗ = arg maxB⊆Ui,|B|=B

∑
x∈B σ(x)

30 3.5. Contributions

where B is the batch size and σ(x) is the variance of the model in data point x.
As a result of that, diversity is still not preserved in our framework. In Diversity,
the selection methods select the samples that are diverse and different from each
other. We extend our framework to be a deep mode active learning framework
by using NN as a deep learning model, which requires the use of an NTK kernel
such that we can utilize GP posterior uncertainties for active learning. The NN is
used to learn and approximate the kernel in order to find similarities between the
data points and preserve the diversity. We chose the NTK kernel as a corresponding
base kernel compatible with the NN. Then, kernel transformations (i.e., scaling,
sketching, or GP posterior) are employed to improve the kernel approximation.
GP is then used based on the kernel learned through the NN to approximate the
uncertainty in query strategies. Algorithm 4 in paper 5 clarifies that we preserve
the diversity through the loop (in line 8) by iteratively selecting the data point
and then updating the GP based on the selected data point and the kernel. As in
Algorithm 3 in Paper 5, We get the kernel from the NN model fθ as the gradient of
the last layer ϕll(x) := ∇

W̃ (L)fθT
(x) (line 2). So, instead of taking the gradient of

the entire NN, we only take the gradient of the last layer of the NN, which is now
cheaper. Then, the kernel is used to update the GP and make the selection using
the updated GP and the previously selected data point (line 3). In this context,
GP is only used through the active learning process, whereas the NN is used in the
prediction by obtaining the Pearson correlation score. In this setting, and by using
the NTK kernel alongside an NN, the selection methods tend to reach the best score
quickly. We notice that in this setting, the active learning selection methods vary
from each other in the supervised embedding (Paper 5, Figure 6-b), which was not
the case in the previous setting. That is reasonable because of the diversity and also
because the GNN model training is repeated through the active learning process
based on the extended training set after acquiring the labels (Paper 5, Algorithm
2). In an unsupervised setting, and since we ignore the label for computing the
latent feature space of embedding, the selection methods tend to be close to each
other (Paper 5, Figure 6-a) since we compute the embedding once before the active
learning loop (Paper 5, Algorithm 1). It is also worth mentioning that in this setting,
the consistency of the dataset is also defining the behaviour of selection methods.
Thus, the selection methods fluctuate and vary when we have datasets collected from
diverse sources (Paper 5, Figure 7.). More results are in Paper 5, Section IV-C.

It is worth mentioning that if we use Algorithm 4 in our first framework, then
we can preserve the diversity by using the Maten kernel with GP without the need
for the use of fully connected NN and the NTK kernel since the NN is used to
have a better prediction, and NTK manipulates the embedded data points to find
similarities between the data points by dot products.

3.5 Contributions
This thesis has made several significant contributions, summarized as follows:

• Dataset Collection: We curated a comprehensive dataset encompassing both

Chapter 3. General Overview of The Papers 31

trees and graphs, which we have made available to the research community to
foster further exploration and advancements.

• Analytical Framework for TBNNs: We developed a robust framework
to analyze the behaviour of Tree-Based Neural Networks (TBNNs) in regres-
sion tasks. This framework integrates various architectural models, offering
researchers a versatile tool for extending their investigative studies.

• Dual Transformer Model: Our innovative model addresses limitations inher-
ent in existing TBNNs by effectively utilizing source code tokens for regression
analysis of tree structures, with potential applications extended to other do-
mains characterized by tree-like data and associated textual descriptions.

• TEP-GNN Model: We introduced a Graph Neural Network model designed
for handling regression analyses of large and complex graphs. This model
serves both as a direct tool for researchers and as a benchmark for future
developments in the field.

• Open Source Active Learning Framework for Graphs: We have provided
an open-source implementation of an active learning framework tailored for
graph data. This framework supports diverse configurations and is adapt-
able to a wide array of graph-based applications, significantly broadening its
applicability.

3.6 Limitations and Challenges
In this section, we will present the limitations and challenges of the proposed solutions
in this thesis.

In the development of the TBNN analytical framework, we selectively included
various architectural models. This selective approach means that not all possible
TBNN models were analyzed, which may limit the generalizability of our findings
across all TBNNs.

Furthermore, our active learning framework demands significant computational
resources. This is particularly evident during the iterative training cycles in supervised
active learning, where the GNN model requires retraining with each iteration to
incorporate newly acquired labelled data. This intensive computation can be a
barrier in scaling the application to larger datasets or more frequent updates.

The frameworks and solutions proposed in this thesis can be utilised in any
domain represented as graphs or trees. However, some of our proposed solutions are
domain-specific. Thus, the data-centric AI for AST, by adding control and data flow
edges, as well as the proposed dual transformer based on using source code tokens in
addition to the AST, are domain-specific.

Chapter 4

Concluding Remarks and Future
Works

4.1 Conclusion
In this thesis, we enhance the regression analysis of trees and graphs. By developing
the dual transformer model, we address specific gaps identified in the behaviour of
Tree-Based Neural Networks (TBNNs) within regression contexts. Furthermore, we
enhance tree representations by adding semantically richer edges and converting
these augmented trees into graphs. Our approach also includes refining graph quality
through active learning for label acquisition.

Source code performance prediction is used as a case study. However, we claim
that the approaches proposed can be applied to other domains that can be represented
as trees or graphs since the provided models learn based on the topological structure
of the trees and graphs. The obtained results might be different from one domain to
another. It is worth mentioning that if we would like to enhance the results for a
specific domain, heterogeneous graph learning can be manipulated to consider the
semantics of the nodes and edges of the trees and graphs.

4.2 Future Work
Identifying which parts of the graphs most significantly influence the regression values
is crucial. Multi-agent reinforcement learning could enhance graph explainability by
delving into each subgraph’s complexities and interdependencies.

In our active learning framework, while the model remains fixed across scenarios
with varying selection methods, the impact of the model on these methods warrants
further investigation. Enhancing the model could potentially improve selection
method behaviours. Therefore, proposing a dynamic active learning process, possibly
through meta-learning, could be beneficial. This approach would allow for adjust-
ments or changes in the model’s architecture in response to different query strategies.
Additionally, exploring how model hyperparameterization affects the behaviour of
active learning acquisition functions will be an important area of study.

33

Bibliography

Adams, Dean C. and Michael L. Collyer (2019). “Phylogenetic Comparative Methods
and the Evolution of Multivariate Phenotypes”. In: Annual Review of Ecology,
Evolution, and Systematics 50.Volume 50, 2019, pp. 405–425. issn: 1545-2069.
doi: https://doi.org/10.1146/annurev-ecolsys-110218-024555 (cit. on
p. 3).

Åkerblom, Niklas, Fazeleh Sadat Hoseini, and Morteza Haghir Chehreghani (2023).
“Online learning of network bottlenecks via minimax paths”. In: Machine Learning
112.1, pp. 131–150 (cit. on p. 3).

Alon, Uri, Meital Zilberstein, Omer Levy, and Eran Yahav (Jan. 2019). “Code2vec:
Learning Distributed Representations of Code”. In: Proc. ACM Program. Lang.
3.POPL. doi: 10.1145/3290353 (cit. on p. 22).

Arregui-García, Beatriz, Antonio Longa, Quintino Francesco Lotito, Sandro Meloni,
and Giulia Cencetti (2024). “Patterns in temporal networks with higher-order
egocentric structures”. In: Entropy 26.3, p. 256 (cit. on p. 9).

Baesens, Bart, Sebastiaan Höppner, and Tim Verdonck (2021). “Data engineering for
fraud detection”. In: Decision Support Systems 150. Interpretable Data Science
For Decision Making, p. 113492. issn: 0167-9236. doi: https://doi.org/10.
1016/j.dss.2021.113492 (cit. on p. 10).

Bi, Wendong, Xueqi Cheng, Bingbing Xu, Xiaoqian Sun, Li Xu, and Huawei Shen
(2023). “Bridged-GNN: Knowledge Bridge Learning for Effective Knowledge Trans-
fer”. In: Proceedings of the 32nd ACM International Conference on Information
and Knowledge Management. CIKM ’23. <conf-loc>, <city>Birmingham</city>,
<country>United Kingdom</country>, </conf-loc>: Association for Computing
Machinery, pp. 99–109. isbn: 9798400701245. doi: 10.1145/3583780.3614796
(cit. on p. 4).

Bongini, Pietro, Monica Bianchini, and Franco Scarselli (2021). “Molecular generative
Graph Neural Networks for Drug Discovery”. In: Neurocomputing 450, pp. 242–
252. issn: 0925-2312. doi: https://doi.org/10.1016/j.neucom.2021.04.039
(cit. on p. 3).

Cacciarelli, Davide, Murat Kulahci, and John Sølve Tyssedal (2024). “Robust on-
line active learning”. In: Quality and Reliability Engineering International 40.1,
pp. 277–296. doi: https : / / doi . org / 10 . 1002 / qre . 3392. eprint: https :
//onlinelibrary.wiley.com/doi/pdf/10.1002/qre.3392 (cit. on p. 4).

Cai, Hongyun, Vincent W. Zheng, and Kevin Chen-Chuan Chang (2017). Active
Learning for Graph Embedding. arXiv: 1705.05085 [cs.LG] (cit. on p. 4).

35

https://doi.org/https://doi.org/10.1146/annurev-ecolsys-110218-024555
https://doi.org/10.1145/3290353
https://doi.org/https://doi.org/10.1016/j.dss.2021.113492
https://doi.org/https://doi.org/10.1016/j.dss.2021.113492
https://doi.org/10.1145/3583780.3614796
https://doi.org/https://doi.org/10.1016/j.neucom.2021.04.039
https://doi.org/https://doi.org/10.1002/qre.3392
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qre.3392
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qre.3392
https://arxiv.org/abs/1705.05085

36 Bibliography

Caramalau, Razvan, Binod Bhattarai, and Tae-Kyun Kim (June 2021). “Sequen-
tial Graph Convolutional Network for Active Learning”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 9583–9592 (cit. on p. 4).

Cardia, Marco, Massimiliano Luca, and Luca Pappalardo (2022). “Enhancing crowd
flow prediction in various spatial and temporal granularities”. In: Companion
Proceedings of the Web Conference 2022, pp. 1251–1259 (cit. on p. 9).

Cramer, Aurora Linh, Vincent Lostanlen, Andrew Farnsworth, Justin Salamon, and
Juan Pablo Bello (2020). “Chirping up the Right Tree: Incorporating Biological
Taxonomies into Deep Bioacoustic Classifiers”. In: ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 901–905. doi: 10.1109/ICASSP40776.2020.9052908 (cit. on p. 3).

Cummins, Chris, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler, and Hugh
Leather (2020). ProGraML: Graph-based Deep Learning for Program Optimization
and Analysis. arXiv: 2003.10536 [cs.LG] (cit. on p. 20).

Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst (2016). “Convolu-
tional Neural Networks on Graphs with Fast Localized Spectral Filtering”. In:
Advances in Neural Information Processing Systems. Ed. by D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett. Vol. 29 (cit. on p. 26).

Fang, Chunrong, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi (2020).
“Functional Code Clone Detection with Syntax and Semantics Fusion Learning”.
In: Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ISSTA 2020. Virtual Event, USA: Association for Computing
Machinery, pp. 516–527. isbn: 9781450380089. doi: 10.1145/3395363.3397362
(cit. on p. 21).

Hamid, Oussama H. (2022). “From Model-Centric to Data-Centric AI: A Paradigm
Shift or Rather a Complementary Approach?” In: 2022 8th International Con-
ference on Information Technology Trends (ITT), pp. 196–199. doi: 10.1109/
ITT56123.2022.9863935 (cit. on p. 3).

He, Kai, Lixia Yao, JiaWei Zhang, Yufei Li, and Chen Li (Aug. 2021). “Construction
of Genealogical Knowledge Graphs From Obituaries: Multitask Neural Network
Extraction System”. In: J Med Internet Res 23.8, e25670. issn: 1438-8871. doi:
10.2196/25670 (cit. on p. 3).

Hsu, Wei-Ning and Hsuan-Tien Lin (Feb. 2015). “Active Learning by Learning”.
In: Proceedings of the AAAI Conference on Artificial Intelligence 29.1. doi:
10.1609/aaai.v29i1.9597 (cit. on p. 4).

Hu, Shengding, Zheng Xiong, Meng Qu, Xingdi Yuan, Marc-Alexandre Côté, Zhiyuan
Liu, and Jian Tang (2020). “Graph Policy Network for Transferable Active
Learning on Graphs”. In: Advances in Neural Information Processing Systems.
Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33.
Curran Associates, Inc., pp. 10174–10185 (cit. on p. 4).

Hua, Jiayi and Haoyu Wang (2021). “On the Effectiveness of Deep Vulnerability
Detectors to Simple Stupid Bug Detection”. In: 2021 IEEE/ACM 18th Inter-
national Conference on Mining Software Repositories (MSR), pp. 530–534. doi:
10.1109/MSR52588.2021.00068 (cit. on p. 21).

https://doi.org/10.1109/ICASSP40776.2020.9052908
https://arxiv.org/abs/2003.10536
https://doi.org/10.1145/3395363.3397362
https://doi.org/10.1109/ITT56123.2022.9863935
https://doi.org/10.1109/ITT56123.2022.9863935
https://doi.org/10.2196/25670
https://doi.org/10.1609/aaai.v29i1.9597
https://doi.org/10.1109/MSR52588.2021.00068

Bibliography 37

Hua, Wei and Guangzhong Liu (2022). “Transformer-based networks over tree
structures for code classification”. In: Applied Intelligence, pp. 1–15 (cit. on
p. 22).

Huber, Wolfgang, Vincent J Carey, Li Long, Seth Falcon, and Robert Gentleman
(2007). “Graphs in molecular biology”. In: BMC bioinformatics 8.6, pp. 1–14.
doi: 10.1186/1471-2105-8-S6-S8 (cit. on p. 9).

Jain, Lokesh, Rahul Katarya, and Shelly Sachdeva (Apr. 2023). “Opinion Leaders for
Information Diffusion Using Graph Neural Network in Online Social Networks”.
In: ACM Trans. Web 17.2. issn: 1559-1131. doi: 10.1145/3580516 (cit. on p. 3).

Jakubik, Johannes, Michael Vössing, Niklas Kühl, Jannis Walk, and Gerhard Satzger
(2024). “Data-centric artificial intelligence”. In: Business & Information Systems
Engineering, pp. 1–9 (cit. on pp. 10, 11).

Lachi, Veronica, Giovanna Maria Dimitri, Alessandro Di Stefano, Pietro Liò, Monica
Bianchini, and Chiara Mocenni (2023). “Impact of the Covid 19 outbreaks on the
italian twitter vaccination debat: a network based analysis”. In: arXiv preprint
arXiv:2306.02838 (cit. on p. 9).

Li, Zhen, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen
(2021). “SySeVR: A Framework for Using Deep Learning to Detect Software
Vulnerabilities”. In: IEEE Transactions on Dependable and Secure Computing,
pp. 1–1. doi: 10.1109/TDSC.2021.3051525 (cit. on p. 21).

Lin, Hezheng, Xing Cheng, Xiangyu Wu, and Dong Shen (2022). “CAT: Cross
Attention in Vision Transformer”. In: 2022 IEEE International Conference on
Multimedia and Expo (ICME), pp. 1–6. doi: 10.1109/ICME52920.2022.9859720
(cit. on p. 3).

Longa, Antonio, Giulia Cencetti, Sune Lehmann, Andrea Passerini, and Bruno Lepri
(2024). “Generating fine-grained surrogate temporal networks”. In: Communica-
tions Physics 7.1, p. 22 (cit. on p. 9).

Longa, Antonio, Giulia Cencetti, Bruno Lepri, and Andrea Passerini (2022). “An
efficient procedure for mining egocentric temporal motifs”. In: Data Mining and
Knowledge Discovery, pp. 1–24 (cit. on p. 9).

Mauro, Giovanni, Massimiliano Luca, Antonio Longa, Bruno Lepri, and Luca Pap-
palardo (2022). “Generating mobility networks with generative adversarial net-
works”. In: EPJ data science 11.1, p. 58 (cit. on p. 9).

Miller, Kevin, Jack Mauro, Jason Setiadi, Xoaquin Baca, Zhan Shi, Jeff Calder,
and Andrea L. Bertozzi (2022). “Graph-based active learning for semi-supervised
classification of SAR data”. In: Algorithms for Synthetic Aperture Radar Imagery
XXIX. Ed. by Edmund Zelnio and Frederick D. Garber. Vol. 12095. International
Society for Optics and Photonics. SPIE, p. 120950C. doi: 10.1117/12.2618847
(cit. on p. 4).

Min, Shengjie, Zhan Gao, Jing Peng, Liang Wang, Ke Qin, and Bo Fang (2021).
“STGSN — A Spatial–Temporal Graph Neural Network framework for time-
evolving social networks”. In: Knowledge-Based Systems 214, p. 106746. issn:
0950-7051. doi: https://doi.org/10.1016/j.knosys.2021.106746 (cit. on
p. 3).

https://doi.org/10.1186/1471-2105-8-S6-S8
https://doi.org/10.1145/3580516
https://doi.org/10.1109/TDSC.2021.3051525
https://doi.org/10.1109/ICME52920.2022.9859720
https://doi.org/10.1117/12.2618847
https://doi.org/https://doi.org/10.1016/j.knosys.2021.106746

38 Bibliography

Mou, Lili, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin (2016). “Convolutional Neural
Networks over Tree Structures for Programming Language Processing”. In: Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI’16.
Phoenix, Arizona: AAAI Press, pp. 1287–1293 (cit. on p. 22).

Nguyen, Anna, Antonio Longa, Massimiliano Luca, Joe Kaul, and Gabriel Lopez
(2022). “Emotion Analysis Using Multilayered Networks for Graphical Represen-
tation of Tweets”. In: IEEE Access 10, pp. 99467–99478 (cit. on p. 9).

Niesler, T.R. and P.C. Woodland (1996). “A variable-length category-based n-gram
language model”. In: 1996 IEEE International Conference on Acoustics, Speech,
and Signal Processing Conference Proceedings. Vol. 1, 164–167 vol. 1. doi: 10.
1109/ICASSP.1996.540316 (cit. on p. 19).

Peng, Han, Ge Li, Wenhan Wang, YunFei Zhao, and Zhi Jin (2021). “Integrating
Tree Path in Transformer for Code Representation”. In: Advances in Neural
Information Processing Systems. Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan. Vol. 34. Curran Associates, Inc., pp. 9343–
9354 (cit. on p. 3).

Rasmussen, Carl Edward and Christopher K. I. Williams (2005). Gaussian Processes
for Machine Learning (Adaptive Computation and Machine Learning). The MIT
Press. isbn: 026218253X (cit. on p. 29).

Ren, Mu, Ziwei Fan, Jianjun Wu, Li Zhou, and Zhiping Du (2019). “Design and
Optimization of Underground Logistics Transportation Networks”. In: IEEE
Access 7, pp. 83384–83395. doi: 10.1109/ACCESS.2019.2924438 (cit. on p. 3).

Roy, Deboleena, Priyadarshini Panda, and Kaushik Roy (2020). “Tree-CNN: A
hierarchical Deep Convolutional Neural Network for incremental learning”. In:
Neural Networks 121, pp. 148–160. issn: 0893-6080. doi: https://doi.org/10.
1016/j.neunet.2019.09.010 (cit. on p. 3).

Sambasivan, Nithya, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen
Paritosh, and Lora M Aroyo (2021). ““Everyone wants to do the model work,
not the data work”: Data Cascades in High-Stakes AI”. In: CHI ’21. <conf-
loc>, <city>Yokohama</city>, <country>Japan</country>, </conf-loc>:
Association for Computing Machinery. isbn: 9781450380966. doi: 10.1145/
3411764.3445518 (cit. on p. 11).

Samoaa, Hazem Peter, Firas Bayram, Pasquale Salza, and Philipp Leitner (2022).
“A systematic mapping study of source code representation for deep learning
in software engineering”. In: IET Software 16.4, pp. 351–385. doi: https://
doi.org/10.1049/sfw2.12064. eprint: https://ietresearch.onlinelibrary.
wiley.com/doi/pdf/10.1049/sfw2.12064 (cit. on pp. 18, 21).

Samoaa, Hazem Peter, Antonio Longa, Mazen Mohamad, Morteza Haghir Chehreghani,
and Philipp Leitner (2022). “TEP-GNN: Accurate Execution Time Prediction
of Functional Tests Using Graph Neural Networks”. In: Product-Focused Software
Process Improvement. Ed. by Davide Taibi, Marco Kuhrmann, Tommi Mikkonen,
Jil Klünder, and Pekka Abrahamsson. Cham: Springer International Publishing,
pp. 464–479. isbn: 978-3-031-21388-5 (cit. on pp. 11, 24).

Samoaa, Peter (2023 2023). “Data-Centric AI for Software Performance Engineering
- Predicting Workload Dependent and Independent Performance of Software

https://doi.org/10.1109/ICASSP.1996.540316
https://doi.org/10.1109/ICASSP.1996.540316
https://doi.org/10.1109/ACCESS.2019.2924438
https://doi.org/https://doi.org/10.1016/j.neunet.2019.09.010
https://doi.org/https://doi.org/10.1016/j.neunet.2019.09.010
https://doi.org/10.1145/3411764.3445518
https://doi.org/10.1145/3411764.3445518
https://doi.org/https://doi.org/10.1049/sfw2.12064
https://doi.org/https://doi.org/10.1049/sfw2.12064
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/sfw2.12064
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/sfw2.12064

Bibliography 39

Systems Using Machine Learning Based Approaches”. English. PhD thesis, p. 57.
isbn: 9798377684701. url: http://proxy.lib.chalmers.se/login?url=
https://www.proquest.com/dissertations- theses/data- centric- ai-
software- performance- engineering/docview/2800163992/se- 2 (cit. on
p. 4).

Samoaa, Peter, Linus Aronsson, Morteza Haghir Chehreghani, Philipp Leitner, and
Morteza Haghir Chehreghani (2023). “Batch Mode Deep Active Learning for
Regression on Graph Data”. In: 2023 IEEE International Conference on Big
Data (BigData), pp. 5904–5913. doi: 10.1109/BigData59044.2023.10386685
(cit. on p. 27).

Samoaa, Peter, Linus Aronsson, Antonio Longa, Philipp Leitner, and Morteza Haghir
Chehreghani (2023). A Unified Active Learning Framework for Annotating Graph
Data with Application to Software Source Code Performance Prediction. arXiv:
2304.13032 (cit. on p. 27).

Samoaa, Peter, Mehrdad Farahani, Antonio Longa, Philipp Leitner, and Morteza
Haghir Chehreghani (2024). Analysing the Behaviour of Tree-Based Neural Net-
works in Regression Tasks. arXiv: 2406.11437 (cit. on p. 21).

Sener, Ozan and Silvio Savarese (2018). Active Learning for Convolutional Neural
Networks: A Core-Set Approach. arXiv: 1708.00489 [stat.ML]. url: https:
//arxiv.org/abs/1708.00489 (cit. on p. 29).

Settles, Burr (2009). “Active learning literature survey”. In: (cit. on pp. 4, 13).
Sironi, Chiara Federica (Nov. 2019). “Monte-Carlo Tree Search for Artificial Gen-

eral Intelligence in Games”. English. PhD thesis. Maastricht University. isbn:
9789463805537. doi: 10.26481/dis.20191113cs (cit. on p. 3).

Suissa, Omri, Maayan Zhitomirsky-Geffet, and Avshalom Elmalech (2023). “Ques-
tion answering with deep neural networks for semi-structured heterogeneous
genealogical knowledge graphs”. In: Semantic Web 14.2, pp. 209–237 (cit. on
p. 3).

Sun, Zeyu, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang (Apr.
2020). “TreeGen: A Tree-Based Transformer Architecture for Code Generation”.
In: Proceedings of the AAAI Conference on Artificial Intelligence 34.05, pp. 8984–
8991. doi: 10.1609/aaai.v34i05.6430 (cit. on p. 3).

Talak, Rajat, Siyi Hu, Lisa Peng, and Luca Carlone (2021). “Neural Trees for Learning
on Graphs”. In: Advances in Neural Information Processing Systems. Ed. by M.
Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan.
Vol. 34. Curran Associates, Inc., pp. 26395–26408 (cit. on p. 3).

Teller, Virginia (Dec. 2000). “Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech Recog-
nition”. In: Computational Linguistics 26.4, pp. 638–641. issn: 0891-2017. doi:
10 . 1162 / 089120100750105975. eprint: https : / / direct . mit . edu / coli /
article-pdf/26/4/638/1797597/089120100750105975.pdf (cit. on p. 19).

Thangaramya, K., G. Logeswari, G. Sudhakaran, R. Aadharsh, S. Bhuvaneshwar,
R. Dheepakraaj, and Parasu Sunny (2024). “Predicting Optimal Moves in Chess
Board Using Artificial Intelligence”. In: Cognitive Analytics and Reinforcement
Learning. John Wiley and Sons, Ltd. Chap. 4, pp. 73–101. isbn: 9781394214068.

http://proxy.lib.chalmers.se/login?url=https://www.proquest.com/dissertations-theses/data-centric-ai-software-performance-engineering/docview/2800163992/se-2
http://proxy.lib.chalmers.se/login?url=https://www.proquest.com/dissertations-theses/data-centric-ai-software-performance-engineering/docview/2800163992/se-2
http://proxy.lib.chalmers.se/login?url=https://www.proquest.com/dissertations-theses/data-centric-ai-software-performance-engineering/docview/2800163992/se-2
https://doi.org/10.1109/BigData59044.2023.10386685
https://arxiv.org/abs/2304.13032
https://arxiv.org/abs/2406.11437
https://arxiv.org/abs/1708.00489
https://arxiv.org/abs/1708.00489
https://arxiv.org/abs/1708.00489
https://doi.org/10.26481/dis.20191113cs
https://doi.org/10.1609/aaai.v34i05.6430
https://doi.org/10.1162/089120100750105975
https://direct.mit.edu/coli/article-pdf/26/4/638/1797597/089120100750105975.pdf
https://direct.mit.edu/coli/article-pdf/26/4/638/1797597/089120100750105975.pdf

40 Bibliography

doi: https : / / doi . org / 10 . 1002 / 9781394214068 . ch4. eprint: https : / /
onlinelibrary.wiley.com/doi/pdf/10.1002/9781394214068.ch4 (cit. on
p. 3).

Wang, Qunbo, Wenjun Wu, Yongchi Zhao, and Yuzhang Zhuang (2021). “Graph active
learning for GCN-based zero-shot classification”. In: Neurocomputing 435, pp. 15–
25. issn: 0925-2312. doi: https://doi.org/10.1016/j.neucom.2020.12.127
(cit. on p. 4).

Wei, Hui-Hui and Ming Li (2017). “Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source
Code”. In: Proceedings of the 26th International Joint Conference on Artificial
Intelligence. IJCAI’17. Melbourne, Australia: AAAI Press, pp. 3034–3040. isbn:
9780999241103 (cit. on p. 22).

Weisfeiler, Boris and Andrei Leman (1968). “The reduction of a graph to canonical
form and the algebra which appears therein”. In: NTI, Series 2.9, pp. 12–16
(cit. on p. 12).

White, M., M. Tufano, C. Vendome, and D. Poshyvanyk (2016). “Deep learning
code fragments for code clone detection”. In: 2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE) (cit. on p. 22).

Whitehouse, Logan S., Dylan Ray, and Daniel R. Schrider (2024). “Tree sequences
as a general-purpose tool for population genetic inference”. In: bioRxiv. doi:
10.1101/2024.02.20.581288. eprint: https://www.biorxiv.org/content/
early/2024/02/21/2024.02.20.581288.full.pdf (cit. on p. 3).

Wu, Dongrui (2019). “Pool-Based Sequential Active Learning for Regression”. In:
IEEE Transactions on Neural Networks and Learning Systems 30.5, pp. 1348–
1359. doi: 10.1109/TNNLS.2018.2868649 (cit. on p. 4).

Wu, Yuexin, Yichong Xu, Aarti Singh, Artur Dubrawski, and Yiming Yang (2020).
Active Learning Graph Neural Networks via Node Feature Propagation (cit. on
p. 4).

Yamaguchi, Fabian, Nico Golde, Daniel Arp, and Konrad Rieck (2014). “Modeling
and Discovering Vulnerabilities with Code Property Graphs”. In: 2014 IEEE
Symposium on Security and Privacy, pp. 590–604. doi: 10.1109/SP.2014.44
(cit. on pp. 18, 20).

Ye, Xian-bin, Quanlong Guan, Weiqi Luo, Liangda Fang, Zhao-Rong Lai, and Jun
Wang (2022). “Molecular substructure graph attention network for molecular
property identification in drug discovery”. In: Pattern Recognition 128, p. 108659.
issn: 0031-3203. doi: https://doi.org/10.1016/j.patcog.2022.108659
(cit. on p. 3).

Zha, Daochen, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang,
Shaochen Zhong, and Xia Hu (2023). Data-centric Artificial Intelligence: A
Survey. arXiv: 2303.10158 (cit. on p. 11).

Zha, Daochen, Kwei-Herng Lai, Qiaoyu Tan, Sirui Ding, Na Zou, and Xia Ben
Hu (2022). “Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning”. In: Proceedings of the 31st ACM International Confer-
ence on Information & Knowledge Management. CIKM ’22. Atlanta, GA, USA:

https://doi.org/https://doi.org/10.1002/9781394214068.ch4
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781394214068.ch4
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781394214068.ch4
https://doi.org/https://doi.org/10.1016/j.neucom.2020.12.127
https://doi.org/10.1101/2024.02.20.581288
https://www.biorxiv.org/content/early/2024/02/21/2024.02.20.581288.full.pdf
https://www.biorxiv.org/content/early/2024/02/21/2024.02.20.581288.full.pdf
https://doi.org/10.1109/TNNLS.2018.2868649
https://doi.org/10.1109/SP.2014.44
https://doi.org/https://doi.org/10.1016/j.patcog.2022.108659
https://arxiv.org/abs/2303.10158

Bibliography 41

Association for Computing Machinery, pp. 2476–2485. isbn: 9781450392365. doi:
10.1145/3511808.3557474 (cit. on p. 11).

Zhang, J., X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu (2019). “A Novel
Neural Source Code Representation Based on Abstract Syntax Tree”. In: 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE),
pp. 783–794. doi: 10.1109/ICSE.2019.00086 (cit. on p. 22).

https://doi.org/10.1145/3511808.3557474
https://doi.org/10.1109/ICSE.2019.00086

Part II

Appended papers

45

Paper 1

A systematic mapping study of source code representation
for deep learning in software engineering

Peter Samoaa, Firas Bayram, Pasquale Salza, Philipp Leitner

Journal of IET Software, 2022

Received: 17 December 2021 - Revised: 16 May 2022 - Accepted: 20 May 2022 - IET Software
DOI: 10.1049/sfw2.12064

REV I EW

A systematic mapping study of source code representation for
deep learning in software engineering

Hazem Peter Samoaa1 | Firas Bayram2 | Pasquale Salza3 | Philipp Leitner1

1Software Engineering and Interaction Design
Division, Chalmers | University of Gothenburg,
Gothenburg, Sweden

2Department of Mathematics and Computer Science,
Karlstad University, Karlstad, Sweden

3Software Evolution & Architecture Lab, University
of Zurich, Zurich, Switzerland

Correspondence

Hazem Peter Samoaa, Software Engineering and
InteractionDesignDivision,Chalmers |University of
Gothenburg, Lindholmsplatsen 1, Kuggen building,
Room 22, Floor 3, 417 56, Gothenburg, Sweden.
Email: samoaa@chalmers.se

Funding information

Melise – Machine Learning Assisted Software
Development, Grant/Award Number: Swiss
National Science Foundation/SNSF 20; AIDA – A
Holistic AI‐driven Networking and Processing
Framework for Industrial IoT, Grant/Award
Number: Knowledge Foundation of Sweden/
Rek:2020006; Developer‐Targeted Performance
Engineering for Immersed Release and Software
Engineers, Grant/Award Number: Swedish
Research Council VR/2018‐04127

Abstract
The usage of deep learning (DL) approaches for software engineering has attracted much
attention, particularly in source code modelling and analysis. However, in order to use
DL, source code needs to be formatted to fit the expected input form of DL models.
This problem is known as source code representation. Source code can be represented via
different approaches, most importantly, the tree‐based, token‐based, and graph‐based
approaches. We use a systematic mapping study to investigate i detail the representa-
tion approaches adopted in 103 studies that use DL in the context of software engi-
neering. Thus, studies are collected from 2014 to 2021 from 14 different journals and 27
conferences. We show that each way of representing source code can provide a different,
yet orthogonal view of the same source code. Thus, different software engineering tasks
might require different (combinations of) code representation approaches, depending on
the nature and complexity of the task. Particularly, we show that it is crucial to define
whether the DL approach requires lexical, syntactical, or semantic code information. Our
analysis shows that a wide range of different representations and combinations of rep-
resentations (hybrid representations) are used to solve a wide range of common software
engineering problems. However, we also observe that current research does not generally
attempt to transfer existing representations or models to other studies even though there
are other contexts in which these representations and models may also be useful. We
believe that there is potential for more reuse and the application of transfer learning when
applying DL to software engineering tasks.

1 | INTRODUCTION

Machine learning (ML), and nowadays deep learning (DL), is
increasingly used by software engineering (SE) researchers and
practitioners for a wide range of tasks. Examples include source
code classification [1–3], code clone detection [4–6], bug
detection [7–9], or code summarisation [10–12]. The current
interest in DL is enabled by the wide availability of large‐scale
data (e.g., through open‐source systems hosted on platforms,
such as GitHub). Particularly, DL is interesting to researchers as
it promises good results (e.g., highly accurate code clone
detection) without the need for cumbersome (and often
limiting) explicit feature extraction process from the raw data as
it is required by traditional machine learning models [13].

In classical machine learning approaches, a considerable
amount of effort goes to the design of proper ways to capture
the structure of the data, that is, feature engineering, which is a
“human” effort in most of the cases. This is the reason why, in
the last decade, attention in machine learning is moving to
‘representation learning’, which consists of automatically
extracting or learning features without the need of human
feature engineering. In representation learning, feature engi-
neering and selection phases are taken away and replaced with
deep learning neural networks. DL models are composed of
multiple layers to learn data representations with multiple
higher levels of abstraction [14]. The networks are supposed to
learn the data representation automatically, simulating the hu-
man brain for learning and analysis. Moreover, neural networks

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the
original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

© 2022 The Authors. IET Software published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Soft. 2022;16:351–385. wileyonlinelibrary.com/journal/sfw2 - 351

can be used to learn a representation of input data, such as
program source code.

However, using a DL model does not entirely free re-
searchers from all preparatory work. In order to use these
techniques, appropriate features first need first to be extracted
from the program source code and represented in a way the
DL model can understand. This process is known as 'code
representation'. Code representation is the process of trans-
forming the textual program source code into a generic input
format acceptable to the DL model [15]. Researchers can make
use of different representation approaches, depending on the
kind of information that needs to be extracted. Examples
include token‐based representation for lexical information,
tree‐based for extract syntactical information, and graph‐based
for semantic information.

No single DL and code representation approach is a silver
bullet that works ideally on every case. Furthermore, in prac-
tice, choosing a suitable code representation approach is not
trivial as the choice is heavily impacted not only by which DL
models should be employed, but also by the requirements of
the software engineering task that should be addressed. Some
problems might require to focus on the semantics of the code
rather than the syntax. For example, a research contribution in
code summarization will require different types of information
to be extracted than a clone detection approach. Currently,
there is no study that has investigated which representation
approaches are predominantly used for which types of prob-
lems, nor is there collective evidence regarding which ap-
proaches work better for which use cases.

In this paper, we address this gap through a systematic
mapping study. We systematically collected a dataset of 103
studies published between 2014 and 2021 in 20 different
conferences and journals. Our primary goal was to investigate
academic studies that propose or evaluate the usage of DL
and code representation to address practical software engi-
neering tasks, such as source code classification [1] or code
clone detection [5]. Our main acceptance criterion was that
studies needed to (a) employ DL to address a practical
software engineering task (excluding studies that use DL as a
tool to conduct software engineering research, such as
identifying automated code contributions [16]), and (b)
explicitly discuss their code representation approach. The
goal of this study is to provide an exhaustive analysis and
overview on the progress achieved in using DL models in
different software engineering tasks. We further discuss cur-
rent best practices and elaborate on gaps in the current state
of research.

We show that each way of code representation can provide
a different, yet orthogonal view of the same source code. Thus,
different SE tasks might require different (combinations of)
code representation approaches, depending on the nature and
complexity of the task. Particularly, we show that it is crucial to
define whether the DL approaches require lexical, syntactical,
or semantic code information. Our analysis shows that a wide
range of different representations are used to tackle a wide
range of common SE problems. We find that all three major
types of code representation (token‐, tree‐, and graph‐based)

are employed, but tree‐based (typically based on Abstract
Syntax Trees, ASTs) approaches are currently the most used.
Graph‐based representations are not yet common, but a
growing area of research. Hybrid representations, which
combine different representations approaches in a single
approach, are also seeing increasing use.

Nevertheless, our results also show a lack of generaliz-
ability of the presented approaches to other tasks as well as a
lack of validation based on industrial datasets. Most studies
construct models for a single limited‐scope task based on
open‐source data and rarely validate the constructed model
outside of the open‐source domain. Evidently, industrial
datasets are not inherently superior to open‐source ones.
However, during our review, it became clear that virtually all
analysed studies are based on open‐source data, published data
sets (which are often also constructed based on open‐source
data), or in some cases, artificial data. We argue that this
limits the generalizability of the investigated studies to closed‐
source industrial applications and denotes a gap in the current
research.

The rest of this paper is structured as follows. We present
necessary background about code representation in Section 2.
In Section 3, we detail the applied mapping study methodology
and research questions and also provide an overview of the 103
papers that form the basis of our discussion. Afterwards, in
Sections 4–8, we elaborate on the findings of the mapping
study per research question. This is followed by presenting the
research gaps and challenges in Section 9 and potential future
directions in Section 10. Finally, we conclude the paper in
Section 11.

2 | PRELIMINARIES

To contextualise the rest of this study, we now present some
background about code representation. In particular, we
introduce three possible forms about how source code can be
represented in DL. In the literature, the code representation
approaches are classified into four categories: Token‐based,
tree‐based, graph‐based, and others [17]. Every form maps
different syntactical and semantic aspects of the source code to
a specific data structure. These representations can then be
embedded in a neural network so that they can use source code
as input.

Source code is originally a text encoding representing a
programme. This can be processed and further transformed
into different representations forms. In this section, we
describe three well‐known representations, each one mapping
certain aspects of the original source code. We use the C
snippet depicted in Listing 1 as a running example.

Listing 1 Example of C code

1 void foo() {
2 int x = source();
3 if(x < MAX) {
4 int y = 2*x;

352 - SAMOAA ET AL.

5 sink(y);
6 }
7 }

2.1 | Token‐based representation
This representation treats code as free text. Thus, it converts
the code into a list of tokens where each word (e.g., “void”) is a
token, but each special character (e.g., ‘(’) is also a token (rather
than considering it as part of a word). An example is given in
Listing 2.

Listing 2 Token representation for the code in
Listing 1

1 ['void', 'foo', '(', ')', '{', 'int',
'x',
2 '=', 'source', '(', ')', ';', 'if',
'(', 'x', '<', 'MAX', ')', '{', 'int', 'y',
'=',
3 '2*x', ';', 'sink', '(', 'y', ')', ';',
'}', '}']

Then, each token will be encoded into a vector of numbers
using different statistical language models, such as word
embedding [18] or n‐grams [19]. In principle, word embedding is
a learned representation for text where words that have the same
meaning get a similar representation. Technically, word embed-
dings are a class of techniques where individual words are rep-
resented as real‐valued vectors in a predefined vector space [20].
Each word is mapped to one vector and the vector values are
learned in a way that resembles a neural network and hence, the
technique is often lumped into the field of DL. As for n‐grams,
they are useful abstractions for modelling sequential data, such as
text, where there are dependencies among the terms in a
sequence. However, a corpus of code can be regarded as a
sequence of sequences, and corpus‐based models, such as n‐
grams, learn conditional probability distributions from the or-
der of terms in a corpus. Corpus‐based models can be used for
many different types of tasks, such as discriminating instances of
data or generating new data that are characteristic of a domain.
Embeddings can be considered as a way to represent words and
help theDLmodel to learn the representationof the source code.
N‐grams are several words appearing together. An embedding
can be trained to represent n‐grams or just individual words.

2.2 | Tree‐based representation
This representation treats the abstract syntactic structure of the
source code. ASTs are a kind of tree representation approach
that is widely used by a programming language and SE tools.

Figure 1 shows an example of an AST representation. The
nodes of the AST tree are related to constructs or symbols of

the source code. In comparison to the token‐based approach,
AST representation is abstract and does not include all avail-
able details, such as punctuation and delimiters. Theoretically,
ASTs can be used to illustrate the lexical information and the
syntactic structure of source code, such as the function name,
and the flow of the instructions (e.g., in an if or while
construct). Recently, some approaches combined neural net-
works and ASTs to constitute tree‐based neural networks
(TNNs) [21]. Given a tree, TNNs learn the vector represen-
tation by recursively computing node embeddings in a bottom‐
up way. Popular TNN models are the Recursive Neural
Network (RvNN) [22], Tree‐based Convolutional Neural
Network (TBCNN) [3], and Tree‐based Long Short‐Term
Memory (Tree‐LSTM) [23].

2.3 | Graph‐based representation
In this approach, source code is represented as a graph on
many different levels. Levels of representation will define the
type of the representation graph. Thus, a control flow graph
(CFG, see Figure 2a) describes the sequence in which the in-
structions of a programme will be executed. Thus, the graph is
determined by conditional statements, for example, if, for, and
switch statements. In CFGs, nodes denote statements and
conditions, and they are connected by directed edges to indi-
cate the transfer of control.

Alternatively, the representation might be a data flow that is
variable‐oriented. Thus, a data flow graph (DFG) is used to
follow and track the usage of the variables through the CFG. A
DFG edge represents the subsequent access or modification
onto the same variables. Call flow graph (CallFG) captures the
relation between a statement which calls a function and the
called function [24]. Finally, the entire programme can be
represented as a graph using a programme dependency graph
(PDG, see Figure 2b), where statements and predicate ex-
pressions can be characterised by the nodes. In this study, we
differentiate between the tree‐ and graph‐based approaches
since each representation approach is used to retrieve a

F I GURE 1 Abstract syntax tree for the code snippet in Listing 1

SAMOAA ET AL. - 353

different level of information from the source code. Thus, the
tree‐based approach, such as using the AST, is used to extract
the syntactical information from the source code [21], whereas
graph‐based approaches, such CFG or DFG, extract semantic
information [25].

3 | RESEARCH METHODOLOGY

Our goal is to study what code representation approaches are
used in combination with DL within the field of software
engineering, and which code representation approaches are
suitable for which tasks. Our primary method is a systematic
mapping study. Systematic Mapping studies are a commonly
used research method to systematically analyse a mature body
of research and to derive recommendations from a disparate,
large body of published works.

3.1 | Research questions

To effectively conduct a systematic mapping study, it is crucial
to have well‐defined research questions. The research ques-
tions analyse the main attributes of the study, which are code
representation, DL, and tackled software engineering tasks, on
multiple levels. In the following, we present the headlines of
our research questions along with the corresponding detailed
questions.

RQ 1 Main Attributes Analysis

In RQ1, we are primarily interested in which software
engineering tasks, DL models, and code representation ap-
proaches are currently prominently investigated in the field of
study.

RQ 1.1 Software Engineering Tasks: For which software
engineering tasks are DL and code representation being
used?

This research question explores the software engineering
problems that are commonly tackled with DL using the code
representation. This is crucial to contextualise and further
analyse our subsequent findings.

RQ 1.2 DL Models: Which DL models are being used in
conjunction with code representation in software engi-
neering research?

While other review studies DL and SE tasks in more de-
tails, our goal is also to investigate what DL models are spe-
cifically used with a strong emphasis on code representation.

RQ 1.3 Code Representation Approaches: Which code
representation approaches are being used?

Finally, it is evidently important to our study goal to
identify the basic code representation approaches that litera-
ture currently has to offer to software engineering researchers.

RQ 2 Detailed Analysis Based on SE Tasks

Within RQ2, we conduct a deeper analysis of our dataset to
identify which code representation approaches, on one side,
and DL, on the other side, are commonly used to tackle which
kinds of problems. Particularly, we are interested in identifying
characteristics and commonalities of tasks that make them
particularly amenable to a specific type of representation or
model.

RQ 2.1 Tasks and Models: Which DL models are being
used to tackle which software engineering tasks?

Firstly, we correlate software engineering tasks with used
DL models with the goal of identifying which models are
particularly suitable to solve which tasks.

RQ 2.2 Tasks and Representations: Which software en-
gineering tasks and representation approaches are being
used?

Secondly, we further correlate software engineering tasks
with used code representation approaches.

RQ 3 Main Attributes‐ Cross Analysis—Which code rep-
resentation and DL models are commonly used ap-
proaches to solve a specific software engineering task?

In RQ3, we perform the analysis on all three main attri-
butes (task, representation, and model) together to map the
code representation and DL models with different software
tasks.

RQ 4 Hybrid Approach Analysis

In RQ4, we analyse the studies that combine different
approaches in one framework. In the rest of this paper, we will

(a) (b)

F I GURE 2 Graph‐based representations for the code snippet in
Listing 1

354 - SAMOAA ET AL.

be referring to the overall solution presented in the retrieved
studies as the 'framework'. These approaches are considered to
provide valuable characteristics since they have either a wider
scope to solve multiple tasks simultaneously, or more powerful
capabilities in fulfilling many requirements by integrating
multiple representation approaches. However, this integration
between multiple approaches would increase the cost of
implementing these (fairly complex) frameworks.

RQ 4.1 Hybrid Software Tasks: What are the characteris-
tics of frameworks that handle multiple software tasks?
How are the different software tasks processed?

We first scrutinise the studies that are set to solve different
software tasks at once. The overarching aim is to elicit insights
into the strategies followed to tackle multiple different tasks.

RQ 4.2 Hybrid Representation Approaches: Which
frameworks utilise multiple representation approaches?
How are the different representations integrated?

In this research question, we study research that exploits
multiple representation approaches at the same time. We also
examine how this integration is carried out to expand the ef-
ficiency of the framework.

RQ 5 Gaps in the Literature: What are current research
gaps and challenges in the software engineering field?

Finally, our study raises the question which promising areas
are currently underexplored, and warrant future research in the
software engineering field.

3.2 | Literature search and selection

To conduct our study, we followed the process outlined in
Figure 3. We used a two‐step method for literature search.
Firstly, we collected an initial set of candidate papers through a
database search. Secondly, we used iterative backward and
forward snowballing to extent this initial candidate set (the
seed).

For constructing the initial candidate set, we have relied on
a single primary search database (Google Scholar) rather than
aggregating results from different digital libraries, such as the
ACM Digital Library or IEEEXplorer. The reason for this was
two‐fold: (1) Google Scholar has a highly complete index, and
it is unlikely that searching in other libraries would lead to
additional search results, and (2) since we heavily made use of
snowballing, completeness of the initial candidate set was
deemed less crucial (as important missing work would appear
during the snowballing process).

The initial candidate list was generated by executing the
following search term on Google Scholar:

code representation for deep learning

We screened the first five pages of search results based on
paper title and abstract. These potentially relevant papers were
then evaluated with regard to our inclusion criteria (see Sec-
tion 3.3). If a paper matched the criteria, it was added to the
study dataset. After five pages (and initial snowballing), we
have observed saturation, that is, investigation of the next two
pages of search results did not lead to further papers matching
the inclusion criteria. Hence, we stopped the search at this
point.

We used explicit backward and forward snowballing to
extend our initial set of candidate papers: for each selected
paper, we further screened the reference list for additional
relevant papers and also used Google Scholar's “cited by”
functionality to discover later papers that have referenced pa-
pers in our initial set. We applied the same basic strategy to
these additional candidate papers (screening based on title and
abstract, followed by an explicit evaluation of inclusion
criteria). This process has been repeated iteratively until no
new papers could be found.

F I GURE 3 Overview of systematic mapping study process

SAMOAA ET AL. - 355

3.3 | Inclusion criteria

To clearly delineate papers that are within the scope of our
study, we defined the following inclusion criteria:

� I1: Published in 2014 or later. We chose 2014 as a cutoff
point because this was the year the TensorFlow system was
initially released.

� I2: Making use of DL as a core contribution of the paper
and explicitly reporting on the used code representation
approach. To illustrate this criterion, we discuss the
following study as a counterexample [26]. In this study,
Laaber et al. tackled an SE task (predictability of system
performance) and the authors used an artificial neural
network (ANN) as a DL model for that task. However, the
authors do not report on a specific code representation
approach as they relied on the static features of the source
code (e.g., lines of code or the number of loops). Hence, this
study does not match the inclusion criterion I2.

� I3: Reporting on research in the wider field of software
engineering. Particularly, we did not include pure DL
research with no clear connection to software engineering.

� I4: Explicitly reporting (a) what software engineering task is
being addressed, (b) what DL model is being used, (c) what
code representation approach is being used, (d) what pro-
gramming language(s) are being used, and (e) on what level
(lines of code or functions/methods) DL is applied.

I1–I3 define the topical relevance to our study goals. I4 was
important to ensure that all the data required for our study are
actually reported by the papers in our dataset. We did not focus
on publications in a specific venue and also accepted unpub-
lished academic preprints if no published version of the paper
exists. To be selected into the dataset, a paper had to fulfill all
the four inclusion criteria.

3.4 | Resulting study dataset

Applying this literature search and selection procedure resulted
in a dataset of 103 relevant studies, which are listed in
Appendix A.

Figure 4 indicates the distribution of the papers in our
dataset over time between 2014 and 2021. It can be observed
that the number of relevant studies has increased over the
years. With only two relevant publications in 2014 to reach 30
publications in 2019, then we observe a slight decline in 2020
(the last complete year in our study) with 19 publications. It is
also interesting to notice the steadily increasing fraction of
publications in academic journals rather than conferences or
workshops.

In Figure 5, we have summarised the conference venues,
which are common targets in this field of study. Conference
venues with only one publication are not depicted in the figure.
Unsurprisingly, ICLR, which is dedicated to presenting the
advancement in representation learning, is the biggest
contributor to our dataset with nine studies. It is followed by

ICSE, which is widely seen as one of the highest ranked
software engineering conferences, with eight studies, and MSR
with seven studies. A smaller subset of our dataset has been
published in ML venues, such as AAAI, NeurIPS, or ICML, or
in programming languages venue, such as PLDI. The abbre-
viations of the venues presented in Figure 5 are listed in
Appendix B.

3.5 | Data extraction, coding, and analysis

To analyse this dataset that answers the research questions of
this study, a coding taxonomy was developed. The taxonomy is
presented in Table 1. We consider the three categories (code
representation approach, DL model, and Software Tasks) as
primary attributes whereas we mentioned the code‐level and
programming languages in RQ2.3, in part related to code
representation. Following our research questions, we iteratively

F I GURE 4 Number of publications per year. “Others” includes
academic workshops and pre‐prints for which no published versions exist

F I GURE 5 Number of publications per distinct conference venue

356 - SAMOAA ET AL.

developed a coding guide with the following top‐level codes:
(1) programming language, (2) code‐level granularity, (3) used
code representation approach, (4) used DL model, and (5) the
software task. Each publication in the dataset was coded by the
first and second authors according to the taxonomy (in addi-
tion to collecting basic bibliographical information, such as the
publication date and venue) with the other authors serving as
sounding board and helping to resolve possible ambiguities.
The resulting data were then analysed and plotted using Python
scripts. We make the final coding sheet as well as the analysis
script available in a replication package [27].

The detailed coding taxonomy is sketched in Table 1 and
discussed in the following.

Programming Language: while DL is in principle not
dependent on a specific programming language, concrete
feature extraction techniques for code representation need to
be built custom for individual programming languages. In our
study, C, C++, C#, Java, JavaScript, and Python have emerged
as target programming languages.

Code‐Level Granularity: programme code can funda-
mentally be represented on different levels in a code repre-
sentation approach. In our study, we distinguish between
approaches that consider methods, functions, or similar as
atomic unit [5, 28], from those that attempt to represent the
programme code on a statement level [29, 30].

Code Representation: as the main target of this research,
different code representation approaches were distinguished

on a fine‐grained level. We distinguish between token‐based,
tree‐based, graph‐based, and other approaches. For token‐
based approaches, word embedding and n‐grams [31] have
emerged as clearly distinct groups. The only tree‐based ap-
proaches [32] in our dataset are based on abstract syntax tree
(AST). For graph‐based approaches [33], we distinguish be-
tween CFG‐, DFG‐, PDG, and CallFG‐based approaches,
which capture the relation between a statement that calls a
function and the called function [24]. Other code representa-
tion approaches that do not fall clearly into these groups are
bytecode, ASCII, code gadget, latent semantic indexing, and
binary visualisation since each approach has appeared only
once in the retrieved list of papers. More examples for each
approach will be mentioned as part of the discussion of results
in Section 8.2.

DL Models: the main DL models that emerged in our
coding as common methods in software engineering research
are ANN [34], Convolutional Neural Network (CNN) [35],
Recurrent Neural Network (RNN) [36], Graph Neural
Network (GNN) [37], Long‐Short Term Memory (LSTM) [38],
and autoencoder and attention mechanism [39]. Additionally,
three further models [deep belief network (DBN), neural
machine translation (NMT), and deep reinforcement learning
(RL)] emerged in two, four, and one publications, respectively,
and we combine those in the group 'Others'. It is worth
mentioning that we distinguished LSTM from RNN and was
listed as a separate type (and not counted when referring to

TABLE 1 Overview of systematic mapping study coding attributes

Code representation approach

Programming
language

Code‐level
granularity

Deep learning models Software task

Tree
based

Graph
based

Token
based Others Main models Others Task Others

AST CFG Embedding ByteCode C Method level ANN DBN Code clone detection Error handling

DFG n‐grams ASCII C++ Statement
level

RNN NMT Code similarity detection Fixing format

PDG Code gadget C# LSTM RL Programme repair Traceability

CallFG LSI Java CNN Code completion Compiler analysis

Binary
visualisation

JavaScript GNN Programme generation Programme
synthesise

Python Auto‐Encoder Vulnerability detection Malicious
behaviour
detection

Attention
mechanism

Source code classification Performance
prediction

Bug detection Code smell
detection

Code summarisation Type signature
prediction

Identifier generation

Code search

Abbreviations: ANN, artificial neural network; AST, abstract syntax tree; CallFG, call flow graph; CFG, control flow graph; CNN, convolutional neural network; DBN, deep belief
network; DFG, data flow graph; GNN, graph neural network; LSI, latent semantic indexing; LSTM, long short‐term memory; NMT, neural machine translation; PDG, programme
dependency graph; RL, reinforcement learning; RNN, recurrent neural network.

SAMOAA ET AL. - 357

RNN) since there are frameworks that combine AST with
LSTM, which is referred as tree LSTM [23], and other
frameworks that combine AST with RNN, which is referred as
RvNN [22].

Software Engineering Tasks: to identify for which
projects' code representation gets used, we also extracted the
one or multiple software engineering tasks from the papers in
the dataset. We observed that many common fields of study
within software engineering were present. Particularly, we
observed works related to code clone detection, code simi-
larity detection [4], programme repair, programme generation
[40], vulnerability detection [41], source code classification [1],
bug detection [42], code summarisation [43], identifier gen-
eration [44], and code search [45]. Other tasks that emerged,
but were investigated less frequently, were related to fixing
formatting [46], traceability [47], compiler analysis [24], pro-
gramme synthesis [10], malicious behaviour detection [48],
performance prediction [49], code smell detection [50], and
error handling [51].

3.6 | Data validation

To conduct a preliminary validation of the completeness of our
data set, we selected five recent studies from high‐profile
software engineering venues that applied machine learning to
one of the tasks in our study (see Table 1). We checked each
reference cited by these recent studies against our inclusion
criteria and validated for each study matching our criteria,
whether they were indeed contained in our study set. No
publications have been found to be missing.

3.7 | Threats to validity

Despite following a well‐defined methodology, a review study
such as ours is always subject to limitations and threats to
validity. We use the classification proposed by Ampatzoglou
et al. [52] to contextualise these threats.

� Construction of the Search Process and General-
isability: We chose to construct our dataset based on an
initial search on Google Scholar followed by extensive
snowballing, rather than a more conventional search strategy
using major digital libraries, such as Scopus, IEEE Xplore,
ScienceDirect, or the ACM Digital Library. We argue that
relying on snowballing leads to a more complete and
comprehensive dataset than traditional search, which suffers
from limitations due to inconsistent naming and

terminology. However, one challenge is that it is hard to
conduct an identical replication of our study since Google
Scholar personalises search results. To mitigate this threat,
we provide a replication package that includes all studied
manuscripts as well as our resulting coding sheet.

� Study Inclusion/Exclusion Bias: DL is a rapidly growing
area of research within software engineering. Hence, we
needed to make decision when to stop accepting newly
appearing papers into our dataset. While we do not believe
that the overall findings would have been impacted if we had
collected studies for a longer period of time, readers should
still take our data collection period in mind when inter-
preting our results.

� Validity of Primary Studies: Four studies in our dataset are
pre‐prints retrieved from arXiv. While those are not peer‐
reviewed, the included studies are highly cited and highly
influential in our field. Hence, we consider it important to
include them in the analysis despite the threat that is
introduced by the lack of peer review.

� Data Extraction Bias: While many of our coding di-
mensions lend themselves to objective categorisation,
judgement calls still needed to be made in some cases. In
these cases, we discussed among the author group to reach a
consensus decision.

4 | AN OVERVIEW OF USAGE OF DEEP
LEARNING IN SE TASKS

This section allows us to establish a general “process” over-
view of the steps required to make DL work in software en-
gineering. While it is not expected that this general framework
will differ drastically from DL in other domains, it will allow us
to put the rest of the survey in context, identify the place of
code representation in this general process, and serve as a
guiding rail for novices to the domain. Thus, we provide a
general framework of code representation and DL models'
usage for tasks in software engineering based on the reviewed
studies. This model has emerged from qualitatively investi-
gating the DL models of the studies in our dataset.

4.1 | High‐level process
The resulting model is depicted in Figure 6. Unsurprisingly, the
high‐level architecture is comparable to the usage of DL in
other domains and consists of the well‐known phases of data
collection, data preparation and preprocessing, as well as
learning and validation.

F I GURE 6 Abstracted general code representation and DL models in software engineering

358 - SAMOAA ET AL.

Data Collection: The process starts with data collection,
which in the domain of software engineering typically entails
collecting the source code files for a specific programming
language (e.g., through repository mining). Subsequently, the
dataset needs to be annotated to serve as a training set. The
annotation process is custom to the specific software engi-
neering task that is intended to be tackled, for example, bug
prediction evidently requires different annotations than, for
example, code clone detection. The dataset is either ready and
pre‐annotated by domain experts or the researchers that
conduct the study annotate the source code themselves. An-
notations are task‐specific and may for example, include in-
formation about the presence of bugs, or if the two code files
are to be considered code clones [53].

Data Preparation and Preprocessing: Afterwards, in the
data preparation and preprocessing phase, the collected code
must be represented in a form that is compatible with DL.
This is where code representation, the main subject of our
study, comes into play. For example, in an AST representation,
the collected code is converted into a tree form; then the tree
paths need to be encoded or embedded as numeric values
(vectorisation) using approaches such as one‐hot encoding or
word embedding. On the contrary, in a graph‐based repre-
sentation, a variety of graph embedding techniques are used,
such as Graph2vec [54], HOPE [55], SDNE [56], or Node2vec
[57]. Features can now be extracted from those vectors
through different approaches, such as convolutional or
sequential neural networks.

Learning and Validation Phase: Finally, the DL model
will be trained and validated based on the tackled software
engineering task.

4.2 | Examples

To concretise this process, we now present two examples of
publications that follow the framework shown in Figure 6.

Example 1 (Zhang et al. Retrieval‐based neural source code
summarisation, ICSE020):

The first example [58] proposes a framework for (infor-
mation retrieval) based neural source code summarisation. The
solution specifically makes use of an attention encoder‐decoder
model. Figure 7 depicts the approach using the model intro-
duced previously.

After collecting training data as a first step, source code is
represented as ASTs, which are then turned into syntactic to-
ken sequences by tree traversal. Then, a trained encoder based
on LSTM units is used to embed the code into a semantic
vector using pooling, which is used to progressively reduce the
spatial size of the representation to reduce the amount of
parameters and computation in the network and preserve the
most important features. Afterwards, a bidirectional LSTM
decoder is used to capture the semantic context to generate
natural‐language summaries. The motivation behind this so-
lution is that recent studies that use models of neural networks
prefer high‐frequency words in the corpus while struggling
with low‐frequency ones. The proposed method takes advan-
tage of both neural and retrieval‐based techniques to alleviate
this problem.

Projecting Figure 7 on the main representative Figure 6,
the code fragment part maps the data collection from AST to
semantic vector is mapped to data preparation and pre-
processing. The attention part, along with the bidirectional‐
LSTM decoder, presents the learning and validation phase.

Example 2 (Wang et al. Detecting code clones with graph
neural network and flow‐augmented abstract syntax tree,
SANER020):

A second example [59] uses code representation and DL
for code clone detection. In this work, and as shown in
Figure 8, the authors treat the AST as a graph by following a
flow‐augmented abstract syntax tree (FA‐AST) to build a graph
representation for code fragments. This is done by adding
edges representing control and data flow to the AST. Graph
representation is applied here as AST‐based approaches cannot
fully leverage the structural information of code fragments,
especially semantic information, such as the control and data
flow. After representing the AST as a graph, the vectors of

F I GURE 7 An example framework for code summarisation, based on Zhang et al. [58]. AST, abstract syntax tree; LSTM, long short‐term memory

F I GURE 8 An example framework for code clone detection based on Wang et al. [59]. AST, abstract syntax tree; FA‐AST, flow‐augmented abstract syntax
tree; GGNN, gated graph neural network; GMN, graph matching network

SAMOAA ET AL. - 359

nodes are pooled into a graph‐level vector representation.
Hence, two different types of graph neural networks (GNN)
are used: a gated graph neural network (GGNN) for graph
embedding and a graph matching network (GMN), which can
jointly learn embedding for a pair of graphs.

When mapping the approach explained in Figure 8 to the
common architecture in Figure 6, the code fragment is part of
data collecting, while going from AST to GGNN represents
data preparation and preprocessing. Finally, the GMN is part
of the learning and validation phase.

5 | MAIN ATTRIBUTES ANALYSIS

In this section, we will answer RQ1 by exploring this study's
three main attributes in isolation. We answer the question
about which software engineering tasks are tackled by the
studies in our dataset, and what code representation and DL
approaches are being used to do so.

5.1 | Software engineering tasks

DL is used for a large variety of different tasks in software
engineering. Hence, to answer RQ1.1, we cluster the tasks into
four broad groups inspired by work from Microsoft1 based on
high‐level techniques and goals. Groups and concrete tasks, as
well as their absolute and relative frequencies in our dataset, are
shown in Table 2. It should be noted that the sum of per-
centages does not add up to 100% as some publications tackle
multiple problems simultaneously.

Code‐Code: the model's input is the code, and the model's
output is also a source code (e.g., complete programs or code
snippets). Example of tasks clustered under code‐code are
clone and similarity detection, code completion, programme
generation and repair. Less‐frequent code‐code task in our
dataset (grouped as “other”) is fixing formatting, traceability,
and compiler analysis. Code‐code tasks are a natural fit for DL
and hence a frequent target in our dataset, representing 46% of
all studies. Code clone detection is the most frequent individual
task, followed by the (very related) task of code similarity
detection and programme repair.

Code‐Text: the input of the learning model is code,
whereas the output is (often natural‐language) text. A canonical
example of this type of task is code summarisation, where the
goal is to produce natural language summaries of source code
constructs. The only other code‐text task we found is identifier
generation, which includes suggestions of method or variable
names based on code information. As a group, code‐text ap-
proaches represent about 20% of the studies in our dataset.
However, this is primarily due to code summarisation indi-
vidually being a common area of interest in DL for software
engineering (representing 15% of the studies). Identifier

Generation appears in 7 studies. The total count of the papers
that tackle code‐text is 21, as one study [60] is about both,
summarisation and identifier generation.

Text‐Code: this group is the opposite of the previous
group, where the input is the natural language text with code
output. The only two tasks in our dataset of this type are
code search and programme synthesis. As for code search, it
uses the query text to find the corresponding source code.
This task represents about 5% of the dataset. Programme
synthesis, on the other hand, takes free text descriptions of
programme functions as an input and returns source code as
an output. There is only one study in our dataset that tackles
this task.

Code‐Prediction: finally, DL can be used to predict
qualities based on code, such as detecting vulnerabilities,
bugs, or malicious behaviour. We also group source code
classification in this category. Two studies are grouped as
“other” in this group: error handling and code smell detec-
tion. As a group, code‐prediction is quite prevalent, ac-
counting for 37.8% of the studies in our dataset. Within this
group, different tasks are well distributed with the most
common one being bug detection (14%) followed by
vulnerability detection (11%).

We present the complete mapping of papers to our tax-
onomy of SE tasks in Appendix C.

TABLE 2 Number and percentage of publications classified per
addressed software engineering task

Code‐code 46 (44.7%)

Code clone detection 16 (15.5%)

Code similarity detection 9 (8.7%)

Programme repair 9 (8.7%)

Code completion 7 (6.8%)

Programme generation 6 (5.8%)

Other 3 (2.9%)

Code‐prediction 39 (37.8%)

Bug detection 14 (13.6%)

Vulnerability detection 11 (10.7%)

Source code classification 6 (5.8%)

Performance prediction 2 (1.9%)

Type signature prediction 2 (1.9%)

Malicious behaviour detection 2 (1.9%)

Others 2 (1.9%)

Code‐text 21 (20%)

Code summarisation 15 (14.6%)

Identifier generation 7 (6.8%)

Text‐code 6 (5.8%)

Code search 5 (4.9%)

Programme synthesis 1 (1%)

1
https://www.microsoft.com/en‐us/research/blog/codexglue‐a‐benchmark‐dataset‐
and‐open‐challenge‐for‐code‐intelligence/

360 - SAMOAA ET AL.

RQ 1.1 Summary We categorise the studies in our dataset in
four main groups, depending on the inputs and outputs
of DL. Code‐code and code prediction tasks are most
prevalent in our data. Code‐text and text‐code studies
are more limited; however, these are also 'smaller'
groups with a lower number of concrete subtasks.

5.2 | Deep learning models

We now present the DL models used in the retrieved studies,
as per RQ1.2. Various DL models have been identified in
software engineering research. A graphical overview is given in
Figure 9. LSTM [38], which is a type of RNN, is the most used
DL approach and found in 49 (48%) studies. LSTM copes with
the problem of RNNs known as “vanishing gradients” by
adding the mechanism of “cell states” to selectively remember,
or forget, part of the information that is needed during training
[61]. Attention mechanism [39] and CNN [62] are the second
and third most used DL models with 35 and 28 publications,
respectively. CNNs are particularly efficient since they can
work in parallel on sequences and have a structure for which
the output and input have a logarithmic distance in terms of
layers, which is linear for RNNs and LSTMs. The use of CNNs
together with an attention mechanism (specifically “self‐
attention”) defines the architecture of 'Transformers'.
Autoencoders [63] and RNNs are almost equally present. The
least applied DL models in our dataset are ANN and GNN.
The category 'Other' includes deep belief networks, neural
machine translation, and reinforcement learning.

It should be noted that counts in Figure 9 add up to
substantially more than the total number of studies in our
dataset (103) as many papers in practice combine multiple DL
models. Particularly, we observe that there are specific DL
models that are commonly used together for solving specific
downstream tasks, such as studies that use attention mecha-
nisms. The attention mechanism emerged as an improvement
over the encoder decoder‐based neural machine translation
system based on encoder‐decoder RNNs/LSTMs. Both
encoder and decoder are stacks of LSTM/RNN units. Further,

hybrid DL models are commonly used for tasks in the code‐
text or text‐code groups as these require different models for
different input and output. These issues will be discussed in
more detail in Section 6.1.

RQ 1.2 Summary Software engineering research uses a wide
variety of DL models with LSTM and attention mech-
anisms currently receiving most attention.

5.3 | Source code representation

We now turn towards what representations are being used in
conjunction with these DL models to answer RQ1.3. We
analysed the source code representation approaches that are
utilised to encode source code into a form that is meaningful
and can be fed into ML models. Three primary (groups of)
techniques have emerged from our analysis: token‐based rep-
resentation, tree‐based representation, and graph‐based rep-
resentation. Five concrete representation approaches emerged
that do not clearly belong into any of these groups and have
hence been categorised as 'Other'. These are code gadget (the
number of lines of code that are semantically related to each
other [64]), binary visualisation (the raw representation of any
type of file stored in the file system, which exhibits similar
behaviours of the code while being syntactically different [65]),
ASCII which used by Wang et al. [66] to convert each letter of
JavaScript code into eight bit binary, latent semantic indexing
(LSI, a method of analysing a set of documents in order to
discover statistical co‐occurrences of words that appear
together which then give insights into the topics of those
words and documents [47]), and bytecode (in this representa-
tion, a code fragment is expressed as a stream of bytecode
mnemonic opcodes forming the compiled code [67]). An
overview over the prevalence of the four groups is given in
Figure 10.

F I GURE 9 Summary of DL models used in conjunction with code
representation in software engineering research F I GURE 1 0 Summary of code representation approaches

SAMOAA ET AL. - 361

All three groups see frequent use in software engineering.
Tree‐based and token‐based representations are most common
and are both utilised in over half of the studies in our dataset
(66% or 64% and 54% or 52%, respectively). As before, some
studies employ multiple representation approaches simulta-
neously. Graph‐based approaches are less common and only
used in 25 (24%) of studies, but the usage is increasing. The
remaining techniques are only used in five individual
publications.

For tree‐based representation, the only specific technique
that emerged from our study is AST. However, both token‐
based and graph‐based representations can be split up into
further subcategories. For token‐based approaches, these are
word embedding and n‐grams, with word embedding being the
dominant technique (used in 37% or 79% of the studies using a
token‐based approach, see also Figure 10).

There are a larger number of choices of graph‐based
representations, which are depicted in Figure 10. The most
common ones are CFG (17% or 45%). Other options include
PDG, DFG, and CallFG.

5.3.1 | Alternative representation approaches

In contrast, some studies have made use of code represen-
tation approaches without direct adoption of any of the
methods that are categorised in Table 1. To take token‐based
approaches as an example, some works have tokenised the
text without using word embedding or n‐grams techniques.
In a study by Fernandes et al. [68], the proposed framework
breaks up all identifier tokens (i.e., variables, methods, classes,
etc.) of the source code into sub‐tokens by splitting them
according to specific heuristics (camelCase and pascal_case).
Gupta et al. [69] use an encoding map for each programme
to map every token, based on its type (such as function,
literal, variable, etc.), to a unique name in a pool of names.
Similarly, there is a subset of graph‐based solutions that have
not used any graph‐based methods that are classified in
Figure 10. Yasunaga and Liang [70] have proposed a
programme‐feedback graph to model the reasoning process
and capture the semantic correspondence involved in pro-
gramme repair. Similarly, Fernandes et al. [71] extend
sequence encoders with a graph neural network that can
reason about long‐distance relationships. Finally, Brocksch-
midt et al. [72] decode the code in a graph representation
using GNN for partial programs to incorporate rich semantic
information that is useful in programme repair tasks.

5.3.2 | Code representation depending on code‐
level granularity

Another question our review can answer is whether different
code representation approaches are more commonly used to
handle code on the statement or method levels. The results of
this analysis are shown in Table 3.

As we can see, there is no clear‐cut difference in the usage
of representation approaches depending on the code level.
However, token‐based approaches are slightly more commonly
used in studies that work with code at a statement level. This
intuitively makes sense as such studies are less concerned with
preserving the syntactical or semantic context of a software
project.

5.3.3 | Code representation for different
programming languages

As a final exploration of code representation approaches, we
map which programming languages the studies in our corpus
use. This is shown in Figure 11.

Unsurprisingly, Java is by far the most commonly consid-
ered programming language and is considered in over half the
studies in the corpus (58 studies, or 56%). This can be
explained by the wide availability of parsing tools that parse
Java code into AST, which is compatible with the findings in
Figure 10 that show AST to be the most common represen-
tation approach. Examples of common Java parsers are the
Eclipse Java development tools (JDT) used by Büch and
Andrzejak [73], SrcML [74] used by Bui et al. [4], or JavaParser
used by Alon et al. [75]. However, SrcNL is a universal AST
system that uses the same AST representations for multiple
languages (Java, C#, C++, and C)

For graph‐based representation approaches, different
tooling is required. For example, Ben‐Nun et al. [48] convert
Java code to statements in an Intermediate Representation (IR)
using the LLVM Compiler Infrastructure [76], which is then
processed to contextual flow graphs. Mehrotra et al. [6] use the
Soot optimization framework [77] to build program depen-
dence graphs for Java code, followed by the Cytron's method
[78] to compute control dependence. Reaching definition [79]
and upward exposed analysis [80] are both used for computing
data dependence graphs.

TABLE 3 Main code representation approaches and code‐level
granularity

Token (%) Tree (%) Graph (%)

Statement level 73 71 64

Method level 27 29 36

F I GURE 1 1 Programming languages considered in the dataset

362 - SAMOAA ET AL.

RQ 1.3 Summary All three main groups of code representa-
tion introduced in Section 2 are used in literature with
tree‐based and token‐based code representations being
most prevalent. It is also notable that a substantial
number of publications use a hybrid representation
approach, combining multiple different representations.

6 | DETAILED ANALYSIS BASED ON
SOFTWARE ENGINEERING TASKS

So far, our analysis discussed the three main dimensions of the
study (tasks, DL models, and code representation approaches)
in isolation. Now, we turn to investigating the interplay be-
tween these dimensions as part of RQ2. Particularly, we
investigate how DL models and chosen representation depend
on tasks (Sections 6.1 and 6.2, respectively).

6.1 | Software tasks and DL models

In this section, we will discuss the results that explain RQ2.1,
where we map the chosen DL models to tackle software en-
gineering tasks. Figure 12 depicts a mapping of specific DL
models identified in the study to the four high‐level categories
of tasks as a bubble plot.

We observe that a wide variety of models have been applied
to the tasks in the code‐code group, whereas there appears to
be more dominant methods for code‐text (LSTM with
autoencoders and attention mechanisms) as well as code‐
prediction (CNN and LSTM). The data for the text‐code
group are too sparse to come to a clear conclusion, but
initial evidence suggests that researchers also use a variety of
models for this task. Further, LSTM is commonly used and
proportionally distributed for all types of tasks. However,
CNN is most frequently used for tasks in the group code‐
prediction. Both, autoencoders and attention mechanisms are
used frequently for code‐code and code‐text tasks, but rarely
for other tasks.

Figure 13 drills deeper into this and depicts the usage of
different DL models for specific tasks in the code‐code group.
We observe that a variety of models are used for all specific
tasks.

In programme repair, some approaches use sequence to
sequence networks with encoder‐decoder models attached
with attention mechanisms. Bi‐directional LSTM is mainly
used in both encoder and decoder. However, attention might
be used in the decoder part [40] or in encoder [70]. However,
other approaches for handling programme repair do not rely
on the encoder‐decoder model. For example, Vasic et al. [81]
use LSTM and attention mechanism to locate and handle the
misuse of the variable defined in the programme. Other studies
rely on sequential models for handling programme repair
without using the encoder‐decoder attention model [69, 82],
whereas Dinella et al. [83] rely on graph neural networks for
learning graph transformation to repair the bugs in the Java-
Script programs.

Figure 14 presents a similar analysis for specific code‐text
tasks. It becomes evident that autoencoders are an important
facet of contemporary code summarisation research. These
approaches are based on the sequence‐to‐sequence paradigm
over the words of some text with a sequence encoder (typically
a RNN, but sometimes using self‐attention [12]) processing the
input and a sequence decoder generating the output. Recent
successful implementations of this paradigm have substantially
improved performance by focussing on the decoder, extending
it with an attention mechanism over the input sequence and
copying facilities [68]. However, while standard encoders (e.g.,
LSTMs) can in theory handle arbitrary long‐distance relation-
ships, in practice, they often fail to handle long texts (sum-
marisation output) correctly [84].

RQ 2.1 Summary Most of the software tasks studied are
mainly tackled using the LSTM model. However,
autoencoders and attention mechanisms are also widely
adopted, particularly in code‐code and code‐text tasks. A
high number of code‐prediction publications utilise
CNNs.

F I GURE 1 2 Software engineering tasks and applied DL approaches. ANN, artificial neural network; CNN, convolutional neural network; DL, deep
learning; GNN, graph neural network; LSTM, long short‐term memory; RNN, recurrent neural network

SAMOAA ET AL. - 363

6.2 | Software tasks and code representation

We now turn towards RQ2.2 and explore how the choice of
code representation approach is impacted by the chosen
software engineering task. An overview for the four groups of
tasks is provided in Figure 15.

We observe that the various code representation ap-
proaches are used across software engineering tasks. Text‐code
tasks are commonly addressed using token‐based approaches.
Only one study uses a tree‐based approach for this type of task
[10], and none uses a graph‐based approach. However, this
study handles multiple tasks within the same study. More

specifically, the authors have built multiple representations to
handle tasks separately. The tree‐based approach addresses
code summarisation (a code‐text task), whereas a token‐based
approach is used for code retrieval (text‐code). Hence, we
conclude that for text‐code tasks, for example, code search, a
token‐based representation is the only method that is seeing
current use. This can be explained as the freeform text of, for
example, a query is better treated using natural language pro-
cessing (NLP) techniques than the more code‐specific tree‐
and graph‐based representations.

Graph‐based approaches are most commonly used in
code‐code tasks. However, also 38% of graph‐based

F I GURE 1 4 Applied DL approaches for specific code‐text tasks. ANN, artificial neural network; CNN, convolutional neural network; DL, deep learning;
GNN, graph neural network; LSTM, long short‐term memory; RNN, recurrent neural network

F I GURE 1 5 Code representation approaches per group of software engineering tasks

F I GURE 1 3 Applied DL approaches for specific code‐code tasks. ANN, artificial neural network; CNN, convolutional neural network; DL, deep learning;
GNN, graph neural network; LSTM, long short‐term memory; RNN, recurrent neural network

364 - SAMOAA ET AL.

approaches are used for code‐prediction tasks. To better un-
derstand this observation, we have again detailed further into
specific tasks. In Figure 16, we present how often specific tasks
in the code‐code groups use a graph‐based approach to
represent the source code.

Both code clone and code similarity detection are pro-
portionally overrepresented here. This is interesting, especially
since these tasks have many similarities. It can be argued that a
graph representation is highly appropriate for solving the
problem of identifying similar code elements. By representing
code snippets as a graph, those graphs are embedded into
vectors (one vector for each graph). To measure the similarity,
one can then simply compute the distance between those
graphs. This approach is arguably more simple and effective
than breaking each piece of code into tokens and then
embedding each token into a vector.

We now conduct a similar analysis for the usage of graph‐
based representations in code‐prediction tasks (Figure 17). We
observe that graph‐based representation approaches are
commonly utilised in vulnerability and bug detection, together
amounting to about two thirds of all usage of graph‐based
representation in code‐prediction tasks. For these ap-
proaches, researchers commonly need to preserve semantic
information for which graph representations are most suitable.

RQ 2.2 Summary We were not able to identify a clear
pattern that specific representations are more common
for specific types of tasks with one exception: text‐code
tasks frequently call for token‐based methods. Aside
from this, software engineering researchers have tested
different combinations of representations and tasks, and
no clear consensus what the ideal way to address any
specific task (except text‐code tasks) has emerged yet.

7 | MAIN ATTRIBUTES – CROSS
ANALYSIS

We now discuss the interplay of all three dimensions of this
study—tasks, DL approach, and code representation approach,
answering RQ3. In the previous sections, we have separately
analysed the three dimension task, DL model, and code rep-
resentation approach. To answer RQ3 and get deeper insights
into the current trends in the field, we now investigate all three
dimensions together. Results of this analysis are summarised in
Table 4.

LSTM is the most commonly used model for code‐code
tasks, using both tree‐ and token‐based representations as

TABLE 4 Analysis of the main attributes

F I GURE 1 6 Usage of graph‐based representation for specific code‐
code tasks

F I GURE 1 7 Usage of graph‐based representation for specific code‐
prediction tasks

SAMOAA ET AL. - 365

well as, to a certain extent, autoencoders. In contrast, LSTM
and autoenconders are almost equally frequently used for code‐
text tasks. LSTM and autoencoders go hand to hand in solving
sequential problems by treating the code as a sequence of to-
kens (using a token‐based representation) or sequence of
nodes (in the tree‐based representation). Hence, sequential
models, such as LSTM, are the most appropriate approach for
such a problem. The sequential model needs to be encapsu-
lated into an encoder‐decoder model because for a code‐text
task, it is necessary to encode the code consistently through
one model in order to generate natural language sequences
from the corresponding source code. Attention mechanisms
are used to dynamically select the distribution over the com-
bined representations while decoding or encoding is selecting
the relevant path in the AST [85].

Unsurprisingly, GNN is the most commonly used archi-
tecture in conjunction with a graph representation in the ma-
jority of SE tasks. In contrast, no common DL models can be
identified for text‐code tasks across all the representations.
Instead, various different models are used across the studies in
our dataset. This is because the text that represents the input in
a text‐code task can be treated using natural language pro-
cessing (NLP) techniques, which according to literature, all DL
models work properly on.

As for code‐prediction tasks, CNN is the most dominant
model in conjunction with a tree‐based representation, while
LSTM is most commonly used for a token‐based representa-
tion. This difference is rooted in the different goals underlying
tasks in the code‐prediction group—in these tasks, the goal is
not to generate code as in code‐code and text‐code tasks, or
generating text as in code‐text tasks. Much more, code‐
prediction tasks tend to deal with classical DL prediction
problems, that is, classification and regression. For instance,
bug or vulnerability detection is a binary classification problem
to decide whether or not the code includes a bug or vulnera-
bility. The same is true in performance prediction, where a
specific performance value is predicted as a regression problem.

RQ 3 Summary We analysed the retrieved frameworks from
the viewpoint of the main three dimensions of our
study, software task, code representation approach, and
deep learning model applied. LSTM and autoencoders
are the most used deep learning for code‐code and code‐
text tasks using tree‐based and token‐based representa-
tions. While GNN is the most used model with graph
representation with most of the SE tasks. For code‐
prediction, CNN with tree‐based representation and
LSTM with token‐based representation are the most
common techniques used in the studies.

8 | ANALYSIS OF HYBRID
APPROACHES

In this section, wewill answerRQ4by exploring frameworks that
address either multiple SE tasks or which use multiple repre-
sentations. We refer to such studies as using a hybrid approach.

8.1 | Hybrid software tasks within one
framework

In this section, we address RQ4.1 and identify characteristics
and main properties of frameworks that solve multiple SE
tasks simultaneously. No study in our dataset is general in the
sense that it is able to addresses all SE tasks.

8.1.1 | Solving many tasks with one framework

Bui et al. [10] propose an approach that integrates three
different tasks—it tackles code similarity detection as a code‐
code task, code search as text‐code tasks, and code summa-
risation as a code‐text task. This study is singular in that it
combines text‐code tasks with other SE tasks. The proposed
method is a self‐supervised learning framework for source
code modelling designed to mitigate the need for labelled data
for different SE tasks. The key innovation here is that the
source code model is trained to detect the similarity and
dissimilarity across code snippets. This study also makes use of
a hybrid representation approach, by merging an AST‐based
strategy with a token‐based approach. The representation ap-
proaches are used in the encoder component of the discussed
system. Hence, well‐know AST‐based code modelling tech-
niques, such as Code2vec [44], TBCNN [3] are used besides
token‐based approaches by handling the source code as a
sequence of tokens using a neural machine translation (NMT)
baseline. Those techniques utilise node type and token infor-
mation to initialise AST nodes. The hybrid representation
approach will be discussed in more detail in Section 8.2.
Throughout this approach, various encoders are used, and the
choice of encoder depends on the task.

8.1.2 | Frameworks that solve two tasks

Besides the aforementioned study, we find that three other
approaches tackle combinations of code‐code and code‐text
tasks. Cvitkovic et al. [60] design a framework that solves
code completion as a code‐code task and identifier generation
as a code‐text task. They use ASTs to represent the source
code. This tree is augmented with semantic information, such
as data– and control–flow to eventually obtain an augmented
AST as a directed multigraph. The augmented AST is then
further augmented by adding a Graph Structured Cache. They
add a node to the augmented AST for each token in the input
instance. Then, all the nodes are vectorised to be processed
than with the graph neural network.

Kang et al. [86] evaluate the generalisability of the
Code2vec modelling technique by applying it along with a
sequential model to address code clone detection as a code‐
code task as well as code summarisation as a code‐text task.
Then, they compare the results obtained from these techniques
with a task‐specific baseline. In this study, the authors do not
focus on the overall effectiveness of the methods. Instead, they
evaluate if the use of Code2vec can improve the performance

366 - SAMOAA ET AL.

of the baselines. Based on their results, the authors claim that
no improvements had been achieved by applying Code2vec.

Code summarisation is also investigated through one
framework proposed by Wei et al. [87] that is generalised to
solve programme synthesis as a text‐code task. They use a
token‐based approach for code representation. The proposed
framework consists of three main parts: a code summarisation
model, a programme synthesis model, and dual constraints.
The code summarisation and programme synthesis models
both rely on a sequence‐to‐sequence neural network and an
encoder‐decoder attached with attention mechanism between
encoding and decoder. To leverage the contextual information
within the word embedding, a token‐based, bi‐directional
LSTM is used as a unit in the encoder. Another LSTM is
also used in the decoder. Dual constraints are used by adding
regularisation terms in the loss function to constrain the duality
between two models, which are enlightened by the probabilistic
correlation and the symmetry of attention weights between
code summarisation and programme synthesis models.

Finally, four studies design solutions that are transferable
across code‐code and code prediction tasks [21, 81–83]. Three
of those proposed frameworks that tackle programme repair as
code‐code tasks and bug detection as code prediction tasks.
These tasks are related in the sense that a bug is first detected
in the code, which is subsequently fixed through programme
repair. Hence, it makes sense to have one solution that ad-
dresses these tasks simultaneously. In the same context, one of
those studies [83] uses a hybrid code representation approach
by combining tree‐ and graph‐based approaches. Thus, code is
parsed into an AST to capture the programme's syntactic
structure; then, the leaf nodes are connected with SuccToken
edges. Additionally, the value of nodes that store the content of
the leaf nodes is added with special semantic ValueLink edges
connecting them together. Based on the study, the ultimate aim
of introducing this additional set of nodes is to provide a
name‐independent strategy for code representation and
modification. After representing the programme as a graph, a
GNN is used to map the graph into a fixed dimension vector
space. An LSTM is then trained to locate the bug through a
sequence of graph transformations. That means that, given a
buggy programme modelled by a graph structure, the pro-
posed framework makes a sequence of predictions, including
the position of bug nodes and corresponding graph edits to
produce a fix.

The other related approaches [81, 82] use only a token‐
based approach combined with LSTM to locate and repair
the bug in the programme. Moreover, the fourth study in this
group [21] defines an AST‐based neural network for source
code representation in order to solve code‐clone detection as a
code‐code task and code classification as a code‐prediction
task. This study discusses the problem of the long depth of
the AST, which causes a long dependency between the
sequence of nodes, leading to vanishing problems when
injected into the sequential model. Thus, the tree is divided
into a sequence of small statement trees. Those trees are
encoded to be used with a bidirectional RNN model to
leverage the naturalness of statements to achieve the tasks.

Statement trees are constructed using the preorder traversal
algorithm.

It is interesting to observe that no study in our dataset
proposes a framework that addresses a combination of code‐
text and code‐prediction tasks, nor combinations of code‐
prediction and text‐code tasks.

RQ 4.1 Summary The integration between multiple tasks
within one framework relies on the relatedness between
these tasks. However, there currently appears to be no
truly general framework for DL in software engineer-
ing, which could be applied independently of the tackled
software tasks.

8.2 | Hybrid representation approaches

Some studies have utilised a hybrid approach for code repre-
sentation to capture more information on the source code.
This is often promising as tree‐based approaches capture
syntactical information, graph‐based approaches are better at
retaining semantics, and token‐based approaches preserve
lexical information.

Table 5 summarises how often different types of code rep-
resentation approaches are used alone or in conjunction. The
diagonal elements represent the frequency of the frameworks
that have used a single representation approach, while the non‐
diagonal elements represent the frequency of the frameworks
that have used hybrid representations. Seven studies [5, 7, 21, 42,
67, 88, 89] combined representations from all three groups. The
most common hybrid approach is a combination of token‐ and
tree‐based approaches, used by 25 studies, or almost a fourth of
our dataset, in total (note that 18 approaches combine only tree‐
and token‐based representation, plus the seven studies that use
all three). Combinations of tree‐ and graph‐based approaches
are also fairly popular, used by 16 studies in total.

Particularly interesting are the seven studies that have used
all three representation approaches in conjunction. For
example, Hua and Li et al. [7, 42] present work on bug
detection. The two approaches start with constructing AST
representations of the source code in order to locate sensitive
point‐like object construction, method invocation, expression
statement, conditional statement, and loop statements. Sensi-
tive points are the syntax characteristics where most 'simple'
bugs manifest. Then, Word2Vec [20], a token‐based repre-
sentation approach, is employed by taking all of the AST nodes
of a method as the input and generating a learned vector
representation for each given AST node. This vector

TABLE 5 Frequency of combinations of (types of) representation
approaches

All = 7 Token Tree Graph

Token 25 18 4

Tree 32 9

Graph 5

SAMOAA ET AL. - 367

representation is later used as input to the DL model. How-
ever, the local context of the method representation from AST
node representations is preserved by representing each path as
an ordered set of node vectors. Since the bug can be involved
in multiple methods, it is crucial to capture also the global
context by modelling the relations between different methods
through a dependency graph (a PDG). Thus, semantic infor-
mation in the source code, such as data and control flow, is
traced. Then, when the graphs are generated, different
embedding techniques for graphs are used on nodes, edges or
the entire graph. For example, Node2Vec [90] is used to vec-
torise the nodes.

Similarly, other studies that use all three representation
approaches are tackling code clone detection [5, 21, 67]. These
studies show that using a stream of identifiers to represent the
code, DL can effectively replace manual and hand‐crafted
feature engineering. Moreover, these works show that repre-
sentation of the code at different levels of abstraction (iden-
tifiers, AST, and CFG) can provide a different, yet orthogonal,
view of the same code fragment, thus enabling more reliable
detection of code similarities.

Sonnekalb and Li et al. [42, 89] investigate a combination
of all three main representation approaches for the task of
vulnerability detection. These studies claim that there is a need
to represent programs in a way that can adequately accom-
modate the syntax and semantic information related to vul-
nerabilities. This enables multiple kinds of neural networks to
detect various kinds of vulnerabilities.

RQ 4.2 Summary 62 (60%) frameworks of the retrieved
studies have used only one type of representation
approach, while 31 (30%) studies have combined repre-
sentations from two groups. Seven (7%) studies utilised
representations of all three main groups in conjunction.

9 | GAPS IN THE LITERATURE

In this section, we will discuss perceived limitations, research
gaps, and challenges that we derived from the retrieved studies,
addressing RQ5.

� Lack of Topic Coverage: Even though we have found DL
to be applied to a wide variety of SE tasks, some crucial
tasks appear to be underrepresented. For example, we have
identified only one or two studies each tackling performance
prediction, code smell detection, or traceability. This is
surprising, as these tasks could profit substantially from an
investment in DL. Taking performance prediction as an
example, performance is often seen as a crucial non‐
functional property of software systems, and traditional
performance engineering is challenging [91] and error‐prone
[92]. A deeper investment in DL in the style of some code
clone detection or programme repair studies seems prom-
ising in these domains.

� Lack of Generalisability: According to Figure 6, DLmodels
can be used in two phases—in the data preparation and

preprocessing phase for learning the representation of code
(representation learning), and then again in the learning and
validation phase to achieve the SE task. In principle, repre-
sentation learning is independent of the tackled SE task.
Transfer learning [93] could be used to generalise and reuse
pre‐trained models for representation learning to different
tasks. In other application domains of DL (such as computer
vision or NLP), transfer learning has led to generally useful
models such as DenseNET [94] or BERT [95]. We observe a
lack of such models in software engineering. However, we
made the observation in this study that most of the proposed
approaches are highly domain and problem‐dependent. Thus,
very few retrieved studies are applied to different SE tasks.
Very few solutions are transferable or easily adapted to other
SE problems. There are some approaches that explicitly
present generalised SE representations [44, 85]. However,
these approaches are for fixed code units, such as tokens,
statements, or functions. They are not sufficiently flexible to
generate encoding and embeddings for different units. Thus,
the learned code representation may not be effective for a
multitude of tasks. Two studies in our dataset already attempt
to provide such a generalised representation model [4, 10].
We argue that this is an important area of future research that
should be a focal point for future investigations.

� Lack of Industrial Data: Unsurprisingly, the vast majority
of approaches in our dataset are trained and tested on open‐
source projects extracted from platforms, such as GitHub.
However, validation of the resulting models on industrial
data is rare. This is understandable especially in supervised
learning model, which requires annotated datasets of
considerable size. Annotations often need to be manually
labelled by humans according to a specific downstream task.
To address this challenge, and connecting to the previous
point, recent research uses self‐supervised learning [4, 10] to
leverage unlabelled data to pre‐train code representations
which are reusable for building general models that are
suitable for various downstream tasks. While the type of
data that led to this challenge was not an explicit dimension
that we coded for this study, it became abundantly clear
during the review that virtually all analysed studies are based
on open source data, published data sets (which are often
also constructed based on open‐source data), or in some
cases artificial data.

RQ 5 Summary We conclude that the core research gaps
currently prevalent in the literature relate to a lack of
coverage for some relevant SE tasks, a lack of the
application of transfer learning, and a lack of valida-
tion based on industrial data.

10 | DISCUSSION

� Towards AST‐Based Neural Networks: As our work
shows, token‐based approaches are common in software
engineering literature. These approaches tend to either

368 - SAMOAA ET AL.

treat the code as a token sequence or bags of tokens, or
they rely on latent semantic indexing (LSI) and latent
dirichlet allocation (LDA) to represent the code. The
problem of those token‐based approaches is that they treat
the source code as a natural language. To improve these
approaches, code syntax and semantics need to be taken
into account [96]. Some existing work [3, 22, 23] provide
strong evidence that syntactical knowledge contributes
positively and leads to better representations than tradi-
tional token‐based methods. We speculate that this is the
reason why ASTs are used in so many different ap-
proaches. Through the AST, researchers can easily capture
lexical as well as syntactical information. Hence, many
research works try to combine ASTs with deep learning,
which is referred to as AST‐based neural networks. Theses
approaches combine ASTs with Recursive Neural networks
(RvNN) [22], tree‐based CNNs [3], or tree LSTMs [23].

� The Limitations of Tree‐based Approaches: Despite the
effectiveness of such tree‐based neural network approaches
in extracting both lexical and syntactical information, there
are limitations. Similar to long texts in NLP, tree‐based
neural models are vulnerable to the gradient vanishing
problem, where the gradient becomes vanishingly small
during the training (especially when the tree is very large and
deep, which it often is for real‐life source code). Hence,
traversing and encoding the entire AST tree in a bottom up
way [22, 23] or using a sliding window technique [3] may
lose long‐term context information [21]. Another limitation
of AST‐based neural networks is that those approaches
transform the AST or present it as full binary trees to
improve simplicity and efficiency. However, this in turn
destroys the original syntactic structure of the source code
and makes the AST even deeper. Moreover, the transformed
and deeper AST reduces the capability of neural network
models to capture more real and complex semantics [21].
Finally, some SE tasks require not only syntactical, but also
semantic information.

� Towards Graph‐based Code Representation: Due to the
problems of leveraging semantic information with AST‐
based approaches, more and more newer DL papers adopt
graph‐based representations, such as long‐term CFG and
Data Dependencies Graph (DDG). These representation
approaches can overcome some of the limitations of AST‐
based neural networks. Examples of such works are Zhao
et al. [25], who extract semantic features from the CFG of
represented code, Allamanis et al. [33], who consider the
long‐range dependencies induced by the same variable or
function in distant locations, or Tufano et al. [67], who
directly construct CFGs of code fragments.

� The Limitations of Graph‐Based Approaches: However,
graph‐based representation is not with challenges either.
The drawback of CFGs is that they lack data flow infor-
mation. Furthermore, most CFGs only contain control
flows between code blocks and exclude the low‐level syn-
tactic structure within code blocks [59]. Another drawback
of CFGs is that in some programming languages, CFGs are
much harder to obtain than ASTs. Nevertheless, Henkel

et al. [97] show that embeddings learned from (mainly) se-
mantic abstractions provide nearly triple the accuracy of
those learned from (mainly) syntactic abstractions. Ulti-
mately, many solution approaches choose to use a syntactic
representation [75], because it was shown to be useful as a
representation for modelling programming languages in
machine learning models. It was also shown that they are
more expressive than n‐grams and manually designed fea-
tures [44]. Other solutions use approaches based on se-
mantic context [98] in which programme elements are graph
nodes and semantic relations are edges in the graph. Due to
the gap between syntax (e.g., tokens or ASTs) and the se-
mantics of a procedure in a programme, the abstractions of
traces obtained from symbolic execution of a programme
are also used as a representation for learning word embed-
dings [97].

Based on the aforementioned discussion and the ongoing
developments and current promising research directions, we
expect a move towards more graph‐based code representation
as these representation models make it easier to learn semantic
information. However, graph‐based approaches are not
without challenges, and more research in this direction will be
needed.

11 | CONCLUSION

This study has presented a systematic mapping study on 103
primary studies that use code representation in the context of
DL for software engineering. Our mapping study has classified
the software task into four main categories depending on the
input and output of the DL model (code‐code, code‐
prediction, code‐text, and text‐code). Our study showed that
code‐code and code‐prediction are the most addressed soft-
ware tasks. We have also observed that tree‐based and token‐
based approaches are the most common representation ap-
proaches applied in the investigated studies. However, we have
also observed that there is a trend towards hybrid represen-
tations (which combine multiple different representation ap-
proaches) as well as the preferred usage of graph‐based
representations in newer studies. We identify two primary
challenges in current literature: (1) there is a lack of general-
isability of the presented approaches to other tasks (i.e., there
are few attempts at transfer learning between tasks) and (2)
very few studies validate the proposed framework on industrial
datasets. We argue that these two problems constitute severe
threats to the practical usefulness of current code representa-
tion research in the field of software engineering.

ACKNOWLEDGEMENTS
This work has been partially funded by the Swedish Research
Council VR under grant number 2018‐04127 (Developer‐
Targeted Performance Engineering for Immersed Release and
Software Engineers), by the Knowledge Foundation of Sweden
(KKS) through the Synergy Project AIDA—A Holistic AI‐
driven Networking and Processing Framework for Industrial

SAMOAA ET AL. - 369

IoT (Rek:20200067), and by the Swiss National Science
Foundation (SNSF) project “Melise—Machine Learning
Assisted Software Development” (SNSF 204632).

CONFLICT OF INTEREST
The authors declared that they have no conflicts of interest to
this work.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly
available in Zenodo at https://doi.org/10.5281/zenodo.
6466506, reference number 6466506.

ORCID
Hazem Peter Samoaa https://orcid.org/0000-0001-5293-
3388

REFERENCES
1. Bui, N., Jiang, L., Yu, Y.: Cross‐language learning for program classi-

fication using bilateral tree‐based convolutional neural networks. In:
The Workshops of the Thirty‐Second AAAI Conference on Artificial
Intelligence (2018)

2. Kanade, A., et al.: Pre‐trained contextual embedding of source code. In:
ICLR 2020 Conference Program Chairs (2020)

3. Mou, L., et al.: Convolutional neural networks over tree structures for
programming language processing. In: Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, AAAI '16, pp. 1287–1293.
AAAI Press (2016)

4. Bui, N.D.Q., Yu, Y., Jiang, L.: Infercode: self‐supervised learning of
code representations by predicting subtrees. In: 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pp. 1186–-
1197 (2021)

5. Fang, C., et al.: Functional code clone detection with syntax and se-
mantics fusion learning. In: Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA
2020, pp. 516–527. Association for Computing Machinery, New York,
NY, USA (2020)

6. Mehrotra, N., et al.: Modeling functional similarity in source code with
graph‐based siamese networks. IEEE Trans. Softw. Eng.(01), 1 (2020).
https://doi.org/10.1109/tse.2021.3105556

7. Hua, J., Wang, H.: On the effectiveness of deep vulnerability detectors to
simple stupid bug detection. In: 2021 IEEE/ACM 18th International
Conference onMining Software Repositories (MSR), pp. 530–534 (2021)

8. Li, Y., Wang, S., Nguyen, T.: Fault localization with code coverage
representation learning. In: 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pp. 661–673 (2021)

9. Shi, K., et al.: Mpt‐embedding: an unsupervised representation
learning of code for software defect prediction. J. Softw.: Evol. Pro-
cess. 33(4), e2330 (2021). e2330 smr.2330. https://doi.org/10.1002/
smr.2330

10. Bui, N.D.Q., Yu, Y., Jiang, L.: Self‐supervised contrastive learning for
code retrieval and summarization via semantic‐preserving trans-
formations. In: SIGIR '21. Association for Computing Machinery, New
York, NY, USA (2021)

11. Liu, S., et al.: Retrieval‐augmented generation for code summarization
via hybrid GNN. In: International Conference on Learning Represen-
tations (2021)

12. Zhang, J., et al.: Retrieval‐based neural source code summarization. In:
2020 IEEE/ACM 42nd International Conference on Software Engi-
neering (ICSE), pp. 1385–1397 (2020)

13. Jebnoun, H., et al.: Clones in deep learning code: what, where, and why?
(2021). https://doi.org/10.48550/arXiv.2107.13614

14. Bengio, Y.: Learning deep architectures for AI. Now Publishers Inc.,
Delft (2009)

15. Keller, P., et al.: What you see is what it means! semantic representation
learning of code based on visualization and transfer learning. ACM
Trans. Softw. Eng. Methodol. 31(2), 1–34 (2021). https://doi.org/10.
1145/3485135

16. Dey, T., et al.: Detecting and characterizing bots that commit code. In:
Kim, S., et al. (eds.) MSR '20: 17th International Conference on Mining
Software Repositories, Seoul, Republic of Korea, 29–30 June, 2020,
pp. 209–219. ACM (2020)

17. Zhang, C., et al.: A survey of automatic source code summarization.
Symmetry. 14(3), 471 (2022). https://doi.org/10.3390/sym14030471

18. Teller, V.: Speech and language processing: an introduction to natural
language processing, computational linguistics, and speech recognition.
Comput. Ling. 26(4), 638–641 (2000)

19. Niesler, T., Woodland, P.: A variable‐length category‐based n‐gram
language model. In: 1996 IEEE International Conference on Acous-
tics, Speech, and Signal Processing Conference Proceedings, vol. 1,
pp. 164–167 (1996)

20. Mikolov, T., et al.: Efficient estimation of word representations in
vector space. In: ICLR (Workshop Poster) (2013)

21. Zhang, J., et al.: A novel neural source code representation based on
abstract syntax tree. In: 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering (ICSE), pp. 783–794 (2019)

22. White, M., et al.: Deep learning code fragments for code clone detec-
tion. In: 2016 31st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 87–98 (2016)

23. Wei, H.‐H., Li, M.: Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in
source code. In: Proceedings of the 26th International Joint Conference
on Artificial Intelligence, IJCAI'17, pp. 3034–3040. AAAI Press (2017)

24. Cummins, C., et al.: Programl: graph‐based deep learning for program
optimization and analysis. In: arXiv preprint, arXiv:2003.10536 (2020)

25. Zhao, G., Huang, J.: Deepsim: deep learning code functional similarity.
In: Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 141–151 (2018)

26. Laaber, C., Basmaci, M., Salza, P.: Predicting unstable software bench-
marks using static source code features. Empir. Softw. Eng. 26(5), 114
(2021). https://doi.org/10.1007/s10664‐021‐09996‐y

27. Samoaa, H.P., et al.: A Structured Literature Study of Source Code
Representation for Deep Learning in Software Engineering [Replication
Package]. Zenodo (2021). https://doi.org/10.5281/zenodo.6466506

28. Devlin, J., et al.: Semantic code repair using neuro‐symbolic trans-
formation networks. In: arXiv preprint, arXiv:1710.11054(2017)

29. Malik, R.S., Patra, J., Pradel, M.: Nl2type: inferring javascript function
types from natural language information. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), pp. 304–315
(2019)

30. Pradel, M., et al.: Typewriter: neural type prediction with search‐
based validation. In: Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2020, pp.
209–220. Association for Computing Machinery, New York, NY,
USA (2020)

31. Cambronero, J., et al.: When deep learning met code search. In: Pro-
ceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering, ESEC/FSE 2019, pp. 964–974. Association for
Computing Machinery, New York, NY, USA (2019)

32. Maurel, H., Vidal, S., Rezk, T.: Statically identifying XSS using deep
learning. In: SECRYPT 2021 – 18th International Conference on Se-
curity and Cryptography, Virtual, France, July 2021 (2021)

33. Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent
programs with graphs. In: arXiv preprint, arXiv:1711.00740 (2017)

34. Liu, W., et al.: A survey of deep neural network architectures and their
applications. Neurocomputing. 234, 11–26 (2017). https://doi.org/10.
1016/j.neucom.2016.12.038

35. Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning‐a new
frontier in artificial intelligence research [research frontier]. IEEE

370 - SAMOAA ET AL.

Comput. Intell. Mag. 5(4), 13–18 (2010). https://doi.org/10.1109/mci.
2010.938364

36. Sherstinsky, A.: Fundamentals of recurrent neural network (rnn) and
long short‐term memory (lstm) network. Phys. D: Nonlinear Phenom.
404, 132306 (2020). https://doi.org/10.1016/j.physd.2019.132306

37. Scarselli, F., et al.: The graph neural network model. IEEE Trans.
Neural Network. 20(1), 61–80 (2008). https://doi.org/10.1109/tnn.
2008.2005605

38. Hochreiter, S., Schmidhuber, J.: Long short‐term memory. Neural
Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.
8.1735

39. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural
Information Processing Systems, pp. 5998–6008 (2017)

40. Chakraborty, S., et al.: Codit: code editing with tree‐based neural
models. IEEE Trans. Softw. Eng., 48(4), 1–1399 (2020). https://doi.
org/10.1109/tse.2020.3020502

41. Cao, D., et al.: Ftclnet: convolutional lstm with Fourier transform for
vulnerability detection. In: 2020 IEEE 19th International Conference
on Trust, Security and Privacy in Computing and Communications
(TrustCom), pp. 539–546 (2020)

42. Li, Y., et al.: Improving bug detection via context‐based code repre-
sentation learning and attention‐based neural networks. Proc. ACM
Program. Lang. 3(OOPSLA), 1–30 (2019). https://doi.org/10.1145/
3360588

43. Ahmad, W.U., et al.: A transformer‐based approach for source code
summarization. In: arXiv preprint, arXiv:2005.00653 (2020)

44. Alon, U., et al.: Code2vec: learning distributed representations of code.
Proc. ACM Program. Lang. 3(POPL), 1–29 (2019). https://doi.org/10.
1145/3290353

45. Shuai, J., et al.: Improving code search with co‐attentive representation
learning. In: Proceedings of the 28th International Conference on
Program Comprehension, ICPC '20, pp. 196–207. Association for
Computing Machinery, New York, NY, USA (2020)

46. Markovtsev, V., et al.: Style‐analyzer: fixing code style inconsistencies
with interpretable unsupervised algorithms. In: 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR),
pp. 468–478 (2019)

47. Csuvik, V., Kicsi, A., Vidács, L.: Source code level word embeddings in
aiding semantic test‐to‐code traceability. In: 2019 IEEE/ACM 10th
International Symposium on Software and Systems Traceability (SST),
pp. 29–36 (2019)

48. Ben‐Nun, T., Jakobovits, A.S., Hoefler, T.: Neural code comprehension:
a learnable representation of code semantics. In: Proceedings of the
32nd International Conference on Neural Information Processing
Systems, NIPS'18, pp. 3589–3601. Curran Associates Inc, Red Hook,
NY, USA (2018)

49. Ramadan, T., et al.: Comparative code structure analysis using deep
learning for performance prediction. In: 2021 IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS), pp. 151–161 (2021)

50. Hadj‐Kacem, M., Bouassida, N.: Deep representation learning for
code smells detection using variational auto‐encoder. In: 2019 Inter-
national Joint Conference on Neural Networks (IJCNN), pp. 1–8
(2019)

51. DeFreez, D., Thakur, A.V., Rubio‐González, C.: Path‐based function
embedding and its application to error‐handling specification mining.
In: ESEC/FSE 2018, pp. 423–433. Association for Computing Ma-
chinery, New York, NY, USA (2018)

52. Ampatzoglou, A., et al.: Identifying, categorizing and mitigating
threats to validity in software engineering secondary studies. Inf.
Softw. Technol. 106, 201–230 (2019). https://doi.org/10.1016/j.infsof.
2018.10.006

53. Cheng, D., et al.: Manifesting bugs in machine learning code: an
explorative study with mutation testing. In: 2018 IEEE International
Conference on Software Quality, Reliability and Security (QRS),
pp. 313–324. IEEE (2018)

54. Narayanan, A., et al.: graph2vec: Learning distributed representations of
graphs. In: arXiv Preprints, arXiv:1707.05005v1 (2017)

55. Ou, M., et al.: Asymmetric transitivity preserving graph embedding. In:
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD '16, pp. 1105–1114.
Association for Computing Machinery, New York, NY, USA (2016)

56. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and
performance: a survey. Knowl. Base Syst. 151, 78–94 (2018). https://
doi.org/10.1016/j.knosys.2018.03.022

57. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for net-
works. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD '16, pp.
855–864. Association for Computing Machinery, New York, NY, USA
(2016)

58. Zhang, J., et al.: Retrieval‐based neural source code summarization. In:
Rothermel, G., Bae, D. (eds.) ICSE '20: 42nd International Conference
on Software Engineering, Seoul, South Korea, 27 June – 19 July, 2020,
pp. 1385–1397. ACM (2020)

59. Wang, W., et al.: Detecting code clones with graph neural network and
flow‐augmented abstract syntax tree. In: Kontogiannis, K., et al. (eds.)
27th IEEE International Conference on Software Analysis, Evolution
and Reengineering, SANER 2020, London, ON, Canada, February 18–
21, 2020, pp. 261–271. IEEE (2020)

60. Cvitkovic, M., Singh, B., Anandkumar, A.: Open vocabulary learning on
source code with a graph‐structured cache. In: International Confer-
ence on Machine Learning, pp. 1475–1485. PMLR (2019)

61. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual
prediction with lstm. Neural Comput. 12(10), 2451–2471 (2000).
https://doi.org/10.1162/089976600300015015

62. LeCun, Y., et al.: Gradient‐based learning applied to document recog-
nition. Proc. IEEE. 86(11), 2278–2324 (1998). https://doi.org/10.
1109/5.726791

63. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Rep-
resentations by Error Propagation (Technical report). California Univ
San Diego La Jolla Inst for Cognitive Science (1985)

64. Li, Z., et al.: Vuldeepecker: a deep learning‐based system for vulnera-
bility detection. In: Proceedings 2018 Network and Distributed System
Security Symposium (2018)

65. Marastoni, N., Giacobazzi, R., Dalla Preda, M.: A deep learning
approach to program similarity. In: MASES 2018, pp. 26–35. Associa-
tion for Computing Machinery, New York, NY, USA (2018)

66. Wang, Y., Cai, W.‐d., Wei, P.‐c.: A deep learning approach for detecting
malicious javascript code. Secur. Commun. Network. 9(11), 1520–1534
(2016). https://doi.org/10.1002/sec.1441

67. Tufano, M., et al.: Deep learning similarities from different represen-
tations of source code. In: 2018 IEEE/ACM 15th International Con-
ference on Mining Software Repositories (MSR), pp. 542–553 (2018)

68. Fernandes, P., Allamanis, M., Brockschmidt, M.: Structured neural
summarization. In: Conference paper at ICLR (2019)

69. Gupta, R., et al.: Fixing common c language errors by deep learning. In:
Thirty‐First AAAI Conference on Artificial Intelligence (2017)

70. Yasunaga, M., Liang, P.: Graph‐based, self‐supervised program repair
from diagnostic feedback. In: International Conference on Machine
Learning, pp. 10799–10808. PMLR (2020)

71. Fernandes, P., Allamanis, M., Brockschmidt, M.: Structured neural
summarization. In: International Conference on Learning Representa-
tions (2019)

72. Brockschmidt, M., et al.: Generative code modeling with graphs. In:
arXiv Preprint, arXiv:1805.08490 (2018).

73. Büch, L., Andrzejak, A.: Learning‐based recursive aggregation of ab-
stract syntax trees for code clone detection. In: 2019 IEEE 26th In-
ternational Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 95–104 (2019)

74. Collard, M.L., Decker, M.J., Maletic, J.I.: srcml: An infrastructure for the
exploration, analysis, and manipulation of source code: a tool demon-
stration. In: 2013 IEEE International Conference on Software Main-
tenance, pp. 516–519 (2013)

75. Alon, U., et al.: A general path‐based representation for predicting
program properties. SIGPLAN Not. 53(4), 404–419 (2018). https://
doi.org/10.1145/3296979.3192412

SAMOAA ET AL. - 371

76. Lattner, C., Adve, V.: Llvm: a compilation framework for lifelong
program analysis & transformation. In: International Symposium on
Code Generation and Optimization, 2004. CGO 2004, pp. 75–86
(2004)

77. Lam, P., et al.: The soot framework for java program analysis: a
retrospective. In: Conference: Cetus Users and Compiler Infrastructure
Workshop (CETUS 2011) (2011)

78. Cytron, R., et al.: Efficiently computing static single assignment form
and the control dependence graph. ACM Trans. Program Lang. Syst.
13(4), 451–490 (1991). https://doi.org/10.1145/115372.115320

79. Grunwald, D., Srinivasan, H.: Data flow equations for explicitly parallel
programs. SIGPLAN Not. 28(7), 159–168 (1993). https://doi.org/10.
1145/173284.155349

80. Allen, F.E., Cocke, J.: A program data flow analysis procedure. Com-
mun. ACM. 19(3), 137 (1976). https://doi.org/10.1145/360018.360025

81. Vasic, M., et al.: Neural program repair by jointly learning to localize
and repair. In: International Conference on Learning Representations
(2019)

82. Santos, E.A., et al.: Syntax and sensibility: using language models to
detect and correct syntax errors. In: 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 311–322 (2018)

83. Dinella, E., et al.: Hoppity: learning graph transformations to detect and
fix bugs in programs. In: International Conference on Learning Rep-
resentations (2020)

84. Jia, R., Liang, P.: Adversarial examples for evaluating reading compre-
hension systems. In: arXiv preprint, arXiv:1707.07328 (2017)

85. Alon, U., et al.: code2seq: Generating sequences from structured rep-
resentations of code. In: International Conference on Learning Rep-
resentations (2019)

86. Kang, H.J., Bissyandé, T.F., Lo, D.: Assessing the generalizability of
code2vec token embeddings. In: 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 1–12
(2019)

87. Wei, B., et al.: Code generation as a dual task of code summarization. In:
33rd Conference on Neural Information Processing Systems (NeurIPS)
(2019)

88. Li, Z., et al.: Sysevr: a framework for using deep learning to detect
software vulnerabilities. IEEE Trans. Dependable Secure Comput., 1
(2021). https://doi.org/10.1109/tdsc.2021.3051525

89. Sonnekalb, T.: Machine‐learning supported vulnerability detection in
source code. In: Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2019, pp. 1180–-
1183. Association for Computing Machinery, New York, NY, USA
(2019)

90. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for net-
works. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 855–864
(2016)

91. Costa, D., et al.: What's wrong with my benchmark results? Studying
bad practices in jmh benchmarks. IEEE Trans. Softw. Eng. 47(7),
1452–1467 (2021). https://doi.org/10.1109/tse.2019.2925345

92. Laaber, C., Scheuner, J., Leitner, P.: Software microbenchmarking in the
cloud. How bad is it really? Empir. Softw. Eng. 24(4), 2469–2508 (2019).
https://doi.org/10.1007/s10664‐019‐09681‐1

93. Tan, C., et al.: A survey on deep transfer learning. In: Kůrková, V., et al.
(eds.) Artificial Neural Networks and Machine Learning – ICANN
2018, pp. 270–279. Springer International Publishing, Cham (2018)

94. Huang, G., et al.: Densely connected convolutional networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2017)

95. Devlin, J., et al.: Bert: pre‐training of deep bidirectional transformers for
language understanding. In: arXiv preprint, arXiv:1810.04805 (2018)

96. Panichella, A., et al.: How to effectively use topic models for software
engineering tasks? An approach based on genetic algorithms. In: 2013
35th International Conference on Software Engineering (ICSE),
pp. 522–531 (2013)

97. Henkel, J., et al.: Code vectors: understanding programs through
embedded abstracted symbolic traces. In: Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/
FSE 2018, pp. 163–174. Association for Computing Machinery, New
York, NY, USA (2018)

98. Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent
programs with graphs. In: International Conference on Learning Rep-
resentations (2018)

99. Chen, Z., et al.: Sequencer: sequence‐to‐sequence learning for end‐to‐
end program repair. IEEE Trans. Softw. Eng. 47(9), 1943–1959
(2021). https://doi.org/10.1109/tse.2019.2940179

100. Cheng, X., et al.: Deepwukong: statically detecting software vulnera-
bilities using deep graph neural network. ACM Trans. Softw. Eng.
Methodol. 30(3), 1–33 (2021). https://doi.org/10.1145/3436877

101. Li, Z., et al.: Vuldeelocator: a deep learning‐based fine‐grained vulner-
ability detector. IEEE Trans. Dependable Secure Comput. (2021)

102. Amodio, M., Chaudhuri, S., Reps, T.W.: Neural attribute machines for
program generation. In: arXiv e‐prints, arXiv:1705.09231 (2017)

103. Haque, S., et al.: Improved automatic summarization of subroutines via
attention to file context. In: Proceedings of the 17th International
Conference on Mining Software Repositories, MSR '20, pp. 300–310.
Association for Computing Machinery, New York, NY, USA (2020)

104. Fujiwara, Y., et al.: Code‐to‐code search based on deep neural network
and code mutation. In: 2019 IEEE 13th International Workshop on
Software Clones (IWSC), pp. 1–7 (2019)

105. Gupta, R., Kanade, A., Shevade, S.: Neural attribution for semantic bug‐
localization in student programs. In: Wallach, H., et al. (eds.) Advances
in Neural Information Processing Systems, vol. 32. Curran Associates,
Inc., New York (2019)

106. Liu, S., et al.: Deepbalance: deep‐learning and fuzzy oversampling for
vulnerability detection. IEEE Trans. Fuzzy Syst. 28(7), 1329–1343
(2020). https://doi.org/10.1109/tfuzz.2019.2958558

107. Nair, A., Roy, A., Funcgnn, K.M.: A graph neural network approach to
program similarity. In: Proceedings of the 14th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measure-
ment (ESEM), ESEM '20. Association for Computing Machinery, New
York, NY, USA (2020)

108. Sheneamer, A., Kalita, J.: Semantic clone detection using machine
learning. In: 2016 15th IEEE International Conference on Machine
Learning and Applications (ICMLA), pp. 1024–1028 (2016)

109. Svyatkovskiy, A., et al.: Fast and memory‐efficient neural code
completion. In: 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR), pp. 329–340 (2021)

110. Liu, K., et al.: Learning to spot and refactor inconsistent method names.
In: 2019 IEEE/ACM 41st International Conference on Software En-
gineering (ICSE), pp. 1–12 (2019)

111. Shi, K., et al.: Pathpair2vec: an ast path pair‐based code representation
method for defect prediction. J. Comput. Lang. 59, 100979 (2020).
https://doi.org/10.1016/j.cola.2020.100979

112. Li, J., et al.: Software defect prediction via convolutional neural network.
In: 2017 IEEE International Conference on Software Quality, Reliability
and Security (QRS), pp. 318–328 (2017)

113. Perez, D., Chiba, S.: Cross‐language clone detection by learning over
abstract syntax trees. In: 2019 IEEE/ACM 16th International Confer-
ence on Mining Software Repositories (MSR), pp. 518–528 (2019)

114. Li, L., et al.: A deep learning‐based clone detection approach. In: 2017
IEEE International Conference on Software Maintenance and Evolu-
tion (ICSME), pp. 249–260 (2017)

115. Gu, X., Zhang, H., Kim, S.: Deep code search. In: 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE),
pp. 933–944 (2018)

116. Hu, X., et al.: Deep code comment generation. In: 2018 IEEE/ACM
26th International Conference on Program Comprehension (ICPC),
pp. 200–20010 (2018)

117. Sun, Z., et al.: A grammar‐based structural cnn decoder for code gen-
eration. Proc. AAAI Conf. Artif. Intell. 33, 7055–7062 (2019). https://
doi.org/10.1609/aaai.v33i01.33017055

372 - SAMOAA ET AL.

118. Wang, R., et al.: Fret: functional reinforced transformer with bert for
code summarization. IEEE Access. 8, 135591–135604 (2020). https://
doi.org/10.1109/access.2020.3011744

119. Murali, V., et al.: Neural sketch learning for conditional program gen-
eration. In: International Conference on Learning Representations
(2018)

120. Svyatkovskiy, A., et al.: Pythia: AI‐assisted code completion system. In:
Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery; Data Mining, KDD '19, pp. 2727–2735. Asso-
ciation for Computing Machinery, New York, NY, USA (2019)

121. Wang, W., et al.: Detecting code clones with graph neural network and
flow‐augmented abstract syntax tree. In: 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 261–271 (2020)

122. Wu, H., Zhao, H., Zhang, H.: Code summarization with structure‐
induced transformer. In: Association for Computational Linguistics:
ACL‐IJCNLP 2021 (2021)

123. Li, J., et al.: Code completion with neural attention and pointer net-
works. In: Proceedings of the Twenty‐Seventh International Joint
Conference on Artificial Intelligence (2018)

124. Pradel, M., Sen, K.: Deep learning to find bugs. TU Darmstadt,
Department of Computer Science. 4, 1 (2017)

125. Lin, G., et al.: Deep learning‐based vulnerable function detection: a
benchmark. In: Zhou, J., et al. (eds.) Information and Communications
Security, pp. 219–232. Springer International Publishing, Cham (2020)

126. Iyer, S., et al.: Summarizing source code using a neural attention model.
In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 2073–2083
(2016)

127. Raychev, V., Vechev, M., Yahav, E.: Code completion with statistical
language models. SIGPLAN Not. 49(6), 419–428 (2014). https://doi.
org/10.1145/2666356.2594321

128. Xie, C., et al.: A source code similarity based on siamese neural
network. Appl. Sci. 10(21), 7519 (2020). https://doi.org/10.3390/
app10217519

129. Wang, S., Liu, T., Tan, L.: Automatically learning semantic features for
defect prediction. In: 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), pp. 297–308 (2016)

130. Tufano, M., et al.: An empirical study on learning bug‐fixing patches in
the wild via neural machine translation. ACM Trans. Softw. Eng.
Methodol. 28(4), 1–29 (2019). https://doi.org/10.1145/3340544

131. Dam, H.K., Tran, T., Pham, T.: A deep language model for software
code. In: arXiv preprint, arXiv:1608.02715 (2016)

132. Pradel, M., Sen, K.: Deepbugs: a learning approach to name‐based bug
detection. Proc. ACM Program. Lang. 2(OOPSLA), 1–25 (2018).
https://doi.org/10.1145/3276517

133. Russell, R., et al.: Automated vulnerability detection in source code
using deep representation learning. In: 2018 17th IEEE International

Conference on Machine Learning and Applications (ICMLA),
pp. 757–762 (2018)

134. Wang, K., Su, Z.: Learning blended, precise semantic program em-
beddings. Proc. ACM Program. Lang. 1, 1–25 (2019)

135. White, M., et al.: Sorting and transforming program repair ingredients
via deep learning code similarities. In: 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 479–490 (2019)

136. Yu, H., et al.: Neural detection of semantic code clones via tree‐based
convolution. In: 2019 IEEE/ACM 27th International Conference on
Program Comprehension (ICPC), pp. 70–80 (2019)

137. Yin, P., Neubig, G.: A syntactic neural model for general‐purpose code
generation. In: Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (2017)

138. Zeng, J., et al.: Fast code clone detection based on weighted recursive
autoencoders. IEEE Access. 7, 125062–125078 (2019). https://doi.
org/10.1109/access.2019.2938825

139. White, M., et al.: Toward deep learning software repositories. In: 2015
IEEE/ACM 12th Working Conference on Mining Software Re-
positories, pp. 334–345 (2015)

140. Mou, L., et al.: Tbcnn: a tree‐based convolutional neural network for
programming language processing. In: arXiv preprint, arXiv:1409.5718
(2014)

141. Zhou, M., et al.: Deeptle: learning code‐level features to predict code
performance before it runs. In: 2019 26th Asia‐Pacific Software Engi-
neering Conference (APSEC), pp. 252–259 (2019)

142. Allamanis,M., Peng,H., Sutton, C.: A convolutional attention network for
extreme summarization of source code. In: Balcan, M.F., Weinberger, K.
Q. (eds.) Proceedings of the 33rd International Conference on Machine
Learning, Volume 48 of Proceedings of Machine Learning Research, 20–
22 Jun 2016, pp. 2091–2100. PMLR, New York, New York, USA (2016)

143. Wan, Y., et al.: Improving automatic source code summarization via
deep reinforcement learning. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, pp. 397–407. Association for Computing Machinery, New York,
NY, USA (2018)

144. Zhou, Y., et al.: Devign: effective vulnerability identification by learning
comprehensive program semantics via graph neural networks. In:
NeurIPS (2019)

How to cite this article: Samoaa, H.P., et al.: A
systematic mapping study of source code representation
for deep learning in software engineering. IET Soft.
16(4), 351–385 (2022). https://doi.org/10.1049/sfw2.
12064

A P P END I CE S

Analysis of the main attributes

Authors Title Venue Year Cit. Key

U. Alon, M. Zilberstein, O. Levy, and A. Yahav code2vec: learning distributed representations of code POPL 2019 [44]

U. Alon, S. Brody, O. Levy, E. Yahav code2seq: Generating Sequences from Structured
Representations of Code

ICLR 2019 [85]

M. Brockschmidt, M. Allamanis, A.L. Gaunt, O.
Polozov

Generative Code Modelling with Graphs ICLR 2019 [72]

W. U. Ahmad, S. Chakraborty, B. Ray, K. Chang A Transformer‐based Approach for Source Code
Summarization

ACL 2020 [43]

Nghi D. Q. Bui, Lingxiao Jiang, Yijun Yu Cross‐Language Learning for Program Classification using
Bilateral Tree‐Based Convolutional Neural Networks

AAAI 2017 [1]

(Continues)

SAMOAA ET AL. - 373

A P P END I X (Continued)

Authors Title Venue Year Cit. Key

Nghi D. Q. Bui, Yijun Yu, Lingxiao Jiang Self‐Supervised Contrastive Learning for Code Retrieval and
Summarization via Semantic‐Preserving Transformations

SIGIR 2021 [10]

J. Devlin, J. Uesato, R. Singh, P. Kohli Semantic Code Repair using Neuro‐Symbolic Transformation
Networks

arXiv 2017 [28]

M. Allamanis, M. Brockschmidt, M. Khademi Learning to Represent Programs with Graphs ICLR 2018 [33]

L. Büch, A. Andrzejak Learning‐Based Recursive Aggregation of Abstract Syntax
Trees for Code Clone Detection

SANER 2019 [73]

R. Gupta, S. Pal, A. Kanade, S. Shevade DeepFix: Fixing Common C Language Errors by Deep
Learning

AAAI 2017 [69]

J. Cambronero, H. Li, S. Kim, K. Sen, S. Chandra When Deep Learning Met Code Search FSE 2019 [31]

S. Chakraborty, Y. Ding, M. Allamanis, B. Ray CODIT: Code Editing with Tree‐Based Neural Models TSE 2019 [40]

D. Cao, J. Huang, X. Zhang, X. Liu FTCLNet: Convolutional LSTM with Fourier Transform for
Vulnerability Detection

TrustCom 2020 [41]

Nghi D. Q. Bui, Y. Yu, L. Jiang InferCode: Self‐Supervised Learning of Code Representations
by Predicting Subtrees

ICSE 2021 [4]

Z. Chen, S. Kommrusch, M. Tufano, L. Pouchet, D.
Poshyvanyk, M. Monperrus

SEQUENCER: Sequence‐to‐Sequence Learning for End‐to‐
End Program Repair

TSE 2021 [99]

X. Cheng, H. Wang, J. Hua, G. Xu, Y. Sui DeepWukong: Statically Detecting Software Vulnerabilities
Using Deep Graph Neural Network

TOSEM 2021 [100]

J. Hua, H. Wang On the Effectiveness of Deep Vulnerability Detectors to
Simple Stupid Bug Detection

MSR 2021 [7]

U. Alon, M. Zilberstein, O. Levy, E. Yahav A general path‐based representation for predicting program
properties

SIGPLAN 2018 [75]

T. Ben‐Nun, A. S. Jakobovits, T. Hoefler Neural Code Comprehension: A Learnable Representation of
Code Semantics

NeurIPS 2018 [48]

V. Csuvik, A. Kicsi, L. Vidács Source Code Level Word Embeddings in Aiding Semantic
Test‐to‐Code Traceability

ICSE 2019 [47]

M. Cvitkovic, B. Singh, A. Anandkumar Open Vocabulary Learning on Source Code with a Graph‐
Structured Cache

ICML 2019 [60]

Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, H. Jin VulDeeLocator: A Deep Learning‐based Fine‐grained
Vulnerability Detector

TDSC 2021 [101]

Y. Li, S. Wang, T. N. Nguyen Fault Localization with Code Coverage Representation
Learning

ICSE 2021 [8]

S. Liu, Y. Chen, X. Xie, J. K. Siow, Y. Liu Retrieval‐Augmented Generation for Code Summarization via
Hybrid GNN

ICLR 2021 [11]

H. Maurel, S. Vidal, T. Rezk Statically Identifying XSS using Deep Learning SECRYPT 2021 [32]

C. Cummins, Z. V. Fisches, T. Ben‐Nun, T. Hoefler,
H. Leather

PROGRAML: Graph‐based Deep Learning for Program
Optimization and Analysis

PMLR 2021 [24]

P. Fernandes, M. Allamanis, M. Brockschmidt Structured Neural Summarization ICLR 2019 [71]

M. Amodio, S. Chaudhuri, T. Reps Neural Attribute Machines for Program Generation arXiv 2021 [102]

E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, K. Wang Hoppity: Learning graph transformations to detect and fix
bugs in programs

ICLR 2020 [83]

C. Fang, Z. Liu, Y. Shi, J. Huang, Q. Shi Functional Code Clone Detection with Syntax and Semantics
Fusion Learning

ISSTA 2020 [5]

S. Haque, A. LeClair, L. Wu, C. McMillan Improved Automatic Summarization of Subroutines via
Attention to File Context

MSR 2020 [103]

Y. Fujiwara, N. Yoshida, E. Choi, K. Inoue Code‐to‐Code Search Based on Deep Neural Network and
Code Mutation

IWSC 2019 [104]

374 - SAMOAA ET AL.

A P P END I X (Continued)

Authors Title Venue Year Cit. Key

T. Ramadan, T.Z. Islam, C. Phelps Comparative Code Structure Analysis using Deep Learning for
Performance Prediction

ISPASS 2021 [49]

A. Kanade, P. Maniatis, G. Balakrishnan, K. Shi Pre‐trained Contextual Embedding of Source Code ICLR 2020 [2]

D. DeFreez, A.V. Thakur, C. Rubio‐González Path‐based function embedding and its application to error‐
handling specification mining

FSE 2018 [51]

R. Gupta, A. Kanade, S. Shevade Neural Attribution for Semantic Bug‐Localization in Student
Programs

NeurIPS 2019 [105]

M. Hadj‐Kacem, N. Bouassida Deep Representation Learning for Code Smells Detection
using Variational Auto‐Encoder

IJCNN 2019 [50]

S. Liu, G. Lin, Q.L. Han, S. Wen, J. Zhang, Y. Xiang DeepBalance: Deep‐Learning and Fuzzy Oversampling for
Vulnerability Detection

Transactions on
Fuzzy Systems

2020 [106]

N. Mehrotra, N. Agarwal, P. Gupta, S. Anand, D. Lo,
R. Purandare

Modelling Functional Similarity in Source Code with Graph‐
Based Siamese Networks

TSE 2020 [6]

K. Shi, Y. Lu, G. Liu, Z. Wei, J. Chang MPT‐embedding: An unsupervised representation learning of
code for software defect prediction

SEP 2021 [9]

A. Nair, A. Roy, K. Meinke funcGNN: A Graph Neural Network Approach to Program
Similarity

ESEM 2020 [107]

A. Sheneamer, J. Kalita Semantic Clone Detection Using Machine Learning ICMLA 2016 [108]

H.J. Kang, T.F. Bissyandé, D. Lo Assessing the Generalizability of code2vec Token Embeddings ASE 2019 [86]

M. Pradel, G. Gousios, J. Liu, S. Chandra TypeWriter: Neural‐Type Prediction with Search‐Based
Validation

FSE 2020 [30]

Y. Li, S. Wang, T.N. Nguyen, S. Van Nguyen Improving Bug Detection via Context‐Based Code
Representation Learning and Attention‐Based Neural
Networks

OOPSLA 2019 [42]

A. Svyatkovskiy, S. Lee, A. Hadjitofi Fast and Memory‐Efficient Neural Code Completion MSR 2021 [109]

K. Liu, D. Kim, T.F. Bissyandé, T. Kim Learning to Spot and Refactor Inconsistent Method Names ICSE 2019 [110]

R.S. Malik, J. Patra, M. Pradel NL2Type: Inferring JavaScript Function Types from Natural
Language Information

ICSE 2019 [29]

K. Shi, Y. Lu, J. Chang, Z. Wei PathPair2Vec: An AST path pair‐based code representation
method for defect prediction

JCL 2020 [111]

V. Markovtsev, W. Long, H. Mougard STYLE‐ANALYZER: fixing code style inconsistencies with
interpretable unsupervised algorithms

MSR 2019 [46]

J. Li, P. He, J. Zhu, M.R. Lyu Software Defect Prediction via Convolutional Neural Network QRS 2017 [112]

D. Perez, S. Chiba Cross‐language clone detection by learning over abstract
syntax trees

MSR 2019 [113]

L. Li, H. Feng, W. Zhuang, N. Meng CCLearner: A Deep Learning‐Based Clone Detection
Approach

ICSME 2017 [114]

T. Sonnekalb Machine‐Learning Supported Vulnerability Detection in
Source Code

FSE 2019 [89]

X. Gu, H. Zhang, S. Kim Deep Code Search ICSE 2018 [115]

J. Henkel, S.K. Lahiri, B. Liblit, T. Reps Code Vectors: Understanding Programs Through Embedded
Abstracted Symbolic Traces

FSE 2018 [97]

X. Hu, G. Li, X. Xia, D. Lo, Z. Jin Deep Code Comment Generation ICPC 2018 [116]

Z. Sun, Q. Zhu, L. Mou, Y. Xiong, G. Li A Grammar‐Based Structural CNN Decoder for Code
Generation

AAAI 2019 [117]

J. Shuai, L. Xu, C. Liu, M. Yan, X. Xia, Y. Lei Improving Code Search with Co‐Attentive Representation
Learning

ICPC 2020 [45]

(Continues)

SAMOAA ET AL. - 375

A P P END I X (Continued)

Authors Title Venue Year Cit. Key

R. Wang, H. Zhang, G. Lu, L. Lyu, C. Lyu Fret: Functional Reinforced Transformer With BERT for
Code Summarization

IEEE Access 2020 [118]

V. Murali, L. Qi, S. Chaudhuri, C. Jermaine Neural Sketch Learning for Conditional Program Generation ICLR 2017 [119]

A. Svyatkovskiy, Y. Zhao, S. Fu Pythia: AI‐assisted Code Completion System SIGKDD 2019 [120]

W. Wang, G. Li, B. Ma, X. Xia, Z. Jin Detecting Code Clones with Graph Neural Network and
Flow‐Augmented Abstract Syntax Tree

SANER 2020 [121]

H. Wu, H. Zhao, M. Zhang SIT3: Code Summarization with Structure‐Induced
Transformer

ACL 2021 [122]

Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng VulDeePecker: A Deep Learning‐Based System for
Vulnerability Detection

NDSS 2018 [64]

J. Li, Y. Wang, M.R. Lyu, I. King Code Completion with Neural Attention and Pointer
Networks

JICAI 2018 [123]

M. Pradel, K. Sen Deep Learning to Find Bugs arXiv 2017 [124]

M. White, M. Tufano, C. Vendome Deep Learning Code Fragments for Code Clone Detection ASE 2016 [22]

L. Mou, G. Li, L. Zhang, T. Wang, Z. Jin Convolutional Neural Networks over Tree Structures for
Programming Language Processing

AAAI 2016 [3]

G. Lin, W. Xiao, J. Zhang, Y. Xiang Deep Learning‐Based Vulnerable Function Detection ICICS 2020 [125]

S. Iyer, I. Konstas, A. Cheung, L. Zettlemoyer Summarizing Source Code using a Neural Attention Model ACL 2016 [126]

H. Wei, M. Li Supervised Deep Features for Software Functional Clone
Detection by Exploiting Lexical and Syntactical
Information in Source Code

AAAI 2017 [23]

V. Raychev, M. Vechev, E. Yahav Code completion with statistical language models SIGPLAN 2014 [127]

N. Marastoni, R. Giacobazzi, M. Dalla Preda A Deep Learning Approach to Program Similarity MASES 2018 [65]

C. Xie, X. Wang, C. Qian, M. Wang A Source Code Similarity Based on Siamese Neural Network Applied Science 2020 [128].

Y. Wang, W. Cai, P. Wei A deep learning approach for detecting malicious JavaScript
code

SCN 2016 [66]

S. Wang, T. Liu, L. Tan Automatically Learning Semantic Features for Defect
Prediction

2016 ICSE [129]

M. Yasunaga, P. Liang Graph‐based, Self‐Supervised Program Repair from
Diagnostic Feedback

ICML 2020 [70]

M. Tufano, C. Watson, G. Bavota, M.D. Penta An Empirical Study on Learning Bug‐Fixing Patches in the
Wild via Neural Machine Translation

TOSEM 2019 [130]

H. Wei, M. Li Supervised deep features for software functional clone
detection by exploiting lexical and syntactical information
in source code

JICAI 2017 [23]

H.K. Dam, T. Tran, T. Pham A deep language model for software code arXiv 2016 [131]

M. Vasic, A. Kanade, P. Maniatis, D. Bieber Neural program repair by jointly learning to localize and repair ICLR 2018 [81]

M. Pradel, K. Sen DeepBugs: A Learning Approach to Name‐Based Bug
Detection

OOPSLA 2018 [132]

R. Russell, L. Kim, L. Hamilton, T. Lazovich Automated Vulnerability Detection in Source Code Using
Deep Representation Learning

ICMLA 2018 [133]

K. Wang, Z. Su Learning Blended, Precise Semantic Program Embeddings PLDI 2020 [134]

E.A. Santos, J.C. Campbell, D. Patel Syntax and Sensibility: Using Language Models to Detect and
Correct Syntax Errors

SANER 2018 [82]

B. Wei, G. Li, X. Xia, Z. Fu, Z. Jin Code Generation as a Dual Task of Code Summarization NeurIPS 2019 [87]

M. White, M. Tufano, M. Martinez Sorting and Transforming Program Repair Ingredients via
Deep Learning Code Similarities

SANER 2019 [135]

376 - SAMOAA ET AL.

A P P END I X (Continued)

Authors Title Venue Year Cit. Key

H. Yu, W. Lam, L. Chen, G. Li, T. Xie Neural Detection of Semantic Code Clones Via Tree‐Based
Convolution

ICPC 2019 [136]

P. Yin, G. Neubig A Syntactic Neural Model for General‐Purpose Code
Generation

ACL 2017 [137]

J. Zeng, K. Ben, X. Li, X. Zhang Fast Code Clone Detection Based on Weighted Recursive
Autoencoders

IEEE Access 2019 [138]

M. White, C. Vendome Toward deep learning software repositories MSR 2015 [139]

J. Zhang, X. Wang, H. Zhang, H. Sun A Novel Neural Source Code Representation Based on
Abstract Syntax Tree

ICSE 2019 [21]

M. Tufano, C. Watson, G. Bavota Deep Learning Similarities from Different Representations of
Source Code

MSR 2018 [67]

J. Zhang, X. Wang, H. Zhang, H. Sun Retrieval‐based Neural Source Code Summarization ICSE 2020 [58]

L. Mou, G. Li, Z. Jin, L. Zhang, T. Wang TBCNN: A tree‐based convolutional neural network for
programming language processing

arXiv 2014 [140]

L. Mou, G. Li, L. Zhang, T. Wang, Z. Jin Convolutional Neural Networks over Tree Structures for
Programming Language Processing

AAAI 2016 [3]

M. Zhou, J. Chen, H. Hu, J. Yu, Z. Li DeepTLE: Learning Code‐Level Features to Predict Code
Performance before It Runs

APSEC 2019 [141]

M. Allamanis, H. Peng, C. Sutton A Convolutional Attention Network for Extreme
Summarization of Source Code

ICML 2016 [142]

G. Zhao, J. Huang DeepSim: deep learning code functional similarity FSE 2018 [25]

Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu Improving Automatic Source Code Summarization via Deep
Reinforcement Learning

ASE 2018 [143]

Y. Zhou, S. Liu, J. Siow, X. Du, Y. Liu Devign: Effective Vulnerability Identification by Learning
Comprehensive Program Semantics via Graph Neural
Networks

NeurIPS 2019 [144]

B List of Venue Acronyms

Acronyms Venue

AAAI Association for the Advancement of Artificial Intelligence

ACL Association for Computational Linguistics

ASE International Conference on Automated Software Engineering

FSE Fast Software Encryption

ICLR International Conference on Learning Representations

ICML International Conference on Machine Learning

ICMLA International Conference on Machine Learning and Applications

ICPC International Conference on Program Comprehension

ICSE International Conference on Software Engineering

IJCAI International Joint Conference on Artificial Intelligence

MSR Mining Software Repositories

NeurIPS Neural Information Processing Systems

PACMPL Proceedings of the ACM on Programming Languages

PLDI Programming Language Design and Implementation

SANER International Conference on Software Analysis, Evolution and Reengineering

SAMOAA ET AL. - 377

C SE Tasks and Related Papers
C.1 Main SE Tasks and Related Papers

Title Code‐code Code‐text Text‐code Code‐prediction
code2vec: Learning Distributed Representations of Code ✓

code2seq: Generating Sequences from Structured Representations of Code ✓

Generative Code Modelling with Graphs ✓

A Transformer‐based Approach for Source Code Summarization ✓

Cross‐Language Learning for Program Classification using Bilateral Tree‐Based Convolutional
Neural Networks

✓

Self‐Supervised Contrastive Learning for Code Retrieval and Summarization via Semantic‐
Preserving Transformations

✓ ✓ ✓

Semantic Code Repair using Neuro‐Symbolic Transformation Networks ✓

Learning to Represent Programs with Graphs ✓

Learning‐Based Recursive Aggregation of Abstract Syntax Trees for Code Clone Detection ✓

DeepFix: Fixing Common C Language Errors by Deep Learning ✓

When Deep Learning Met Code Search ✓

CODIT: Code Editing with Tree‐Based Neural Models ✓

FTCLNet: Convolutional LSTM with Fourier Transform for Vulnerability Detection ✓

InferCode: Self‐Supervised Learning of Code Representations by Predicting Subtrees ✓

SEQUENCER: Sequence‐to‐Sequence Learning for End‐to‐End Program Repair ✓

DeepWukong: Statically Detecting Software Vulnerabilities Using Deep Graph Neural Network ✓

On the Effectiveness of Deep Vulnerability Detectors to Simple Stupid Bug Detection ✓

A general path‐based representation for predicting program properties ✓

Neural Code Comprehension: A Learnable Representation of Code Semantics ✓

Source Code Level Word Embeddings in Aiding Semantic Test‐to‐Code Traceability ✓

Open Vocabulary Learning on Source Code with a Graph‐Structured Cache ✓ ✓

VulDeeLocator: A Deep Learning‐based Fine‐grained Vulnerability Detector ✓

Fault Localization with Code Coverage Representation Learning ✓

SySeVR: A Framework for Using Deep Learning to Detect Software Vulnerabilities ✓

Retrieval‐Augmented Generation for Code Summarization via Hybrid GNN ✓

Statically Identifying XSS using Deep Learning ✓

PROGRAML: GRAPH‐BASED DEEP LEARNING FOR PROGRAM OPTIMIZATION
AND ANALYSIS

✓

STRUCTURED NEURAL SUMMARIZATION ✓

Neural Attribute Machines for Program Generation ✓

Hoppity: Learning graph transformations to detect and fix bugs in programs. ✓ ✓

Functional Code Clone Detection with Syntax and Semantics Fusion Learning ✓

Improved Automatic Summarization of Subroutines via Attention to File Context ✓

Code‐to‐Code Search Based on Deep Neural Network and Code Mutation ✓

Comparative Code Structure Analysis using Deep Learning for Performance Prediction ✓

PRE‐TRAINED CONTEXTUAL EMBEDDING OF SOURCE CODE ✓

Path‐based function embedding and its application to error‐handling specification mining ✓

Neural Attribution for Semantic Bug‐Localization in Student Programs ✓

378 - SAMOAA ET AL.

A P P END I X (Continued)

Title Code‐code Code‐text Text‐code Code‐prediction

Deep Representation Learning for Code Smells Detection using Variational Auto‐Encoder ✓

DeepBalance: Deep‐Learning and Fuzzy Oversampling for Vulnerability Detection ✓

Modelling Functional Similarity in Source Code with Graph‐Based Siamese Networks ✓

MPT‐embedding: An unsupervised representation learning of code for software defect
prediction

✓

funcGNN: A Graph Neural Network Approach to Program Similarity ✓

Semantic Clone Detection Using Machine Learning ✓

Assessing the Generalizability of code2vec Token Embeddings ✓ ✓

TypeWriter: Neural Type Prediction with Search‐Based Validation ✓

Improving Bug Detection via Context‐Based Code Representation Learning and Attention‐
Based Neural Networks

✓

Fast and Memory‐Efficient Neural Code Completion ✓

Learning to Spot and Refactor Inconsistent Method Names ✓

NL2Type: Inferring JavaScript Function Types from Natural Language Information ✓

PathPair2Vec: An AST path pair‐based code representation method for defect prediction ✓

STYLE‐ANALYZER: fixing code style inconsistencies with interpretable unsupervised
algorithms

✓

Software Defect Prediction via Convolutional Neural Network ✓

Cross‐language clone detection by learning over abstract syntax trees ✓

CCLearner: A Deep Learning‐Based Clone Detection Approach ✓

Machine‐Learning Supported Vulnerability Detection in Source Code ✓

Deep Code Search ✓

Code Vectors: Understanding Programs Through Embedded Abstracted Symbolic Traces ✓

Deep Code Comment Generation ✓

A Grammar‐Based Structural CNN Decoder for Code Generation ✓

Improving Code Search with Co‐Attentive Representation Learning ✓

Fret: Functional Reinforced Transformer With BERT for Code Summarization ✓

Neural Sketch Learning for Conditional Program Generation ✓

Pythia: AI‐assisted Code Completion System ✓

Detecting Code Clones with Graph Neural Network and Flow‐Augmented Abstract Syntax Tree ✓

SIT3: Code Summarization with Structure‐Induced Transformer ✓

VulDeePecker: A Deep Learning‐Based System for Vulnerability Detection ✓

Code Completion with Neural Attention and Pointer Networks ✓

Deep Learning to Find Bugs (With focus on name‐based bug detectors) ✓

Deep Learning Code Fragments for Code Clone Detection ✓

Convolutional Neural Networks over Tree Structures for Programming Language Processing ✓

Deep Learning‐Based Vulnerable Function Detection: A Benchmark ✓

Summarizing Source Code using a Neural Attention Model ✓

Supervised Deep Features for Software Functional Clone Detection by Exploiting Lexical and
Syntactical Information in Source Code

✓

Code completion with statistical language models ✓

(Continues)

SAMOAA ET AL. - 379

A P P END I X (Continued)

Title Code‐code Code‐text Text‐code Code‐prediction

A Deep Learning Approach to Program Similarity ✓

A Source Code Similarity Based on Siamese Neural Network ✓

A deep learning approach for detecting malicious JavaScript code ✓

Automatically Learning Semantic Features for Defect Prediction ✓

Graph‐based, Self‐Supervised Program Repair from Diagnostic Feedback ✓

An Empirical Study on Learning Bug‐Fixing Patches in the Wild via Neural Machine Translation ✓

Supervised deep features for software functional clone detection by exploiting lexical and
syntactical information in source code

✓

A deep language model for software code ✓

Neural program repair by jointly learning to localize and repair ✓ ✓

DeepBugs: A Learning Approach to Name‐Based Bug Detection ✓

Automated Vulnerability Detection in Source Code Using Deep Representation Learning ✓

Blended, precise semantic program embeddings ✓

Syntax and Sensibility: Using Language Models to Detect and Correct Syntax Errors ✓ ✓

Code Generation as a Dual Task of Code Summarization ✓ ✓

Sorting and Transforming Program Repair Ingredients via Deep Learning Code Similarities ✓

Neural Detection of Semantic Code Clones Via Tree‐Based Convolution ✓

A Syntactic Neural Model for General‐Purpose Code Generation ✓

Fast Code Clone Detection Based on Weighted Recursive Autoencoders ✓

Toward deep learning software repositories ✓

A Novel Neural Source Code Representation Based on Abstract Syntax Tree ✓ ✓

Deep Learning Similarities from Different Representations of Source Code ✓

Retrieval‐based Neural Source Code Summarization ✓

TBCNN: A tree‐based convolutional neural network for programming language processing ✓

Convolutional Neural Networks over Tree Structures for Programming Language Processing ✓

DeepTLE: Learning Code‐Level Features to Predict Code Performance before It Runs

A Convolutional Attention Network for Extreme Summarization of Source Code ✓

DeepSim: deep learning code functional similarity ✓

Improving Automatic Source Code Summarization via Deep Reinforcement Learning ✓

Devign: Effective Vulnerability Identification by Learning Comprehensive Program Semantics
via Graph Neural Networks

✓

C.2 Code–Code Tasks and Related Papers

Title
Code clone
detection Traceability

Code
similarity
detection

Program
repair

Fixing
format

Code
completion

Compiler
analysis

Program
generation

Generative Code Modelling with Graphs ✓

Self‐Supervised Contrastive Learning for Code
Retrieval and Summarization via Semantic‐
Preserving Transformations

✓

380 - SAMOAA ET AL.

A P P END I X (Continued)

Title
Code clone
detection Traceability

Code
similarity
detection

Program
repair

Fixing
format

Code
completion

Compiler
analysis

Program
generation

Learning‐Based Recursive Aggregation of Abstract
Syntax Trees for Code Clone Detection

✓

DeepFix: Fixing Common C Language Errors by
Deep Learning

✓

CODIT: Code Editing with Tree‐Based Neural
Models

✓ ✓

InferCode: Self‐Supervised Learning of Code
Representations by Predicting Subtrees

✓ ✓

SEQUENCER: Sequence‐to‐Sequence Learning
for End‐to‐End Program Repair

✓

Source Code Level Word Embeddings in Aiding
Semantic Test‐to‐Code Traceability

✓

Open Vocabulary Learning on Source Code with a
Graph‐Structured Cache

✓

PROGRAML: GRAPH‐BASED DEEP
LEARNING FOR PROGRAM
OPTIMIZATION AND ANALYSIS

✓

Neural Attribute Machines for Program Generation ✓

Hoppity: Learning graph transformations to detect
and fix bugs in programs.

✓

Functional Code Clone Detection with Syntax and
Semantics Fusion Learning

✓

Modelling Functional Similarity in Source Code
with Graph‐Based Siamese Networks

✓

funcGNN: A Graph Neural Network Approach to
Program Similarity

✓

Semantic Clone Detection Using Machine Learning ✓

Assessing the Generalizability of code2vec Token
Embeddings

✓

Fast and Memory‐Efficient Neural Code
Completion

✓

STYLE‐ANALYZER: fixing code style
inconsistencies with interpretable unsupervised
algorithms

✓

Cross‐language clone detection by learning over
abstract syntax trees

✓

CCLearner: A Deep Learning‐Based Clone
Detection Approach

✓

Code Vectors: Understanding Programs Through
Embedded Abstracted Symbolic Traces

✓

A Grammar‐Based Structural CNN Decoder for
Code Generation

✓

Neural Sketch Learning for Conditional Program
Generation

✓

Pythia: AI‐assisted Code Completion System ✓

Detecting Code Clones with Graph Neural
Network and Flow‐Augmented Abstract Syntax
Tree

✓

(Continues)

SAMOAA ET AL. - 381

A P P END I X (Continued)

Title
Code clone
detection Traceability

Code
similarity
detection

Program
repair

Fixing
format

Code
completion

Compiler
analysis

Program
generation

Code Completion with Neural Attention and
Pointer Networks

✓

Deep Learning Code Fragments for Code Clone
Detection

✓

Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and
Syntactical Information in Source Code

✓

Code completion with statistical language models ✓

A Deep Learning Approach to Program Similarity ✓

A Source Code Similarity Based on Siamese Neural
Network

✓

Graph‐based, Self‐Supervised Program Repair
from Diagnostic Feedback

✓

An Empirical Study on Learning Bug‐Fixing
Patches in the Wild via Neural Machine
Translation

✓

Supervised deep features for software functional
clone detection by exploiting lexical and
syntactical information in source code

✓

A deep language model for software code ✓

Neural program repair by jointly learning to localize
and repair

✓

Syntax and Sensibility: Using Language Models to
Detect and Correct Syntax Errors

✓

Sorting and Transforming Program Repair
Ingredients via Deep Learning Code
Similarities

✓

Neural Detection of Semantic Code Clones Via
Tree‐Based Convolution

✓

A Syntactic Neural Model for General‐Purpose
Code Generation

✓

Fast Code Clone Detection Based on Weighted
Recursive Autoencoders

✓ ✓

Toward deep learning software repositories ✓

A Novel Neural Source Code Representation Based
on Abstract Syntax Tree

✓

Deep Learning Similarities from Different
Representations of Source Code

✓ ✓

DeepSim: deep learning code functional similarity ✓

C.3 Code Prediction Tasks and Related Papers

Title
Source code
classification

Code
smell
detection

Error
handling

Bug
detection

Malicious
behaviour
detection

Vulnerability
detection

Performance
prediction

Type
signature
prediction

Cross‐Language Learning for Program
Classification using Bilateral Tree‐
Based Convolutional Neural Networks

✓

382 - SAMOAA ET AL.

A P P END I X (Continued)

Title
Source code
classification

Code
smell
detection

Error
handling

Bug
detection

Malicious
behaviour
detection

Vulnerability
detection

Performance
prediction

Type
signature
prediction

Semantic Code Repair using Neuro‐
Symbolic Transformation Networks

✓

FTCLNet: Convolutional LSTM with
Fourier Transform for Vulnerability
Detection

✓

DeepWukong: Statically Detecting
Software Vulnerabilities Using Deep
Graph Neural Network

✓

On the Effectiveness of Deep Vulnerability
Detectors to Simple Stupid Bug
Detection

✓

Neural Code Comprehension: A Learnable
Representation of Code Semantics

✓

VulDeeLocator: A Deep Learning‐based
Fine‐grained Vulnerability Detector

✓

Fault Localization with Code Coverage
Representation Learning

✓

SySeVR: A Framework for Using Deep
Learning to Detect Software
Vulnerabilities

✓

Statically Identifying XSS using Deep
Learning

✓

Hoppity: Learning graph transformations
to detect and fix bugs in programs

✓

Comparative Code Structure Analysis using
Deep Learning for Performance
Prediction

✓

PRE‐TRAINED CONTEXTUAL
EMBEDDING OF SOURCE CODE

✓

Path‐based function embedding and its
application to error‐handling
specification mining

✓

Neural Attribution for Semantic Bug‐
Localization in Student Programs

✓

Deep Representation Learning for Code
Smells Detection using Variational
Auto‐Encoder

✓

DeepBalance: Deep‐Learning and Fuzzy
Oversampling for Vulnerability
Detection

✓

MPT‐embedding: An unsupervised
representation learning of code for
software defect prediction

✓

TypeWriter: Neural Type Prediction with
Search‐Based Validation

✓

Improving Bug Detection via Context‐
Based Code Representation Learning
and Attention‐Based Neural Networks

NL2Type: Inferring JavaScript Function
Types from Natural Language
Information

✓

(Continues)

SAMOAA ET AL. - 383

A P P END I X (Continued)

Title
Source code
classification

Code
smell
detection

Error
handling

Bug
detection

Malicious
behaviour
detection

Vulnerability
detection

Performance
prediction

Type
signature
prediction

PathPair2Vec: An AST path pair‐based
code representation method for defect
prediction

✓

Software Defect Prediction via
Convolutional Neural Network

✓

Machine‐Learning Supported Vulnerability
Detection in Source Code

✓

VulDeePecker: A Deep Learning‐Based
System for Vulnerability Detection

✓

Deep Learning to Find Bugs (With focus
on name‐based bug detectors)

✓

Convolutional Neural Networks over Tree
Structures for Programming Language
Processing

✓

Deep Learning‐Based Vulnerable Function
Detection: A Benchmark

✓

A deep learning approach for detecting
malicious JavaScript code

✓

Automatically Learning Semantic Features
for Defect Prediction

✓

Neural program repair by jointly learning to
localize and repair

✓

DeepBugs: A Learning Approach to
Name‐Based Bug Detection

✓

Automated Vulnerability Detection in
Source Code Using Deep
Representation Learning

✓

Syntax and Sensibility: Using Language
Models to Detect and Correct Syntax
Errors

✓

A Novel Neural Source Code
Representation Based on Abstract
Syntax Tree

✓

TBCNN: A tree‐based convolutional
neural network for programming
language processing

✓

Convolutional Neural Networks over Tree
Structures for Programming Language
Processing

✓

DeepTLE: Learning Code‐Level Features
to Predict Code Performance before It
Runs

✓

Devign: Effective Vulnerability
Identification by Learning
Comprehensive Program Semantics via
Graph Neural Networks

✓

384 - SAMOAA ET AL.

C.4 Code‐Text and Related Papers

Title Identifier generation Code summarisation

code2vec: Learning Distributed Representations of Code ✓

code2seq: Generating Sequences from Structured Representations of Code ✓

A Transformer‐based Approach for Source Code Summarization ✓

Self‐Supervised Contrastive Learning for Code Retrieval and Summarization via Semantic‐
Preserving Transformations

✓

Learning to Represent Programs with Graphs ✓

A general path‐based representation for predicting program properties ✓

Open Vocabulary Learning on Source Code with a Graph‐Structured Cache ✓

Retrieval‐Augmented Generation for Code Summarization via Hybrid GNN ✓

STRUCTURED NEURAL SUMMARIZATION ✓ ✓

Improved Automatic Summarization of Subroutines via Attention to File Context ✓

Assessing the Generalizability of code2vec Token Embeddings ✓

Learning to Spot and Refactor Inconsistent Method Names ✓

Deep Code Comment Generation ✓

Fret: Functional Reinforced Transformer With BERT for Code Summarization ✓

SIT3: Code Summarization with Structure‐Induced Transformer ✓

Summarizing Source Code using a Neural Attention Model ✓

Blended, precise semantic program embeddings ✓

Code Generation as a Dual Task of Code Summarization ✓

Retrieval‐based Neural Source Code Summarization ✓

A Convolutional Attention Network for Extreme Summarization of Source Code ✓

Improving Automatic Source Code Summarization via Deep Reinforcement Learning ✓

C.5 Text‐Code and Related Papers

Title Program synthesis Code search

Self‐Supervised Contrastive Learning for Code Retrieval and Summarization via Semantic‐
Preserving Transformations

✓

When Deep Learning Met Code Search ✓

Code‐to‐Code Search Based on Deep Neural Network and Code Mutation ✓

Deep Code Search ✓

Improving Code Search with Co‐Attentive Representation Learning ✓

Code Generation as a Dual Task of Code Summarization ✓

SAMOAA ET AL. - 385

83

Paper 2

Analysing the Behaviour of Tree-Based Neural Networks in
Regression Tasks

Peter Samoaa, Mehrdad Farahani, Antonio Longa, Philipp Leitner, Morteza Haghir
Chehreghani

Journal of IEEE Transactions on Neural Networks and Learning Systems, 2024

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Analyzing the Behaviour of Tree-Based Neural
Networks in Regression Tasks

Peter Samoaa∗, Mehrdad Farahani∗, Antonio Longa‡, Philipp Leitner†, Morteza Haghir Chehreghani∗
∗Data Science and AI Division

Chalmers University of Technology
Gothenburg, Sweden

Email: {samoaa, mehrdad.farahani, morteza.chehreghani}@chalmers.se
†Interaction Design and Software Engineering Division

Chalmers University of Technology
Gothenburg, Sweden

Email: philipp.leitner@chalmers.se
‡Department of Information Engineering and Computer Science

University of Trento
Trento, Italy

Email: antonio.longa@unitn.it

Abstract—The landscape of deep learning has vastly expanded
the frontiers of source code analysis, particularly through the
utilization of structural representations such as Abstract Syntax
Trees (ASTs). While these methodologies have demonstrated
effectiveness in classification tasks, their efficacy in regression
applications, such as execution time prediction from source code,
remains underexplored. This paper endeavours to decode the
behaviour of tree-based neural network models in the context
of such regression challenges. We extend the application of
established models—tree-based Convolutional Neural Networks
(CNNs), Code2Vec, and Transformer-based methods—to predict
the execution time of source code by parsing it to an AST.
Our comparative analysis reveals that while these models are
benchmarks in code representation, they exhibit limitations
when tasked with regression. To address these deficiencies, we
propose a novel dual-transformer approach that operates on both
source code tokens and AST representations, employing cross-
attention mechanisms to enhance interpretability between the
two domains. Furthermore, we explore the adaptation of Graph
Neural Networks (GNNs) to this tree-based problem, theorizing
the inherent compatibility due to the graphical nature of ASTs.
Empirical evaluations on real-world datasets showcase that our
dual-transformer model outperforms all other tree-based neural
networks and the GNN-based models. Moreover, our proposed
dual transformer demonstrates remarkable adaptability and
robust performance across diverse datasets.

Index Terms—Graph Neural Networks (GNNs), Tree-Based
Neural Networks (TreeNN), Transformers.

I. INTRODUCTION

Deep learning models have widely used in the source code
analysis for various tasks such as classification of source
code [1]–[3], detection of code clones [4]–[6], identification
of bugs [7]–[9], and generation of code summaries [10]–[12].

Source code can be represented as textual format, thereby
encapsulating the lexical content of the code [13]. Through
the textual representation of the source code we can extract
the lexical information. For that aim, most traditional ap-
proaches to processing source code often adopt string-based

pattern matching, rule-based model transformation, and bag-
of-words [14]. However, these methods treat code fragments as
plain texts, which ignore the underlying semantic information
in source code, resulting in poor performance.

Source code can be represented as a tree throughout the
abstract syntax tree (AST) [13]. Thus, the code can be parsed
to the tree directly without prior execution. AST representation
is abstract and does not include all available details, such as
punctuation and delimiters. Theoretically, ASTs can be used
to illustrate the syntactic structure of source code, such as the
function name and the flow of the instructions (for example,
in an if or while construct).

Source code can also be represented as a graph which
explains the semantic information from the source code [13].
The graph-structured representations can only be extracted
via the intermediate representation or bytecode [15] (e.g.
control flow graphs which describe the sequence in which the
instructions of a program will be executed [16], data flow
graphs which follow and tracks the usage of the variables
through the program [16], call flow graphs which captures the
relation between a statement which calls a function and the
called function [17]), which means that the code fragments
have to be compiled successfully. However, the graphs may
contribute to enriching code representations. Unfortunately,
arbitrary code fragments or incomplete code snippets usually
lose the import libraries or dependency packages, making the
compilation fail. Such a limitation may make a large number
of labelled code snippets unavailable for training, hindering
the application of graph representations in practice [18].

That is why, in our study, we will focus on trees as they are
easier to extract since we just need to parse the source code.

Recently, some approaches combined neural networks and
ASTs to constitute tree-based neural networks (TNNs) [19].
Given a tree, TNNs learn the vector representation by
recursively computing node embeddings in a bottom-up

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

way. Popular TNN models are the Recursive Neural Net-
work (RvNN) [20], Tree-based convolutional neural networks
(TBCNN) [3], and Tree-based Long Short-Term Memory
(Tree-LSTM) [21]. However, most TBNN approaches tackle
a classification problem for the source code but not regression
tasks. Regression tasks such as source code performance
prediction (predicting the execution time for the application
prior to running it) can give the developer an early indication
of the runtime behaviour of their source code. Samoaa et
al. [22] indicate that trying the TNNs approaches for regression
tasks will lead to poor efficiency compared to classification
tasks. That said, these solutions are not generic enough for
any source code analysis tasks. Thus, to understand the
behaviour of TBNN models in regression tasks, we design
an analytical framework that uses the benchmark TBNN
models for source code analysis to prove the claim that these
models are efficient in classification tasks but in a regression
context. The TBNN models that are used in our framework are
code2vec [23], TBCNN [3], and Transformer-based networks
over AST(TBAST) [18], taking into account that we have
to make some changes in the architecture of these models
to fit the regression tasks. Additionally, we explore various
GNN architectures, focusing on neighbourhood information
sampling and aggregation within the AST, to further enrich
our analysis framework.

To address the lack of efficiency of these TBNN models in
a regression context, we develop our model based on cross-
attention dual transformers, which utilize sequences of source
code tokens and AST nodes. By employing cross-attention
mechanisms between the two transformers, our model aims
to elucidate the influence of individual source code tokens on
AST nodes, enhancing the understanding of code semantics.

Then, we analyse the behaviour of each type of architecture
(convolution, sequence, and GNN) for different levels of infor-
mation: node level (for every node in the AST) as in TBCNN,
GNNs, and sequential transformers or path level (a path in
AST, which is a sequence of nodes) as in code2vec. Since we
have a regression value for each source code program, we have
to map each AST to the regression value. Thus, the AST has to
be represented as one vector. For that aim, we will aggregate
the node and path representations through the models into one
continuous vector. To increase the reliability, we use two dif-
ferent real-world datasets of performance measurements. The
first dataset (OSSBuild) is real build data collected from the
continuous integration systems of four open-source systems.
The second (HadoopTests) is a larger dataset which we have
collected ourselves by repeatedly executing unit tests from the
Hadoop open-source system in a controlled environment.

The key findings of our experiments show that our
dual-transformers model consistently outperformed traditional
TBNN and GNN models across various metrics, including
Mean Squared Error (MSE), Mean Absolute Error (MAE),
and Pearson correlation. This superiority was observed in both
dataset contexts (OssBuilds and Hadoop) and under differ-
ent experimental setups, such as varying training sizes and
cross-dataset transferability. In addition, The dual-transformers
model demonstrated remarkable adaptability and robust perfor-
mance across diverse datasets. This model effectively handled

the complexity and variability of datasets differing in size and
composition, indicating their potential for general application
not only in source code analysis but also in other tree data
domains. The study also underscored how the characteristics
of datasets, such as the diversity of the data and the structure of
ASTs, significantly affect the performance of neural network
models. This was evident from the varying performances of
models on the OssBuilds dataset, which comprises data from
multiple projects, compared to the Hadoop dataset, which is
more homogeneous.

The aforementioned key findings highlight the potential of
our study in understanding the behaviour of different types
of neural network architectures for regression tasks. Our
contributions are manifold and address several gaps in the
current landscape of tree-based neural network methodologies
for regressions:

1) Novel Transformer-Based Model for Tree Learning:
We addressed the inefficiency of different used models
for tree and regression by designing and implementing
a model-centric AI for employing both code tokens and
tree nodes in the transformer based on cross-attention.

2) Development of Specialized Tree Datasets: We pro-
pose new tree datasets designed to be directly usable by
researchers, facilitating further exploration and valida-
tion of tree-based models.

3) Novel Framework for Analyzing the Behaviour of
Different Tree-Based Neural Networks Models : We
provide the research community with an open-source
framework that merges all TBNN models with our dual-
transformers model. So, researchers can directly use
this framework for different tasks and research. The
code files are available on GitHub https://github.com/
petersamoaa/Tree based NN Error analysis, and the
data files are available on Zenodo [24]

II. BACKGROUND

A. Abstract syntax trees

Abstract Syntax Trees (ASTs) offer a hierarchical represen-
tation of source code that abstracts away from the specific
syntactic form, focusing instead on the underlying structure
and logic of the code. This representation discards superficial
elements like punctuation, concentrating on the nodes that
signify the fundamental constructs of programming languages,
such as variables, operators, and control structures.

An AST encapsulates the syntactic structure of code, where
each node represents a construct occurring within the source
code [25]. The tree’s edges outline the relationship between
these constructs, effectively mapping out the syntax rules of
the language. The root of the tree often represents the entire
program, with leaves corresponding to atomic elements like
literals or variable names and internal nodes representing
operator or control statements that dictate the flow of the
program [13].

Transforming source code into an AST involves parsing,
where the code is analyzed according to the grammar of the
programming language, and its structure is broken down into
a tree that reflects the hierarchical composition of the code’s

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

elements. This process facilitates various code analysis tasks
by providing a structured and navigable representation of the
code, enabling more sophisticated and accurate analyses than
linear source code examination.

ASTs are instrumental in various applications, from code
compilation and optimization to more advanced analyses like
static code analysis, refactoring, and understanding program
behaviour. By providing a structured view of code, ASTs allow
tools and developers to examine the abstract properties of the
program without getting bogged down by syntactic details
irrelevant to the analysis at hand.

In the context of programming language analysis, especially
with the advent of machine learning techniques, ASTs serve as
a crucial bridge between source code and its semantic under-
standing. They enable the application of advanced analytical
models that can learn from the structural patterns of code to
perform tasks such as bug detection, code summarization, and
even automated code generation [13].

B. Motivation Example

To have a deeper understanding of the AST, this section
explains by example how the source code can be represented
as AST. Thus, we investigate Java source code files (see
Listing 1).

Listing 1. A Simple JUnit 5 Test Case
package org . myorg . w e a t h e r . t e s t s ;

import s t a t i c
org . j u n i t . j u p i t e r . a p i . A s s e r t i o n s . a s s e r t E q u a l s ;

import org . myorg . w e a t h e r . WeatherAPI ;
import org . myorg . w e a t h e r . F l a g s ;

p u b l i c c l a s s WeatherAPITes t {

WeatherAPI a p i = new WeatherAPI () ;

@Test
p u b l i c vo id t e s t T e m p e r a t u r e O u t p u t () {

double cur ren tTemp = a p i . cu r ren tTemp () ;
F l a g s f = a p i . g e t F r e e z e F l a g () ;
i f (cu r ren tTemp <= 3 . 0 d)

a s s e r t E q u a l s (F l a g s . FREEZE , f) ;
e l s e

a s s e r t E q u a l s (F l a g s .THAW, f) ;
}

}

In this example, a single test case testTemperature-
Output() is presented that tests a feature of an (imaginary)
API. As common for test cases, the example is short and
structurally relatively simple. Much of the body of the test
case consists of invocations to the system-under-test and calls
of JUnit standard methods, such as assertEquals.

A (slightly simplified) AST for this illustrative example is
depicted in Figure 1. The produced AST does not contain
purely syntactical elements, such as comments, brackets, or
code location information. We make use of the pure Python
Java parser javalang1 to parse each test file and use the node
types, values, and production rules in javalang to describe our
ASTs.

1https://pypi.org/project/javalang/

testTemperatureOutput

DECL

double =

currentTemp CALL

currentTemp

DECL

… IF

PRED

<=

currentTemp LIT

3.0d

IF-BLOCK

CALL

assertEquals ARGS

Flags.FREEZE f

ELSE-
BLOCK

CALL

assertEquals ARGS

Flags.THAW f

CU

WeatherAPITest

PACKAGE

… IMPORT

…
CLASS

DECL

WeatherAPI =

api CONSTR

WeatherAPI

api

Fig. 1. Simplified abstract syntax tree (AST) representing the illustrative
example presented in Listing 1. Package declarations, import statements, as
well as the declaration in Line 15 are skipped for brevity.

III. RELATED WORK

The application of deep learning techniques to tree-
structured representations of source code has garnered con-
siderable attention within the research community. Mou et al.
[3], [26] introduced a novel approach leveraging tree-based
Convolutional Neural Networks (CNNs) to perform convo-
lutional computations on Abstract Syntax Trees (ASTs) for
code classification tasks. Similarly, Zhu et al. [27] employed
tree-based Long Short-Term Memory (LSTM) networks to
encode AST pairs into continuous vectors, facilitating code
clone detection by measuring similarities.

Further exploring tree-based neural networks, Zhang et al.
[19] utilized Recursive Neural Networks (RvNNs) to process
ASTs at the path level, targeting classification objectives.
Concurrently, While et al. [20] applied RvNNs to analyze
ASTs at the node level for classification purposes, a method
paralleled by Wei et al. [21] through the use of Labeled AST
(LAST) structures.

Innovatively, Zhang et al. [28] introduced a transformer-
based model that incorporates tree-based position embeddings
to represent the nodes within ASTs, enhancing the classifica-
tion of source code by learning from code tokens.

Beyond classification, the generation of source code has also
been explored. A novel pre-trained model, TreeBERT [29],
adapts the BERT architecture to understand programming
languages through AST analysis, focusing on path-level node
position embeddings for code summarization tasks. Yang et
al. [30] further this exploration by proposing the use of multi-
modal transformers, analyzing ASTs at the node level for code
summarization.

In the realm of regression tasks, the work of Samoaa
et al. [22] stands out by applying Graph Neural Networks
(GNNs) to augmented ASTs, representing a pioneering effort
in leveraging tree-based neural network models for regression
in source code analysis.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

Despite the proliferation of deep learning methodologies
for analyzing source code through AST representations, there
remains a gap in the literature concerning the comparative
analysis of different architectural approaches, particularly in
the context of regression tasks. This study aims to bridge this
gap by examining the behaviour and efficacy of various tree-
based neural network models in regression scenarios.

IV. ANALYTIC FRAMEWORK

According to Samoaa [13], the majority of the deep-
learning-based approaches for source code follow the same
pipeline as in Figure 2. Thus, the approaches start with parsing
the code into AST through the AST parser. Our study uses a
Python Java parser javalang2 as a parser that produces AST
from the source code. AST represent the syntactic features.
Then, deep learning models like recurrent neural networks
(RNNs) or convolutional neural networks (CNNs) are used to
encode the nodes of AST into vectors for downstream tasks
like classification and regression.

These approaches have three major limitations: 1) RNN
models inevitably suffer from the gradient vanishing problem,
meaning that the gradients become vanishingly small values
during model training, especially in the context of usage of
AST which is very deep in most cases [31]; 2) CNN models
cannot capture the long-distance dependency information from
sequential nodes of tokens in AST due to the size limitation of
the sliding windows, which scan only a few nodes/tokens at a
time [31]; 3) apart from using the simplistic lexical features,
the approaches for AST processing that recursively traverse
entire trees from bottom to top may produce longer sequential
inputs than the textual inputs, consume large amounts of
computational resources and destroy the syntactical structures
existing in AST [18]

Thus, based on the abovementioned limitations, we will use
a transformer as a competitor for sequential models as well
as the basis of our approach since also the transformer is the
most mature of sequential models for the following reasons:

• Handling Long Dependencies: Transformers leverage
self-attention mechanisms. This allows them to weigh
the importance of different parts of the input sequence
directly, regardless of the distance between elements [32],
making them well-suited for the hierarchical and complex
structures of ASTs.

• Parallelization: Transformers do not process data se-
quentially as RNNs do. Instead, they can process entire
data sequences in parallel during training, significantly
speeding up the learning process. This is particularly
advantageous when dealing with the large and intricate
structures of ASTs, where computational efficiency is
paramount.

• Flexibility in Capturing Structural Information: The
self-attention mechanism in transformers can easily adapt
to the structured nature of ASTs, capturing both the local
and global context within the tree. This flexibility allows
for a more nuanced understanding of code semantics

2https://pypi.org/project/javalang/

compared to the fixed window size of CNNs or the
sequential nature of RNNs.

• Scalability: Transformers are highly scalable and capable
of handling large input sequences without significantly
dropping performance. This makes them ideal for source
code analysis, where ASTs can vary widely in size and
complexity.

AST Parser AST
Parse

TBNN/GNN

Fig. 2. Abstracted General Code Representation and DL Models in Software
Engineering.

Despite its mentioned limitation, we will also use CNN in
our framework to have diverse architecture types of neural
networks.

V. DUAL TRANSFORMER MODEL

Most models use attention except the TBCNN. The main
novelty of our work through the designing and developing
of our approach, as well as the comparison with benchmark
models, is the understanding that attention mechanism over
multiple contexts is needed for embedding programs into a
continuous space, and the use of this embedding to predict
properties of a whole code snippet.

Our Dual-Transformer model is designed to integrate struc-
tural and lexical information within the source code to predict
execution time. As illustrated in Figure 3, the architecture
consists of two parallel transformer encoders: the NLEncoder
for processing source code tokens and the ASTEncoder for
processing AST node that the outputs of both encoders are
integrated via a cross-attention mechanism, which allows the
model to jointly consider textual and structural information.

A. NL-Encoder

The NL-Encoder serves to encode textual information from
source code tokens. Input tokens xcode are transformed into
embeddings Ecode via a learned embedding matrix Wcode,
combined with positional encodings Pcode to retain sequential
information:

Ecode = Wcode · xcode + Pcode (1)

These embeddings then pass through a series of transformer
blocks, each comprising a multi-head self-attention mechanism
and a position-wise feed-forward network. For the ith block,
the output Oi is computed as follows:

O′
i = LayerNorm(Ecode + MultiHead(Ecode, Ecode, Ecode))

(2)
Oi = LayerNorm(O′

i + FFN(O′
i)) (3)

Where LayerNorm denotes layer normalization, MultiHead
denotes the multi-head self-attention mechanism and FFN
represents the feed-forward network. The embeddings are
subsequently refined by transformer layers, with the output
of the final layer being denoted as Ocode.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

Embedding Layer

Positional
Encoding

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Embedding Layer

Positional
Encoding

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Cross Attention

Add & Norm

Input: Source Code
Tokens Input: AST Nodes

Linear

Regressor

Fig. 3. The architecture of the Dual-Transformer model. The framework
features two transformer encoders: NLEncoder for source code tokens and
ASTEncoder for AST nodes, each with layers for embedding, multi-head
attention, and feed-forward networks, complemented by add & norm layers
for stabilization. Their outputs are merged via cross-attention and passed to
a linear regressor for error prediction, leveraging both textual and syntactical
insights.

B. AST-Encoder

The ASTEncoder parallels the NLEncoder in structure but
operates on the AST’s nodes. Similar to the NLEncoder,
AST node inputs xast are embedded into vectors East and
supplemented with positional encoding:

East = Wast · xast + Past (4)

These embeddings are then processed through analogous
transformer blocks, yielding a structured representation of the
code’s syntax as Oast.

C. Attention Mechanisms

The crux of our model lies in the cross-attention mechanism
that bridges the NLEncoder and ASTEncoder. For each pair
of encoded sequences Ocode and Oast, cross-attention is
computed as:

CrossAttention(Ocode, Oast)

= Attention(OcodeW
Q
cross, OastW

K
cross, OastW

V
cross)

= softmax

(
(OcodeW

Q
cross)(OastW

K
cross)

T

√
dk

)
OastW

V
cross

(5)

Where the learned weight matrices WQ
cross, WK

cross, and
WV

cross are central to the model’s ability to integrate the
outputs of the NLEncoder and ASTEncoder. These matrices
transform the final layer outputs of the encoders into the

queries (Q), keys (K), and values (V) needed for the attention
calculation. This allows each encoder to attend to the outputs
of the other, integrating semantic and syntactic information
into a unified representation.

D. Regression Head

At the top of the model, a regression head is applied to
integrate the representation (z) of the output of ASTEncoder
for error prediction:

ŷ = Linear(ReLU(Linear(z))) (6)

Where z represents the result produced by the first token
”[CLS]” from the ASTEncoder, which is designed to summa-
rize the overall context of the input sequence.

VI. OTHER GNN AND TBNN MODELS

This section introduces the benchmark models against
which our dual transformers model is evaluated. This includes
discussing GNN-based models, a convolutional model lever-
aging tree structures, a sequential model transformer-based,
and the path-attention mechanism employed by code2vec.
Each approach offers a unique perspective on source code
analysis through AST, setting the stage for a comprehensive
comparative study.

A. Graph Learning Approach

Graph Neural Networks have demonstrated promise in var-
ious real-world applications [33]–[40]. Two primary models
have played a pioneering role in the field, establishing the
foundational frameworks for two key approaches to graph
processing: the recurrent model proposed by Scarselli et
al. [41] and the feedforward model introduced by Micheli
[42]. Notably, the feedforward approach has evolved into the
prevailing method [43]–[47].

In this section, we will explain the graph neural network
architectures that we used in our experiment. The models
accept the AST as an input and predict a scalar execution
time value.

a) GCN (Graph Convolutional Network): GCNs [43]
leverage the concept of convolutional operations on graph-
structured data. The model updates the representation of a
node by aggregating the features of its neighbours.

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (7)

Where H(l) is the matrix of node features at layer l, Ã =
A+IN is the adjacency matrix A with added self-connections
IN , D̃ is the degree matrix of Ã, W (l) is the weight matrix
for layer l, and σ is a non-linear activation function.

b) GAT (Graph Attention Network): GAT [44] introduces
the attention mechanism to graph neural networks. It computes
the hidden representations of each node by attending to its
neighbours, following a self-attention strategy.

αij =
exp(LeakyReLU(aT [Whi||Whj]))∑

k∈N (i) exp(LeakyReLU(aT [Whi||Whk]))
(8)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

h′
i = σ


 ∑

j∈N (i)

αijWhj


 (9)

Where hi is the feature vector of node i, W is a shared
linear transformation, a is the attention mechanism’s learn-
able weight, || denotes concatenation, and αij represents the
attention coefficient between nodes i and j.

c) GraphSAGE (Graph Sample and Aggregation):
GraphSAGE [46] generates embeddings by sampling and
aggregating features from a node’s local neighbourhood.

h′
i = σ (W · MEAN({hi} ∪ {hj ,∀j ∈ N (i)})) (10)

Where hi is the feature vector of node i, N (i) is the set
of its neighbours, and W is the weight matrix associated with
the aggregator function.

d) GIN (Graph Isomorphism Network): GIN [47] is
designed to capture the power of the Weisfeiler-Lehman
graph isomorphism test. It aggregates neighbour information
to update node representations, aiming to distinguish graph
structures.

h′
i = MLP


(1 + ϵ) · hi +

∑

j∈N (i)

hj


 (11)

Where hi represents the feature vector of node i, ϵ is a
learnable parameter or a fixed scalar, and MLP denotes a
multi-layer perceptron.

Since all baselines are used for classification, we changed
the models to fit the regression tasks.

B. Tree-based CNN (TBCNN)

TBCNN models [3] are designed to process the structured
data of an AST by leveraging convolutional layers tailored
for tree structures. This approach involves several key compo-
nents:

• Representation Learning for AST Nodes: Each AST
node is represented as a distributed vector capturing the
symbol features.

p⃗ ≈ tanh

(∑

i

liWcode,i · c⃗i + bcode

)
(1)

Where:
p⃗ is the parent node’s vector representation. li is a
coefficient based on the subtree’s leaf count. Wcode, i is
learned weight matrices. c⃗i and x⃗i represent the children
nodes’ vectors.

• Coding Layer: This layer encodes the representation of
a node by aggregating the features of its children through
a learned transformation.

p⃗ = Wcomb1·p⃗+Wcomb2·tanh
(∑

i

liWcode,i · c⃗i + bcode

)

(2)
where: Wcomb1 and Wcomb2 are learned weight ma-
trices.

• Tree-based Convolutional Layer: A set of convolutional
filters or kernels is applied over the AST to capture the
hierarchical structure of the code.

y = tanh

(∑

i

Wconv,i · x⃗i + bconv

)
(3)

where Wconv, i is learned weight matrices. bcode and
bconv are bias terms. y is the output vector after applying
the convolution operation.

• Dynamic Pooling: This layer aggregates the convolu-
tional features from different parts of the AST to handle
varying sizes and shapes.

• The ”Continuous Binary Tree” Model: It addresses
the challenge of AST nodes having varying numbers of
children by considering each subtree as a binary tree
during convolution.

This representation captures the essence of how TBCNNs
operate on ASTs to learn meaningful representations of source
code for various tasks such as program classification and pat-
tern detection. However, we modified the model’s architecture
to fit regression tasks.

C. code2vec Path-Attention Model

The code2vec model operates on the principle of transform-
ing code snippets into a distributed vector representation. It
achieves this by embedding the paths and terminal nodes of
AST and using an attention mechanism to identify and aggre-
gate the most relevant features. The model can be decomposed
into several components:

• Embedding Vocabularies: Two embedding matrices,
value vocab ∈ R|X|×d and path vocab ∈ R|P |×d,
where |X| is the number of unique AST terminal node
values and |P | is the number of unique AST paths
observed during training. The embedding size d is a
hyperparameter typically ranging between 100 and 500.

• Context Vectors: A path-context bi is a triplet ⟨xs, pj , xt⟩
representing the start and end tokens of a path in the AST
and the path itself. Each component of bi is mapped to
its embedding and concatenated to form a context vector
ci ∈ R3d:

ci = embedding⟨xs, pj , xt⟩
= [value vocab[s], path vocab[j], value vocab[t]] ∈ R3d

(12)

• Fully Connected Layer: Each context vector ci is
transformed by a fully connected layer with weights
W ∈ Rd×3d and a tanh non-linearity to produce a
combined context vector c̃i:

c̃i = tanh(W · ci) (13)

• Attention Mechanism: The attention mechanism com-
putes a weighted average of the combined context vectors
c̃i, using an attention vector a ∈ Rd which is learned
during training. The attention weight αi for each c̃i is
computed using the softmax function:

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

αi =
exp(c̃⊤i · a)∑n
j=1 exp(c̃

⊤
j · a) (14)

• Aggregated Code Vector: The final code vector v ∈ Rd

representing the entire code snippet is calculated as a
weighted sum of the combined context vectors:

v =
n∑

i=1

αi · c̃i (15)

The model learns to assign an appropriate amount of atten-
tion to each path context, effectively capturing the semantics
of the code snippet. The final code vector can be used for
various downstream tasks, such as method name prediction,
with the attention weights offering insight into the model’s
decision process.

D. Transformer-based Networks for AST

This approach splits the deep ASTs into smaller subtrees
that aim to exploit syntactical information in code statements.
Then, the model gets the sequence of nodes of each subtree to
eventually have a sequence of nodes of a sequence of subtrees.
Thus, the transformer-based models are particularly adept at
considering the sequential nature of code through the use of
positional embeddings and self-attention mechanisms, drawing
inspiration from their success in natural language processing
tasks. This model utilizes multiple layers of self-attention and
feed-forward networks to process data. The model can be
mathematically described as follows:

• Multi-Head Self-Attention: The self-attention mech-
anism allows the model to weigh the importance of
different tokens within the input sequence differently.
This is done using queries (Q), keys (K), and values
(V), which are derived from the input embedding matrix
X ∈ Rn×d:

Q = XWQ, K = XWK , V = XWV , (16)

where WQ,WK ,WV ∈ Rd×d are parameter matrices.
The output of the attention function for a single head is
computed as:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V, (17)

where dk is the dimension of the keys.
In the case of multi-head attention, the above computation
is done in parallel for each head, and the outputs are
concatenated and linearly transformed:

MultiHead(Q,K, V) = Concat(head1, . . . , headh)W
O,

(18)
where each head is computed as headi =
Attention(QWQ

i ,KWK
i , V WV

i) and WO is another
parameter matrix.

• Position-wise Feed-Forward Networks: Each trans-
former block contains a position-wise feed-forward net-
work, which applies two linear transformations with a
ReLU activation in between:

FFN(x) = max(0, xW1 + b1)W2 + b2, (19)

where W1,W2 and b1, b2 are parameters of the layers.
• Layer Normalization and Residual Connections: Each

sub-layer in a transformer, including self-attention and
feed-forward networks, has a residual connection around
it followed by layer normalization:

LayerNorm(x+ Sublayer(x)). (20)

• Output Layer: The output of the transformer is typically
taken from the first token’s representation and passed
through a final dense layer for classification tasks:

o = softmax(x0W + b), (21)

Where x0 is the transformed embedding of the first token
and W, b are parameters of the output layer.

VII. EXPERIMENT

A. Experiment Settings

In this experiment setup, all GNN-based models consist of
two convolution layers with hidden dimensions of 40 and 30,
followed by two linear layers. To facilitate graph prediction,
node representation pooling was employed by concatenating
mean and max global pooling techniques. Batch normalization
and dropout techniques were applied for training regulariza-
tion. All models were implemented using PyTorch-Geometric
[48].

To standardize our experimental conditions across various
utilised models, including TreeCNN, Code2Vec, Transformer-
Based, and Dual-Transformer, we trained each for hundred
epochs five times with different initialization seeds at a learn-
ing rate of 1 × 10−4 and a batch size of four. However,
each model requires specific parameters to function optimally.
For example, the TreeCNN model uses a node representation
embedding size of 100 and a hidden layer size of 300.
The Code2Vec model, employing a pre-trained version, was
initially trained with 200 distinct contexts and had extensive
vocabulary sizes for tokens and paths, set at 1,301,136 and
911,417, respectively, with an embedding size of 128.

We assess both scaled-down (small) and fully scaled ver-
sions (large) for the Transformer models. The scaled-down
version includes a single transformer block with 768 hidden
units, eight self-attention heads, and a maximum sequence
length of 2,048 tokens, while the fully scaled version consists
of 12 transformer blocks. The implementation of Transformer
models utilized the Huggingface library.

By maintaining consistent training epochs, learning rates,
and batch size across models and adjusting configurations to
meet each model’s architectural requirements, our experiment
aims to deliver a balanced and comprehensive evaluation of
models’ performance across various metrics.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

B. Dataset Collection

In our experiments, to increase reliability, we use two dif-
ferent real-world datasets of performance measurements. The
first dataset (OSSBuild) is real build data collected from the
continuous integration systems of four open-source systems.
The second (HadoopTests) is a larger dataset we have collected
ourselves by repeatedly executing the unit tests of the Hadoop
open-source system in a controlled environment. A summary
of both datasets is provided in Table I. In the following
subsections, we provide some additional information about
each of the two datasets that we used in the experimental
studies.

1) OSSBuild Dataset: In this dataset (originally used in
Samoaa et al. [22]), information about test execution times in
production build systems was collected for four open-source
projects: systemDS, H2, Dubbo, and RDF4J. All four projects
use public continuous integration servers containing (public)
information about the project’s builds, which we harvested for
test execution times as a proxy of performance in summer
2021. Basic statistics about the projects in this dataset are
described in Table I (top). ”Files” refers to the number of unit
test files we collected execution times for, ”Runs” is the (total)
number of executions of files we extracted data for, whereas
”Nodes” and ”Vocab.” indicate the resulting trees. Prior to
parsing the test files, we remove code comments to reduce the
number of nodes in each tree (by construction, irrelevant). We
notice that across 922 ASTs, we have almost 867,000 nodes
with 36880 distinct labels as vocabs.

2) HadoopTests Dataset: To address limitations with the
OSSBuilds dataset (primarily the limited number of files for
each individual project in the dataset) [49], we additionally
collected a second dataset for this study. We selected the
Apache Hadoop framework since it entails a large number of
test files (2895) of sufficient complexity. We then executed all
unit tests in the project five times, recording the execution du-
ration of each test file as reported by the JUnit framework (in
millisecond granularity). As an execution environment for this
data collection, we used a dedicated virtual machine running
in a private cloud environment, with two virtualized CPUs
and 8 GByte of RAM. Following performance engineering
best practices, we deactivated all other non-essential services
while running the tests. Statistics about the HadoopTests
dataset are described in Table I (bottom). Since we have more
files in HadoopTests, there are more nodes. Thus, ASTs for
HadooptTests have almost 5 million nodes and almost 139,000
vocabs.

To better understand our dataset, Table II shows the average
statistics of the input ASTs. In particular, we report the average
number of nodes (|V |), the average number of edges (|E|),
the diameter, and density. The data in Table II reveals key
structural features of the ASTs in our datasets. The near-equal
count of nodes (|V |) and edges (|E|) underscores the tree-like
nature of ASTs, where most nodes are directly connected to
only one parent. The substantial diameters indicate deep trees,
suggesting complex nested code structures. Low-density points
to sparse connectivity, emphasizing the depth over breadth
in these ASTs, which could affect the performance of neural

models that process such hierarchical data.

VIII. RESULTS

In this section, we delineate the performance outcomes of
our proposed model alongside those of competing frameworks,
scrutinized from three distinct angles: initial efficacy across
the OssBuilds and Hadoop datasets on a standard data split,
variations in model efficiency with increasing sizes of training
data, and the adaptability of models through cross-dataset
transferability assessments. The evaluation metrics include
MSE, MAE, and Pearson correlation coefficient (Cor.), with
lower MSE and MAE values indicating better performance
and a higher correlation coefficient signifying a stronger
relationship between predicted and actual execution times.

A. Models Performance Evaluation

This section presents a comprehensive analysis of our
experimental results, comparing the performance of various
models on the standard split of datasets. Thus, for five different
seeds, we split the data into 80% used for training and the rest
20% for testing, and then we report the average results across
the seeds.

a) GNN models: As presented in Table VIII-A, among
the GNN architectures, GraphSage exhibits superior perfor-
mance on the OssBuilds dataset, with the lowest MSE of
0.06 and MAE of 0.20, alongside a commendable correlation
of 0.68. However, on the Hadoop dataset, all GNN models
demonstrate relatively similar MSE scores of 0.06 (except for
GAT). As for MAE and Correlation scores, both GCN and
GraphSage have similar scores, 0.21 and 0.52, respectively,
with GraphSage maintaining a slight edge in standard devia-
tion(STD). It is worth mentioning that the GIN model performs
well for the Hadoop dataset with the best MAE score.

b) TBNN Models: Transitioning to the TBNN competi-
tors, TreeCNN TreeCNN emerges as a strong contender in
all metrics (particularly in Pearson correlation), showcasing
the best scores among TBNN models for both datasets, with
the lowest MSE of 0.03, an MAE of 0.13 and the highest
correlation score of 0.57 on the OssBuilds dataset and 0.02,
0.12, and 0.57 for MSE, MAE, and Pearson correlation On
the Hadoop dataset. It is worth mentioning that Code2Vec is a
good competitor with a very small margin of difference from
TreeCNN in both datasets, especially for error metrics. As for
transformer-based, it achieves the worst results, especially in
the large setting on the OssBuilding dataset, explaining that the
model is too complex for this dataset. In contrast, the efficiency
of the same model with the same setting is improving in the
Hadoop dataset, which is the larger dataset with more complex
trees.

c) Our Dual-Transformer Model: Our proposed Dual-
Transformer model (in both large and small settings) signif-
icantly outperforms both the GNN architectures and TBNN
competitors across all metrics on both datasets. It achieves the
best MSE of 0.01 and 0.02 and an outstanding MAE of 0.08
and 0.09 on the OssBuilds dataset, coupled with a remarkable
correlation of 0.85 and 0.83 for small and large settings,
respectively. Although the Hadoop dataset shares the best MSE

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

TABLE I
OVERVIEW OF THE OSSBUILDS AND HADOOPTESTS DATASETS.

Project Description Files Runs Nodes Vocab.
sysDS Apache ML for Data Science lifecycle 127 1321 114904 3205
H2 Java SQL DB 194 1391 432375 18326
Dubbo Apache Remote Procedure Call framework 123 524 77142 4505
RDF4J Scalable RDF 478 1055 242673 10844
(OSSBuilds) Tot. 922 4291 867094 36880
Hadoop Apache framework for big data 2895 24348 5090798 138952

Fig. 4. Real vs predicted values Each panel reports the real (y-axes) and predicted (x-axes) values for each model. Each pair that is real-predicted is
represented as a blue point, while the dashed red line shows a linear regression model fitted to the data.

TABLE II
AVERAGE STATISTICS OF THE INPUT TREES.

Dataset |V | |E| Diameter Density
OSSBuilds 875 874 17 0.015
HadoopTests 1490 1489 19 0.006

score of 0.02 with TreeCNN, its MAE of 0.12 and 0.11,
as well as the correlation of 0.67 and 0.72, is unparalleled,
underscoring its superior predictive capability and efficiency
in capturing the underlying complexities of source code.

d) Models’ Prediction Trending Analysis: In Figure 4, a
correlation chart is presented for the OssBuilds dataset, each
panel depicting a distinct model. The figure clearly indicates
that the GNN-based models struggle to predict real values
accurately. Notably, it appears that all GNN-based models
exhibit a tendency to predict values that are either close to
one or close to zero. The Transformer-based, TreeCNN, and
Code2Vec models encounter challenges in predicting larger
values. While our model also faces difficulty in predicting
larger values, however, it outperforms the other approaches.

e) Conclusion: These results in Table VIII-A underscore
the efficacy of our Dual-Transformer approach, particularly in
its ability to harness the syntactic and semantic intricacies of
ASTs for source code analysis. The significant improvement
in correlation coefficients highlights the model’s adeptness at
understanding the nuanced relationships within the code, mak-
ing it a promising tool for developers seeking early insights
into the potential execution characteristics of their programs.
When compared with transformer-based models, our dual
transformer has displayed superior performance, which can

be attributed to its specialized architecture designed to handle
dual input modalities. On the other hand, the Transformer-
based model may not effectively capture the interplay between
different types of input data, such as textual and struc-
tural representations in programming code. Furthermore, the
transformer-based model may have limitations in dealing with
extended sequence lengths compared to the dual transformer.

GNN models seem to be the second-best regarding Pearson
scores for both datasets (except for TreeCNN in Hadoop).
However, both error metrics for code2vec and TreeCNN mod-
els are better for both datasets compared with GNN models.

Regarding trending results for the models between Oss-
Building and Hadoop, only the TreeCNN model has an upward
trend. In contrast, the scores for the rest of the models have
decreased in the Hadoop dataset compared to OssBuilding.

In conclusion, the empirical evidence strongly supports
adopting our dual transformer model for the regression task.
By effectively leveraging both the lexical and syntactic fea-
tures of the source code, our approach establishes a new state-
of-the-art performance, paving the way for future research in
this domain.

B. Assessing Model Efficiency Across Incremental Training
Data Sizes

Given the expense associated with data collection, this
section delves into the effectiveness of our and other models
when trained on a reduced dataset. Specifically, we employ
random selection to allocate 20%, 40%, and 60% of the dataset
for training the models, while a fixed 20% of the remaining
portion is designated for testing. Through the outcomes shown
in Table IV, we observed distinct patterns of performance

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

TABLE III
TEST MSE, MAE, AND PEARSON CORRELATION FOR BOTH DATASETS TREES

OssBuilds Hadoop
MSE MAE Cor. MSE MAE Cor.
↓ ↓ ↑ ↓ ↓ ↑

GCN 0.07±0.02 0.21±0.03 0.65±0.04 0.06±0.02 0.21±0.03 0.52±0.05

GAT 0.07±0.01 0.23±0.02 0.61±0.03 0.09±0.01 0.25±0.02 0.38±0.07

GIN 0.08±0.01 0.21±0.01 0.60±0.04 0.06±0.003 0.20±0.01 0.50±0.04

GraphSage 0.06±0.01 0.20±0.02 0.68±0.02 0.06±0.01 0.21±0.02 0.52±0.03

Code2Vec 0.03±0.003 0.14±0.01 0.44±0.11 0.03±0.002 0.14±0.01 0.28±0.05

TreeCNN 0.03±0.002 0.13±0.004 0.51±0.03 0.02 ± 0.001 0.12±0.01 0.57±0.03

Transformer-Based (small) 0.09±0.04 0.25±0.07 0.45±0.15 0.08±0.0.03 0.24±0.06 0.27±0.06

Transformer-Based (large) 0.46±0.25 0.56±0.20 0.30±0.10 0.05±0.01 0.17±0.03 0.40±0.07

Dual-Transformer (small) 0.01 ± 0.002 0.08 ± 0.006 0.85 ± 0.02 0.02 ± 0.01 0.12±0.03 0.67±0.04

Dual-Transformer (large) 0.02±0.006 0.09±0.02 0.83±0.03 0.02±0.004 0.11±0.01 0.72±0.03

adaptation as the models were exposed to increasing propor-
tions of the dataset.

a) GNN models: For the OssBuilds dataset, GNN models
generally demonstrated an expected trend: improvements in
MSE(except for GIN), MAE (except for GIN and GraphSage),
and Pearson correlation (except GCN, GIN) as the training
data size expanded from 20% to 60%. Except for GIN, all
other GNN models have stability in MSE score in the training
data size of 40% to 60%. Moreover, the GAT model also has
stability in MAE for both 20% and 40% of training data.

For the Hadoop dataset, GNN models tend to have better
error metrics (except for GAT) across all sizes used in training.
However, the opposite is true when it comes to Pearson’s score.
Similar to OssBuids, there is some stability in error metrics
scores as in GIN in 20% and 40% and GraphSage in 40%
and 60% sizes of training data. As for GCN, the MAE is
stable across all training seizes. As for GAT, we got the same
MSE score when we used 20% and 40% for training. Despite
the stability in error metrics most of the time, the prediction
correlation of Pearson correlation still changes through the
different sizes, which justifies the importance of adding more
data for training. Thus, notably, GNN-based models benefit
from more extensive data to better capture the structural
nuances of the ASTs. However, their performance plateaus,
suggesting a limit to how much simply increasing data can
benefit these models without corresponding adjustments in
model complexity or architecture

b) TBNN Models: For the OssBuilds dataset, the TBNN
models show varying degrees of sensitivity to the amount of
training data. Code2Vec and TreeCNN exhibit stable perfor-
mance in terms of MSE and MAE across different training
sizes, but Pearson correlation shows a slight increase, indicat-
ing better alignment between predicted and actual values with
more data. Transformer-based models, both small and large,
display inconsistent performance, with significant fluctuations
in MSE and MAE and only modest improvements in Pearson
correlation, suggesting instability in their learning process with
varied data sizes.

In the Hadoop dataset, TBNN models follow a similar trend.
Code2Vec and TreeCNN maintain stable error metrics, while
the Pearson correlation improves as more training data is
provided. The Transformer-Based models show less stability,
with large variations in MSE, MAE, and Pearson correlation
across different training sizes. This instability indicates that

Transformer-Based models might require more fine-tuning or
adjustments in their architecture to better handle varied data
sizes.

c) Our Dual-Transformer Model: The Dual-Transformer
models, our proposed approach, show robust performance
improvements across all metrics as the training data size
increases. For the OssBuilds dataset, both small and large
variants of the Dual-Transformer model exhibit significant
decreases in MSE and MAE and substantial increases in
Pearson correlation, reaching 0.82 with 60% training data. This
indicates the model’s ability to effectively utilize additional
training data to enhance predictive accuracy and correlation
alignment.

Similarly, in the Hadoop dataset, the Dual-Transformer
models demonstrate consistent performance gains. The MSE
and MAE decrease steadily, and the Pearson correlation shows
marked improvement, reaching 0.73 with 60% training data.
This consistent improvement across different data sizes under-
scores the effectiveness of the Dual-Transformer architecture
in handling complex regression tasks on ASTs, leveraging the
added data to refine its predictive capabilities.

d) Conclusion: The analysis across incremental training
data sizes reveals that while GNN models benefit from in-
creased data, their performance gains plateau. TBNN mod-
els show varying degrees of stability, with Code2Vec and
TreeCNN being more resilient to changes in data size.

The overall error values for the Hadoop dataset were gen-
erally smaller than the OssBuilds dataset (except for GAT).
On the other hand, Pearson Correlation scores are better for
OssBuilds for all models except TreeCNN, suggesting that
Hadoop’s complexity and tree structures might pose additional
challenges in prediction. Despite this, the Dual-Transformer
model consistently outperformed other models, reaffirming
its adaptability and efficiency in handling complex trees. In
addition, it demonstrates robust scalability and effectiveness
in leveraging additional data to enhance predictive accuracy
and correlation, making them well-suited for regression tasks
for trees. It is worth mentioning that the Dual-Transformer
model can be satisfied with 40% of training data to achieve the
best performance when it comes to the Hadoop dataset. Still,
it consistently needs more data to be utilised in training in
OssBuilds, which contains samples from 4 different projects.

These findings underscore the critical importance of data
volume in training neural network models for source code

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 11

TABLE IV
TEST MSE, MAE, AND PEARSON CORRELATION ACROSS DIFFERENT TRAINING DATA SIZES FOR BOTH DATASETS

OssBuilds
20% 40% 60%

Model MSE MAE Cor. MSE MAE Cor. MSE MAE Cor.
GCN 0.09±0.02 0.26±0.03 0.51±0.07 0.08±0.01 0.23±0.03 0.63±0.03 0.08±0.01 0.22±0.02 0.62±0.05

GAT 0.08±0.005 0.23±0.02 0.52±0.04 0.07±0.005 0.23±0.02 0.57±0.02 0.07±0.004 0.22±0.02 0.59±0.04

GIN 0.09±0.01 0.24±0.02 0.49±0.06 0.07±0.01 0.21±0.009 0.57±0.05 0.09±0.02 0.24±0.04 0.56±0.08

GraphSage 0.08±0.007 0.24±0.02 0.58±0.005 0.07±0.01 0.22±0.03 0.64±0.03 0.07±0.01 0.23±0.03 0.65±0.04

Code2Vec 0.03±0.002 0.15±0.006 0.33±0.08 0.03±0.002 0.15±0.01 0.35±0.11 0.03±0.002 0.15±0.01 0.39±0.07

TreeCNN 0.03±0.001 0.15±0.005 0.32±0.06 0.03±0.001 0.15±0.003 0.40±0.05 0.03±0.003 0.14±0.01 0.46±0.05

Transformer-Based (small) 0.13±0.04 0.29±0.05 0.37±0.08 0.14±0.09 0.30±0.10 0.39±0.12 0.09±0.05 0.25±0.07 0.34±0.22

Transformer-Based (large) 0.56±0.47 0.61±0.17 0.18±0.11 0.60±0.26 0.62±0.14 0.13±0.12 0.34±0.06 0.45±0.03 0.26±0.05

Dual-Transformer (small) 0.02±0.004 0.10±0.01 0.79±0.04 0.01±0.003 0.09±0.007 0.84±0.03 0.02±0.01 0.10±0.03 0.82±0.05
Dual-Transformer (large) 0.02±0.004 0.11±0.01 0.71±0.04 0.02±0.002 0.09±0.005 0.79±0.05 0.01±0.002 0.09±0.01 0.82±0.02

Hadoop
20% 40% 60%

Model MSE MAE Cor. MSE MAE Cor. MSE MAE Cor.
GCN 0.07±0.01 0.22±0.02 0.42±0.12 0.08±0.02 0.22±0.03 0.50±0.03 0.07±0.01 0.22±0.02 0.52±0.06

GAT 0.09±0.02 0.25±0.02 0.17±0.17 0.09±0.009 0.24±0.1 0.19±0.09 0.11±0.04 0.27±0.04 0.17±0.22

GIN 0.07±0.02 0.22±0.03 0.36±0.14 0.07±0.01 0.22±0.02 0.46±0.06 0.06±0.006 0.20±0.009 0.48±0.09

GraphSage 0.07±0.003 0.22±0.009 0.35±0.08 0.06±0.008 0.21±0.02 0.57±0.09 0.06±0.01 0.21±0.02 0.55±0.08

Code2Vec 0.04±0.003 0.13±0.006 0.38±0.04 0.03±0.003 0.14±0.01 0.24±0.04 0.03±0.001 0.13±0.004 0.38±0.06

TreeCNN 0.02±0.003 0.12±0.002 0.44±0.03 0.02±0.001 0.12±0.006 0.51±0.02 0.02±0.001 0.11±0.001 0.53±0.01

Transformer-Based (small) 0.09±0.05 0.23±0.08 0.26±0.16 0.10±0.04 0.26±0.07 0.34±0.11 0.07±0.04 0.21±0.07 0.38±0.17

Transformer-Based (large) 0.28±0.09 0.42±0.07 0.14±0.05 0.08±0.01 0.22±0.02 0.29±0.07 0.09±0.06 0.24±0.10 0.34±0.02

Dual-Transformer (small) 0.02±0.002 0.11±0.008 0.70±0.04 0.02±0.005 0.11±0.02 0.72±0.03 0.02±0.005 0.11±0.02 0.68±0.02

Dual-Transformer (large) 0.02±0.007 0.13±0.02 0.67±0.03 0.02±0.002 0.10±0.007 0.72±0.01 0.02±0.002 0.09±0.008 0.73±0.01

analysis. They also highlight the Dual-Transformer model’s
superiority in adapting to varied training sizes while maintain-
ing robust performance, marking it as a promising approach
for efficient source code analysis.

C. Cross-Dataset Transferability

In this section, we explore the models’ performance in an
inductive scenario, where they are trained on one dataset and
tested on another dataset [50]. The results, shown in Table V,
unfold distinct patterns of performance across the GNN-based
models, TBNNs, and our Dual-Transformer model. Due to the
differing scales of the machines used to collect the datasets
(since the hardware used is one of the factors that affect
the execution time), it was imperative to adapt the model
to each specific context. To this end, we initially trained the
model on one dataset and subsequently fine-tuned it using a
small subset of the other dataset to optimize its parameters.
This fine-tuning process involved using incremental portions
of the test dataset—specifically 10%, 20%, and 30%—to refine
the model’s ability to generalize across different operational
conditions. The efficacy of the fine-tuning was then evaluated
by testing the model on 20% of the test dataset, which is
fixed across all portions, ensuring a consistent assessment
framework across all experimental conditions. This method-
ological approach allowed us to rigorously assess the model’s
adaptability and performance across datasets characterized by
diverse computational environments.

When we trained the models on Hadoop and fine-tuned
and evaluated on Ossbuilds, models exhibited relatively
stable MSE and MAE across all fine-tuning portions (ex-
cept for the small version of our dual transformer model),
indicating a capacity to maintain consistent error rates when

transferring knowledge from a larger (Hadoop) to a smaller
dataset (OssBuilds). Pearson correlation showed gradual im-
provement as the fine-tuning portion increased (except for
a small model of transformed-based), highlighting a modest
but positive adaptation. The Dual-Transformer models demon-
strated the best performance, with significant improvements in
correlation and error rates, making them the most adaptable
across dataset sizes. Since the error metrics are slightly better
for the large version of our dual transformer, the prediction
correlation score for the small version, however, is largely
better across the usage of all potions of fine-tuning. Con-
versely, the Transformer-Based models struggled the most,
especially in larger configurations, showing limited correlation
improvements and variable error rates, suggesting challenges
in adapting to the smaller dataset’s nuances. It is worth
mentioning that GNN models show more efficient predictions
since the Pearson correlation score is better than all other
TBNN models. However, this is also the case regarding the
error metrics. Compared to other experiments, TBNN, we see
a huge decrease in error metrics compared to the previous
experiments. However, the error metrics of GNN are somehow
stable across all our experiments. As for our model, only the
MAE metric increased.

In the scenario where OssBuilds was used for training
and Hadoop for fine-tuning and evaluation, all models
generally showed better MSE and MAE scores compared to
the previous setting, especially for TBNN models since both
code2vec and TreeCNN competing our model, particularly
with a small portion of test data used for fine-tuning. That said,
when we train TBNN models on trees for different projects, the
models can easily generalized to other trees. However, Pearson
correlation is still an issue for these models. GNN models have

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 12

TABLE V
TRANSFERABILITY TEST MSE, MAE, AND PEARSON CORRELATION FOR BOTH DATASETS

Train Set = Hadoop & Test Set = OssBuild
10% 20% 30%

Model MSE MAE Cor. MSE MAE Cor. MSE MAE Cor.
GCN 0.08±0.01 0.23±0.02 0.47±0.02 0.08±0.01 0.22±0.03 0.51±0.02 0.08±0.01 0.22±0.03 0.53±0.02

GAT 0.09±0.01 0.26±0.02 0.35±0.20 0.08±0.01 0.24±0.03 0.40±0.21 0.08±0.01 0.24±0.03 0.41±0.19

GIN 0.08±0.01 0.24±0.02 0.51±0.02 0.08±0.01 0.22±0.02 0.54±0.02 0.07±0.01 0.21±0.02 0.55±0.02

GraphSage 0.08±0.01 0.25±0.02 0.51±0.02 0.08±0.01 0.23±0.03 0.55±0.02 0.08±0.01 0.23±0.03 0.56±0.02

Code2Vec 0.20±0.01 0.37±0.02 0.21±0.09 0.20±0.01 0.37±0.02 0.30±0.10 0.19±0.02 0.36±0.02 0.33±0.09

TreeCNN 0.21±0.01 0.39±0.01 0.14±0.07 0.20±0.005 0.38±0.01 0.25±0.05 0.19±0.005 0.37±0.01 0.32±0.03

Transformer-Based (small) 0.24±0.07 0.39±0.05 0.40±0.10 0.34±0.13 0.44±0.10 0.40±0.17 0.24±0.03 0.40±0.04 0.35±0.15

Transformer-Based (large) 0.64±0.35 0.90±0.60 0.02±0.09 0.88±0.48 0.82±0.04 0.07±0.04 0.42±0.78 0.68±0.41 0.15±0.07

Dual-Transformer (small) 0.11±0.02 0.26±0.02 0.47±0.07 0.08±0.02 0.23±0.02 0.56±0.10 0.06±0.01 0.20±0.01 0.65±0.09
Dual-Transformer (large) 0.05±0.005 0.17±0.006 0.15±0.05 0.04±0.006 0.16±0.01 0.23±0.04 0.03±0.01 0.15±0.04 0.42±0.06

Train Set = OssBuilds & Test Set = Hadoop
10% 20% 30%

Model MSE MAE Cor. MSE MAE Cor. MSE MAE Cor.
GCN 0.07±0.01 0.22±0.01 0.43±0.05 0.07±0.01 0.21±0.01 0.46±0.04 0.09±0.02 0.24±0.03 0.44±0.05

GAT 0.10±0.01 0.25±0.01 0.37±0.03 0.09±0.01 0.24±0.1 0.43±0.02 0.09±0.01 0.25±0.02 0.44±0.01

GIN 0.09±0.03 0.24±0.03 0.42±0.06 0.08±0.02 0.23±0.03 0.46±0.05 0.07±0.02 0.22±0.02 0.47±0.04

GraphSage 0.07±0.01 0.22±0.01 0.45±0.04 0.07±0.01 0.22±0.01 0.48±0.03 0.06±0.004 0.21±0.005 0.52±0.02

Code2Vec 0.005±0.0005 0.06±0.003 0.16±0.07 0.004±0.002 0.06±0.005 0.38±0.03 0.005±0.0002 0.06±0.004 0.38±0.05

TreeCNN 0.005±0.0004 0.06±0.003 0.30±0.04 0.005±0.001 0.06±0.004 0.38±0.03 0.004±0.0003 0.05±0.001 0.43±0.02

Transformer-Based (small) 0.04±0.01 0.16±0.03 0.04±0.09 0.08±0.05 0.23±0.09 0.11±0.12 0.04±0.03 0.16±0.07 0.14±0.07

Transformer-Based (large) 0.26±0.02 0.41±0.02 0.11±0.06 0.15±0.08 0.31±0.10 0.06±0.02 0.14±0.04 0.31±0.05 0.12±0.07

Dual-Transformer (small) 0.006±0.005 0.06±0.03 0.62±0.03 0.004±0.001 0.05±0.006 0.64±0.05 0.004±0.001 0.05±0.006 0.61±0.06

Dual-Transformer (large) 0.005±0.002 0.06±0.01 0.56±0.09 0.003±0.002 0.04±0.001 0.67±0.03 0.003±0.0004 0.05±0.004 0.67±0.03

slightly similar error metrics; however, the correlation score is
decreasing (except for GAT). That is reasonable since GNN
models mainly learn based on the tree’s structure throughout
collecting information from the neighbour nodes. Although
transformer-based is still the worst model in terms of Pearson
score, the error metrics have improved hugely, especially for
the small version of the model, which puts this version in
a better position compared to GNN. The large version of
transformer-based is generally still the worst in all metrics.
Our model is still the best model, even in this scenario, with
significantly better errors and correlation scores than Hadoop’s
usage in the training. We also observe in this scenario that
with increased fine-tuning, GraphSage and TreeCNN are stable
across the portions. The improvement in the models in this
scenario shows that when we train the models on diverse trees(
since OssBuild contains four projects with four different trees),
we can have a better generalization compared to training the
models on a large but not diverse tree (as in Hadoop, where
all trees come from one project).

IX. DISCUSSION

The analysis of our experimental results, particularly focus-
ing on the Pearson correlation coefficients and error metrics
(MSE and MAE), reveals insightful trends in the performance
of various models applied to trees. Remarkably, our model
demonstrates superior performance compared to other methods
in all preceding experiments.

Based on Sections V, VI, we can differentiate the learning
of the models into two categories: 1) GNNs and TreeCNN,
which learn based on the structure of the tree without any
interest in the tokens of the nodes. 2) The rest of the models
use the sequence of tokens of the nodes for learning. The
first category of models looks at the topological structure of

the tree. Whereas the second category focuses on the exact
sequence of tokens of the tree node (e.g., class definition,
control statement, method declaration, etc.) Thus, in this
section, we will comment on the results we observed in the
previous section.

A. Our transformer model vs the competitor

The Dual-Transformer’s design, which incorporates cross-
attention between the token-level transformer and the tree
node-level transformer, allows for a richer representation of
the source code by highlighting the interaction between lexical
and syntactic features. This nuanced representation is likely
the reason for the observed improvement in performance.
In contrast, the baseline Transformer-Based model, which
operates solely on the tree, does not capture the lexical context
to the same extent, thereby limiting its effectiveness for the
regression task.

B. GNN part

GNN-based approaches consistently underperform com-
pared to our model. The failure of GNNs in learning mean-
ingful representations is attributed to the inherent topological
structure of trees. Table II reveals that the average network
diameter is 17 and 19 for OssBuilds and Hadoop, respectively.
The elevated diameter poses a significant challenge for GNN-
based methods, necessitating deeper networks. However, this
exacerbates well-known issues such as over-smoothing [51]
and over-squashing [52].

C. Attention mechanism

The application of attention mechanisms across differ-
ent models unveils varied outcomes. Our Dual-Transformer

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 13

model, leveraging cross-attention, consistently outperforms
other approaches, underscoring the efficacy of attention in
distilling relevant features from both token sequences and AST
node sequences. In contrast, the GAT model exhibits a mixed
performance, ranking well on the OssBuilds dataset but falling
short on the Hadoop dataset. This inconsistency highlights the
potential sensitivity of attention-based GNNs to the underly-
ing dataset characteristics. Interestingly, the TreeCNN model,
which does not employ attention, demonstrates resilience
across datasets, suggesting that attention mechanisms, while
powerful, are not a panacea and may introduce complexity
that does not always translate to improved performance.

D. Level of Inforamtion

The distinction between node-level and path-level infor-
mation processing is another critical factor in our analysis.
Except for code2vec, which operates at the path level, all other
models process information at the node level. This distinction
might contribute to the unique positioning of code2vec in
the performance spectrum, indicating that the granularity of
analysis (node vs. path) can significantly influence model
outcomes.

E. Error Analysis and Pearson correlation score

It is noteworthy to highlight that the MAE, MSE, and Pear-
son correlation capture distinct aspects. To elaborate, MAE
offers an assessment of error magnitude, disregarding their
direction. Conversely, MSE accentuates larger errors through
the squaring operation, rendering it sensitive to outliers. Lastly,
Pearson correlation gauges the linear relationship between two
variables, providing a measure of the strength and direction of
the linear association between predicted and actual values.

1) Mean Squared Error (MSE) and Mean Absolute
Error (MAE) primarily measure the accuracy of pre-
dictions in terms of error magnitude. Both metrics are
direct measures of the average errors made by the model:

• MSE gives a higher weight to larger errors due
to the squaring of each term. This makes it more
sensitive to outliers or large deviations from the true
values.

• MAE provides a straightforward arithmetic mean of
absolute errors, thus not disproportionately penaliz-
ing larger errors compared to smaller ones.

When MSE and MAE remain stable across different
training data sizes, it suggests that the overall magnitude
of errors does not significantly change as more data is
used for training. This could imply that adding more
training data under these conditions does not necessarily
improve the model’s ability to predict more accurately in
terms of error reduction. It might suggest that the model
has reached a plateau in learning from the additional data
where the average error remains consistent.

2) Pearson Correlation, on the other hand, measures the
strength and direction of a linear relationship between
the predicted and actual values. An increase in the
Pearson correlation as training data size increases could
indicate several things:

• As more data is available for training, the model
may be getting better at capturing underlying pat-
terns that influence both the scale and trend of the
predictions relative to actual outcomes. This doesn’t
necessarily mean that the model is becoming more
precise in a point-by-point prediction (as indicated
by stable MSE and MAE), but rather that it is
improving in aligning the direction and trends of
its predictions with the actual values.

• A higher Pearson correlation means the model’s
predictions are better aligned with the actual values’
variability, even if the absolute errors (magnitude of
errors) aren’t improving. This could be critical in
applications where understanding the direction of
changes is more important than the exact errors.

Therefore, the observed pattern—stable MSE and MAE but
increasing Pearson correlation—suggests that while the pre-
cision of the model in absolute terms does not improve
with more data, the model’s ability to capture the relative
movements or trends in the data improves. This distinction is
crucial in scenarios where the relationship dynamics between
predicted and actual values are more significant than the sheer
accuracy of point predictions. It highlights the model’s grow-
ing capacity to reflect the true data structure in its predictions
over increasing the size of the dataset.

F. Datasets properties

Dataset characteristics play a pivotal role in model per-
formance. The OssBuilds dataset, with its diversity stem-
ming from four distinct projects, ostensibly presents a more
challenging environment for models due to the variability in
code patterns and AST structures. However, models generally
perform better on this dataset compared to Hadoop, which,
despite its larger size, consists of samples from a single
project. This counterintuitive result may be attributed to the
complexity of Hadoop’s ASTs, particularly their depth and
diameter, which could pose difficulties for models, especially
GNNs, in effectively capturing and propagating information
across the tree structure.

G. Transferability across different datasets

The cross-dataset transferability results highlight the chal-
lenges inherent in generalizing models trained on one source
code dataset to another. Most models exhibited a decrease
in performance when applied to an unfamiliar dataset, un-
derscoring the specificity of learned patterns to the training
data’s structure and semantics. However, the TreeCNN model
and our Dual-Transformer showcased notable resilience, with
the latter demonstrating a promising balance between error
metrics and correlation, especially on the Hadoop dataset. This
suggests that models with sophisticated attention mechanisms,
like the Dual-Transformer, may possess an inherent advantage
in capturing more generalizable features of source code, tran-
scending dataset-specific idiosyncrasies.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 14

H. models’ efficiency across incremental training data sizes

The exploration into model efficiency with varying sizes of
training data revealed an expected trend: model performance
generally improved as the amount of training data increased.
This trend underscores the importance of data volume in
model training, particularly for complex models like GNNs
and Transformers, which require substantial data to effectively
learn and generalize from the intricate structures of ASTs. The
consistent performance improvement of our Dual-Transformer
model across incremental training sizes further emphasizes its
robustness and the effectiveness of its architectural design in
leveraging larger datasets for enhanced source code analysis.

I. Conclusion

In summary, our findings illuminate the multifaceted nature
of source code analysis using machine learning models. The
interplay between model architecture (especially the use of at-
tention mechanisms), the level of information granularity, and
dataset characteristics significantly influences performance.
These insights not only contribute to our understanding of the
strengths and limitations of various approaches but also pave
the way for future research aimed at optimizing model design
and data preprocessing techniques for enhanced source code
analysis.

X. CONCLUSION

In this study, we provided an analytical framework to
examine the performance of tree-based neural network models
in regression tasks. At the heart of our investigation was
the introduction of an innovative model predicated on a
dual-transformer architecture. This model was meticulously
evaluated against an array of models grounded in Graph Neural
Network (GNN) and Tree-Based Neural Network (TBNN)
paradigms. The rigour of our experimental methodology, ap-
plied to two distinct real-world datasets, firmly establishes the
dual-transformer model as a superior contender, outshining
its counterparts across various error metrics and Pearson
correlation indices.

A recurrent theme observed across the evaluated models
was the prevalent incorporation of attention mechanisms and
a node-level analytical approach within tree structures. This
observation accentuates the pivotal role of attention in effec-
tively navigating the structural intricacies inherent in our case
study tree.

The contributions of this paper are twofold. Firstly, it
introduces a potent model that redefines the benchmark for
regression tasks within the realm of source code analysis.
Secondly, it facilitates a nuanced comparative analysis of tree-
based neural network models, thereby bolstering the under-
standing of their efficacy and broadening their applicability in
practical settings.

Furthermore, the research underscores the Dual-Transformer
model’s prowess in accurately forecasting source code exe-
cution times. By leveraging a dual encoder framework that
intricately captures the nuances of source code tokens and
AST nodes, our model demonstrates a marked improvement
over conventional tree-based neural network approaches. This

finding signifies the untapped potential of advanced deep
learning architectures in the field of source code analysis,
setting a promising direction for future inquiries.

ACKNOWLEDGMENTS

Anonymized Acknowledgement

REFERENCES

[1] N. Bui, L. Jiang, and Y. Yu, “Cross-language learning for program
classification using bilateral tree-based convolutional neural networks,”
2018.

[2] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi, “Pre-trained
contextual embedding of source code,” 2020. [Online]. Available:
https://openreview.net/forum?id=rygoURNYvS

[3] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
ser. AAAI’16. AAAI Press, 2016, p. 1287–1293.

[4] N. D. Q. Bui, Y. Yu, and L. Jiang, “Infercode: Self-supervised learning of
code representations by predicting subtrees,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), 2021, pp.
1186–1197.

[5] C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, “Functional code clone
detection with syntax and semantics fusion learning,” in Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 516–527. [Online]. Available:
https://doi.org/10.1145/3395363.3397362

[6] N. Mehrotra, N. Agarwal, P. Gupta, S. Anand, D. Lo, and R. Purandare,
“Modeling functional similarity in source code with graph-based siamese
networks,” IEEE Transactions on Software Engineering, no. 01, pp. 1–1,
aug 2020.

[7] J. Hua and H. Wang, “On the effectiveness of deep vulnerability
detectors to simple stupid bug detection,” in 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR), 2021,
pp. 530–534.

[8] Y. Li, S. Wang, and T. Nguyen, “Fault localization with code coverage
representation learning,” in 2021 IEEE/ACM 43rd International Confer-
ence on Software Engineering (ICSE), 2021, pp. 661–673.

[9] K. Shi, Y. Lu, G. Liu, Z. Wei, and J. Chang, “Mpt-embedding:
An unsupervised representation learning of code for software defect
prediction,” Journal of Software: Evolution and Process, vol. 33,
no. 4, p. e2330, 2021, e2330 smr.2330. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2330

[10] N. D. Q. Bui, Y. Yu, and L. Jiang, “Self-supervised contrastive
learning for code retrieval and summarization via semantic-preserving
transformations,” ser. SIGIR ’21. New York, NY, USA: Association
for Computing Machinery, 2021. [Online]. Available: https://doi.org/10.
1145/3404835.3462840

[11] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-based neu-
ral source code summarization,” in 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE), 2020, pp. 1385–1397.

[12] S. Liu, Y. Chen, X. Xie, J. K. Siow, and Y. Liu, “Retrieval-augmented
generation for code summarization via hybrid GNN,” in International
Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=zv-typ1gPxA

[13] H. P. Samoaa, F. Bayram, P. Salza, and P. Leitner, “A systematic
mapping study of source code representation for deep learning in
software engineering,” IET Software, vol. 16, no. 4, pp. 351–385, 2022.
[Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/abs/
10.1049/sfw2.12064

[14] K. W. Al-Sabbagh, M. Staron, and R. Hebig, “Improving test
case selection by handling class and attribute noise,” Journal of
Systems and Software, vol. 183, p. 111093, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121221001904

[15] G. Zhao and J. Huang, “Deepsim: deep learning code functional
similarity,” ser. ESEC/FSE 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 141–151. [Online]. Available:
https://doi.org/10.1145/3236024.3236068

[16] P. Samoaa, “Data-centric ai for software performance engineering
- predicting workload dependent and independent performance of
software systems using machine learning based approaches,” Ph.D.
dissertation, 2023. [Online]. Available: https://www.proquest.com/
dissertations-theses/data-centric-ai-software-performance-engineering/
docview/2800163992/se-2

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 15

[17] C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, and H. Leather,
“Programl: Graph-based deep learning for program optimization and
analysis,” 2020.

[18] W. Hua and G. Liu, “Transformer-based networks over tree structures
for code classification,” Applied Intelligence, pp. 1–15, 2022.

[19] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), 2019, pp. 783–794.

[20] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2016, pp. 87–98.

[21] H.-H. Wei and M. Li, “Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in
source code,” in Proceedings of the 26th International Joint Conference
on Artificial Intelligence, ser. IJCAI’17. AAAI Press, 2017, p.
3034–3040.

[22] H. P. Samoaa, A. Longa, M. Mohamad, M. H. Chehreghani, and
P. Leitner, “Tep-gnn: Accurate execution time prediction of functional
tests using graph neural networks,” in Product-Focused Software Process
Improvement, D. Taibi, M. Kuhrmann, T. Mikkonen, J. Klünder, and
P. Abrahamsson, Eds. Cham: Springer International Publishing, 2022,
pp. 464–479.

[23] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec:
Learning distributed representations of code,” Proc. ACM Program.
Lang., vol. 3, no. POPL, Jan. 2019. [Online]. Available: https:
//doi.org/10.1145/3290353

[24] P. Samoaa, “Analyzing the Behaviour of Tree-Based Neural Networks
in Regression Tasks,” May 2024. [Online]. Available: https://doi.org/
10.5281/zenodo.11383081

[25] P. Samoaa, L. Aronsson, P. Leitner, and M. H. Chehreghani, “Batch
mode deep active learning for regression on graph data,” in 2023 IEEE
International Conference on Big Data (BigData), 2023, pp. 5904–5913.

[26] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional
neural networks over tree structures for programming language
processing,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30, no. 1, Feb. 2016. [Online]. Available: https:
//ojs.aaai.org/index.php/AAAI/article/view/10139

[27] X. Zhu, P. Sobihani, and H. Guo, “Long short-term memory
over recursive structures,” in Proceedings of the 32nd International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, F. Bach and D. Blei, Eds., vol. 37. Lille,
France: PMLR, 07–09 Jul 2015, pp. 1604–1612. [Online]. Available:
https://proceedings.mlr.press/v37/zhub15.html

[28] A. Zhang, L. Fang, C. Ge, P. Li, and Z. Liu, “Efficient transformer
with code token learner for code clone detection,” Journal of
Systems and Software, vol. 197, p. 111557, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121222002333

[29] X. Jiang, Z. Zheng, C. Lyu, L. Li, and L. Lyu, “Treebert: A tree-based
pre-trained model for programming language,” in Proceedings of the
Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, ser.
Proceedings of Machine Learning Research, C. de Campos and M. H.
Maathuis, Eds., vol. 161. PMLR, 27–30 Jul 2021, pp. 54–63. [Online].
Available: https://proceedings.mlr.press/v161/jiang21a.html

[30] Z. Yang, J. Keung, X. Yu, X. Gu, Z. Wei, X. Ma, and M. Zhang,
“A multi-modal transformer-based code summarization approach for
smart contracts,” in 2021 IEEE/ACM 29th International Conference on
Program Comprehension (ICPC), 2021, pp. 1–12.

[31] L. Mou and Z. Jin, Tree-based convolutional neural networks: principles
and applications. Springer, 2018.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you
need,” in Advances in Neural Information Processing Systems,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper
files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[33] D. Buffelli and F. Vandin, “Graph representation learning for multi-
task settings: a meta-learning approach,” 2021. [Online]. Available:
https://openreview.net/forum?id=HmAhqnu3qu

[34] F. M. Bianchi and V. Lachi, “The expressive power of pooling in graph
neural networks,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[35] L. Pasa, N. Navarin, W. Erb, and A. Sperduti, “A unified framework
for backpropagation-free soft and hard gated graph neural networks,”
Knowledge and Information Systems, pp. 1–24, 2023.

[36] F. Ferrini, A. Longa, A. Passerini, and M. Jaeger, “Meta-path
learning for multi-relational graph neural networks,” in The Second
Learning on Graphs Conference, 2023. [Online]. Available: https:
//openreview.net/forum?id=gW9ZmT9hAe

[37] A. Nguyen, A. Longa, M. Luca, J. Kaul, and G. Lopez, “Emotion
analysis using multilayered networks for graphical representation of
tweets,” IEEE Access, vol. 10, pp. 99 467–99 478, 2022.

[38] L. Telyatnikov, M. S. Bucarelli, G. Bernardez, O. Zaghen, S. Scardapane,
and P. Lio, “Hypergraph neural networks through the lens of message
passing: a common perspective to homophily and architecture design,”
arXiv preprint arXiv:2310.07684, 2023.

[39] J. Thomas, A. Moallemy-Oureh, S. Beddar-Wiesing, and C. Holzhüter,
“Graph neural networks designed for different graph types: A survey,”
Transactions on Machine Learning Research, 2023. [Online]. Available:
https://openreview.net/forum?id=h4BYtZ79uy

[40] M. Tiezzi, G. Ciravegna, and M. Gori, “Graph neural networks for graph
drawing,” IEEE Transactions on Neural Networks and Learning Systems,
2022.

[41] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini, “The graph neural network model,” IEEE transactions on neural
networks, vol. 20, no. 1, pp. 61–80, 2008.

[42] A. Micheli, “Neural network for graphs: A contextual constructive
approach,” IEEE Transactions on Neural Networks, vol. 20, no. 3, pp.
498–511, 2009.

[43] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning
Representations, 2017. [Online]. Available: https://openreview.net/
forum?id=SJU4ayYgl

[44] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in International Conference
on Learning Representations, 2018. [Online]. Available: https:
//openreview.net/forum?id=rJXMpikCZ

[45] D. Bacciu, F. Errica, A. Micheli, and M. Podda, “A gentle introduction
to deep learning for graphs,” Neural Networks, vol. 129, pp. 203–221,
2020.

[46] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[47] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in International Conference on Learning Represen-
tations, 2018.

[48] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” arXiv preprint arXiv:1903.02428, 2019.

[49] P. Samoaa, L. Aronsson, A. Longa, P. Leitner, and M. H. Chehreghani,
“A unified active learning framework for annotating graph data with
application to software source code performance prediction,” 2023.

[50] A. Longa, V. Lachi, G. Santin, M. Bianchini, B. Lepri, P. Lio,
franco scarselli, and A. Passerini, “Graph neural networks for
temporal graphs: State of the art, open challenges, and opportunities,”
Transactions on Machine Learning Research, 2023. [Online]. Available:
https://openreview.net/forum?id=pHCdMat0gI

[51] T. K. Rusch, M. M. Bronstein, and S. Mishra, “A survey on oversmooth-
ing in graph neural networks,” arXiv preprint arXiv:2303.10993, 2023.

[52] U. Alon and E. Yahav, “On the bottleneck of graph neural
networks and its practical implications,” in International Conference
on Learning Representations, 2021. [Online]. Available: https:
//openreview.net/forum?id=i80OPhOCVH2

101

Paper 3

Tep-gnn: Accurate execution time prediction of functional
tests using graph neural networks

Peter Samoaa, Antonio Longa, Mazen Mohamad, Morteza Haghir Chehreghani, Philipp
Leitner

International Conference on Product-Focused Software Process Improvement (PROFES),
2022

TEP-GNN: Accurate Execution Time
Prediction of Functional Tests Using

Graph Neural Networks

Hazem Peter Samoaa1 , Antonio Longa2(B), Mazen Mohamad1(B),
Morteza Haghir Chehreghani1(B), and Philipp Leitner1(B)

1 Chalmers—University of Gothenburg, Gothenburg, Sweden
{samoaa,mazenm,morteza.chehreghani,philipp.leitner}@chalmers.se

2 Fondazione Bruno Kessler and University of Trento, Trento, Italy
alonga@fbk.eu

Abstract. Predicting the performance of production code prior to
actual execution is known to be highly challenging. In this paper, we
propose a predictive model, dubbed TEP-GNN, which demonstrates
that high-accuracy performance prediction is possible for the special case
of predicting unit test execution times. TEP-GNN uses FA-ASTs, or
flow-augmented ASTs, as a graph-based code representation approach,
and predicts test execution times using a powerful graph neural net-
work (GNN) deep learning model. We evaluate TEP-GNN using four
real-life Java open source programs, based on 922 test files mined from
the projects’ public repositories. We find that our approach achieves a
high Pearson correlation of 0.789, considerable outperforming a baseline
deep learning model. Our work demonstrates that FA-ASTs and GNNs
are a feasible approach for predicting absolute performance values, and
serves as an important intermediary step towards being able to predict
the performance of arbitrary code prior to execution.

Keywords: Performance · Software testing · Machine learning

1 Introduction

Performance is a critical quality property of many real-live software systems.
Hence, performance modeling and analysis have gradually become an increas-
ingly important part of the software development life-cycle. Unfortunately, pre-
dicting the performance of real-life production code is well-known to be a difficult
problem – predicting the absolute execution time of applications based on code
structure is challenging as it is a function of many factors, including the under-
lying architecture, the input parameters, and the application’s interactions with
the operating system [22]. Consequently, works that attempted to predict abso-
lute performance counters (e.g., execution time) for arbitrary applications from
source code generally report poor accuracy [19,21].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 464–479, 2022.
https://doi.org/10.1007/978-3-031-21388-5_32

TEP-GNN 465

However, recent research has shown that predicting performance characteris-
tics is indeed possible in more specialized contexts, via the application of modern
machine learning architectures. For example, Guo et al. successfully predict the
execution time of a specific untested configuration of a configurable system [6,7],
Samoaa and Leitner have shown that the execution time of a benchmark with
specific workload configuration can be predicted [24], and Laaber et al. have
shown that a categorical classification of benchmarks into high- or low-variability
is feasible [12].

In this work, we demonstrate that another context where performance pre-
diction is possible is the prediction of execution times of functional tests. Test
execution times are crucial in agile software development and continuous inte-
gration. While individual test cases might have short execution times, software
products often have thousands of test cases, which makes the total execution
time in the build process high. Researchers have been working on solutions to
speed up the testing process by optimizing the code or prioritizing test cases
[4,11,18,28]. The goal of this study is to provide the developers with predic-
tions of the execution times of their test cases, and consequently giving them an
early indication of the time required to run the cases in the build process. We
believe that this would support decisions regarding code optimization and test
case selection in early stages of the software life-cycle.

Graphs are mathematical structures used to model pairwise relations between
objects. A graph can be used to model a wide number of different domains, rang-
ing from biology [9], face-to-face human interactions [17] and software. Indeed,
we propose an approach dubbed TEP-GNN (Test Execution Time Prediction
using Graph Neural Networks) that makes use of structural features of test cases
(the abstract syntax tree, AST). We enrich the AST with various types of edges
representing data and control flow. Following Wang and Jin, we refer to this
resulting graph as flow-augmented abstract syntax trees (FA-AST) [30]. We use
a graph neural network (GNN) model, GraphConv [20], on the resulting FA-
ASTs. We train and test our model on a dataset collected from four well-known
open source projects hosted on GitHub: H2 database1, a relational database,
RDF4J 2, a project for handling RDF data, systemDS3, an Apache project to
manage the data science life cycle, and finally the Apache remote procedure call
library Dubbo4. As labelled ground truth data, we collect 922 real test execution
traces from these projects’ publicly available build systems.

We conduct experiments with our TEP-GNN model to answer the following
research questions:

– RQ1: How accurately can the absolute execution time of a test file consisting
of one or multiple test cases be predicted using FA-ASTs and GNNs?

1 https://github.com/h2database/h2database.
2 https://github.com/eclipse/rdf4j.
3 https://github.com/apache/systemds.
4 https://github.com/apache/dubbo.

466 H. P. Samoaa et al.

– RQ2: Does our usage of GraphConv improve execution time prediction
compared to a baseline using Gated Graph Neural Networks (GGNN), as
frequently used in previous software engineering research [1,5]?

Our results show that using TEP-GNN, test execution time can be predicted
with a very high prediction accuracy (Pearson correlation of 0.789). Further,
we show that our usage of GraphConv indeed improves the model significantly
over GGNN. We conclude that test execution times can indeed be predicted
using GNN models with high accuracy, even based on performance counters that
have been collected “in the wild” by real projects (as opposed to performance
measurements collected on a dedicated performance testing machine). The main
novelty of our work lies in the application of a rarely used way of graph-encoding
source code (FA-AST), combined with a powerful GNN model (GraphConv), to
the problem of performance prediction. Even though test cases are shorter and
structurally simpler than arbitrary programs, we see our results as an important
stepping stone towards the prediction of the performance of arbitrary software
systems prior to execution.

2 The TEP-GNN Approach

In this section, we introduce TEP-GNN. We first provide a general overview
of the model and discuss the problem addressed in this paper, followed by a
detailed discussion of the main components of TEP-GNN (FA-ASTs and the
machine learning pipeline based on the GraphConv [20] higher order GNN).

Fig. 1. Schematic overview of the main phases of TEP-GNN.

2.1 Approach Overview

Our goal in this paper is to predict the execution time of test cases based on
static code information alone, i.e., without access to prior benchmarking of the
test case or dynamic analysis data. The general procedure of our TEP-GNN
approach is sketched in Fig. 1. To process a test file, we first parse it into its AST.
Next, we build a graph representation (FA-AST) by adding edges representing
control and data flow to the AST. We then initialize the embeddings of FA-AST
nodes and edges before jointly feeding a vectorized FA-AST into a GNN.

2.2 Problem Definition

Given a test file (source code containing test cases) Ci and the corresponding
run-time value Xi (execution time of all test cases in the file), for a set of test
files with known execution times we can build a training set D = (Ci,Xi). We
aim to train a deep learning model for learning a function φ that maps a test
file Ci to a feature vector v mapped to the corresponding value Xi.

TEP-GNN 467

2.3 Building Flow-Augmented Abstract Syntax Trees

Recent studies [25] emphasize the importance of the code representation when
using deep learning in software engineering. Hence, and given the complex-
ity of predicting performance, prediction based on the syntactical information
extracted from ASTs alone is not sufficient to achieve high-quality predictions.
In TEP-GNN, the basic structural information provided by the AST is enriched
with semantic information representing data and control flow. Consequently, the
tree structure of the AST is generalized to a (substantially richer) graph, encod-
ing more information than code structure alone. This idea is based on the earlier
work by Wang and Jin [30], who have also introduced the term FA-AST for this
kind of source code representation.

1 package org . myorg . weather . t e s t s ;
2
3 import s t a t i c
4 org . j u n i t . j u p i t e r . ap i . As s e r t i on s . a s s e r tEqua l s ;
5 import org . myorg . weather . WeatherAPI ;
6 import org . myorg . weather . Flags ;
7
8 pub l i c c l a s s WeatherAPITest {
9

10 WeatherAPI api = new WeatherAPI () ;
11
12 @Test
13 pub l i c void testTemperatureOutput () {
14 double currentTemp = api . currentTemp () ;
15 Flags f = api . getFreezeFlag () ;
16 i f (currentTemp <= 3.0d)
17 as s e r tEqua l s (Flags .FREEZE, f) ;
18 e l s e
19 as s e r tEqua l s (Flags .THAW, f) ;
20 }
21 }

Listing 1.1. A Simple JUnit 5 Test Case

AST Parsing. We demonstrate our approach for constructing FA-ASTs for
test files using the example of a Java JUnit 5 test case (see Listing 1.1). In this
example, a single test case testTemperatureOutput() is presented that tests
a feature of an (imaginary) API. As common for test cases, the example is
short and structurally relatively simple. Much of the body of the test case con-
sists of invocations to the system-under-test and calls of JUnit standard meth-
ods, such as assertEquals. We speculate that these properties make predicting
test execution time a more tractable problem than predicting performance of
general-purpose programs, which previous authors have argued to be extremely
challenging [19,21].

A (slightly simplified) AST for this illustrative example is depicted in Fig. 2.
The produced AST does not contain purely syntactical elements, such as com-
ments, brackets, or code location information. We make use of the pure Python
Java parser javalang5 to parse each test file, and use the node types, values, and
production rules in javalang to describe our ASTs.
5 https://pypi.org/project/javalang/.

468 H. P. Samoaa et al.

testTemperatureOutput

DECL

double =

currentTemp CALL

currentTemp

DECL

IF

PRED

<=

currentTemp LIT

3.0d

IF-BLOCK

CALL

assertEquals ARGS

Flags.FREEZE f

ELSE-
BLOCK

CALL

assertEquals ARGS

Flags.THAW f

CU

WeatherAPITest

PACKAGE
IMPORT CLASS

DECL

WeatherAPI =

api CONSTR

WeatherAPI

api

Fig. 2. Simplified abstract syntax tree (AST) representing the illustrative example pre-
sented in Listing 1.1. Package declarations, import statements, as well as the declaration
in Line 15 are skipped for brevity.

Capturing Ordering and Data Flow. In the next step, we augment this
AST with different types of additional edges representing data flow and node
order in the AST. Specifically, we use the following additional flow augmentation
edges, in addition to the AST child and AST parent edges that are produced
readily by AST parsing:

FA Next Token (b):
This type of edge connects a terminal node (leaf) in the AST to the next

terminal node. Terminal nodes are nodes without children. In Fig. 2, an FA Next
Token edge would be added, for example, between WeatherAPI and api.

FA Next Sibling (c):
This connects each node (both terminal and non-terminal) to its next sibling,

and allows us to model the order of instructions in an otherwise unordered graph.
In Fig. 2, such an edge would be added, for example, connecting the first usage
of api and with the CONSTR node (representing a Java constructor call).

FA Next Use (d):
This type of edge connects a node representing a variable to the place where

this variable is next used. For example, the variable api is declared in Line 10
in Listing 1.1, and then used next in Line 14.

Figure 3 shows an example augmenting the AST in Fig. 2 (and, consequently,
the example test case in Listing 1.1). Solid black lines indicate the AST parent
and child relationships (for simplicity indicated through a single arrow, read from
top to bottom). Red dashed arrows refer to the new edges added to represent the

TEP-GNN 469

Fig. 3. Flow-Augmented AST (FA-AST) for the example presented in Listing 1.1. Solid
lines represent AST parent and child edges, and dashed lines different types of flow
augmentations. (Color figure online)

data and control flow in the FA-AST, with letter codes indicating the edge type.
Terminal nodes are connected with FA Next Token edges (b), modelling the
order of terminals in the test case. Similarly, the ordering of siblings is modelled
using FA Next Sibling edges (c). Finally, data flow is modelled by connecting
each variable to their next usage via FA Next Use edges (d). Edge types (e),
(f), and (i) represent a control flow statement, which will be discussed in the
following. Multiple edges of different types are possible between the same nodes.
For example, the terminal nodes Flags.FREEZE and f are connected via both,
an FA Next Token (b) and an FA Next Sibling (c) edge.

Capturing Control Flow. In a second augmentation step, we now add further
edges representing the control flow in the test cases. We currently support if
statements, while and for loops, as well as sequential execution. We currently do
not support switch statements or do-while loops, as these are less common in test
cases. Test files containing these elements will still be parsed successfully, but
these control flow constructs will not be captured by the FA-AST. Specifically,
the following further edges are added: An overview over the additional edges
introduced by these control flow statements is given in Fig. 4.

FA If Flow (e):
This type of edge connects the predicate (condition) of the if-statement with

the code block that is executed if the condition evaluates to true. Every if
statement contains exactly one such edge by construction.

470 H. P. Samoaa et al.

Fig. 4. Additional flow augmentations for different control flow constructs (Color figure
online)

FA Else Flow (f):
Conversely, this edge type connects the predicate to the (optional) else code

block.
FA While Flow (g):
A while loop essentially entails two elements - a condition and a code block

that is executed as long as the condition remains true. We capture this through
a FA While Flow (g) edge connecting the condition to the code block, and an
FA Next Use (d) edge in the reverse direction. The latter is used to model the
next usage of a loop counter.

FA For Flow (h):
For loops are conceptually similar to while loops. We use FA For Flow (h)

edges to connect the condition to the code block, and an FA Next Use (d) edge
in the reverse direction. Similar to the modelling of while-loops, FA Next Use
(d) relates to the usage (typically incrementing) of a loop counter.

FA Next Statement Flow (i):
In addition to the control flow constructs discussed so far, Java of course also

supports the simple sequential execution of multiple statements in a sequence
within a code block. FA Next Statement Flow edges (i) are used to represent this
case. Different from the constructs discussed so far, a code block can contain an
arbitrary number of children, and the FA Next Statement Flow edge is always
used to connect each statement to the one directly following it.

Referring back to Fig. 3, two types of control flow annotations are visible -
the modelling of the if-statement in lines 16 to 19 of the test case on the right-
hand side, and various sequential executions (FA Next Statement flow (i)) edges.

TEP-GNN 471

Further note how flow annotation adds a large number of edges to even a very
small AST, transforming the syntax tree into a densely connected graph. This
rich additional information can be used in the next step by our GNN model to
predict highly accurate test execution times.

2.4 GNN Model for Test Execution Time Prediction

Once the FA-AST graph has been built for a test file using the three steps
discussed above, we use a higher order GNN model to predict the execution
time of the Java code. As Fig. 5 shows, we use a 3-layer higher order graph
convolution neural network to predict the execution time. Each layer is followed
by a ReLU activation function. Since GNN learns node embedding, we use global
max pooling to compute a graph embedding. Finally, the graph embedding goes
into two Linear layers with a ReLU and a sigmoid activation function to perform
the prediction of the test execution time. To train our model we use the mean
square error loss.

Fig. 5. Architecture of the GNN Model used in TEP-GNN.

3 Evaluation

We now present the results of an experimental evaluation of TEP-GNN based
on open source Java projects. As training and test data we make use of existing
test suite execution traces from the study subjects’ build systems. A replication
package containing the scripts used to implement the TEP-GNN approach, all
data used in the evaluation, as well as all analysis scripts, are available [8].

3.1 Dataset

Related studies in performance engineering frequently collect their own perfor-
mance data, for example by repeated execution of the projects on a researcher’s
laptop [26], in cloud virtual machines [13], or on controlled hardware [27]. To
increase the realism of the study we have chosen a different approach – we har-
vest existing execution traces from an open source build system (GitHub), and
extract test execution times from this public data. This data represents actual,
real-life test execution times. However, we do not have the option to collect more
data on-demand, and we do not know what precise hardware has been used to
collect the data.

472 H. P. Samoaa et al.

To collect the data, we searched for projects to serve as study subjects. We
applied the following selection criteria: (i) projects written in Java; (ii) available
on GitHub; (iii) include test results published on GitHub; and (iv) use GitHub
shared runners as build system.

Table 1. Overview of study subjects.

Project Description Files Runs Nodes Vocabulary size

systemDS Apache Machine Learning
system for data science lifecycle

127 1321 110651 3161

H2 Java SQL database 194 1391 405706 17972
Dubbo Apache Remote Procedure Call

framework
123 524 75787 4499

RDF4J Scalable RDF processing for
Java

478 1055 214436 10755

Total 922 4291 806580 36387

Based on these criteria, we selected four projects of diverse application
domains, i.e., databases, web servers, and data science life-cycle (systemDS, H2,
Dubbo, and RDF4J). These are depicted in Table 1. The first column shows the
project’s name, the second provides a brief description of the project. The third
column shows the number of distinct test files extracted from the project. As for
the fourth column, it shows the total number of runs performed in the testing job.
The last two columns show the total number of tokens in the entire project test files
and the vocabulary size (the number of distinct nodes in the graphs). We observe
that RDF4J, a triplestore database used in semantic web contexts [23], contains
more test files than the other projects. For the H2 relational database and sys-
temDS we were able to collect the most test runs. Finally, it should be noted that
H2 has the highest code density as measured by the number of nodes and the result-
ing vocabulary size by a wide margin. This indicates that H2 tests are generally
larger and more complex than the test cases in the other study subjects.

All data was extracted from GitHub-hosted runners, which are virtual
machines hosted by GitHub with the GitHub Actions runner application
installed. All shared runners can be assumed to use the same hardware resources,
which is available at GitHub’s website6 and each job runs in a fresh instance of
the virtual machine. Additionally, all jobs from which the data is extracted uses
the same operating system, specifically Ubuntu 18.04. This allows us to minimize
bias introduced by variations in execution environment or hardware.

For collecting test execution traces we looked at the latest successful action
workflow run for each project. We then extracted the run times from the test
report in the workflow, and mined the corresponding source code files from
the respective project repositories in order to feed them to the parser. For H2,

6 https://docs.github.com/en/actions/using-github-hosted-runners/about-github-
hosted-runners#supported-runners-and-hardware-resources.

TEP-GNN 473

some test cases are run several times during the same build job. In these cases,
we recorded the average of the run times. As the execution times of tests can
vary dramatically between and within projects, to increase the efficiency of the
model training, we normalize each execution time to interval [0; 1]. Hence, our
final dataset includes distinct test files, each associated with one runtime value
between 0 and 1. Then after model training, we denormalize the runtime value
and present the results based on the original values.

Table 2. Occurrences of control flow nodes in each project

Control flow statement systemDS H2 Dubbo RDF4J

If Statement 166 1322 53 161
While Loop 2 222 3 22
ForStatement 196 1114 42 158
Block Statement 293 2900 116 395

Total 707 5612 214 736

Table 2 indicates how prevalent different control flow nodes were in the test
cases of our study subjects. For all projects, block statements are the most
frequent control flow construct, since sequential executions widely exist in nearly
all programs. For loops are substantially more common than while loops, and if
statements are also frequent. Do-while loops and switch statements, which are
currently unsupported by TEP-GNN, are both quite rare in the tests of our
subjects (not shown in the table).

3.2 Results

In this section, we investigate the results of applying TEP-GNN to our dataset,
answering RQ1 and RQ2 introduced in Sect. 1.

RQ1: Quality of Predictions. In order to answer the first research question,
we combine the collected data for all projects into one dataset entailing 922
code fragments and associated normalized execution times. After that, we apply
TEP-GNN as discussed in Sect. 2. For model training, we split the dataset into
train and test sets using 80% and 20%, respectively. Each network is trained
for 100 epochs. As optimizer we use Adam [10] with a learning rate = 0.001. To
evaluate the results of our model, we use a Pearson correlation metric, a measure
of linear correlation between two sets of data. In addition, as a loss function, we
use mean squared error, which is the average squared difference between the
estimated and actual values. All experiments have been executed in a machine
equipped with a GeForce 940MX graphics card and 16GB of RAM.

Results illustrate that our model trained on FA-AST is able to predict test
execution times with a very high accuracy, as can be seen in the Pearson cor-
relation (between predicted and actual execution times in the test data set) of

474 H. P. Samoaa et al.

0.789, and a mean squared error of 0.02. These results substantially outperform
the accuracy values reported in previous studies that attempted to predict abso-
lute software performance counters [19,21]. We argue that the key innovation
that enables this high accuracy is the combination of FA-AST as a powerful
code representation model and GraphConv as a modern GNN.

RQ2: Comparison of TEP-GNN Against a Baseline GNN. To validate
the suitability of our approach and the selected GNN model, we compare it to
a commonly used GNN baseline, called Gated Graph Neural Networks (GGNN)
[16]. GGNNs are widely used in studies that attempt to learn code semantics [1,
5]. We compare the methods at two levels – for the entire dataset (similar to the
analysis presented for RQ1) and at the level of individual projects.

Comparison for the Entire Dataset. We first apply both TEP-GNN and
the baseline method to the dataset consisting of all projects. Figure 6 depicts the
respective results. Our model outperforms the baseline, with a Pearson correla-
tion that is higher almost up to 0.1 (i.e., 0.789 versus 0.697). Hence, we conclude
that our model and GNN architecture is indeed more appropriate to predict the
execution time of test cases than a more standard GGNN approach.

Fig. 6. Comparison of TEP-GNN and a baseline (applying GGNN to the same FA-AST
graphs). Dot points show real (y axes) and predicted (x axes) denormalized (original)
execution times produced by our model. The dash line refers to the perfect prediction.

Analyzing the results, we observe that TEP-GNN is able to achieve highly
accurate predictions in most cases. However, there are rare outliers where our
prediction model misses by approximately 20%. The baseline GGNN method, on
the other hand, has a tendency to predict fairly uniform execution times between
102 and 103, almost independent of what the actually observed test execution
time is. Hence, it suffers from lower accuracy scores.

Comparison for Individual Projects. In the next step, we conduct a similar
analysis, but focused on individual projects. This study answers the question of
how well TEP-GNN works if trained on and used by a single project. Thus,
we train and test TEP-GNN and the baseline on each of the four projects
individually. The results for each project are depicted in Fig. 7.

TEP-GNN 475

Fig. 7. Overview of TEP-GNN and the GGNN baseline trained for each individual
project.

We observe that in general the prediction quality is substantially lower if the
model is trained on individual projects, both for TEP-GNN and the baseline.
TEP-GNN still outperforms the baseline for each project, but only with negligi-
ble prediction performance differences in the case of H2 and Dubbo. For RDF4J,
which contains the largest number of test cases (and, consequently, the largest
number of graphs to learn from), the difference between our approach and the
baseline remains larger.

From these results we conclude that (a) TEP-GNN indeed outperforms
the baseline in all the settings we tested, but (b) our approach works best if
sufficient training graphs are available in comparison to the size of the graphs and
vocabulary (if graphs are complex and/or training data is sparse the difference
between our approach and the baseline is insignificant); (c) finally, we conclude
that both approaches appear to learn some transferable knowledge even when
training on graphs that originate from a different project.

4 Discussion

Our study results show that the accurate prediction of execution times of test
suites is possible. This gives developers an early indication of the time required
to run the cases in the build process, deciding in the process if techniques such
as test case selection are required.

476 H. P. Samoaa et al.

4.1 Lessons Learned

FA-ASTs are a promising approach to represent source code for perfor-
mance prediction. Unlike previous work [19,21,31], our goal in this study was
to treat performance prediction as a regression rather than a classification (slow
or fast) problem. Our results in Sect. 3.2 indicate that using flow augmentation
we are able to achieve good prediction quality. Furthermore, more information
could be added to the FA-AST, such as program dependency graphs. We spec-
ulate that this approach is also promising to predict the performance of more
complex, arbitrary code; however, more specific experiments in this direction
need to be carried out as future research.

GraphConv substantially outperforms the more common GGNN mod-
els in performance prediction as long as sufficient data is available.
As discussed in Sect. 3.2, our GraphConv based GNN model substantially outper-
forms GGNN, which is a currently commonly used graph neural network model
in software engineering research [1,5]. However, this is only true if sufficient data
is available – when training models for individual projects, we observed that, due
to the limited amount of training data available in these cases, the performance
difference between our GraphConv based model and the GGNN baseline was min-
imal. We conclude that, as long as sufficient data is available, GraphConv should
also be investigated in other software engineering contexts that make use of GNNs.

4.2 Threats to Validity

Internal Validity Threats. A key design choice in our study was the usage
of existing, real-world data from GitHub’s build system, rather than collecting
performance data ourselves (e.g., on a dedicated experiment machine). This has
obvious advantages with regards to the realism of our approach, but raises the
threat that our training and test data may be subject to confounding factors out-
side of our knowledge. In particular, prior research has shown that even identi-
cally configured cloud virtual machines can vary significantly in performance [14].
However, the high accuracy achieved by our prediction models indicates that this
is not a major concern with the data we used.

Another design choice was that we predict execution times for entire test
classes (files). More fine-grained predictions (e.g., for individual test cases) would
of course be doable. However, individual test cases often have very short execu-
tion times in relation to the precision with which build systems typically measure
execution times, and the resulting graphs would be very small. We argue that
our choice of test class granularity constitutes a good trade-off that is still useful
for developers.

External Validity Threats. An obvious question raised by our work is how
well the results reported in Sect. 3.2 would generalize to other projects. To mit-
igate this threat, we have chosen four relatively different Java projects as study
subjects following a diversity sampling strategy [2]. However, our study does not
allow us to conclude whether the TEP-GNN approach would generalize to other
programming languages or closed-source software.

TEP-GNN 477

5 Related Work

Predicting Software Performance. Predicting the absolute value of perfor-
mance, such as execution time, based on the source code alone is challenging.
Hence, existing studies often struggle with poor prediction accuracy [19,21]. One
way to simplify the problem (and hence make it more tractable) is to convert it
into a classification problem. Examples of this approach include Zhou et al. [31],
who predict if a program from a programming competition website exceeds the
time limit, Ramadan et al. [22], who predict whether a performance change is
introduced by a code structure change, or Laaber et al. [12], who have shown
that a categorical classification of benchmarks into high- or low-variability is
feasible.

However, recent research has shown that predicting absolute performance
values can be feasible in more specialized contexts like Guo et al. in the context of
configurable system [6,7], and Samoaa and Leitner in the context of benchmark
with a specific workload configuration [24].

Graph Neural Networks for Software Engineering. Graph Neural Net-
works (GNNs) constitute an up-and-coming machine learning model in the con-
text of software engineering research [25]. Li et al. [16] use a GRU cell in gated
graph neural networks (GGNNs) for updating the nodes’ states. To evaluate their
model they run the model on a basic program and try to detect null pointers.

Phan et al. [29] use graph convolutional networks (GCNs) based on compiled
assembly code to detect defects on control flow graphs in C. Another application
of control flow graphs is using graph matching networks (GMN) between two
graphs of binary functions proposed by Li et al. [15]. Other researchers propose
the creation of program graphs based on the AST. Allamanis et al. [1] and
Brockschmidt et al. [3] use GGNN in C# for naming variables and generating
program expressions for code completion respectively.

6 Conclusion and Future Work

In this work, we provide the developers with predictions of the execution times
of their test cases, and consequently give them an early indication of the time
required to run the cases in the build process. We presented TEP-GNN, an effec-
tive method for predicting the execution time of Java test files. Our approach
leverages explicitly capturing control and data flow information as augmenta-
tions to the program AST. Further, our approach applies high order convolution
graph neural networks over this flow-augmented AST (FA-AST). By building
FA-AST using original ASTs and flow edges, our approach can directly capture
the syntax and semantic structure of test classes. Experimental results on four
diverse test subjects demonstrate that by combining graph neural networks and
control/data flow information, we can predict absolute test execution times with
high accuracy.

As the future work, we plan to further extent the FA-AST model currently
used by TEP-GNN, as well as explore other ways of program representation

478 H. P. Samoaa et al.

to capture more syntactic and semantic code features. Additionally, we plan to
apply our approach to the execution time of general-purpose programs rather
than test cases. Finally, we would like to extend our current labeled data set by
applying active learning to systematically increase the amount of training data.

Acknowledgements. This work received financial support from the Swedish
Research Council VR under grant number 2018-04127 (Developer-Targeted Perfor-
mance Engineering for Immersed Release and Software Engineering).

References

1. Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent programs
with graphs (2017). https://arxiv.org/abs/1711.00740

2. Baltes, S., Ralph, P.: Sampling in software engineering research: a critical review
and guidelines. EMSE 94(27) (2022)

3. Brockschmidt, M., Allamanis, M., Gaunt, A.L., Polozov, O.: Generative code mod-
eling with graphs (2018). https://arxiv.org/abs/1805.08490

4. de Oliveira Neto, F.G., Ahmad, A., Leifler, O., Sandahl, K., Enoiu, E.: Improving
continuous integration with similarity-based test case selection. In: Proceedings
of the 13th International Workshop on Automation of Software Test, pp. 39–45
(2018)

5. Fernandes, P., Allamanis, M., Brockschmidt, M.: Structured neural summarization
(2018). https://arxiv.org/abs/1811.01824

6. Guo, J., Czarnecki, K., Apel, S., Siegmund, N., Wąsowski, A.: Variability-aware
performance prediction: a statistical learning approach. In: ASE, pp. 301–311
(2013)

7. Guo, J., et al.: Data-efficient performance learning for configurable systems. EMSE
23(3), 1826–1867 (2018)

8. Samoaa, H.P., Longa, A., Mohamed, M., Chehreghani, M.H., Leitner, P.: TEP-
GNN: accurate execution time prediction of functional tests using graph neural
networks. Zenodo, August 2022. https://doi.org/10.5281/zenodo.7003881

9. Huber, W., Carey, V.J., Long, L., Falcon, S., Gentleman, R.: Graphs in molecular
biology. BMC Bioinform. 8(6), 1–14 (2007)

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://
arxiv.org/abs/1412.6980

11. Knauss, E., Staron, M., Meding, W., Söder, O., Nilsson, A., Castell, M.: Supporting
continuous integration by code-churn based test selection. In: 2015 IEEE/ACM
2nd International Workshop on Rapid Continuous Software Engineering, pp. 19–
25. IEEE (2015)

12. Laaber, C., Basmaci, M., Salza, P.: Predicting unstable software benchmarks using
static source code features. EMSE 26(6) (2021)

13. Laaber, C., Scheuner, J., Leitner, P.: Software microbenchmarking in the cloud.
How bad is it really? EMSE 24(4), 2469–2508 (2019)

14. Leitner, P., Cito, J.: Patterns in the Chaos - a study of performance variation and
predictability in public IaaS clouds. ACM TOIT 16(3), 15:1–15:23 (2016)

15. Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for
learning the similarity of graph structured objects. In: Proceedings of the 36th
International Conference on Machine Learning, vol. 97. PMLR (2019)

TEP-GNN 479

16. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural
networks (2015). https://arxiv.org/abs/1511.05493

17. Longa, A., Cencetti, G., Lepri, B., Passerini, A.: An efficient procedure for mining
egocentric temporal motifs. Data Min. Knowl. Disc. 36(1), 355–378 (2022)

18. Marijan, D., Gotlieb, A., Liaaen, M.: A learning algorithm for optimizing con-
tinuous integration development and testing practice. Softw. Pract. Exp. 49(2),
192–213 (2019)

19. Meng, K., Norris, B.: Mira: a framework for static performance analysis. In: CLUS-
TER (2017)

20. Morris, C., et al.: Weisfeiler and leman go neural: higher-order graph neural net-
works. In: AAAI, vol. 33 (2019)

21. Narayanan, S.H.K., Norris, B., Hovland, P.D.: Generating performance bounds
from source code. In: International Conference on Parallel Processing Workshops,
pp. 197–206 (2010)

22. Ramadan, T., Islam, T.Z., Phelps, C., Pinnow, N., Thiagarajan, J.J.: Comparative
code structure analysis using deep learning for performance prediction. In: ISPASS,
Los Alamitos, CA, USA. IEEE Computer Society, March 2021

23. Samoaa, H., Catania, B.: A pipeline for measuring brand loyalty through social
media mining. In: Bureš, T., et al. (eds.) SOFSEM 2021. LNCS, vol. 12607, pp.
489–504. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67731-2_36

24. Samoaa, H., Leitner, P.: An exploratory study of the impact of parameterization
on JMH measurement results in open-source projects. In: ICPE. Association for
Computing Machinery (2021)

25. Samoaa, H.P., Bayram, F., Salza, P., Leitner, P.: A systematic mapping study of
source code representation for deep learning in software engineering. IET Softw.
(2022)

26. Sandoval Alcocer, J.P., Bergel, A., Valente, M.T.: Learning from source code his-
tory to identify performance failures. In: ICPE. Association for Computing Machin-
ery (2016)

27. Schulz, H., Okanović, D., van Hoorn, A., Tůma, P.: Context-tailored workload
model generation for continuous representative load testing. In: ICPE. Association
for Computing Machinery (2021)

28. Spieker, H., Gotlieb, A., Marijan, D., Mossige, M.: Reinforcement learning for auto-
matic test case prioritization and selection in continuous integration. In: ISSTA,
pp. 12–22 (2017)

29. Viet Phan, A., Le Nguyen, M., Thu Bui, L.: Convolutional neural networks over
control flow graphs for software defect prediction. In: ICTAI (2017)

30. Wang, W., Li, G., Ma, B., Xia, X., Jin, Z.: Detecting code clones with graph neural
network and flow-augmented abstract syntax tree. In: SANER (2020)

31. Zhou, M., Chen, J., Hu, H., Yu, J., Li, Z., Hu, H.: DeepTLE: learning code-level
features to predict code performance before it runs. In: APSEC (2019)

119

Paper 4

A Unified Active Learning Framework for Annotating Graph
Data For Regression Task

Peter Samoaa, Linus Aronsson, Antonio Longa, Philipp Leitner, Morteza Haghir
Chehreghani

Journal of Engineering Applications of Artificial Intelligence (EAAI), 2024

A UNIFIED ACTIVE LEARNING FRAMEWORK FOR ANNOTATING
GRAPH DATA FOR REGRESSION TASK

Peter Samoaa
Chalmers University of Technology

Data Science and AI
samoaa@chalmers.se

Linus Aronsson
Chalmers University of Technology

Data Science and AI
linaro@chalmers.se

Antonio Longa
University of Trento, Italy

Department of Information Engineering and Computer Science
antonio.longa@unitn.it

Philipp Leitner
Chalmers University of Technology

Interaction Design and Software Engineering
philipp.leitner@chalmers.se

Morteza Haghir Chehreghani
Chalmers University of Technology

Data Science and AI
morteza.chehreghani@chalmers.se

ABSTRACT

In many domains, effectively applying machine learning models requires a large number of anno-
tations and labelled data, which might not be available in advance. Acquiring annotations often
requires significant time, effort, and computational resources, making it challenging. Active learning
strategies are pivotal in addressing these challenges, particularly for diverse data types such as graphs.
Although active learning has been extensively explored for node-level classification, its application
to graph-level learning, especially for regression tasks, is not well-explored. We develop a unified
active learning framework specializing in graph annotating and graph-level learning for regression
tasks on both standard and expanded graphs, which are more detailed representations. We begin with
graph collection and construction. Then, we construct various graph embeddings (unsupervised and
supervised) into a latent space. Given such an embedding, the framework becomes task agnostic
and active learning can be performed using any regression method and query strategy suited for
regression. Within this framework, we investigate the impact of using different levels of information
for active and passive learning, e.g., partially available labels and unlabeled test data. Despite our
framework being domain agnostic, we validate it on a real-world application of software performance
prediction, where the execution time of the source code is predicted. Thus, the graph is constructed
as an intermediate source code representation. We support our methodology with a real-world dataset
to underscore the applicability of our approach. Our real-world experiments reveal that satisfactory
performance can be achieved by querying labels for only a small subset of all the data. A key finding
is that Graph2Vec (an unsupervised embedding approach for graph data) performs the best, but only
when all train and test features are used. However, Graph Neural Networks (GNNs) are the most
flexible embedding techniques when used for different levels of information with and without label
access. In addition, we find that the benefit of active learning increases for larger datasets (more
graphs) and when the graphs are more complex, which is arguably when active learning is the most
important.

Keywords Graph Neural Networks · Active Learning · Graph Representation Learning

Journal of Engineering Applications of Artificial Intelligence

1 Introduction

The effectiveness of machine learning applications often depends on the availability of a large quantity of high-quality
annotated and labelled data. Obtaining such data can be challenging and resource-intensive, particularly in scenarios
involving complex data structures like graphs. However, graph data presents unique challenges due to its non-linear and
interconnected nature, which complicates the annotation process. Annotating graphs often requires significant human
expertise and effort, particularly in large-scale or complex graph structures, which can be a bottleneck in the application
of machine learning.

Active learning strategies offer a solution to these challenges by focusing on the most informative and uncertain data
points for annotation, thereby reducing the amount of data that needs to be manually labelled while maintaining
high-quality learning outcomes [1]. This targeted approach can lead to more efficient use of resources and time, making
machine learning more accessible and feasible in real-world applications, for instance in image processing [2, 3, 4, 5],
recommender systems [6], driver behaviour identification [7], sound event detection [8], classification of driving time
series [9], reaction prediction in drug discovery [10], logged data analysis [11], medical analysis [12, 3], text processing
[13], and person re-identification [14].

Although active learning has been extensively studied in the context of node-level classification tasks [15, 16, 17, 18],
its application to graph-level learning, particularly for regression tasks, is not explored. Graph-level learning involves
understanding the properties and relationships of entire graphs, as opposed to individual nodes and is critical for tasks
such as graph regression, where predictions are made at the graph-level rather than at the node-level.

In many different domains, graphs can be expanded by adding more nodes and edges to improve the properties in
molecular graphs [19, 20, 21] or to update the knowledge representation in knowledge graphs [22, 23]. Despite the
importance of expanded graphs and their applications, the literature does not explore the resilience of active learning for
expanded graphs.

In this paper, we present a unified active learning framework tailored to graph-level learning for regression tasks on both
the standard graphs and an extension of them. The framework begins with the collection and construction of graphs,
followed by the generation of graph embeddings (both supervised and unsupervised) into a latent space. This approach
renders the framework task-agnostic, allowing for the application of any regression method and active learning query
strategy available in the literature. We explore the impact of utilizing different levels of information for active and
passive learning, such as partially available labels and unlabeled test data, as well as the training and testing features.
Although our framework is designed to be domain-agnostic, we validate its effectiveness on a real-world application:
software performance prediction. In this context, the execution time of the source code is predicted, with the graph
constructed as an intermediate representation of the source code. Our approach is supported by real-world experimental
results, which demonstrate that querying labels for only a small subset of the data can yield respectable performance.

As key findings, Graph2Vec outperforms all the other unsupervised and supervised embedding when the training
and testing features are used without accessing the labels. However, GNNs tend to be the more flexible and can
be used for all levels of information (i.e., it can utilize both labels and features of any available dataset). When the
graphs are expanded, Graph2Vec shows consistent effectiveness, whereas for GNNs we observe marginally worse
performance. As for active learning, we investigate common query strategies from the literature such as Coreset [5],
Query-by-Committee [24] and uncertainty selection based on Gaussian Processes [25]. We find that no active learning
query strategy consistently outperforms the others for all datasets, consistent with previous work on active learning [12].
In addition, we find that the benefit of active learning increases for larger datasets, in particular for the expanded versions
of the graphs (i.e., when the data is more complex). Arguably, this is when active learning is the most important.

The aforementioned key findings highlight the potential of our framework in improving the efficiency and accuracy of
machine learning applications for graph-level regression tasks. Our contributions are manifold and address several gaps
in the current landscape of graph-based learning methodologies:

1. Development of Specialized Graph Datasets: We propose new graph datasets designed to be directly usable
by researchers, facilitating further exploration and validation of graph learning techniques.

2. Novel Active Learning Framework on the Graph-Level: We introduce a flexible framework for active
learning applied to graph data in regression tasks. This approach is distinct in its focus on graph-level dynamics
rather than node-level interactions, filling a gap in existing literature.

3. Expanded Graphs Handling: Our framework is designed to efficiently handle expanded graphs, making it
particularly suitable for complex, large-scale graph structures.

2

Journal of Engineering Applications of Artificial Intelligence

4. Investigation of the Impact of Additional Information: Our research extensively investigates how various
types of additional information can enhance the active learning process. This exploration is crucial for
understanding and maximizing the efficacy of active learning in complex scenarios.

5. Application to Software Performance Prediction: We utilize our active learning framework for real-world
software performance prediction. This novel approach not only propels AI forward in the domain of software
performance engineering, but it also provides an efficient and practical method for annotating and labeling
source code data.

6. Open-Source Active Learning Framework: We provide the research community with an open-source
implementation of our framework. This tool is versatile, supporting various settings and graph configurations,
thereby enhancing its utility for a broad range of applications. The code and the data are publicly available
at [26].

2 Background

In this section, we provide an overview of the fundamental concepts underlying our approach. We first introduce the
notion of graphs, then we present how source code can be represented as a graph. Later, those concepts are used to
explain our framework and to evaluate the predicted execution time of source code

2.1 Graphs

A graph is a mathematical structure used to model relational data across various domains such as social networks
[27, 28, 29], biological networks [30, 31], interaction networks [32, 33, 34], and mobility networks [35, 36]. It is
represented as a pair (V,E) where V is the set of vertices or nodes and E is the set of edges between the nodes,
E ⊆ {(u, v) | u, v ∈ V }. The graph can be undirected if it lacks self-loops and has a symmetric adjacency matrix,
or directed otherwise. A path P = {v1, . . . , vk} is an ordered sequence of connected nodes, with its length being the
number of nodes it contains, and the shortest path between two nodes is the path with the minimal length connecting
them. The node neighborhood of a node v in graph G = (V,E) is the set of nodes adjacent to v, and the degree of a
node is the number of its neighbors. The density of a directed graph is defined as Density = |E|

|V |(|V |−1) . A triad in a
graph is a subset of three connected nodes, classified as closed if it forms a triangle with three edges, otherwise open.

2.2 Source Code Representation

Different representations of code have been crafted for program analysis, aiming to understand program properties and
optimize them. While mainly used for analysis and optimization, these representations also help characterize code, as
explored in this study. Specifically, we delve into two fundamental representations: Abstract Syntax Trees (AST) and
Control Flow Graphs (CFG), which form the basis for our approach to predict the execution time.

Listing 1: Simple example of C source code (from [37]).
void foo () {

i n t x = s o u r c e () ;
i f (x < MAX) {

i n t y = 2*x ;
s i n k (y) ;

}
}

Abstract Syntax Tree (AST): Abstract syntax trees capture the nested structure of statements and expressions in
programs, abstracting away specific syntax. For example, in C, a comma-separated list of declarations yields the same
tree as two consecutive declarations. They are ordered trees with inner nodes representing operators and leaf nodes
representing operands. As an example, consider Figure 1(a) showing the AST for the code sample given in snippet 1
by [37]. While useful for basic transformations and identifying similar code, they lack explicit representation of control
flow and data dependencies, limiting their use in advanced code analysis tasks like detecting dead code or uninitialized
variables.

3

Journal of Engineering Applications of Artificial Intelligence

Control Flow Graphs (CFG): A Control Flow Graph precisely outlines the sequence of code execution and the
conditions required for specific execution paths. Nodes represent statements and conditions, connected by directed
edges to signify control transfer. Unlike abstract syntax trees, these edges do not require a specific order. Predicate
nodes have two edges representing true or false outcomes. Figure 1(b) displays the CFG for the code in snippet 1
by [37]. Control flow graphs are widely used in reverse engineering for program comprehension, although they lack
data flow details despite depicting control flow.

Foo

x IF

int =

x CALL

source

PRED

<

x max

STMT

DECL CALL

int =

y *

2 x

sink ARG

y

(a) Abstract syntax tree (AST) for the code snippet in Listing 1 [37].

ENTRY

int x = source()

if (x< MAX)

int y = 2 * x

sink (y)

EXIT

true

false

a) Control flow graph (CFG)

int x = source()

Dx

sink (y)

int y = 2 * xif (x< MAX)

Dx

Dy
Ctrue

Ctrue

b) Program dependence graph (PDG)(b) Control Flow Graph (CFG) for the code
snippet in Listing 1 [37].

Figure 1: Example of Tree and Graph Representation for the code snippet in Listing 1 [37].

3 Related Work

Active Learning (AL) has been widely studied across various domains, including text [38] and image data [39], to
enhance data annotation processes and enable more practical AI applications.

Graph data presents a distinct challenge for active learning, especially within densely connected networks [40, 41].
However, the application of AL to graph-level tasks remains an unresolved area of research. Several approaches have
been proposed to address AL on node-level tasks. For instance, [18] introduced AGE, an active graph embedding
framework that operates at the node-level using uncertainty and representativeness as querying strategies. Similarly,
[17] developed a generic active learning framework that employs distance-based clustering. Both studies relied on
Graph Convolutional Networks (GCN) for node representation learning.

Reinforcement learning has also been leveraged to enhance the selection of informative nodes in graph-based active
learning. For example, the works in [16, 15] applied active learning to graph data using reinforcement learning. [16]
proposed a Graph Policy Network (GPA) for transferable active learning on graphs, formalizing the process as a Markov
decision process (MDP) and using reinforcement learning to identify the optimal query strategy. Conversely, [15]
presented BIGENE, a batch active learning method formulated as a cooperative multi-agent reinforcement learning
problem.

Multi-arm bandit strategies offer another perspective on active learning, optimizing node selection through strategic
exploration. For example, the works in [42, 43] investigated multi-arm bandits in an active learning setting. [42]
proposed ANRMAB, which uses Information Entropy, Node Centrality, and Information Density as querying strategies
for node-level labeling. Meanwhile, [43] introduced ActiveHNE, a heterogeneous network embedding method that
combines Network Centrality, Convolutional Information Entropy, and Convolutional Information Density as selection
strategies based on uncertainty and representativeness.

4

Journal of Engineering Applications of Artificial Intelligence

Source Code
to Graph

Gaussian
Process

Update data based on queries

Decide
Information

to
Incorporate

Graph
Representation

Learning

Active
Learning
Query

Strategy

Figure 2: Representation learning and Active Learning Strategies

Despite these advances, a few limitations remain common across these studies: they primarily used benchmark datasets
such as Citeseer, Cora, and Pubmed for validation; they employed semi-supervised learning; and they focused on the
node-level. Our approach diverges by utilizing real-world datasets, operating at the graph-level, incorporating both
supervised and unsupervised learning, and engaging with different graph sizes.

Our work is inspired by the study in [9], which introduced a flexible active learning framework for time series data.
This framework embeds the data into a latent space, allowing for the use of any machine learning model and active
learning strategy. Similarly, our research adopts this structure for graph data. However, we also conduct experimental
studies to systematically assess the performance of this framework at various levels of information. For more details
about our framework, see Section 4.

4 Learning Framework

In this section, we provide a detailed overview of our active learning framework. Figure 2 presents our framework for
active learning. Section 4.1 begins by explaining the general setup for active and passive learning given a graph dataset.
The remaining sections will then explain each of the components visualized in Figure 2.

4.1 Active and Passive Learning Procedure

We are given a dataset D of N source code files (represented as graphs, see next section). For active learning, we then
split this dataset into three parts, the initially labelled dataset L0, the initially unlabeled dataset U0 and a test set T .
The purpose of the test set is to be able to evaluate the active learning procedure. Active learning can be seen as an
iterative procedure where in each iteration i, one begins by training some regressor Ri based on the currently available
information, i.e., Li, Ui and possibly T .1 Then, the current regressor Ri is evaluated using the test set T . Then, a query
strategy is used to select the most informative batch B ⊆ Ui of data items from Ui based on information in the following
components: Ri, Li, Ui and T . Finally, the datasets are updated by setting Li+1 := Li ∪B and Ui+1 := Ui \ B. This is
repeated until a stopping criterion is met (e.g., if the labelling budget has been reached). In addition to active learning,
we conduct experiments in the passive setting, which corresponds to setting L = L0 and U0 = ∅. Then, one trains a
regressor R on L and makes predictions on T (i.e., the traditional supervised machine learning).

4.2 Transforming Source Code to Graphs

This section explains how to build the graphs from the source codes. As shown in Figure 3, we investigate Java source
code files. We represent the source code as an AST intermediate representation. To compress both semantic and
syntactical information, we augment the AST by adding edges that preserve both data and control the flow of the graphs.
Hence, we arrive at a flow-augmented AST (FA-AST) graph, a concept that we introduced in our earlier work [44].

Our motivation for augmenting the AST comes from recent studies [45], emphasising the importance of rich code
representation when using deep learning in software engineering. Hence, and given the complexity of predicting
performance, prediction based on the syntactical information extracted from ASTs alone is not sufficient to achieve
high-quality predictions. The AST’s basic structural information is enriched with semantic information representing
data and control flow. Consequently, the tree structure of the AST is generalized to a (substantially richer) graph,
encoding more information than the code structure alone.

1Note that here we assume for the test data only the data features might be available to be utilized, not the labels. Assume, for
example, a photographer has taken two sets of photos from the same objects. For the first set (i.e., the training dataset) she has the
image labels, but for the second set (i.e., the test dataset) only the images (without labels) are available. When training a classifier,
she may then use the test images as well, in addition to labeled training dataset.

5

Journal of Engineering Applications of Artificial Intelligence

AST Parser AST
Parse

FA-AST

Adding
Edges

Figure 3: Source Code to Graph Process

4.2.1 Motivation Example

To understand how the graphs are built, we will present an example for a Java code file and then explain in detail how
the FA-AST is built (see Listing 2).

Listing 2: A Simple JUnit 5 Test Case
package org . myorg . w e a t h e r . t e s t s ;

import s t a t i c
org . j u n i t . j u p i t e r . a p i . A s s e r t i o n s . a s s e r t E q u a l s ;

import org . myorg . w e a t h e r . WeatherAPI ;
import org . myorg . w e a t h e r . F l a g s ;

p u b l i c c l a s s WeatherAPITes t {

WeatherAPI a p i = new WeatherAPI () ;

@Test
p u b l i c vo id t e s t T e m p e r a t u r e O u t p u t () {

double cur ren tTemp = a p i . cu r ren tTemp () ;
F l a g s f = a p i . g e t F r e e z e F l a g () ;
i f (cu r ren tTemp <= 3 . 0 d)

a s s e r t E q u a l s (F l a g s . FREEZE , f) ;
e l s e

a s s e r t E q u a l s (F l a g s .THAW, f) ;
}

}

AST Parsing In this example, a single test case testTemperatureOutput() is presented that tests a feature of
an (imaginary) API. As common for test cases, the example is short and structurally relatively simple. Much of the
body of the test case consists of invocations to the system-under-test and calls of JUnit standard methods, such as
assertEquals.

A (slightly simplified) AST for this illustrative example is depicted in Figure 4. The produced AST does not contain
purely syntactical elements, such as comments, brackets, or code location information. We make use of the pure Python
Java parser javalang2 to parse each test file and use the node types, values, and production rules in javalang to describe
our ASTs.

Capturing Ordering and Data Flow In the next step, we augment this AST with different types of additional edges
representing data flow and node order in the AST. Specifically, we use the following additional flow augmentation
edges, in addition to the AST child and AST parent edges that are produced readily by AST parsing:

• FA Next Token (b): This type of edge connects a terminal node (leaf) in the AST to the next terminal node.
Terminal nodes are nodes without children. In Figure 4, an FA Next Token edge would be added, for example,
between WeatherAPI and api.

• FA Next Sibling (c): This connects each node (both terminal and non-terminal) to its next sibling and allows us
to model the order of instructions in an otherwise unordered graph. In Figure 4, such an edge would be added,
for example, connecting the first usage of api and with the CONSTR node (representing a Java constructor call).

• FA Next Use (d): This type of edge connects a node representing a variable to the place where this variable is
next used. For example, the variable api is declared in Line 10 in Listing 2, and then used next in Line 14.

Figure 5 shows an example augmenting the AST in Figure 4 (and, consequently, the example test case in Listing 2).
Solid black lines indicate the AST parent and child relationships (for simplicity indicated through a single arrow, read

2https://pypi.org/project/javalang/

6

Journal of Engineering Applications of Artificial Intelligence

testTemperatureOutput

DECL

double =

currentTemp CALL

currentTemp

DECL

… IF

PRED

<=

currentTemp LIT

3.0d

IF-BLOCK

CALL

assertEquals ARGS

Flags.FREEZE f

ELSE-
BLOCK

CALL

assertEquals ARGS

Flags.THAW f

CU

WeatherAPITest

PACKAGE

… IMPORT

…
CLASS

DECL

WeatherAPI =

api CONSTR

WeatherAPI

api

Figure 4: Simplified abstract syntax tree (AST) representing the illustrative example presented in Listing 2. Package
declarations, import statements, as well as the declaration in Line 15 are skipped for brevity.

from top to bottom). Red dashed arrows refer to the new edges added to represent the data and control flow in the
FA-AST, with letter codes indicating the edge type. Terminal nodes are connected with FA Next Token edges (b),
modelling the order of terminals in the test case. Similarly, the ordering of siblings is modelled using FA Next Sibling
edges (c). Finally, data flow is modelled by connecting each variable to their next usage via FA Next Use edges (d).
Edge types (e), (f), and (i) represent a control flow statement, which will be discussed in the following. Multiple edges
of different types are possible between the same nodes. For example, the terminal nodes Flags.FREEZE and f are
connected via both, an FA Next Token (b) and an FA Next Sibling (c) edge.
Capturing Control Flow In a second augmentation step, we now add further edges representing the control flow in
the test cases. We currently support if statements, while and for loops, as well as sequential execution. We currently do
not support switch statements or do-while loops, as these are less common. Java source code containing these elements
will still be parsed successfully, but these control flow constructs will not be captured by the FA-AST. Specifically, the
following further edges are added (see also Figure 6):

• FA If Flow (e): This type of edge connects the predicate (condition) of the if-statement with the code block
that is executed if the condition evaluates to true. Every if-statement contains exactly one such edge by
construction.

• FA Else Flow (f): Conversely, this edge type connects the predicate to the (optional) else code block.

• FA While Flow (g): A while loop essentially entails two elements - a condition and a code block that is
executed as long as the condition remains true. We capture this through a FA While Flow (g) edge connecting
the condition to the code block, and an FA Next Use (d) edge in the reverse direction. The latter is used to
model the next usage of a loop counter.

7

Journal of Engineering Applications of Artificial Intelligence

testTemperatureOutput

DECL

double =

currentTemp CALL

currentTemp

DECL

…
IF

PRED

<=

currentTemp LIT

3.0d

IF-BLOCK

CALL

assertEquals ARGS

Flags.FREEZE f

ELSE-
BLOCK

CALL

assertEquals ARGS

Flags.THAW f

CU

WeatherAPITest

PACKAGE

… IMPORT… CLASS

DECL

WeatherAPI =

api CONSTR

WeatherAPI

api

(c)
(c)

(c)
(c)

(b) (c)

(b)

(b)

(d)

(c)

(d)

(b)

(b)

(c)

(b)

(c)

(b)

(b)

(c)

(b) (b) (b)

(c) (c)

(e)

(f)

Legend:
AST edge

(b) FA Next Token
(c) FA Next Sibling
(d) FA Next Use

(e) FA If Flow
(f) FA Else Flow

(i)

(i) FA Next Statement Flow

(i) (i)
(i)

(i)

(i) (i)

(c)

(c)

(c)

(c) (c)

(c)

Figure 5: Flow-Augmented AST (FA-AST) for the example presented in Listing 2. Solid lines represent AST parent
and child edges, and dashed lines different types of flow augmentations.

• FA For Flow (h): For loops are conceptually similar to while loops. We use FA For Flow (h) edges to connect
the condition to the code block, and an FA Next Use (d) edge in the reverse direction. Similar to the modelling
of while-loops, FA Next Use (d) relates to the usage (typically incrementing) of a loop counter.

• FA Next Statement Flow (i): In addition to the control flow constructs discussed so far, Java of course also
supports the simple sequential execution of multiple statements in a sequence within a code block. FA Next
Statement Flow edges (i) are used to represent this case. Different from the constructs discussed so far, a code
block can contain an arbitrary number of children, and the FA Next Statement Flow edge is always used to
connect each statement to the one directly following it.

Referring back to Figure 5, two types of control flow annotations are visible: the modelling of the if-statement in lines
16 to 19 of the test case on the right-hand side and various edges representing sequential executions (FA Next Statement
flow (i)). Further note how flow annotation adds a large number of edges to even a very small AST, transforming the
syntax tree into a sparse graph. This rich additional information can be used in the next step by our GNN model to
predict highly accurate test execution times.

4.3 Depth of FA-AST Parsing

One challenge with representing source code as graphs is that graphs tend to become very large. We address this
challenge by limiting how deeply we parse the AST. We investigate two alternatives:

• File-Level Parsing: in the first alternative, we parse the AST only on the level of individual Java source
files. References to Java constructs (e.g., classes, functions, etc.) not implemented in this file are turned into
leaf nodes (and not resolved further). This leads to graphs of manageable size and has the added benefit of
simplifying parsing, but evidently much expressive information is lost.

• System-Level Parsing: in the second alternative, the parser has access to all source code files of the study
subject system (e.g., all source code files of Hadoop when constructing FA-ASTs for Hadoop), and the all
references to classes or functions that are implemented in the study subject are resolved fully. External
dependencies or calls to the Java system library are not resolved, these remain represented as leaf nodes. This

8

Journal of Engineering Applications of Artificial Intelligence

IF

PRED IF-BLOCK ELSE-
BLOCK(e)

(f)

AST edge
(e) FA If Flow
(f) FA Else Flow

WHILE

COND BLOCK
(g)

AST edge
(g) FA While Flow
(d) FA Next Use

(d)

FOR

COND BLOCK
(h)

AST edge
(h) FA For Flow
(d) FA Next Use

(d)

BLOCK

CALL CALL
(i)

AST edge
(i) FA Next Statement Flow

CALL
(i)

Figure 4.1 - if Figure 4.2 - while

Figure 4.3 - for Figure 4.4 - block

Figure 6: Additional flow augmentations for different control flow constructs

parsing strategy leads to substantially larger and more complex graphs, but has the benefit that more knowledge
about the performance of methods of the study subject is represented in the graph.

4.4 Graph Representation Learning

The graph structure of the data items in D yields a restriction on the types of regression models that can be used, and
thus the types of query strategies to use for active learning. Therefore, we investigate a number of unsupervised and
supervised approaches to constructing embeddings that can be used to project the graph data into a latent space where
any regression model (and thus query strategy) can be used. In this section, we outline each of the embeddings that we
investigate in this work.

Since our focus is on directed graphs, we use embedding algorithms compatible with directed graphs where the
adjacency matrix is not symmetric. For this purpose, we explore three main approaches: unsupervised embeddings
(based on Graph Neural Networks (GNNs) and shallow embedding algorithms), supervised embeddings (based on
GNNs) and manual embeddings (based on manually extracted graph features). Each of these categories are listed and
explained below.

4.4.1 Unsupervised embeddings.

Figure 7 illustrates the hierarchy of unsupervised embedding algorithms used. The hierarchy is inspired by [46]. We
have two main types of shallow embedding approaches: matrix factorization and skip-gram. In matrix factorization, we
use the Graph Representation (GR) approach [47] and Higher-Order Proximity Preserved Embedding (HOPE) [48],
both of which are compatible with directed graphs.

GR operationalizes matrix factorization to capture both local and global structural information within graphs. It does
this by first constructing k-step probability transition matrices for different lengths of walks in the graph, essentially
encoding the connectivity patterns at various scales. GR then applies matrix factorization to these transition matrices,
enabling the extraction of node embeddings that reflect the composite of these patterns.

HOPE, on the other hand, employs matrix factorization to preserve high-order proximities between nodes in a graph. It
constructs a similarity matrix based on certain measures of node similarity (such as the Katz Index or rooted PageRank)
that encapsulates higher-order connections beyond immediate neighbours. By factorizing this similarity matrix, HOPE

9

Journal of Engineering Applications of Artificial Intelligence

Graph Unsupervised
Embedding Approaches

Shallow Embedding
Approaches

Graph Neural Networks

Matrix Factorization Skip-gram Approaches

Graph Representation

High Order Proximity
Embedding

Deep Walks

Node2Vec

Graph2Vec

GraphSAGE

GCN

GraphConv

Figure 7: Hierarchical structure of the different unsupervised graph embedding algorithms used in this study.

efficiently generates node embeddings that maintain the asymmetric transitive relationships, especially useful in directed
graphs, by focusing on scalable, low-rank approximations to handle large-scale graphs.

These algorithms operate at the node-level, resulting in an embedding array for each graph rather than a vector.
Therefore, we aggregate the embedding using mean and sum aggregation to represent the graph embeddings as vectors.
For skip-gram-related methods, we use DeepWalk [49], Node2Vec [50], both of which learn the embedding at the node-
level, and Graph2Vec which is the only method for the shallow embedding category that returns a vector representing
the embedding for the entire graph.

DeepWalk utilizes random walks to sample sequences of nodes from a graph analogously to sentences in a corpus. By
treating these sequences as "sentences," DeepWalk applies the skip-gram model to learn node embeddings that preserve
the neighbourhood structure of the graph. This approach effectively captures the local connectivity patterns around
each node, embedding them into a low-dimensional space that reflects the structural similarities between nodes.

Node2Vec builds upon the DeepWalk framework by introducing a flexible notion of a node’s neighbourhood. It achieves
this by parameterizing the random walks to balance between breadth-first sampling (capturing immediate neighbourhood
structures) and depth-first sampling (exploring more distant parts of the graph). This controlled exploration allows
Node2Vec to learn embeddings that can reflect both homophily and structural equivalences, thereby providing a more
nuanced representation of node relationships in the embedding space.

Graph2Vec creates Weisfeiler-Lehman tree features for nodes in graphs. A graph feature co-occurrence matrix is
decomposed to generate graph representations using these features.

According to [46], shallow embedding methods are applied to a finite set of input graphs and cannot be applied to
instances different from those used to train the model.

In addition to the shallow embeddings, we train GNNs (without labels) to compute unsupervised embeddings. We
employ three state-of-the-art GNN architectures, namely GCNConv [51], GraphSAGE [52] and GraphConv [53]. This
is done using the well-known autoencoder neural network architecture [54] (in combination with one of the mentioned
GNNs). In short, this works by training the corresponding GNN to reconstruct the input graphs. After training, an
embedding is extracted from the last layer of the corresponding GNN.

4.4.2 Supervised embeddings.

For supervised representation learning (embedding), we employ three state-of-the-art architectures, namely GCN-
Conv [51], GraphSAGE [52], and GraphConv [53]. These methods are explained in detail below.

• GCNs leverage the concept of convolutional operations on graph-structured data. The model updates a node’s
representation by aggregating its neighbours’ features.

10

Journal of Engineering Applications of Artificial Intelligence

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (1)

Where H(l) is the matrix of node features at layer l, Ã = A + IN is the adjacency matrix A with added
self-connections IN , D̃ is the degree matrix of Ã, W (l) is the weight matrix for layer l, and σ is a non-linear
activation function.

• GraphSAGE (Graph Sample and Aggregation) generates embeddings by sampling and aggregating features
from a node’s local neighbourhood.

h′
i = σ (W · MEAN({hi} ∪ {hj ,∀j ∈ N (i)})) (2)

Where hi is the feature vector of node i, N (i) is the set of its neighbours, and W is the weight matrix
associated with the aggregator function.

• GraphConv (Spectral Graph Convolution) employs spectral graph convolutions by leveraging the graph
Laplacian’s eigenbasis. This approach efficiently captures the graph structure at different scales.

H(l+1) = σ
(
UΛ(l)UTH(l)W (l)

)
(3)

Where H(l) is the matrix of node features at layer l, U is the matrix of eigenvectors of the normalized graph
Laplacian L = IN −D− 1

2AD− 1
2 , Λ(l) is a diagonal matrix of spectral filters (parameters) at layer l, W (l) is

the weight matrix for layer l, and σ is a non-linear activation function.

Given this embedding, the active and passive learning is performed using the regression model introduced in Section
4.6. The reasons for this is to be consistent with the unsupervised embeddings (that will use the same regression model)
and because the performance turned out to be slightly better compared to the predictions made by the last (linear) layer
of the GNN.

4.4.3 Manual embedding

We also consider a manually constructed embedding by extracting a set of graph metrics for each of the graphs (data
items). Here, we represent each graph as a vector of metrics that are directly extracted from the graphs without learning.
Figure 8 shows a categorization of the extracted metrics. Below we list and explain each of the metrics.

1. Integration Metrics [55]: those metrics capture the spreading of information within the network. In particular:
• Characteristic Path Length: This metric represents the average shortest path length between all pairs of

nodes in the graph.
• Global Efficiency: It measures the average inverse shortest path length between all pairs of nodes in the

graph.
• Local Efficiency: Local efficiency is computed for each node as the global efficiency of its neighbourhood

subgraph and then averaged over all nodes.
2. Resilience Metrics [56]: These metrics assess the robustness of a graph and its ability to maintain its structure

and functionality despite changes or failures. In particular, we consider
• Assortativity Coefficient: this metric measures the correlation between the degrees of a node and its

neighbourhood.
3. Segregation Metrics [55]: they quantify the degree to which nodes in a graph tend to form tightly knit

communities or clusters. Two metrics related to this category are listed below.

• Global Clustering Coefficient (GCC) [57]: it is the number of closed triplets over the total number of
triplets.

GCC =
1

n

∑

v∈G

2T (v)

deg(v)(deg(v)− 1)

where T (v) is the number of triangles through node v.
• Transitivity: defined as 3#triangles

#triads .

4. Basic Graph Metrics: Basic graph metrics describe a graph’s fundamental structure, size, and connectivity.
In this category, we are inspired by [58]. Five related metrics related to this category are listed below as the
following:

11

Journal of Engineering Applications of Artificial Intelligence

Graph Metrics

Integration Metrics Resilience Metrics

Global
Clustering
Coefficient

(GCC)

Number of
Nodes

Segregation
Metrics

Basic Graph
Metrics

Number of
Edges

Average
Degree

Assortativity
coefficient

Characteristic
Path Length

Global
Efficiency

Local
Efficiency

Transitivity

Diameter

Density

Figure 8: Hierarchy of graph-based metrics.

• Number of Nodes: The total number of nodes in the graph.

• Number of Edges: The total number of edges in the graph.

• Diameter: The diameter D is the shortest path length between the two most distant nodes in the network.

• Edge Density: The ratio of the actual number of edges to the maximum possible number of edges.

• Average Degree: The average number of degrees.

By considering these categories and their associated metrics, we can understand the graph’s properties comprehensively,
which can be valuable in various graph analysis and machine learning tasks.

4.5 Incorporating Different Information

When constructing the embeddings and performing the active/passive learning procedure outlined in Section 4.1, one
can utilize different levels of information about the datasets. We describe how this is done for active learning and
passive learning below. Let XA and Y A refer to the feature vectors and labels respectively of some generic dataset A.

4.5.1 Active Learning

For active learning we have three datasets: Li, Ui and T . In principle, the information that can be used to construct
the embeddings and perform the active learning are the labels and features of these datasets, i.e., XLi

, XUi
, XT ,

Y Li
, Y Ui

and Y T . As suggested by [59], it is important to separate the reported active learning results depending on
what information is used. For example, if one notices improved performance when using the features of the unlabeled
data items XUi

(through, e.g., semi-supervised learning) compared to not doing so, it is important not to fully credit
this improvement to the query strategy used. Partial credit must be given to the learning algorithm used since it was
able to effectively use the additional information. Note that for the active learning pipeline followed in this paper,
both the construction of the embedding and the active learning can utilize different levels of information (separately).
For simplicity, the active learning (given some embedding) is always done based on the training features and training
labels only (i.e., supervised training based on XLi and Y Li). However, for the construction of the embeddings, we
considered four different levels of information, each of which are listed and explained below. Note that we never use
Y T , i.e., the labels of the test dataset.

12

Journal of Engineering Applications of Artificial Intelligence

• XLi , XUi and XT . This category is only applicable to the unsupervised embeddings (since the labels are not used).
In this case, we simply construct the embedding using all available features and then embed Li, and Ui and T into
the resulting latent space before performing the active learning.

• XLi and XUi . This category is only applicable to the unsupervised embeddings (since the labels are not used). For
the GNN based unsupervised embeddings it is straightforward. One begins by constructing an embedding using XLi

and XUi
. Given the embedding, Li, Ui and T can be projected into the resulting latent space before doing the active

learning. For the shallow embeddings this does not work since it is not possible to project new data items into the
resulting latent space (i.e., only the data items that were used to construct the latent space can be accessed in the
resulting latent space). Instead, we first construct an embedding based on XLi

and XUi
and access Li and Ui in the

resulting latent space. Then, we construct an embedding based on Li, Ui and T and access T in the resulting latent
space. It should be noted that in this case T is in a different (but hopefully similar) feature space compared to Li

and Ui. Finally, we consider the manual embedding to belong to this category since it does not use the test features
when it is constructed. However, it should be noted that it is not strictly the same, since for the manual embedding the
feature representation of each graph is only based on information in the graph itself (i.e., it is independent of all other
graphs).

• XLi and Y Li . This category is only applicable to the supervised embedding approach (based on GNNs) since it uses
the labels of Li. In this setting one simply performs supervised training of a GNN based on XLi and Y Li . Then, all
data is projected into the latent space of the last layer of the GNN before performing the active learning.

• XLi , Y Li and XUi . This category is only applicable to the supervised embedding approach (based on GNNs) since
it uses the labels of Li. This setting works identically to the previous category except that we also use pseudo-labels
for data items in Ui (i.e., semi-supervised learning). After some investigation, this category turned out to not lead to
improved performance for our datasets and models, and is therefore not reported in the results.

4.5.2 Passive Learning

The passive learning is conducted in a corresponding fashion to the active learning described above by simply setting
L = L0 and U0 = ∅.

4.6 Regression model

Given some graph embedding, we require a regression model to make predictions (either for passive learning or active
learning). Our framework is generic enough to utilize any regression model. In this project, we investigate Gaussian
Process Regressors (GPR). The reason is that GPRs are both powerful regressors while also providing an explicit
uncertainty model due to their probabilistic nature [60]. This uncertainty model allows us to define a natural acquisition
functions that can be used in an active learning setting. This is discussed more in the next section. We refer to [60] for
the mathematical details of GPRs.

4.7 Query Strategies for Active Learning

In this paper, we consider batch active learning [61]. In batch active learning, a batch of data points B ⊆ Ui is selected
in each iteration of the active learning procedure (instead of a single data point). This adds an extra level of complexity
in the construction of query strategies, because the selected batch B must contain data points that are jointly informative
(i.e., not redundant). With this in mind, we list and explain all query strategies (acquisition functions) used in the active
learning experiments below. All query strategies below are commonly investigated in active learning and are not specific
to graph data. This highlights the benefit of our framework: given a graph embedding, we can utilize any model (GPR
in our case) and any active learning query strategy suited for this model, none of which are specific to the graph data.

• Random: This corresponds to selecting a batch B ⊆ Ui uniformly at random, which is a common baseline
strategy.

• Coreset: This was originally introduced by [5], and has become a well established baseline method for
batch active learning. Intuitively, it aims to select a batch B ⊆ Ui that is maximally representative of
Ui while simultaneously being maximally different from the samples in Li (i.e., informative). In general,
representativeness is quantified based on distances in feature space. In our case, that corresponds to distances
in the latent space provided by the graph embeddings. We utilize the efficient k-Center-Greedy algorithm
described in the original work [5].

• Variance: This is based on the uncertainty estimations provided by the GPR. Due to the probabilistic nature of
GPRs, it can produce an estimate of the variance for every data point. Let σ(x) correspond to the variance of

13

Journal of Engineering Applications of Artificial Intelligence

some data item x ∈ Ui (estimated by the GPR). A data point with large variance indicates the GPR is uncertain
about this data point, and may therefore be informative if labeled and included in the labeled data set. We can
then select the top-|B| data points from Ui according to σ(x): B∗ = argmaxB⊆Ui,|B|=B

∑
x∈B σ(x), where

B is the batch size.
• Query-by-committee (QBC): In general, this corresponds to fitting n estimators to (potentially bootstrapped)

subsets of the labelled data. Then, a prediction is made by each of the estimators for all the data items in
Ui. If the estimators disagree strongly about a data point x ∈ Ui, this indicates large uncertainty and thus
informativeness. In this paper, we employ QBC by training 10 GPR estimators on different bootstrapped
subsets of the training data Li. Let σi(x) be the variance of estimator i. We then compute the average
as σavg(x) = 1

10

∑10
i=1 σi(x). A batch is then selected as for the variance query strategy described above:

B∗ = argmaxB⊆Ui,|B|=B

∑
x∈B σavg(x).

Finally, variance and QBC are single-sample acquisition functions that do not explicitly consider the joint informative-
ness among the elements in a batch B. This may lead to redundancy in the batch, but has the benefit of avoiding the
combinatorial complexity of selecting an optimal batch, which is a common problem for batch active learning [61].
However, the work in [62] proposes a simple method for improving the batch diversity for single-sample acquisition
functions using noise. For both variance and QBC we utilize the power acquisition method. For variance, this cor-
responds to modifying σ(x) := log(σ(x)) + ϵ where ϵ ∼ Gumbel(0; 1), before selecting the top-|B| elements. This
works analogously for QBC. The adjusted versions of variance and QBC will be referred to as PowerVariance and
PowerQBC, respectively.

4.8 Limitations and Challenges

Despite the robustness of our framework through the usage of different embedding techniques, utilization of different
levels of information, and the investment in different selection methods of active learning, our framework does face
some challenges and limitations. This section outlines the main practical challenges and limitations of our proposed
framework:

• Access to Oracle: A pivotal challenge arises from the reliance on oracles to acquire labels. In our setting,
the oracle could correspond to software developers who execute code files in order to retrieve the execution
time. This means that expensive computational resources must be available, which adds a monetary cost, in
particular if cloud instances are utilized.

• Variability in Oracle Costs: In practice, we may have multiple oracles, i.e., multiple software developers
with different levels of experience and different access to computational resources. This means that a query to
each oracle may have different costs. However, in this paper, we assume we have only one oracle, where each
query incurs the same cost (as is common in previous work on active learning).

• Computational Resource Requirements: The comprehensive nature of our framework demands significant
computational resources for graph learning and executing active learning iterations. This is particularly
pronounced in supervised settings where re-training of the GNN model is required with each update to the
training set after label acquisition, thus intensifying time and resource consumption.

5 Experiments

In this section, we describe the experiments and present the results.

5.1 Research Objectives

This section outlines the principal research objectives explored through experiments on the proposed framework. Our
primary goal is to explore the application of active learning in the context of graph learning on a graph-level, with a
particular emphasis on directed sparse graphs. Nonetheless, it is posited that the framework holds potential applicability
to a broader spectrum of graphs, contingent upon the adaptation of embedding techniques suitable for variants such as
undirected graphs. In pursuit of these aims, the following research questions will guide our investigation:

• To what extent can active learning contribute to graph-level learning?
• Among the active learning query strategies evaluated, which demonstrate superior performance in conjunction

with specific embedding techniques?
• Are the results obtained through the framework robust and consistent when applied to expanded graphs?

14

Journal of Engineering Applications of Artificial Intelligence

Table 1: Overview of the OSSBuilds and HadoopTests datasets.

Project Description Files Runs File-Level Parsing System-Level Parsing

Nodes Vocab. Nodes Vocab.

O
SS

B
ui

ld
s

systemDS Apache Machine Learning sys-
tem for data science lifecycle

127 1321 110651 3161 114904 3205

H2 Java SQL DB 194 1391 405706 17972 432375 18326

Dubbo Apache Remote Procedure Call
framework

123 524 75787 4499 77142 4505

RDF4J Scalable RDF processing 478 1055 214436 10755 242673 10844

Total 922 4291 806580 36387 867094 36880

H
ad

oo
pT

es
ts Hadoop Apache framework for process-

ing large datasets on clusters
2895 24348 4314360 135408 5090798 138952

5.2 Dataset Collection

In our experiments, to increase reliability, we use two different real-world datasets of performance measurements. The
first dataset (OSSBuild) is real build data collected from the continuous integration systems of four open-source systems.
The second (HadoopTests) is a larger dataset we have collected ourselves by repeatedly executing the unit tests of
the Hadoop open-source system in a controlled environment. A summary of both datasets is provided in Table 1. In
the following subsections, we provide some additional information about each of the two datasets that we used in the
experimental studies.

5.2.1 OSSBuild Dataset

In this dataset (originally used in [44]), information about test execution times in production build systems was collected
for four open-source projects: systemDS, H2, Dubbo, and RDF4J. All four projects use public continuous integration
servers containing (public) information about the project’s builds, which we harvested for test execution times as a
proxy of performance in summer 2021. Basic statistics about the projects in this dataset are described in Table 1 (top).
"Files" refers to the number of unit test files we collected execution times for, "Runs" is the (total) number of executions
of files we extracted data for, whereas "Nodes" and "Vocabulary Size" indicate the resulting graphs (for both file and
system-level parsing). Prior to parsing the test files, we remove code comments to reduce the number of nodes in each
graph (by construction irrelevant). We note that we have 60514 more nodes for system-level parsing and 493 new
vocabs.

5.2.2 HadoopTests Dataset

To address limitations with the OSSBuilds dataset (primarily the limited number of files for each individual project in
the dataset), we additionally collected a second dataset for this study. We selected the Apache Hadoop framework since
it entails a large number of test files (2895) of sufficient complexity. We then executed all unit tests in the project five
times, recording the execution duration of each test file as reported by the JUnit framework (in millisecond granularity).
As an execution environment for this data collection, we used a dedicated virtual machine running in a private cloud
environment, with two virtualized CPUs and 8 GByte of RAM. Following performance engineering best practices,
we deactivated all other non-essential services while running the tests. Statistics about the HadoopTests dataset are
described in Table 1 (bottom).

Since we have more files in HadoopTests, we have more added nodes to the system-level parsing setting. Thus 776438
nodes are added to the graphs in the system-level parsing, and we get 3544 more vocabs.

5.2.3 Dataset Selection Rationale

The selection of this dataset was guided by several considerations, underscoring its suitability for our research objectives:

• The dataset’s real-world origin enhances the credibility and applicability of our research findings and the
proposed framework.

• Its characteristics offer potential for generalization to diverse graph datasets.

15

Journal of Engineering Applications of Artificial Intelligence

• Notably, existing research on active learning for graphs predominantly focuses on node-level tasks (classifica-
tion or regression). Our datasets provide the opportunity to investigate graph-level regression tasks, a field that,
to our knowledge, has not been extensively explored in the existing literature.

• The variation in graph sizes is particularly important for our research. It encompasses graphs derived from
file-level parsing, which can be further expanded through system-level parsing by incorporating additional
nodes, and edges. This aspect, especially in the context of active learning, represents a novel research direction
not explored in literature.

It is worth mentioning that our work provides a public and real-world graph dataset, enabling researchers to investigate
and use it in research. The dataset is publicly available at [26].

5.3 Analysis of Graphs

We want to annotate each source code file with the corresponding scalar value related to execution time. The source
code is represented as a graph. In particular, each graph represents a Java source code file (a JUnit test case). As
aforementioned, the base structure is a tree that is then extended to a graph adding edges representing program control
flow [44].

Table 2 shows the average statistics of the input graphs. In particular, we report the average number of nodes (|V |),
the average number of edges (|E|), the density, the average global clustering coefficient (GCC), the average number
of cycles and the average tree similarity. We define a simple function to measure how similar the graph is to a tree
(tree− sim) as the number of edges that have to be removed to convert the graph into a tree, i.e.,

tree− sim =
|E| − (|V | − 1)

(|V | − 1)(
|V |
2

− 1)

. (4)

The formula has to be interpreted as the number of edges of the graphs minus the number of edges of a tree with N
nodes, normalized. If the input graph is a tree, then we have that tree− sim is equal to 0, while if the graph is complete,
tree− sim is equal to 1.

Table 2: Average statistics of the input graphs of System Level Parsing.

Dataset type |V | |E| Diameter Density GCC tree− sim

OSSBuilds File-level 875 1679 14 0.014 0.16 0.007
System-level 940 1848 13 0.013 0.15 0.006

HadoopTests File-level 1490 1848 15 0.005 0.15 0.003
System-level 1734 3428 14 0.006 0.15 0.003

From Table 2, it is easy to see that the input graph has a high diameter. In fact, if we generate a random graph [63]
with the same number of nodes and the same density as the original ones, we obtain an average diameter of 2 and 4 for
OSSBuilds and HadoopTests, respectively. It is also easy to see that the input graphs are quite sparse. Finally, in both
datasets, the tree − sim is close to zero. Thus, we can conclude that input graphs are similar to trees. We report a
detailed analysis of the input graphs in appendix A.

5.4 Experimental Setup

In this section, we describe the experimental setup. Each experiment has been executed on a computer with four GPU
NVIDIA Tesla A40 with 48GB of memory, two CPU Xeon(R) Gold 6338, and DDR4 RAM of 256GB. However, the
framework can be executed on less powerful machines with longer execution times as a consequence.

We used the Scikit-learn [64] implementation of Gaussian Process Regressors with a Matern kernel. In the passive
setting, the hyperparameters of the Matern kernel were fine-tuned. For active learning, the hyperparameters of the
Matern kernel were fine-tuned in each iteration based on the currently available labelled data in Li. The GNN models
used for both supervised and unsupervised embeddings consist of three layers with 30 neurons each. Since each layer
learns a node representation, we compute the graph representation by concatenating the sum, average, and max of the
node representation, resulting in an embedding of 90 dimensions. The Adam optimizer [65] is employed with a learning
rate of 0.001, and the loss used is the Mean Squared Error.

We measure the quality of the predictions by computing the Pearson correlation score between the predicted value and
the real value. A larger Pearson correlation score implies better quality predictions. In B.3 we include results with the
Root Mean Squared Error (RMSE) metric.

16

Journal of Engineering Applications of Artificial Intelligence

5.5 Results

In this section, we present the results of both the passive and active learning experiments. In Section 6 we discuss the
conclusions from the results in detail.

5.5.1 Passive Learning

To perform passive learning, we utilize a training set L and a test set T . For each embedding, we train a Gaussian
process (GP) using L and then use it to predict the execution time of all test data items in T . Additionally, all passive
learning results correspond to the average of 15 runs with different seeds, where for each method, the mean and standard
deviation (STD) values are reported.

We will show the results for file-level parsing and system-level parsing.

Table 3: Results for Unsupervised Embedding for graphs of File Level Parsing.

Train and Test Features Train Features
OSSBuilds HadoopTests OSSBuilds HadoopTests

Shallow
E

m
bedding

Graph2Vec 0.74 ± 0.03 0.74 ± 0.02 NA NA

GR mean 0.58± 0.03 0.50± 0.03 NA NA
sum 0.47± 0.05 0.46± 0.04 NA NA

HOPE mean 0.16± 0.05 0.06± 0.03 NA NA
sum 0.16± 0.05 0.37± 0.05 NA NA

DeepWalks mean 0.42± 0.05 0.47± 0.03 NA NA
sum 0.41± 0.05 0.46± 0.04 NA NA

Node2Vec mean 0.30± 0.06 0.20± 0.03 NA NA
sum 0.25± 0.07 0.40± 0.04 NA NA

GNN
GCNConv 0.47± 0.05 0.52± 0.04 0.46± 0.04 0.50± 0.04

GraphSAGE 0.44± 0.06 0.44± 0.04 0.42± 0.04 0.42± 0.04
GraphConv 0.48± 0.05 0.52± 0.04 0.47± 0.05 0.51± 0.03

File-Level Parsing In Section 4.5, we explained how different levels of information can be used when constructing
the embeddings. Table 3 displays the results for the unsupervised embeddings when they are constructed using: (i) both
train and test features (i.e., XL and XT , respectively); (ii) only train features (XL). As explained in Section 4.5.1, the
second option is not straightforward using shallow embeddings, as it will lead to the training data and test data being in
different feature spaces. Because of this, we do not include it in the table (it is marked as NA). However, we show the
results for this setting in B, with further explanation.

When utilizing both the training and testing features, Graph2Vec attains the highest scores with consistent average
scores for both datasets—0.74 each.

Graph2Vec provides an embedding for the entire graph by default, but the remaining shallow embedding methods are
on a node-level. Thus, in order to have the embedding for the entire graph, the embedding is aggregated using mean
and sum aggregation functions. For the shallow embeddings that operate on a node-level, we observe that GR performs
significantly better compared to the other methods for both datasets, where HOPE is the worst performing overall.

The results of shallow embeddings are more stable for HadoopTests since the STD is in the range of [0.02,0.05], which
is not the case for OSSBuilds when the STD range is [0.03,0.07]. This is reasonable because by looking at Table 1, we
can see that OSSBuilds contains four different projects for four different domains, which is not the case for HadoopTests,
where all code files are related to one project.

The performance of the GNN-based methods is slightly better when the test features are used in the embedding.
GraphConv is the best GNN model for both datasets in both cases. The unsatisfactory performance of GNNs is not
surprising, as unsupervised graph representation learning by GNNs requires vast data.

The results for the supervised embeddings based on the train features XL and train labels Y L are presented in Table 4.
The Pearson correlation obtained with GNNs is shown in the first rows, while the results obtained using the manual
embedding are reported in the last row. It is evident from the table that the performance of the GNN-based approaches
is superior to that of the manual embeddings for both datasets (except the GCN for OssBuilds, which is slightly worse
than manual embedding). Thus, GraphConv performs the best for OSSBuilds, with an average correlation score of 0.67
and STD of 0.02. In contrast, for HadoopTests, GraphSAGE and GraphConv have the highest average correlation score
of 0.68 and STD of 0.02 and 0.01, respectively.

17

Journal of Engineering Applications of Artificial Intelligence

Table 4: Results for Supervised and Manual Embedding for graphs of File Level Parsing.

OSSBuilds HadoopTests

Supervised Embedding (GNN)
GCNConv 0.61± 0.04 0.66± 0.02

GraphSAGE 0.64± 0.03 0.68 ± 0.02
GraphConv 0.67 ± 0.02 0.68 ± 0.01

Manual Embedding 0.64± 0.05 0.61± 0.02

Overall, for passive learning, Graph2Vec with test features achieves the best score for both datasets and settings. The
reason why Graph2Vec performs well could be because our input graphs are similar to trees (see Section 5.3). In
fact, Graph2Vec explores a much deeper path within the input graph compared to GNN. On the other hand, GNNs in
a supervised setting deliver reasonable results for both datasets (unlike the unsupervised GNN embedding). This is
likely because the labels are utilized. The manual embedding also yields an acceptable score compared to the shallow
embeddings (except Graph2Vec).

System-Level Parsing This section examines the passive learning outcomes for System-Level parsing, where graphs
are expanded from their File-Level counterparts.

Table 5: Results for Unsupervised Embedding for graphs of System Level Parsing.

Train and Test Features Train Features
OSSBuilds HadoopTests OSSBuilds HadoopTests

Shallow
E

m
bedding

Graph2Vec 0.73 ± 0.03 0.75 ± 0.02 NA NA

GR mean 0.45± 0.04 0.47± 0.02 NA NA
sum 0.40± 0.05 0.43± 0.03 NA NA

HOPE mean 0.19± 0.07 0.06± 0.03 NA NA
sum 0.20± 0.08 0.35± 0.04 NA NA

DeepWalks mean 0.37± 0.06 0.44± 0.02 NA NA
sum 0.36± 0.06 0.43± 0.04 NA NA

Node2Vec mean 0.33± 0.06 0.42± 0.03 NA NA
sum 0.36± 0.06 0.42± 0.04 NA NA

GNN
GCNConv 0.41± 0.06 0.48± 0.03 0.44± 0.05 0.48± 0.03

GraphSAGE 0.37± 0.06 0.42± 0.04 0.38± 0.04 0.45± 0.05
GraphConv 0.43± 0.06 0.49± 0.03 0.44± 0.07 0.49± 0.03

Table 5 displays the results for the unsupervised embeddings based on both train and test features, as well as only train
features for GNN for System-Level parsing. Thus, looking at the results of Tables 5, we notice that Graph2Vec attains
the highest scores of 0.73 and 0.75 for the OSSBuilds and HadoopTests datasets, respectively, which is consistent with
the results obtained for File-Level Parsing. For both datasets, GR, DeepWalks, and Node2Vec with both aggregation
functions achieve a reasonable Pearson correlation score. On the other hand, HOPE remains the worst-performing
approach in terms of embedding quality. The results of shallow embeddings are more stable for HadoopTests since the
STD is in the range of [0.02,0.04], which is not the case for OSSBuilds when the STD range is [0.03,0.08].

For GNNs, the average score decreases by a small margin (especially for HadoopTests graphs) with/without test features
compared to the original graphs in File-Level Parsing.

Table 6: Results for Supervised and Manual Embedding for graphs of System Level Parsing.

Train Features
OSSBuilds HadoopTests

Supervised Embedding (GNN)
GCNConv 0.59± 0.04 0.64± 0.03

GraphSAGE 0.61± 0.04 0.67 ± 0.02
GraphConv 0.65 ± 0.04 0.66± 0.02

Manual Embedding 0.60± 0.04 0.59± 0.03

As for supervised results in Table 6, the results for all GNN-based models are slightly worse compared to the original
graphs in File-Level Parsing. The same is true regarding Manual Embedding. The reason for this might be that we have

18

Journal of Engineering Applications of Artificial Intelligence

more nodes and edges with System-level parsing, which means more sparsity as well as more layers needed by the
GNN models to get more information from the new nodes.

5.5.2 Active Learning

Given an embedding, the active learning experiments were conducted as outlined in Section 4.1. We investigate different
sizes of the initially labelled dataset |L0| and the batch size |B|. Additionally, all active learning results correspond to
the average of 15 runs with different seeds, where the variance of the runs is indicated by a shaded colour.

The active learning experiments investigate three different graph embeddings (based on the passive learning results):
manual embedding, Graph2Vec (with test features) and GraphConv as the supervised (GNN) embedding. For each
embedding, we use the six query strategies outlined in Section 4.7 (i.e., random, coreset, variance, QBC, PowerVariance
and PowerQBC).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Active learning results for all embeddings for the OSSBuilds dataset (File Level Parsing) with |L0| = 100
and |B| = 50.

File Level Parsing Graphs In Figures 9 and 10 we show the active learning results for file level parsing for all
embeddings for the OSSBuilds and Hadoop datasets, respectively. We observe that random selection is a strong baseline
for both datasets. However, we see some benefit of the other query strategies indicating the usefulness of active learning.
This benefit is more clear for system level parsing (see below). In particular, we see the usefulness of PowerVariance and
PowerQBC (compared to their non-power versions). In terms of the embeddings, we see that the ranking is consistent
for all query strategies at all iterations of the active learning procedure. For OSSBuilds, Graph2Vec is the best, manual
embedding second best, and supervised embedding the worst. One exception to this is for the coreset query strategy,
where the supervised embedding outperforms the manual embedding in later iterations. For Hadoop, Graph2Vec is still

19

Journal of Engineering Applications of Artificial Intelligence

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Active learning results for all embeddings for the HadoopTests dataset (File Level Parsing) with |L0| = 150
and |B| = 100.

the best, but the supervised embedding outperforms the manual embedding in later iterations (when more labeled data
is available).

System Level Parsing Graphs In Figures 11 and 12 we show the active learning results for file level parsing for all
embeddings for the OSSBuilds and Hadoop datasets, respectively. For the OSSBuilds dataset, we observe that QBC
and Variance perform slightly better than random. For Hadoop, we see that Variance significantly outperforms random
(in particular in later iterations) for the manual embedding. For Graph2Vec and the supervised embedding, we see that
random is consistently outperformed by the other query strategies. For the embeddings, we observe that Graph2Vec is
the best for both datasets. In addition, we observe that the manual embedding is better in early iterations, whereas the
supervised embedding eventually becomes better than the manual embedding (once sufficient labeled data is avaiable).

5.6 Experiment Limitation

In utilizing real-world graphs for source code representation, we posit that our framework is applicable across various
domains of directed graph data, including social networks and pharmacological graphs and others. While our framework
is primarily tailored for directed graphs, adaptations for undirected graph scenarios, particularly within supervised
embedding contexts, are conceivable. It is imperative, however, to acknowledge that the efficacy and relevance of
our findings may vary across different graph datasets. This variance can be attributed to inherent differences in graph
structure and characteristics. Our experimental graphs, as delineated in Table 2, are sparse, large, and complex. These
attributes may not be universally representative, suggesting that certain embedding techniques and query strategies
optimized for our dataset might not directly translate to or yield comparable results in dissimilar graph environments.

20

Journal of Engineering Applications of Artificial Intelligence

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11: Active learning results for all embeddings for the OSSBuilds dataset (System Level Parsing) with |L0| = 100
and |B| = 50.

6 Discussion

In this section, we comment on the results for both passive and active learning.

6.1 Passive Learning

In this section, we assess the resilience of embedding techniques as graphs in System-Level parsing evolve by
incorporating additional nodes and edges, thus providing insights into how these techniques perform under conditions
of increased graph complexity and size.

The resilience of unsupervised embedding techniques to the expanded version of graphs varies across the methods tested.
Graph2Vec exhibits strong resilience, showing minimal performance change despite increased graph complexity, which
suggests its effectiveness in scalable applications. GR and HOPE demonstrate some sensitivity to scale, with slight
to moderate performance declines, indicating potential limitations in more complex graph environments. DeepWalks
maintain performance levels but do not show improvements, suggesting stability rather than adaptability to larger scales.
The embedding quality for Node2Vec increased compared to the original graphs in File-Level parsing, and the opposite
for GR. That explains why Node2Vec performs better on graph data with more nodes and edges. Lastly, GNN models
(GCNConv, GraphSAGE, GraphConv) show a moderate decrease in performance in extended graphs compared to the
original graphs in File-Level parsing, suggesting that while they handle increased complexity, their efficacy slightly
diminishes as graph complexity increases. This analysis underlines the importance of carefully selecting embedding
techniques based on anticipated graph structure and complexity for optimal performance in scalable environments.

21

Journal of Engineering Applications of Artificial Intelligence

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12: Active learning results for all embeddings for the HadoopTests dataset (System Level Parsing) with
|L0| = 150 and |B| = 100.

As graphs expanded from File-Level to System-Level parsing, supervised and manual embedding techniques exhibited a
slight decline in performance. GCNConv, GraphSAGE, and GraphConv demonstrate robustness with minor reductions,
suggesting they manage increased complexity well, though effectiveness slightly diminishes in more complex settings.
Manual Embedding shows a more noticeable performance drop, indicating a greater sensitivity to graph complexity.
This trend highlights the need for cautious application as graph size and intricacy grow.

6.2 Active Learning

There are three main observations from the active learning results: (i) There is no single query strategy that consistently
outperforms the others across all settings, which is consistent with observations in other AL works [12]. However, there
is some indication that the coreset performs particularly well in conjunction with the supervised embedding (based
on deep GNN). This is logical considering that coreset was originally introduced for deep batch active learning [5];
(ii) The benefit of the different query strategies over random selection improves for the Hadoop dataset (compared to
OSSBuilds), and in particular for system level parsing. The reason is likely because Hadoop contains more data points
compared to OSSBuilds. In addition, for system-level parsing, we obtain more complex graphs. In other words, we
observe the increased benefit of (batch) active learning for larger and more complex datasets. In contrast, for small and
simple datasets, random selection becomes a very strong baseline. However, it can be argued that for small and simple
datasets, the use of active learning is not as important; (iii) The supervised embedding (based on GNN) is worse than
the manual embedding in early iterations but exceeds it in later iterations. This reflects our intuition since out of the
three embeddings considered for active learning, only the supervised embedding will update its latent space iteratively
as more labels become available. However, Graph2Vec still outperforms the supervised embedding when all labels are

22

Journal of Engineering Applications of Artificial Intelligence

available. The main reason for this is likely (as discussed for the passive learning results) that Graph2Vec uses the test
features when constructing its latent space.

7 Conclusion

Our investigation of a unified active learning framework for annotating graphs at the graph-level has yielded several
significant insights. We found that unsupervised embedding techniques like Graph2Vec exhibit robust performance
when leveraging both training and testing features. However, supervised embeddings like GNNs offer greater flexibility
across various levels of information accessibility. Specifically, active learning strategies excel in environments with
larger, more complex datasets, underscoring the potential for these techniques in scaling to more extensive graph
structures. Reflecting on our research objectives, this study successfully demonstrates the application of active learning
to graph-level regression tasks, a relatively unexplored area. The ability of our framework to adapt to expanded graphs
and efficiently utilize computational resources highlights its practical relevance and potential for broad application. The
implications of our findings are profound for the domain of graph data analysis, particularly in enhancing the efficiency
of data annotation processes without compromising quality of the machine learning models trained on this data. This is
particularly relevant in fields where data complexity and volume pose significant challenges. However, the following
limitations of our work should be mentioned. First, the framework can be computationally demanding, in particular
when used in conjunction with GNN embeddings, since a GNN must be trained from scratch in each iteration. Second,
the obtained results are specific to the considered datasets and active learning strategies. Consequently, for future work,
we recommend further investigation into the scalability of the proposed active learning framework and the investigation
of more diverse datasets to broaden the applicability of our findings.

Acknowledgements

This work received financial support from the Swedish Research Council VR under grant number 2018-04127
(Developer-Targeted Performance Engineering for Immersed Release and Software Engineers). The work of Li-
nus Aronsson and Morteza Haghir Chehreghani was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by Knut and Alice Wallenberg Foundations. Antonio Longa acknowledges
the support of the MUR PNRR project FAIR—Future AI Research (PE00000013) funded by the NextGenerationEU.
Finally, the computations and data handling was enabled by resources provided by the National Academic Infrastructure
for Supercomputing in Sweden (NAISS) and the Swedish National Infrastructure for Computing (SNIC), partially
funded by the Swedish Research Council through grant agreement no. 2022-06725 and no. 2018-05973.

References

[1] Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University of
Wisconsin–Madison, 2009.

[2] John Daniel Bossér, Erik Sörstadius, and Morteza Haghir Chehreghani. Model-centric and data-centric aspects of
active learning for deep neural networks. In 2021 IEEE International Conference on Big Data (Big Data), pages
5053–5062, 2021.

[3] Yang Li and Junier Oliva. Active feature acquisition with generative surrogate models. In Proceedings of the 38th
International Conference on Machine Learning, ICML, pages 6450–6459, 2021.

[4] Arantxa Casanova, Pedro O. Pinheiro, Negar Rostamzadeh, and Christopher J. Pal. Reinforced active learning for
image segmentation. In International Conference on Learning Representations, 2020.

[5] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach, 2018.

[6] Neil Rubens, Mehdi Elahi, Masashi Sugiyama, and Dain Kaplan. Active Learning in Recommender Systems,
pages 809–846. springer, 2015.

[7] Federica Comuni, Christopher Mészáros, Niklas Åkerblom, and Morteza Haghir Chehreghani. Passive and
active learning of driver behavior from electric vehicles. In 25th IEEE International Conference on Intelligent
Transportation Systems, ITSC, pages 929–936, 2022.

[8] Zhao Shuyang, Toni Heittola, and Tuomas Virtanen. Active learning for sound event detection. IEEE/ACM Trans.
Audio, Speech and Lang. Proc., 28:2895–2905, nov 2020.

[9] Sanna Jarl, Linus Aronsson, Sadegh Rahrovani, and Morteza Haghir Chehreghani. Active learning of driving
scenario trajectories. Engineering Applications of Artificial Intelligence, 113:104972, 2022.

23

Journal of Engineering Applications of Artificial Intelligence

[10] Simon Viet Johansson, Hampus Gummesson Svensson, Esben Bjerrum, Alexander Schliep, Morteza
Haghir Chehreghani, Christian Tyrchan, and Ola Engkvist. Using active learning to develop machine learn-
ing models for reaction yield prediction. Molecular Informatics, 41(12), 2022.

[11] Songbai Yan, Kamalika Chaudhuri, and Tara Javidi. Active learning with logged data. In Jennifer G. Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 5517–5526, 2018.

[12] Ksenia Konyushkova, Sznitman Raphael, and Pascal Fua. Learning active learning from data. In Proceedings of
the 31st International Conference on Neural Information Processing Systems, NIPS’17, page 4228–4238, Red
Hook, NY, USA, 2017. Curran Associates Inc.

[13] Thuy-Trang Vu, Ming Liu, Dinh Phung, and Gholamreza Haffari. Learning how to active learn by dreaming.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4091–4101.
Association for Computational Linguistics, 2019.

[14] Zimo Liu, Jingya Wang, Shaogang Gong, Dacheng Tao, and Huchuan Lu. Deep reinforcement active learning for
human-in-the-loop person re-identification. In International Conference on Computer Vision, pages 6121–6130.
IEEE, 2019.

[15] Yuheng Zhang, Hanghang Tong, Yinglong Xia, Yan Zhu, Yuejie Chi, and Lei Ying. Batch active learning with
graph neural networks via multi-agent deep reinforcement learning. Proceedings of the AAAI Conference on
Artificial Intelligence, 36(8):9118–9126, Jun. 2022.

[16] Shengding Hu, Zheng Xiong, Meng Qu, Xingdi Yuan, Marc-Alexandre Côté, Zhiyuan Liu, and Jian Tang. Graph
policy network for transferable active learning on graphs. Advances in Neural Information Processing Systems,
33:10174–10185, 2020.

[17] Yuexin Wu, Yichong Xu, Aarti Singh, Artur Dubrawski, and Yiming Yang. Active learning graph neural networks
via node feature propagation, 2020.

[18] Hongyun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. Active learning for graph embedding, 2017.
[19] Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph generation. In

International conference on machine learning, pages 7192–7203. PMLR, 2021.
[20] Zhichun Guo, Kehan Guo, Bozhao Nan, Yijun Tian, Roshni G Iyer, Yihong Ma, Olaf Wiest, Xiangliang Zhang,

Wei Wang, Chuxu Zhang, et al. Graph-based molecular representation learning. arXiv preprint arXiv:2207.04869,
2022.

[21] Zhengyang Wang, Meng Liu, Youzhi Luo, Zhao Xu, Yaochen Xie, Limei Wang, Lei Cai, Qi Qi, Zhuoning Yuan,
Tianbao Yang, et al. Advanced graph and sequence neural networks for molecular property prediction and drug
discovery. Bioinformatics, 38(9):2579–2586, 2022.

[22] Jaeho Shin, Sen Wu, Feiran Wang, Christopher De Sa, Ce Zhang, and Christopher Ré. Incremental knowledge
base construction using deepdive. In Proceedings of the VLDB Endowment International Conference on Very
Large Data Bases, volume 8, page 1310. NIH Public Access, 2015.

[23] Su Yang and Miaole Hou. Knowledge graph representation method for semantic 3d modeling of chinese grottoes.
Heritage Science, 11(1):266, 2023.

[24] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings of the Fifth Annual ACM
Workshop on Computational Learning Theory, Proceedings of the Fifth Annual ACM Workshop on Computational
Learning Theory, pages 287–294. Publ by ACM, 1992. Proceedings of the Fifth Annual ACM Workshop on
Computational Learning Theory ; Conference date: 27-07-1992 Through 29-07-1992.

[25] Ashish Kapoor, Kristen Grauman, Raquel Urtasun, and Trevor Darrell. Active learning with gaussian processes
for object categorization. In 2007 IEEE 11th International Conference on Computer Vision, pages 1–8, 2007.

[26] Peter Samoaa, Linus Aronsson, Antonio Longa, Philipp Leitner, and Morteza Haghir Chehreghani. A Unified
Active Learning Framework for Annotating Graph Data with Application to Software Source Code Performance
Prediction, 2023.

[27] Veronica Lachi, Giovanna Maria Dimitri, Alessandro Di Stefano, Pietro Liò, Monica Bianchini, and Chiara
Mocenni. Impact of the covid 19 outbreaks on the italian twitter vaccination debat: a network based analysis.
arXiv preprint arXiv:2306.02838, 2023.

[28] Anna Nguyen, Antonio Longa, Massimiliano Luca, Joe Kaul, and Gabriel Lopez. Emotion analysis using
multilayered networks for graphical representation of tweets. IEEE Access, 10:99467–99478, 2022.

[29] John Scott. Social network analysis: developments, advances, and prospects. Social network analysis and mining,
1:21–26, 2011.

24

Journal of Engineering Applications of Artificial Intelligence

[30] Wolfgang Huber, Vincent J Carey, Li Long, Seth Falcon, and Robert Gentleman. Graphs in molecular biology.
BMC bioinformatics, 8(6):1–14, 2007.

[31] Tero Aittokallio and Benno Schwikowski. Graph-based methods for analysing networks in cell biology. Briefings
in bioinformatics, 7(3):243–255, 2006.

[32] Antonio Longa, Giulia Cencetti, Sune Lehmann, Andrea Passerini, and Bruno Lepri. Generating fine-grained
surrogate temporal networks. Communications Physics, 7(1):22, 2024.

[33] Beatriz Arregui-García, Antonio Longa, Quintino Francesco Lotito, Sandro Meloni, and Giulia Cencetti. Patterns
in temporal networks with higher-order egocentric structures. Entropy, 26(3):256, 2024.

[34] Antonio Longa, Giulia Cencetti, Bruno Lepri, and Andrea Passerini. An efficient procedure for mining egocentric
temporal motifs. Data Mining and Knowledge Discovery, pages 1–24, 2022.

[35] Giovanni Mauro, Massimiliano Luca, Antonio Longa, Bruno Lepri, and Luca Pappalardo. Generating mobility
networks with generative adversarial networks. EPJ data science, 11(1):58, 2022.

[36] Marco Cardia, Massimiliano Luca, and Luca Pappalardo. Enhancing crowd flow prediction in various spatial and
temporal granularities. In Companion Proceedings of the Web Conference 2022, pages 1251–1259, 2022.

[37] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling and discovering vulnerabilities with
code property graphs. In 2014 IEEE Symposium on Security and Privacy, pages 590–604, 2014.

[38] Yanyao Shen, Hyokun Yun, Zachary C. Lipton, Yakov Kronrod, and Animashree Anandkumar. Deep active
learning for named entity recognition, 2018.

[39] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data. In Doina
Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 1183–1192, 06–11 Aug 2017.

[40] Xiaoting Li, Yuhang Wu, Vineeth Rakesh, Yusan Lin, Hao Yang, and Fei Wang. Smartquery: An active learning
framework for graph neural networks through hybrid uncertainty reduction. In Proceedings of the 31st ACM
International Conference on Information; Knowledge Management, CIKM ’22, page 4199–4203, New York, NY,
USA, 2022. Association for Computing Machinery.

[41] Roy Abel and Yoram Louzoun. Regional based query in graph active learning, 2019.
[42] Li Gao, Hong Yang, Chuan Zhou, Jia Wu, Shirui Pan, and Yue Hu. Active discriminative network representation

learning. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pages
2142–2148, 7 2018.

[43] Xia Chen, Guoxian Yu, Jun Wang, Carlotta Domeniconi, Zhao Li, and Xiangliang Zhang. Activehne: Active
heterogeneous network embedding. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, pages 2123–2129, 7 2019.

[44] Hazem Peter Samoaa, Antonio Longa, Mazen Mohamad, Morteza Haghir Chehreghani, and Philipp Leitner.
Tep-gnn: Accurate execution time prediction of functional tests using graph neural networks. In Davide Taibi,
Marco Kuhrmann, Tommi Mikkonen, Jil Klünder, and Pekka Abrahamsson, editors, Product-Focused Software
Process Improvement, pages 464–479, Cham, 2022. Springer International Publishing.

[45] Hazem Peter Samoaa, Firas Bayram, Pasquale Salza, and Philipp Leitner. A systematic mapping study of source
code representation for deep learning in software engineering. IET Software, 16(4):351–385, 2022.

[46] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy. Machine learning on graphs:
A model and comprehensive taxonomy. Journal of Machine Learning Research, 23(89):1–64, 2022.

[47] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with global structural
information. In Proceedings of the 24th ACM International on Conference on Information and Knowledge
Management, CIKM ’15, page 891–900, New York, NY, USA, 2015. Association for Computing Machinery.

[48] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, page 1225–1234, New
York, NY, USA, 2016. Association for Computing Machinery.

[49] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’14, page 701–710, New York, NY, USA, 2014. Association for Computing Machinery.

[50] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, page 855–864,
New York, NY, USA, 2016.

25

Journal of Engineering Applications of Artificial Intelligence

[51] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

[52] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30, 2017.

[53] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 29, 2016.

[54] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 2016.
[55] Vito Latora and Massimo Marchiori. Efficient behavior of small-world networks. Phys. Rev. Lett., 87:198701, Oct

2001.
[56] M. E. J. Newman. Assortative mixing in networks. Physical Review Letters, 89(20), oct 2002.
[57] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393(6684):440–442,

1998.
[58] M. E. J. Newman. Networks: an introduction. Oxford University Press, Oxford; New York, 2010.
[59] Prateek Munjal, Nasir Hayat, Munawar Hayat, Jamshid Sourati, and Shadab Khan. Towards robust and repro-

ducible active learning using neural networks. Conference on Computer Vision and Pattern Recognition, pages
223–232, 2020.

[60] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2005.

[61] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B. Gupta, Xiaojiang Chen, and Xin
Wang. A survey of deep active learning. 54(9), oct 2021.

[62] Andreas Kirsch, Sebastian Farquhar, Parmida Atighehchian, Andrew Jesson, Frédéric Branchaud-Charron, and
Yarin Gal. Stochastic batch acquisition: A simple baseline for deep active learning. Transactions on Machine
Learning Research, 2023. Expert Certification.

[63] Vladimir Batagelj and Ulrik Brandes. Efficient generation of large random networks. Physical Review E, 71(3),
2005.

[64] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[65] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[66] Mark EJ Newman and Duncan J Watts. Renormalization group analysis of the small-world network model.
Physics Letters A, 263(4-6):341–346, 1999.

[67] Linton C. Freeman. A set of measures of centrality based on betweenness. Sociometry, 40(1):35–41, 1977.
[68] Stanley Wasserman and Katherine Faust. Social network analysis: Methods and applications. 1994.
[69] Nan Ma, Jiancheng Guan, and Yi Zhao. Bringing pagerank to the citation analysis. Information Processing &

Management, 44(2):800–810, 2008.

26

Journal of Engineering Applications of Artificial Intelligence

A Graph analysis

In this section, we do a deeper investigation of the graph topology of our dataset.

A.1 Basic topology

Figure 13 displays node (Figure 13(a)) and edge (Figure 13(b)) distributions, respectively. The data indicate a minimal
disparity between file and system levels in terms of both statistics.

0 5000 10000 15000 20000 25000 30000
0.0000

0.0001

0.0002

0.0003

0.0004

No
de

s

Hadoop
File-level
System-level

0 2500 5000 7500 10000 12500 15000
0.0000

0.0002

0.0004

0.0006

0.0008

OssBuild
File-level
System-level

(a)

0 10000 20000 30000 40000 50000 60000 70000
0.00000

0.00005

0.00010

0.00015

0.00020

Ed
ge

s

Hadoop
File-level
System-level

0 5000 10000 15000 20000 25000 30000
0.0000

0.0001

0.0002

0.0003

0.0004

OssBuild
File-level
System-level

(b)

Figure 13: Distributions of the number of nodes and edges in Hadoop (left) and OssBuild (right) for both file-level and
system-level settings.

The degree distribution, depicted in Figure 14, effectively captures the resemblance between the distributions of nodes
and edges.

A.2 Triangles

In network science, the concept of triangle closure, also known as the "friendship paradox", is a well-established
and widely recognized phenomenon. It has garnered significant attention and has been extensively studied in various
research works, highlighting its relevance and importance in numerous real-world applications. In particular, we explore

27

Journal of Engineering Applications of Artificial Intelligence

0.00 0.05 0.10 0.15 0.20 0.25 0.30
10 5

10 4

10 3

10 2

10 1

100

101

102

De
gr

ee

Hadoop
File-level
System-level

0.0 0.1 0.2 0.3 0.4 0.5 0.6

10 4

10 3

10 2

10 1

100

101

OssBuild
File-level
System-level

Figure 14: Degree distribution in logarithmic scale of Hadoop (left) and OssBuild (right) for both file-level and
system-level.

the relationship between the graph and triangles through Transitivity[57] and Clustering Coefficient[66]. Transitivity is
defined as follows:

Transitivity = 3 · # of triangles
of triads

(5)

On the other hand, the clustering coefficient is a metric associated with a given node u, and it refers to the degree to
which nodes in a graph tend to cluster together. The clustering coefficient of a node u is defined as follows:

Cu =
2 · T (u)

(deg(u)) · (deg(u)− 1)
(6)

Where T (u) is the number of triangles through node u, and deg(u) is the degree of node u. The Global Clustering
Coefficient (GCC) is the average among the clustering coefficient of all nodes. In summary, while both transitivity and
clustering coefficient capture the local clustering patterns in a network, transitivity focuses on the presence of triangles
and overall network connectivity, whereas the clustering coefficient specifically measures the density of connections
between neighboring nodes.

Figure 15 shows the transitivity (Figure 15(a)) and the global clustering coefficient (Figure 15(b)) distributions. Based
on the results, it is apparent that both transitivity and GCC exhibit higher values in the file-level dataset compared to the
system-level dataset. However, this distinction is not as pronounced in the OssBuild dataset.

A.3 Assortativity

Assortativity, in network theory, refers to the tendency of nodes in a network to connect with similar nodes. It measures
the degree of homophily or assortative mixing in a network based on node attributes or characteristics. Assortativity can
be quantified using various metrics, such as degree assortativity, attribute assortativity, or assortativity coefficient[56].
In Figure 16 we report the degree assortativity that examines the correlation of node degrees between connected nodes.

Based on the observations in Figure 16, it is challenging to determine whether the graphs exhibit positive assortativity
(where nodes with similar degrees tend to connect) or negative assortativity (indicating connections between nodes with
differing degrees). However, upon examining the histograms, it appears that in both scenarios, the System-level dataset
tends to connect nodes to other nodes with differing degrees.

A.4 Centralities

Centrality in network analysis refers to the importance or prominence of nodes within a network. It measures the
extent to which a node is influential, well-connected, or positioned strategically within the network structure. Centrality
measures help identify key nodes that play crucial roles in information flow, influence propagation, and network
dynamics.

28

Journal of Engineering Applications of Artificial Intelligence

0.00 0.05 0.10 0.15 0.20 0.25
0

2

4

6

8

10

12

14

16

Tr
an

sit
iv

ity
Hadoop

File-level
System-level

0.0 0.1 0.2 0.3
0

2

4

6

8

10

12

14

OssBuild
File-level
System-level

(a)

0.10 0.12 0.14 0.16 0.18 0.20
0

10

20

30

40

GC
C

Hadoop
File-level
System-level

0.075 0.100 0.125 0.150 0.175 0.200 0.225
0

5

10

15

20

25

OssBuild
File-level
System-level

(b)

Figure 15: Distributions of the transitivity and global clustering coefficient (GCC) in Hadoop (left) and OssBuild (right)
for both file-level and system-level settings.

Various centrality measures exist, where we have already evaluated the degree distributions (in Figure 14). Here we dig
deeper into Betweenness Centrality, Closeness Centrality, and Page Rank. The Betweenness Centrality measures the
control a node has over the flow of information in the network. Formally, it is defined as[67]

Betweenness Centralityu =
∑

s,t∈V

σ(s, t|v)
σ(s, t)

(7)

where, σ(s, t) is the number of shortest paths between node s and node t, while σ(s, t|u) is the number of shortest
paths between node s and node t passing through node u.

Closeness Centrality measures the proximity of a node to all other nodes in the network. Formally, it is defined as[68]

Closeness Centralityu =
n− 1∑n−1

v=1 d(v, u)
(8)

Where here n is the number of nodes, and d(v, u) is the shortest-path length between node v and node u.

29

Journal of Engineering Applications of Artificial Intelligence

0.20 0.15 0.10 0.05 0.00 0.05
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

As
so

rta
tiv

ity

Hadoop
File-level
System-level

0.3 0.2 0.1 0.0 0.1
0

2

4

6

8

10

12

14
OssBuild

File-level
System-level

Figure 16: Distributions of the degree assortativity in Hadoop (left) and OssBuild (right) for both file-level and
system-level.

Finally, the Page Rank[69] assigns importance to nodes based on the number and quality of incoming links. Nodes with
higher Page Rank are considered more influential.

In Figure 17 we report the Betweenness, Closeness and Page Rank of the datasets. It is clear that the strongest difference
between the file and system level settings relies on the Betweenness. This is not surprising at all, since in the file-level
setting there are fewer edges, thus the number of edges with a higher Betweenness is greater.

A.5 Meso-scale

In conclusion, we explore the meso-scale characteristics of the network topology by employing measures such as
shortest-path analysis[58], tree similarity, and the diameter[58] of the input network.

The shortest path is defined in Definition 2, and it reports the smaller path connection between two given nodes. The
distribution is reported in Figure 18. The figure clearly indicates that the system-level network exhibits shorter shortest
paths compared to the file-level network. This observation is expected, as the system-level networks contain a higher
number of edges in comparison to the file-level networks.

The tree-sim metric, defined in Eq. 4, is a custom measure that quantifies the similarity between the input graph and
its corresponding tree structure. It is important to note that this metric should not be confused with Treewidth. In our
study, we introduced the tree-sim metric as an alternative to overcome the computational complexity associated with
calculating Treewidth. The distribution of the tree-sim metric for each dataset is presented in Figure 19. However, no
significant insights or noteworthy patterns were observed from the analysis of these distributions, where, as expected,
both follow power-law distribution.

Lastly, in Figure 20, we present the distribution of diameters for each graph. As expected, the system-level networks
exhibit a smaller diameter compared to the file-level networks.

30

Journal of Engineering Applications of Artificial Intelligence

0.00 0.05 0.10 0.15 0.20 0.25
10 3

10 2

10 1

100

101

102

Be
tw

ee
ne

ss

Hadoop
File-level
System-level

0.00 0.05 0.10 0.15 0.20 0.25
10 2

10 1

100

101

102 OssBuild
File-level
System-level

(a)

0.00 0.05 0.10 0.15 0.20 0.25
10 5

10 4

10 3

10 2

10 1

100

101

102

Cl
os

en
es

s

Hadoop
File-level
System-level

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

10 4

10 3

10 2

10 1

100

101

OssBuild
File-level
System-level

(b)

0.00 0.02 0.04 0.06 0.08 0.10

10 4

10 3

10 2

10 1

100

101

102

Pa
ge

 R
an

k

Hadoop
File-level
System-level

0.00 0.05 0.10 0.15 0.20 0.25 0.30

10 4

10 3

10 2

10 1

100

101

102
OssBuild

File-level
System-level

(c)

Figure 17: Distributions of the Betweenness, Closeness and Page Rank (in log scale) in Hadoop (left) and OssBuild
(right) for both file-level and system-level settings.

B Shallow Embedding Results When Test Features are Not Used

As we mentioned in Section 5.5.1, computing the embedding using only the training features without manipulating
the test features in embedding is not possible for unsupervised shallow embedding because eventually, we will have
different features space for both training and testing data. In this section, we will prove the aforementioned statement
for both passive and active learning.

31

Journal of Engineering Applications of Artificial Intelligence

0 100 200 300 400 500
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Sh
or

te
st

 P
at

h

Hadoop
File-level
System-level

0 50 100 150 200 250 300
0.00

0.01

0.02

0.03

0.04

0.05

0.06

OssBuild
File-level
System-level

Figure 18: Shortest path length distributions.

0.00 0.01 0.02 0.03
0

50

100

150

200

250

300

350

Tr
ee

 S
im

ila
rit

y

Hadoop
File-level
System-level

0.00 0.02 0.04 0.06 0.08 0.10
0

20

40

60

80

100

120

OssBuild
File-level
System-level

Figure 19: Tree sim distributions.

B.1 Passive Learning

We are experimenting with computing the embedding only for one seed for the dataset. We compute the embedding
for the entire dataset (when test features are included) and then we get the first 80% of the dataset and compute the
embedding only for this portion of the dataset(so here, the last 20% are excluded). Here we either retrain the model
based on the last 20%, which leads to poor results or alternatively, we get the benefit of the embedding of the entire
dataset since the training data is included. Then using the same split index that we did when we got the training data,
we get the last 20% of the embedding.

B.1.1 System-Level Parsing

Table 7, shows the results for shallow embedding with and without test features with one split for the data. These results
are significantly better than the ones we averaged for 15 different splits when we used the test features. However, with
more splits, the results are more reliable. Looking at Table 7, using only the train data features leads to a substantial
decline in the performance of Graph2Vec, DeepWalk, and Node2Vec (except for sum aggregation in the HadoopTest
dataset). These methods are all shallow embedding techniques based on skip-gram, as shown in Figure 7. Conversely,
there are generally slight improvements for the other shallow methods based on Matrix Factorization, such as HOPE
and GR (except for mean aggregation in the HadoopTests dataset).

32

Journal of Engineering Applications of Artificial Intelligence

10 20 30 40 50
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Di
am

et
er

Hadoop
File-level
System-level

0 10 20 30 40 50 60 70
0.00

0.02

0.04

0.06

0.08

0.10
OssBuild

File-level
System-level

Figure 20: Diameter distributions.

Table 7: Results for Unsupervised Embedding for graphs of System Level Parsing.

Train and Test Features Train Features
OSSBuilds HadoopTests OSSBuilds HadoopTests

Shallow
E

m
bedding

Graph2Vec 0.78 0.74 0.65 0.46

GR mean 0.44 0.49 0.50 0.45
sum 0.45 0.42 0.45 0.48

HOPE mean 0.14 0.015 0.16 0.04
sum 0.13 0.36 0.16 0.39

DeepWalks mean 0.41 0.47 0.38 0.4
sum 0.43 0.45 0.32 0.39

Node2Vec mean 0.39 0.42 0.29 0.32
sum 0.44 0.42 0.33 0.43

B.1.2 File-Level Parsing

The results for this setting are reported in Table 8. In this setting, we still have better results than those obtained with 15
different splits for the dataset.

Table 8: Results for Unsupervised Embedding for graphs of File Level Parsing.

Train and Test Features Train Features
OSSBuilds HadoopTests OSSBuilds HadoopTests

Shallow
E

m
bedding

Graph2Vec 0.78 0.74 0.53 0.49

GR mean 0.57 0.46 0.59 0.41
sum 0.51 0.42 0.49 0.37

HOPE mean 0.17 0.034 0.06 0.07
sum 0.15 0.35 0.07 0.3

DeepWalks mean 0.45 0.43 0.34 0.24
sum 0.42 0.41 0.39 0.02

Node2Vec mean 0.33 0.2 0.39 0.15
sum 0.33 0.36 0.31 0.32

Nevertheless, when we exclude the test features, the correlation score for Graph2Vec is drastically reduced to 0.53
for OssBuilds and 0.49 for HadoopTests which remains the best for such dataset when we only use the train features.
Conversely, GR with mean aggregation is the best for the same setting for OssBuilds.

33

Journal of Engineering Applications of Artificial Intelligence

B.2 Active Learning

To understand the impact of different feature spaces embedding we will present the active learning results for Graph2Vec
when test features are not included.

B.2.1 System-Level Parsing

In Figure 21, the embedding performance based on Graph2Vec without test features for HadopTests only improves
slightly at the start but then stays fairly constant. The reason for this is likely because the resulting latent graph
representation is not rich enough for this embedding past 500 labels. We have the same issue for the OSSBuilds dataset
for random and QBC.

(a) (b)

Figure 21: Active learning results for Graph2Vec When Test Features are not Used in embeddings for the OSSBuilds
(left) and HadoopTest (right) datasets (System Level Parsing) with |L0| = 100 and |B| = 50.

B.2.2 File-Level Parsing

In Graph2Vec with no test features in Figure 22, for the HadoopTests dataset, coreset and random are the best choice
when we have up to 1000 samples but the quality of labelling drastically reduces after that threshold when variance
remains the best as it performs reliably after 500 samples. Variance is the worst option for the OSSBuilds dataset.

(a) (b)

Figure 22: Active learning results for Graph2Vec When Test Features are not Used in embeddings for the OSSBuilds
(left) and HadoopTest (right) datasets (File Level Parsing) with |L0| = 100 and |B| = 50.

B.3 Root Mean Square Error

In this section, we present the active learning results using the (log) RMSE metric for all datasets for both file level and
system level parsing. In all cases, we observe consistent results with the Pearson correlation score from the main paper.

34

Journal of Engineering Applications of Artificial Intelligence

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 23: Active learning results for all embeddings for the HadoopTests dataset (File Level Parsing) with |L0| = 150
and |B| = 100.

35

Journal of Engineering Applications of Artificial Intelligence

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 24: Active learning results for all embeddings for the OSSBuilds dataset (File Level Parsing) with |L0| = 100
and |B| = 50.

36

Journal of Engineering Applications of Artificial Intelligence

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 25: Active learning results for all embeddings for the HadoopTests dataset (System Level Parsing) with For the
RMSE |L0| = 150 and |B| = 100.

37

Journal of Engineering Applications of Artificial Intelligence

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 26: Active learning results for all embeddings for the OSSBuilds dataset (System Level Parsing) with |L0| = 100
and |B| = 50.

38

159

Paper 5

Batch Mode Deep Active Learning for Regression on Graph
Data

Peter Samoaa, Linus Aronsson, Philipp Leitner, Morteza Haghir Chehreghani

International Conference on Big Data (BigData), 2023

2023 IEEE International Conference on Big Data (BigData)

979-8-3503-2445-7/23/$31.00 ©2023 IEEE 5904

Batch Mode Deep Active Learning for Regression
on Graph Data

Peter Samoaa
Data Science and AI Division

Chalmers University of technology
Gothenburg, Sweden
samoaa@chalmers.se

Linus Aronsson
Data Science and AI Division

Chalmers University of technology
Gothenburg, Sweden
linaro@chalmers.se

Philipp Leitner
Interaction Design and Software Engineering

Chalmers University of technology
Gothenburg, Sweden

philipp.leitner@chalmers.se

Morteza Haghir Chehreghani
Data Science and AI Division

Chalmers University of technology
Gothenburg, Sweden

morteza.chehreghani@chalmers.se

Abstract—Acquiring labelled data for machine learning tasks,
for example, for software performance prediction, remains a
resource-intensive task. This study extends our previous work
by introducing a batch-mode deep active learning approach
tailored for regression in graph-structured data. Our framework
leverages the source code conversion into Flow Augmented-AST
graphs (FA-AST), subsequently utilizing both supervised and
unsupervised graph embeddings. In contrast to single-instance
querying, the batch-mode paradigm adaptively selects clusters
of unlabeled data for labelling. We deploy an array of base
kernels, kernel transformations, and selection methods, informed
by both Bayesian and non-Bayesian strategies, to enhance the
sample efficiency of neural network regression. Our experimental
evaluation, conducted on multiple real-world software perfor-
mance datasets, demonstrates the efficacy of the batch mode deep
active learning approach in achieving robust performance with
a reduced labelling budget. The methodology scales effectively
to larger datasets and requires minimal alterations to existing
neural network architectures.

Index Terms—Active Learning, Graph Neural Network, Deep
Learning, Kernels.

I. INTRODUCTION

The rapid growth of machine learning (ML) applications
across numerous domains is stifled by the limited availability
of labelled data, including the domain of software engineering.
Despite the abundance of source code files publicly hosted on
platforms like GitHub, the absence of labels for these datasets
remains a significant bottleneck. For tasks like performance
prediction—which aims to forecast the execution time of
software prior to execution—the cost of labelling is both com-
putationally expensive and time-consuming. This conundrum
gives rise to the need for Active Learning (AL) [26] techniques
that efficiently identify the most informative samples for
labelling. Active learning has been extensively investigated
in various domains like text analysis [27], image data [5],
[9], driving scenario trajectories [15], and drug design [28] to
improve data annotation procedures. A particular challenge in
deploying active learning for source code analysis arises from
the representation of source code as graphs, coupled with the

lack of a unified framework suitable for diverse learning tasks,
such as regression.

Numerous studies have explored the use of active learning
in graph-based models, particularly focusing on node classi-
fication tasks via Graph Neural Networks (GNNs) [2], [6],
[17], [30]. These works primarily address active learning at
the node level. Some research extends this by incorporating
reinforcement learning into the active learning framework. For
instance, Hu et al. [13] train a policy network on labeled source
graphs and transferred this policy to unlabeled graphs for node
labeling tasks. Zhang et al. [31], [32] examine batch settings in
active learning, employing multi-agent reinforcement learning
and meta Q-learning to facilitate node labeling for classifi-
cation purposes. Additionally, multi-armed bandit approaches
have also been used for active learning in graph settings [7],
[10]. Despite these advances, the existing literature largely
concentrates on node-level classification tasks. The application
of active learning to graph-level regression tasks remains not
widely explored.

To mitigate this challenge, our recent work [22] proposes
a unified active learning framework tailored for graph repre-
sentations of source code. Our framework employs enhanced
Abstract Syntax Trees (ASTs), which we term FA-ASTs [24].
These FA-ASTs capture a rich tapestry of syntactical, seman-
tic, and lexical source code information and serve as the data
points for our active learning model. Despite the versatility
in accommodating various regression techniques, our existing
framework in [22] falls short in supporting diverse sample
selection across batches. This limitation is critical [16] and
becomes especially acute given the computational demands of
retraining models—particularly neural networks—after each
labelling iteration. Batch Mode Active Learning (BMAL)
offers a solution by allowing the selection of multiple data
points for labelling simultaneously. It is then called atch
Mode Deep Active Learning (BMDAL) when the BMAL
approach is employed with deep learning models for extracting
expressive features [21]. Specifically, we consider pool-based

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

D
at

a)
 |

97
9-

8-
35

03
-2

44
5-

7/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a5

90
44

.2
02

3.
10

38
66

85

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on May 14,2024 at 09:49:37 UTC from IEEE Xplore. Restrictions apply.

5905

BMDAL, where the data points for labelling are chosen from
a predefined pool.

Inspired by recent work [11] that employs BMDAL for
regression on tabular data, we aim to extend this framework
to accommodate graph-based source code data. In particular,
to apply BMDAL to graph data, we investigate GNNs and
Graph2Vec for graph learning and fully connected neural
networks for the regression task (i.e., for performance pre-
diction). Regression tasks inherently lack a natural measure
of uncertainty, which is often straightforward in classification
tasks through softmax layers. Computing uncertainties in re-
gression, therefore, becomes less straightforward necessitating
the use of kernel methods. Therefore, we admit a Gaussian
Process (GP) framework [20] in order to investigate and utilize
different notions of uncertainty. We conduct our experiments
on a real-world dataset that we have collected for this study.
Our experimental results indicate that utilising GNN within
the BMDAL framework provides the most effective setting for
active learning querying methods compared to Graph2Vec.

In summary, our contributions are threefold:
1) We extend the BMDAL framework to make it compat-

ible with graph data.
2) To the best of our knowledge, we are the first to

adapt BMDAL for graph representations of source code
specifically for regression tasks.

3) We validate our approach using real-world datasets.
4) By addressing these gaps, we offer a novel approach to

the problem of active learning in source code analysis,
thereby contributing to more efficient labelling and,
ultimately, broader application of machine learning in
software engineering.

The code and data are publicly available at [1].

II. SOURCE CODE REPRESENTATION

Listing 1: Simple example of Java source code
p u b l i c s t a t i c i n t f a c t o r i a l (i n t n) {

i f (n <= 1) {
re turn 1 ;

} e l s e {
re turn n * f a c t o r i a l (n − 1) ;

}
}

This study aims to bring the power of ML to software
engineering by enhancing performance prediction models. For
that, understanding how source code can be effectively repre-
sented is crucial. As we detailed in our previous systematic
literature review [23], program source code can be converted
into various forms, ranging from tree-based and graph-based
to token-based representations.

In this paper, we use a Java method calculating the fac-
torial of a number as a concrete example for source code
representation, specifically focusing on the Abstract Syntax
Tree (AST), Data Flow Graph (DFG), and Control Flow Graph
(CFG). These different representations serve unique purposes
and offer different types of information about the code.

public

MethodDeclaration

static
MethodBody

Access Modifier BlockStatement

Identifier Identifier IfStatement ElseStatement ReturnStatement

factorial int Condition BlockStatement Expression

Parameter ReturnType BinaryExpr Return * MethodCall

Identifier int Identifier Literal

n int n <= 1

Identifier Literal Identifier

n * factorial(n-1)

Fig. 1: Simplified abstract syntax tree (AST) for the code
snippet in Listing 1

n if (n <= 1)

return 1

True

n * factorial(n - 1)

False

n factorial(n - 1)

(a) Data flow graph (DFG)

Entry

if (n <= 1)

return 1

Exit

return n * factorial(n - 1)

True False

(b) Control flow graph
(CFG)

Fig. 2: Flow graphs representation for the code snippet in
Listing 1

A. Abstract Syntax Tree (AST)

The AST representation is of particular interest due to
the rich syntactical and lexical details it offers without the
need for executing the code. An AST for our Java method is
illustrated in Figure 1, where the tree structure provides an
overview of the program’s syntactic composition, including
decision-making constructs like ‘if‘ statements and expressions
involving function calls and arithmetic operations. The AST
is particularly beneficial for capturing the structural aspects
of the code, which makes it well-suited for graph neural
networks requiring many nodes and edges for meaningful
feature extraction.

B. Data Flow Graph (DFG)

While the AST gives us valuable insights into the syntactic
structure of the code, it does not capture how data moves or
interacts within the program. This is where Data Flow Graphs
(DFG) come into play. As demonstrated in Figure 2a, a DFG
shows the flow of data between variables and computations,
capturing the dependencies between different parts of the code.

C. Control Flow Graph (CFG)

To understand the runtime behaviour and possible paths
that can be traversed during the code execution, Control Flow
Graphs (CFG) are indispensable. Our Java method’s CFG,
shown in Figure 2b, presents a high-level overview of all

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on May 14,2024 at 09:49:37 UTC from IEEE Xplore. Restrictions apply.

5906

Code to
Graph

Graph
Representation

Learning
BMDAL

Update data based on queries

Fig. 3: BMDAL framework for graph data

possible routes the execution could take, from the initial
method call to the return statements.

In summary, the combination of these source code repre-
sentations enables us to comprehensively analyze and model
the behaviour, structure, and data flow within a software
system, which is particularly useful for ML-driven software
engineering research.

III. ACTIVE LEARNING APPROACH

In this section, we outline the key components of our
active learning framework. The process begins by converting
source code into graph representations. These graphs are then
embedded through unsupervised techniques or supervised.
For supervised embeddings, we employ GNN in conjunction
with active learning. This involves iteratively training the
GNN based on newly added batches from the active learning
process. During the active learning phase, we explore various
selection methods, as well as kernels and their associated
transformations.

A. Source Code to Graph

This section describes the methodology for constructing
graphs from the source code, specifically Java files, as illus-
trated in Figure 4.

1) AST Parsing: We initially transform the source code
into an AST as an intermediate representation. The AST
representation can be extracted through source code parsing
alone, without the need for executing the program. We use the
pure Python Java parser javalang1 to parse each test file and
use the node types, values, and production rules in javalang
to describe our ASTs. To encapsulate both semantic elements
and syntactical attributes, we enhance the AST by integrating
edges that capture data and control flow. This results in a
Flow-Augmented AST (FA-AST) graph, a concept that was
pioneered in our prior research [24].

The impetus for enriching the AST originates from con-
temporary research [23], underscoring the necessity for com-
prehensive code representations in applying deep learning
techniques to software engineering. Given the intricate nature
of performance prediction tasks, relying solely on the syntactic
information derived from basic AST falls short of delivering
high-fidelity outcomes. Therefore, we augment the tree-like
architecture of the AST with additional semantic layers that
signify both data and control flow, evolving it into a more
elaborate graph. This enriched graph representation encodes a

1https://pypi.org/project/javalang/

broader set of information than what is offered by the source
code structure alone.

AST Parser AST
Parse

FA-AST

Adding
Edges

Fig. 4: Source Code to Graph Process

2) Capturing Ordering and Data Flow: To understand how
the graphs are built, we will present each augmentation and
then explain in detail how the FA-AST is built. We augment
AST with different types of additional edges representing
data flow and node order in the AST. Specifically, we use
the following additional flow augmentation edges, in addition
to the AST child and AST parent edges that are produced
readily by AST parsing:
FA Next Token (b):
This type of edge connects a terminal node (leaf) in the AST
to the next terminal node. Terminal nodes are nodes without
children. In Figure 1, an FA Next Token edge would be added,
for example, between n and int(the first leaves at the left
bottom).

FA Next Sibling (c):
This connects each node (both terminal and non-terminal) to
its next sibling and allows us to model the order of instructions
in an otherwise unordered graph. In Figure 1, such an edge
would be added, for example, connecting the public and
with the static and static with MethodBody node.

FA Next Use (d):
This type of edge connects a node representing a variable to
the place where this variable is next used. For example, the
variable n is declared in the first line in Listing 1, and then
used next in Lines 2 and 5.

3) Capturing Control Flow: In a second augmentation step,
we now add further edges representing the control flow in the
test cases. We currently support if statements, while and for
loops, as well as sequential execution. We currently do not
support switch statements or do-while loops, as these are less
common. Java source code containing these elements will still
be parsed successfully, but the FA-AST will not capture these
control flow constructs. Specifically, the following further
edges are added (see also Figure 5):

FA If Flow (e):
This type of edge connects the predicate (condition) of the if-
statement with the code block that is executed if the condition
evaluates to true. Every if-statement contains exactly one
such edge by construction.

FA Else Flow (f):
Conversely, this edge type connects the predicate to the
(optional) else code block.

FA While Flow (g):
A while loop essentially entails two elements - a condition
and a code block that is executed as long as the condition
remains true. We capture this through a FA While Flow (g)
edge connecting the condition to the code block, and an FA

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on May 14,2024 at 09:49:37 UTC from IEEE Xplore. Restrictions apply.

5907

IF

PRED IF-BLOCK ELSE-
BLOCK(e)

(f)

AST edge
(e) FA If Flow
(f) FA Else Flow

WHILE

COND BLOCK
(g)

AST edge
(g) FA While Flow
(d) FA Next Use

(d)

FOR

COND BLOCK
(h)

AST edge
(h) FA For Flow
(d) FA Next Use

(d)

BLOCK

CALL CALL
(i)

AST edge
(i) FA Next Statement Flow

CALL
(i)

Figure 4.1 - if Figure 4.2 - while

Figure 4.3 - for Figure 4.4 - block

Fig. 5: Additional flow augmentations for different control
flow constructs

Next Use (d) edge in the reverse direction. The latter is used
to model the next usage of a loop counter.

FA For Flow (h):
For loops are conceptually similar to while loops. We use FA
For Flow (h) edges to connect the condition to the code block,
and an FA Next Use (d) edge in the reverse direction. Similar
to the modelling of while-loops, FA Next Use (d) relates to
the usage (typically incrementing) of a loop counter.

FA Next Statement Flow (i):
In addition to the control flow constructs discussed so far,
Java of course also supports the simple sequential execution
of multiple statements in a sequence within a code block. FA
Next Statement Flow edges (i) are used to represent this case.
Different from the constructs discussed so far, a code block
can contain an arbitrary number of children, and the FA Next
Statement Flow edge is always used to connect each statement
to the one directly following it.

B. Graph Representation Learning

The graph structure of the data items in G restricts the types
of regression models that can be used, and thus, the types of
query strategies to be employed for active learning. Therefore,
we construct embeddings that can be used to project the graph
data into a latent space where any regression model (and thus
query strategy) can be utilized.

Since we focus on directed graphs, we use embedding algo-
rithms compatible with directed graphs where the adjacency
matrix is not symmetric. For this purpose, we explore three
main approaches: unsupervised embeddings based on shallow
embedding methods and supervised embeddings (based on
GNNs). Each of these categories is listed and explained below.

1) Unsupervised Embedding: In our previous study [22],
we investigate a number of shallow graph embeddings based
on matrix factorization or skip-gram-based embeddings. The
obtained results (Table 3 and Table 5 in [22]) show that
Graph2Vec [18] achieves the best results for graph-level em-
bedding across all unsupervised graph embeddings. Thus, in
this paper, we use Graph2Vec as the unsupervised embedding.

Algorithm 1 Pool-based BMDAL loop in unsupervised setting

Require: Graphs G, BMDAL algorithm NEXTBATCH (see
Algorithm 3), list Lbatch of batch sizes

1: X = Graph2Vec(G)
2: Split X into Xtrain, Xpool, Xtest
3: for AL batch size Nbatch in Lbatch do
4: Train NN model fθ on Xtrain
5: Evaluate NN model fθ on Xtest
6: Xbatch ← NEXTBATCH(fθ,Xtrain,Xpool,Nbatch)
7: Move Xbatch from Xpool to Xtrain and acquire labels Ybatch

for Xbatch
8: end for
9: Train final model fθ on Xtrain

10: Evaluate final model fθ on Xtest

2) Supervised Embedding: Similar to unsupervised settings
we select the most accurate GNN model out of the state-
of-the-art architectures (namely GCNConv, GraphSAGE, and
GraphConv) that were used in our previous study. Thus, in our
experiments, we use GraphConv [8] since it yields the most
accurate results for our graph data.

C. Batch Mode Deep Active Learning

In this section, we will discuss how we use different selec-
tion methods and how kernels and kernel transformations are
incorporated with the selection methods and neural networks.
When constructing query strategies for the BMDAL frame-
work, The following three criteria are generally considered
for selecting batches [29]:

• Informativeness: The selection method should select sam-
ples where the model is mostly uncertain about the label.

• Diversity: The selection methods must ensure that the
samples in the batch must be diverse and different from
each other.

• Representative: The selection of the training set should
be concentrated on the region where the pool data distri-
bution has high density.

Algorithm 1 illustrates the general procedure for pool-based
BMDAL utilizing unsupervised graph embedding. Initially,
we derive the embeddings for the complete graph set G
using Graph2Vec. The embeddings X are then partitioned into
training Xtrain, testing Xtest, and pooling Xpool subsets. Note
that the test lables are never used in training or querying
for active learning. Within the BMDAL loop, the neural
network (NN) model is first trained on the initially labelled
embeddings Xtrain and subsequently evaluated on Xtest. Next,
a batch Xbatch ⊂ Xpool is selected using the NEXTBATCH
method, which forms the core of BMDAL. The labeled set
is updated by transferring the selected batch Xbatch from Xpool
to Xtrain and acquiring the labels Ybatch for it. The NN model
is then retrained on the extended Xtrain and re-evaluated on
Xtest. Finally, the model is trained on the complete Xtrain and
evaluated on Xtest.

Algorithm 2 illustrates the general steps for pool-based
BMDAL in supervised setting. The process is slightly different

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on May 14,2024 at 09:49:37 UTC from IEEE Xplore. Restrictions apply.

5908

Algorithm 2 Pool-based BMDAL loop in supervised setting

Require: Graph Data G, initial labeled graphs training set
Gtrain, unlabeled graphs pool set Gpool, test set Gtest,
BMDAL algorithm NEXTBATCH (see Algorithm 3), list
Lbatch of batch sizes

1: for AL batch size Nbatch in Lbatch do
2: GNN = GraphConv (Gtrain) {training the GNN model}
3: X = GNN.embedding(G)
4: Extract Xtrain,Xtest,Xpool from the embedding set X

based on the indices of Gtrain, Gtest, Gpool,
5: Train NN model fθ on Xtrain
6: Evaluate NN model fθ on Xtest
7: Xbatch ← NEXTBATCH(fθ,Xtrain,Xpool,Nbatch)
8: Move Xbatch from Xpool to Xtrain and acquire labels Ybatch

for Xbatch
9: Update Gtrain

10: end for
11: Train final model fθ on Xtrain
12: Evaluate final model fθ on Xtest

since the GNN model is incorporated into the active learning
process because Xtrain is updated in each iteration in order
to utilize the recently labelled data. Here, we first define the
indices of training, test, and pool sets in advance. Then, in
the active learning loop, we initially train the GNN model
in order to obtain an initial embedding. Then, based on this
embedding, we train the NN model and evaluate it on Xtest.
Then, we select Xbatch by NEXTBATCH. Next, we update the
labelled set by moving the selected batch Xbatch from Xpool to
Xtrain and acquire the labels Ybatch for Xbatch. Thus, Xtrain

is then extended, and we train the GNN again based on the
extended training graph set to obtain a new embedding. The
NN is then trained again on the extended embeddings set and
so on. At the end of iteration, we train the final model on the
full Xtrain and evaluate it on Xtest.

Algorithm 3 Kernel-based batch construction framework

1: function NEXTBATCH(fθ,Xtrain, Xpool, Nbatch)
2: k ← BaseKernel(fθ)
3: k ← TransformKernel(k,Xtrain)
4: return SELECT(k,Xtrain, Xpool, Nbatch)
5: end function

Kernels and Kernel Transformation in BMDAL: The
usage of kernels and related transformations is inspired by
the study in [11]. The authors formulate the use of kernels
and kernel transformations within a general framework for
BMDAL for tabular regression data.

The kernel-based batch construction framework outlined in
Algorithm 3 serves as a fundamental component in Algo-
rithms 1 and 2. This framework enables the manipulation of
kernels and kernel transformations, fulfilling key functionali-
ties.

A primary motivation for employing kernels in this frame-
work is to emphasize informativeness as a crucial criterion

for assessing the efficiency of selection methods. This is
particularly vital for tasks involving uncertainty quantifica-
tion. Whereas softmax layers commonly serve to measure
uncertainty in classification, such methods are not directly
applicable to regression tasks. In regression that yields scalar
outputs—such as execution time in our case study—a straight-
forward uncertainty quantification mechanism is absent. This
gap is bridged by using Gaussian Process (GP), a Bayesian
technique that computes uncertainties via kernel methods.

In Gaussian Process, the selected kernel plays a critical
role in determining the quality of the uncertainty estimates.
In the context of Neural Networks, the base kernel (computed
in line 2 of Algorithm 3) is used to approximate the NN by
capturing similarities between data points in the feature space,
which is obtained post-training. Kernels can be transformed
to either enhance computational efficiency or better represent
the relations between data points. The purpose of the kernel
transformations (as introduced in [11]) is to formulate many
existing BMDAL methods under one common framework.

After transforming the kernel, a selection method (SELECT)
is invoked. This method utilizes the transformed kernel to
guide the selection process, as detailed in Algorithm 4.

In our experiments, we use the neural tangent kernel
(NTK) [14] as the base kernel. We use this kernel because
it mimics the neural network and performs the best overall
when used in conjunction with different selection methods
according to the experiments of [11]. The NTK Θ(x, x′) given
two input vectors x and x′ is defined as the Jacobian of the NN
outputs with respect to the network parameters θ, evaluated at
the initial parameters, and then taking their inner product (see
Eq.1).

Θ(x, x′) =
∑
i,j

∂fi(x)

∂θj

∂fi(x
′)

∂θj
, (1)

Note that fi(x) is the ith output of the neural network for
input x, and θj is the jth parameter of the network.

We consider four different kernel transformations in this
paper. First, the GP posterior covariance after observing the
training data Xtrain for a given base kernel k with the
corresponding feature map ϕ which is defined in Eq.2.

k→post(Xtrain,σ2)(x, x
′) =

σ2ϕ(x)T (ϕ(X T
trainϕ(Xtrain) + σ2I)−1ϕ(x′)) (2)

Note that σ2 is the variance of the observation noise in the
underlying model.

Second, we use the scaling transformation where we employ
a scaling factor λ ∈ R to form the scaled kernel λ2k with the
feature map λϕ. This is particularly important when using a
GP with λ2k as its covariance function, as it quantifies the
covariance between f(x) and f(x̃) based on the prior over
functions f .

k→scale(Xtrain)(x, x
′) = λ2k(x, x′) (3)

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on May 14,2024 at 09:49:37 UTC from IEEE Xplore. Restrictions apply.

5909

The third transformation is sketching, employed to approx-
imate a high-dimensional kernel k with a lower-dimensional
one for computational efficiency. We refer to Holzmüller et
al. [11] for details.

Finally, we utilize two kernel transformations corresponding
to two different ways of applying the ACS-FW method from
Pinsler et al. [19] applied to GP regression. Thereby, we use
acs-rf (kernel of Bayesian batch active learning as sparse
subset approximation with p random features) and acs-rf-hyper
(kernel of Bayesian batch active learning as sparse subset
approximation with p random features and hyperprior on σ2).
We refer to Pinsler et al. for details of this method, and
Holzmüller et al. [11] for details of the kernel transformation
applied to GP regression.

Algorithm 4 Iterative Selection Algorithm Template with
Customizable Function NextSample

Require: k,Xtrain,Xpool,Xbatch,mode ∈ {P,TP}
Ensure: Xbatch

1: function SELECT (k,Xtrain,Xpool,Xbatch,mode ∈
{P,TP})

2: Xbatch ← ∅
3: if mode = TP then
4: Xmode ← Xtrain
5: else
6: Xmode ← ∅
7: end if
8: for i = 1 to Nbatch do
9: Xsel ← Xmode ∪ Xbatch {Currently ”selected” points}

10: Xrem ← Xpool \ Xbatch {Currently unselected points}
11: Xbatch ← Xbatch ∪ {NextSample(k,Xsel,Xrem)}
12: end for
13: return Xbatch
14: end function

Selection Methods: We will now discuss a variety of
kernel-based selection methods to be used for querying in
active learning. Algorithm 4 shows the details of the selection
method SELECT that was manipulated in Algorithm 3. To
favour samples with high informativeness in an iterative active
learning scheme that tries to enforce the diversity of the
selected batch, two approaches can be used according to [11]:

• (P) Informativeness can be incorporated through the
kernel. For example, k → Xtrain(x, x) represents the
posterior variance at x of a GP

• (TP) Informativeness can be incorporated implicitly by
enforcing diversity of Xtrain ∪ Xbatch instead of only
enforcing diversity of Xbatch. In other words, a batch
that is sufficiently different from the training set typically
necessarily contains new information.

This explains the usage of mode parameter in SELECT in
Algorithm 4 for different selection methods. It is worth
mentioning that we use the same setting that was used in
the experiments by Holzmüller et al. [11]. Algorithm 4 serves
as a generalized mechanism for constructing sample batches.

It takes as input a kernel k, the current training set Xtrain, a
pool of potential samples Xpool, an initially empty batch Xbatch,
and a mode parameter which can either be P or TP . The
algorithm starts by initializing an empty set Xbatch which will
be incrementally populated with samples. Depending on the
selected mode (P or TP), the algorithm initializes another set
Xmode either as an empty set or as equivalent to the current
training set Xtrain. Then it loops for Nbatch iterations, where
in each iteration, the set of currently “selected” samples,
denoted by Xsel, is updated to be the union of Xmode and
Xbatch. Additionally, the remaining samples Xrem are updated
to consist of those samples in the pool Xpool which have not
yet been added to Xbatch. The selection method (denoted by
NextSample in the algorithm) then selects a new sample
from the remaining set Xrem, based on the kernel k and the
set of currently selected samples Xsel. This new sample is
added to Xbatch. After Nbatch iterations, the algorithm returns
the selected batch Xbatch.

Table I shows the selection methods investigated in our
experiments and the corresponding kernels and kernels trans-
formation used. Note that many of the selection methods
correspond to existing methods in the active learning literature,
some of which were originally formulated for classification.
Holzmüller et al. [11] formulate each of these selection
methods under one common framework and adapt them to
regression if needed. For simplicity, we use similar (but
shortened) formulations, but we refer to [11] for details of
each method.

• Random Selection. This corresponds to sampling a data
point uniformly at random from the points in the pool
Xrem. The selection method is shown in Eq.4.

NextSample(K,Xsel,Xrem) ∼ U(Xrem), (4)

where U(Xrem) is the uniform distribution over Xrem.
For this method both P and TP are equivalent.

• MAXDIAG. This corresponds to Eq.5. It is shown in
[11] that this is equivalent to BALD [12] in a regression
setting.

NextSample(K,Xsel,Xrem) = argmaxx∈Xrem
K(x, x)

(5)
According to Eq.5, MAXDIAG selects the maximum of
the elements on the diagonal of the posterior covariance
matrix. For this method both P and TP are equivalent.

• MAXDET. This corresponds to Eq.6. It is shown in [11]
that this is equivalent to BatchBALD [16] in the regres-
sion setting. This only holds under certain conditions, see
[11] for details.

NextSample(K,Xsel,Xrem) =

argmaxx∈Xrem
det(k(Xsel ∪ {x},Xsel ∪ {x}) + σ2I) (6)

MAXDET. This is considered an improvement over MAX-
DIAG because it takes Xsel into account by conditioning
the GP on Xsel when computing the posterior covariance.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on May 14,2024 at 09:49:37 UTC from IEEE Xplore. Restrictions apply.

5910

• BAIT. This corresponds to the selection method intro-
duced by Ash et al. [3]. BAIT potentially improves on
the previous selection methods by also considering how
well the selected batch represents the current pool set. It
is shown in [11] that the original formulation from [3] is
equivalent to Eq.7.

NextSample(K,Xsel,Xrem) =

argminx∈Xrem
Σx′∈Xtrain∪Xpool

k →post (Xsel ∪ x, σ2)(x′, x′)
(7)

Note that [3] introduces two versions of BAIT: forward
and forward/backward. Eq.7 corresponds to the forward
version of BAIT, which we use in our experiments due
to superior performance.

• FRANKWOLFE. This method approximates the kernel
mean embedding using a Frank-Wolfe optimization al-
gorithm. To ensure that Xbatch accurately represents the
pool set, Pinsler et al. [19] recommend constructing Xbatch
in a manner that closely approximates Σx∈Xpoolϕ(x) by
Σx∈Xbatchwxϕ(x), where wx’s are non-negative weights.
Specifically, they advocate the use of the Frank-Wolfe
optimization algorithm to solve the related optimization
problem, enabling an iterative selection of elements into
Xbatch. This method aims to approximate the distribution
of Xpool through Xbatch by mimicking the empirical kernel
mean embedding N−1

poolΣx∈Xpoolk(x, .) using Xbatch. The
strategy can be executed in either the kernel or feature
space. Due to the quadratic scaling with Npool in the
kernel space, Pinsler et al. [19] opt for the feature space
approach when handling large pool sets, a choice we
also adopt in our experiments. Unlike the original method
which allows for repeated selection of the same x ∈ Xpool,
we disallow this to ensure batch sizes remain consistent
for a fair comparison with other techniques.

• MAXDIST. This corresponds to greedily selecting data
points that maximize the distance to those already se-
lected. The selection method is shown in Eq.8.

NextSample(k,Xsel,Xrem) =

argmaxx∈Xrem
minx′∈Xseldk(x,x′) (8)

This method is equivalent to Coreset [25] for a particular
configuration of the kernel (see [11] for details).

• KMEANSPP. This is defined in Eq.9 and is related to
BADGE [4] (see [11] for details).

NextSample(k,Xsel,Xrem) =

minx′∈Xsel
dk(x, x

′)2

Σx′∈Xremminx∈Xsel
dk(x, x′)2

(9)

Much like MaxDet, MaxDist ensures both Informative-
ness and Diversity but falls short on Representativity.
To address this, one can consider batch selection as
a clustering problem. In Eq.9, the optimization task
essentially reformulates the k-medoids problem, blending

the k-means clustering objective with the stipulation that
cluster centroids must be selected from the clustered
dataset.

• LCMD. As a deterministic counterpart to the stochastic
k-meansPP method, Holzmüller et al. [11] introduce a
method known as LCMD (Largest Cluster Maximum Dis-
tance). This selection method considers representativity
by restricting selections to the largest cluster, while also
promoting diversity by selecting the data point that is fur-
thest away within that cluster. In this context, x′ ∈ Xsel

denotes cluster centroids, c(x) signifies the associated
center for each x ∈ Xrem, and S(x′) represents the size
of the cluster. According to Eq.10, the data point with
the greatest distance from the largest cluster is selected.

NextSample(K,Xsel,Xrem) =

argmaxx∈Xrem:s(c(x))=maxx′∈Xsel
s(x′)dK(x, c(x)) (10)

c(x) = argminx′∈Xsel
dk(x, x

′)

s(x′) = Σx∈Xrem:c(x)=x′dk(x, x
′)2

TABLE I: An overview of the used kernel and kernel trans-
formation for each selection method

Selection Method Kernel Kernel Transformation Mode
BAIT

sketch → scale → post
PMAXDIST

MAXDET
KNEANSPP

sketch → acs-rf
P

MAXDIAG -
FRANKWOLFE NTK

sketch → acs-rf-hyper
P

LCMD
sketch

TP

Random - - -

IV. EXPERIMENT

A. Collection of Data

To bolster the dependability of our experiments, two distinct
real-world datasets consisting of performance metrics are
utilized. The first, called OSSBuild, consists of actual build
data acquired from the continuous integration frameworks
of four distinct open-source projects. The second, termed
HadoopTests, is a more expansive dataset that we gathered
ourselves by running the Hadoop open-source system’s unit
tests in a well-regulated setting. A summarization of both
datasets can be found in Table II. Further details about each
dataset are elaborated in the subsequent subsections.

1) OSSBuild Dataset: Initially employed in the work of
Samoaa et al. [24], this dataset includes data related to test
run times in the build systems of four open-source softwares:
systemDS, H2, Dubbo, and RDF4J. All of these projects make
use of public continuous integration platforms and provide
publicly available build details, which we used to gather data
on test execution times in the summer of 2021. Refer to

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on May 14,2024 at 09:49:37 UTC from IEEE Xplore. Restrictions apply.

5911

TABLE II: Overview of the OSSBuilds and HadoopTests
datasets.

Proj. Desc. Files Runs Nodes Vocab.

O
SS

sysDS Apache ML
for Data
Science
lifecycle

127 1321 114904 3205

H2 Java SQL DB 194 1391 432375 18326
Dubbo Apache

Remote
Procedure
Call
framework

123 524 77142 4505

RDF4J Scalable RDF 478 1055 242673 10844
Tot. 922 4291 867094 36880

H
ad

oo
p Hadoop Apache

framework
for big data

2895 24348 5090798138952

Table II (top) for essential statistics about these projects. The
term ”Files” refers to the unit test files we monitored for
execution durations, while ”Runs” signifies the aggregated
execution count for these files. ”Nodes” and ”Vocabulary Size”
denote the graphs. Prior to parsing, we exclude code comments
to minimize the graph nodes. We observe 867094 nodes and
36880 vocabulary entries.

2) HadoopTests Dataset: In order to address the limitations
of the OSSBuild dataset, particularly the confined file counts
per project, a second dataset was generated. We selected
the Apache Hadoop project due to its extensive collection
of test files (2895) with adequate complexity. We executed
all of the unit tests in the project five times and recorded
each test file’s execution time, as reported by the JUnit
framework. We utilized a dedicated virtual machine equipped
with two virtualized CPUs and 8 GBytes of RAM for this data
collection, and non-essential services were disabled to ensure
consistent performance. Statistics for the HadoopTests dataset
are outlined in Table II (bottom). The dataset has an enlarged
node count with 5090798 nodes and 138952 vocabulary terms.

B. Experiment Setting

To systematically investigate different combinations of ker-
nels, kernel transformations, and selection methods as outlined
in Table 1, we subject our datasets to these various selection
techniques. For the HadoopTests dataset, the initial training
size, denoted by Ntrain, is set at 256, while for OssBuilds,
it is 88. We then proceed to obtain 16 batches, each having
a size of Nbatch equalling 128 for HadoopTests and 45 for
OssBuilds, applying the corresponding BMAL method. This
entire process is repeated 10 times, each time with unique
initialization seeds for the neural network (NN) and different
partitions of the data into training, pool, and test subsets.
The evaluation metric we consider is the root mean squared
error (RMSE) calculated on the test dataset after each BMAL
iteration. The logarithm of the RMSE error metric is then

averaged over 10 repetitions and, depending on the specific
experiment, over 16 steps for each dataset and embedding.

The GNN model is configured with three layers of Graph-
Cov layers. In contrast, for the NN model, we employ a
fully connected architecture consisting of three layers, each
having 512 neurons in both of the hidden layers. The activation
function chosen for both networks is ‘relu’. The training of
both GNN and NN is executed using the Adam optimizer,
spanning 256 epochs with a batch size of 32. The embedding
dimension in the supervised and unsupervised settings is 90.

C. Experimental Results
In this section, we will present the average RMSE values.

The mean log RMSE for each embedding is illustrated in
different subfigures. We assess the performance of the con-
figurations outlined in Table I.

a) BMDAL for HadoopTests: Figure 6 illustrates the
performance of various selection methods in the context of
HadoopTests. It breaks down the results by depicting the
average log RMSE in both supervised and unsupervised em-
beddings. In unsupervised embedding, shown in Figure 6a,
Random selection consistently underperforms relative to other
methods. MAXDIST stands out as the most effective, partic-
ularly as the labelled data grow. Moving to the supervised
embedding results in Figure 6b, the Random selection method
still performs the poorest, while BAIT and MAXDET con-
sistently outperform the rest across various training set sizes.
Interestingly, the typical best-performing methods (BAIT and
MAXDET) do not maintain their lead when the size of the
labelled data is restricted to around 256 samples. In this
specific context, MAXDIST is the most effective method.
Overall, the results demonstrate the effectiveness of active
learning, i.e., the benefits of non-random selection methods,
especially MAXDIST.

b) BMDAL for OssBuilds: The evaluations for Oss-
Builds reveal a noticeably higher variance in each selection
method for OSSBuilds compared to the HadoopTest dataset.
This increased variability is likely due to having fewer samples
of OSSBuilds, which comprises graphs from four distinct
projects.

In the unsupervised embedding setting, as indicated by
Figure 7a, both Random and FRANKWOLFE methods gen-
erally underperform. Intriguingly, LCMD exhibits a sudden
and significant improvement, becoming the best-performing
method when the training batch size reaches approximately
256. However, this performance gain is ephemeral, as its
RMSE error escalates once again beyond this point.

Despite Random being the least effective method in super-
vised settings as in Figure 7b, certain variations appear at
smaller training set sizes. Specifically, in the first 64 labelled
training samples, FRANKWOLFE underperforms most no-
tably. For the same training sample size, MAXDIST emerges
as the best performer, consistent with the HadoopTest dataset.

D. Further Discussions
In this section, we discuss further the results from various

perspectives.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on May 14,2024 at 09:49:37 UTC from IEEE Xplore. Restrictions apply.

5912

128 256 512 1024 2048
Training set size Ntrain

−1.90

−1.85

−1.80

−1.75

−1.70

−1.65

m
ea

n
lo

g
R

M
SE

RANDOM

MAXDIAG

MAXDET-P
BAIT-F-P
FRANKWOLFE-P
MAXDIST-P
KMEANSPP-P
LCMD-TP

(a) Unsupervised using Graph2Vec

128 256 512 1024 2048
Training set size Ntrain

−2.4

−2.2

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

m
ea

n
lo

g
R

M
SE

RANDOM

MAXDIAG

MAXDET-P
BAIT-F-P
FRANKWOLFE-P
MAXDIST-P
KMEANSPP-P
LCMD-TP

(b) Supervised using GNN

Fig. 6: Root mean square error for BMDAL in both embedding settings on HadooptTests.

45 64 128 256 512 922
Training set size Ntrain

−1.75

−1.70

−1.65

−1.60

−1.55

−1.50

m
ea

n
lo

g
R

M
SE

RANDOM

MAXDIAG

MAXDET-P
BAIT-F-P
FRANKWOLFE-P
MAXDIST-P
KMEANSPP-P
LCMD-TP

(a) Unsupervised using Graph2Vec

45 64 128 256 512 922
Training set size Ntrain

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

m
ea

n
lo

g
R

M
SE

RANDOM

MAXDIAG

MAXDET-P
BAIT-F-P
FRANKWOLFE-P
MAXDIST-P
KMEANSPP-P
LCMD-TP

(b) Supervised using GNN

Fig. 7: Root mean square error for BMDAL in both embedding settings on OssBuilds.

• Observations on data variability: Our results indicate
smoother and less variable performance for HadoopTests
compared to OssBuilds. This difference is primarily due
to the source of the graphs. While Hadoop’s graphs
originate from a single project, OssBuilds features graphs
from various domain projects (as detailed in Table II).
Additionally, the larger number of graphs in Hadoop
contributes to this stability.

• Performance w.r.t. embedding types: Upon examining
the mean log RMSE values, it is clear that supervised
embeddings offer the most effective setting for the se-
lection methods. This is evidenced by the lower mean
log RMSE and higher delta (mean log RMSE) — 1.4 for
HadoopTests and 1 for OssBuilds—compared to 0.25 for
unsupervised embedding. However, caution is warranted
in generalizing these findings, as they may require valida-
tion with more diverse graph data from various projects.

• Computational considerations: It is worth noting that
the supervised setting comes with increased computa-
tional demands. This is because each active learning
iteration involves not only training an NN based on the
embeddings but also training the GNN to obtain those
embeddings.

• Graph characteristics and implications: Our analysis
performed on graph data in our previous study [22] (Table
2) reveals that the graphs in our study are characterized
by high diameter and sparsity, adding complexity to the
task. Furthermore, these graphs are augmented versions
of Abstract Syntax Trees (ASTs).

• Comparison with previous work: Interestingly, our
current findings diverge from our previous paper where
batch and kernel components were not utilized. This
highlights the crucial role both the active learning and
the quality of embeddings play in influencing the results.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on May 14,2024 at 09:49:37 UTC from IEEE Xplore. Restrictions apply.

5913

V. CONCLUSION

In this study, we employed Batch Mode Deep Active Learn-
ing (BMDAL) for graph data within a regression framework.
The algorithm integrates kernels and kernel transformations
with active learning selection methods. Specifically, the Neural
Tangent Kernel (NTK) serves as the base kernel, while the
Gaussian Process (GP) posterior variance is primarily uti-
lized for kernel transformation. Supervised and unsupervised
embedding are investigated to adapt the graph data to this
framework. Our experimental results indicate that supervised
embedding provides the most effective setting for selection
methods. While identifying a universally optimal selection
method across different experimental settings proved chal-
lenging, MAXDET and MAXDIST consistently emerged as
top performers. Conversely, the Random method, used as a
baseline, consistently ranked as the least effective, indicating
the advantage of active learning for data labelling.

ACKNOWLEDGMENT

This work received financial support from the Swedish
Research Council VR under grant number 2018-04127. The
work of Linus Aronsson was partially supported by the
Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by Knut and Alice Wallenberg Foundations.

REFERENCES

[1] Batch Mode Deep Active Learning for Regression on Graph Data.
Zenodo, Sept. 2023. https://doi.org/10.5281/zenodo.8352242.

[2] R. Abel and Y. Louzoun. Regional based query in graph active learning,
2019.

[3] J. Ash, S. Goel, A. Krishnamurthy, and S. Kakade. Gone fishing: Neural
active learning with fisher embeddings. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural
Information Processing Systems, volume 34, pages 8927–8939. Curran
Associates, Inc., 2021.

[4] J. T. Ash, C. Zhang, A. Krishnamurthy, J. Langford, and A. Agarwal.
Deep batch active learning by diverse, uncertain gradient lower bounds,
2020.

[5] J. D. Bossér, E. Sörstadius, and M. H. Chehreghani. Model-centric and
data-centric aspects of active learning for deep neural networks. In 2021
IEEE International Conference on Big Data (Big Data), pages 5053–
5062, 2021.

[6] H. Cai, V. W. Zheng, and K. C.-C. Chang. Active learning for graph
embedding, 2017.

[7] X. Chen, G. Yu, J. Wang, C. Domeniconi, Z. Li, and X. Zhang.
Activehne: Active heterogeneous network embedding. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intel-
ligence, IJCAI-19, pages 2123–2129. International Joint Conferences on
Artificial Intelligence Organization, 7 2019.

[8] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional
neural networks on graphs with fast localized spectral filtering. In
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016.

[9] Y. Gal, R. Islam, and Z. Ghahramani. Deep bayesian active learning
with image data. In D. Precup and Y. W. Teh, editors, Proceedings of
the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 1183–1192. PMLR,
06–11 Aug 2017.

[10] L. Gao, H. Yang, C. Zhou, J. Wu, S. Pan, and Y. Hu. Active discrim-
inative network representation learning. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI-
18, pages 2142–2148. International Joint Conferences on Artificial
Intelligence Organization, 7 2018.

[11] D. Holzmüller, V. Zaverkin, J. Kästner, and I. Steinwart. A framework
and benchmark for deep batch active learning for regression. Journal
of Machine Learning Research, 24(164):1–81, 2023.

[12] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel. Bayesian active
learning for classification and preference learning, 2011.

[13] S. Hu, Z. Xiong, M. Qu, X. Yuan, M.-A. Côté, Z. Liu, and J. Tang.
Graph policy network for transferable active learning on graphs, 2020.

[14] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

[15] S. Jarl, L. Aronsson, S. Rahrovani, and M. H. Chehreghani. Active
learning of driving scenario trajectories. Engineering Applications of
Artificial Intelligence, 113:104972, 2022.

[16] A. Kirsch, J. van Amersfoort, and Y. Gal. Batchbald: Efficient and di-
verse batch acquisition for deep bayesian active learning. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[17] X. Li, Y. Wu, V. Rakesh, Y. Lin, H. Yang, and F. Wang. Smartquery:
An active learning framework for graph neural networks through hybrid
uncertainty reduction. In Proceedings of the 31st ACM International
Conference on Information; Knowledge Management, CIKM ’22, page
4199–4203, New York, NY, USA, 2022. Association for Computing
Machinery.

[18] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and
S. Jaiswal. graph2vec: Learning distributed representations of graphs,
2017.

[19] R. Pinsler, J. Gordon, E. Nalisnick, and J. M. Hernández-Lobato.
Bayesian batch active learning as sparse subset approximation. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[20] C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine
learning. Adaptive computation and machine learning. MIT Press, 2006.

[21] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta, X. Chen,
and X. Wang. A survey of deep active learning, 2021.

[22] P. Samoaa, L. Aronsson, A. Longa, P. Leitner, and M. H. Chehreghani.
A unified active learning framework for annotating graph data with
application to software source code performance prediction, 2023.

[23] P. Samoaa, F. Bayram, P. Salza, and P. Leitner. A systematic mapping
study of source code representation for deep learning in software
engineering. IET Software, 16(4):351–385, 2022.

[24] P. Samoaa, A. Longa, M. Mohamad, M. H. Chehreghani, and P. Leitner.
Tep-gnn: Accurate execution time prediction of functional tests using
graph neural networks. In D. Taibi, M. Kuhrmann, T. Mikkonen,
J. Klünder, and P. Abrahamsson, editors, Product-Focused Software Pro-
cess Improvement, pages 464–479, Cham, 2022. Springer International
Publishing.

[25] O. Sener and S. Savarese. Active learning for convolutional neural
networks: A core-set approach. In International Conference on Learning
Representations, 2018.

[26] B. Settles. Active learning literature survey. Computer Sciences
Technical Report 1648, University of Wisconsin–Madison, 2009.

[27] Y. Shen, H. Yun, Z. C. Lipton, Y. Kronrod, and A. Anandkumar. Deep
active learning for named entity recognition, 2018.

[28] S. Viet Johansson, H. Gummesson Svensson, E. Bjerrum, A. Schliep,
M. Haghir Chehreghani, C. Tyrchan, and O. Engkvist. Using active
learning to develop machine learning models for reaction yield predic-
tion. Molecular Informatics, 41(12):2200043, 2022.

[29] D. Wu. Pool-based sequential active learning for regression. IEEE
Transactions on Neural Networks and Learning Systems, 30(5):1348–
1359, 2019.

[30] Y. Wu, Y. Xu, A. Singh, Y. Yang, and A. Dubrawski. Active learning
for graph neural networks via node feature propagation, 2019.

[31] Y. Zhang, H. Tong, Y. Xia, Y. Zhu, Y. Chi, and L. Ying. Batch active
learning with graph neural networks via multi-agent deep reinforcement
learning. Proceedings of the AAAI Conference on Artificial Intelligence,
36(8):9118–9126, Jun. 2022.

[32] Y. Zhang, Y. Xia, Y. Zhu, Y. Chi, L. Ying, and H. Tong. Active
heterogeneous graph neural networks with per-step meta-q-learning. In
2022 IEEE International Conference on Data Mining (ICDM), pages
1329–1334, 2022.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on May 14,2024 at 09:49:37 UTC from IEEE Xplore. Restrictions apply.

	Abstract
	Acknowledgments
	List of Publications
	Research Contribution
	List of Acronyms
	Contents
	I Introductory chapters
	1 Introduction
	2 Background
	2.1 Graphs and Trees
	2.2 Model-Centric AI
	2.3 Data-Centric AI
	2.4 Graph Neural Networks (GNNs)
	2.5 Active Learning

	3 General Overview of The Papers
	3.1 Exploration of Tree and Graph Representation
	3.1.1 Analyzing Trees and Graphs as Intermediate Representations
	3.1.2 Exploring the Integration of Multiple Representations

	3.2 Tree Regression Analysis and Model-Centric AI for Trees
	3.2.1 Behaviour of TBNN models in Regression Context
	3.2.2 Model-Centric AI for Trees
	3.2.3 Error and Correlation Analysis for TBNN models on Regression

	3.3 Data-Centric AI for Graphs
	3.3.1 From Tree to Graph over Data-Centric AI
	3.3.2 Validating the Data-Centric AI Approach

	3.4 Active Learning for Graphs
	3.4.1 Informativeness and Representativeness
	3.4.2 Diversity

	3.5 Contributions
	3.6 Limitations and Challenges

	4 Concluding Remarks and Future Works
	4.1 Conclusion
	4.2 Future Work

	II Appended papers
	Paper 1: A systematic mapping study of source code representation for deep learning in software engineering
	Paper 2: Analysing the Behaviour of Tree-Based Neural Networks in Regression Tasks
	Paper 3: Tep-gnn: Accurate execution time prediction of functional tests using graph neural networks
	Paper 4: A Unified Active Learning Framework for Annotating Graph Data For Regression Task
	Paper 5: Batch Mode Deep Active Learning for Regression on Graph Data

