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The volume of pseudoeffective line bundles and partial equilibrium

TAMÁS DARVAS

MINGCHEN XIA

Let .L; he�u/ be a pseudoeffective line bundle on an n–dimensional compact Kähler manifold X . Let
h0.X;Lk˝I.ku// be the dimension of the space of sections s of Lk such that hk.s; s/e�ku is integrable.
We show that the limit of k�nh0.X;Lk ˝I.ku// exists, and equals the nonpluripolar volume of P Œu�I,
the I–model potential associated to u. We give applications of this result to Kähler quantization: fixing a
Bernstein–Markov measure �, we show that the partial Bergman measures of u converge weakly to the
nonpluripolar Monge–Ampère measure of P Œu�I, the partial equilibrium.
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1 Introduction

A major theme in Kähler geometry has been the approximation/quantization of natural objects in the
theory, going back to a problem of Yau [1987] and early work of Tian [1988]. Initial focus was
on the quantization of smooth Kähler metrics, with asymptotic expansion results due to Tian [1990],
Bouche [1990], Catlin [1999], Zelditch [1998], Lu [2000] and others. Later, Donaldson [2001] proposed
to not just quantize Kähler metrics, but their infinite-dimensional geometry as well. This led to a
flurry of activity helping to better understand notions of stability in Kähler geometry; see the work by
Berndtsson [2018], Chen and Sun [2012], Phong and Sturm [2006], Song and Zelditch [2010], Darvas,
Lu and Rubinstein [Darvas et al. 2020], Zhang [2023] to only mention a few works in a fast expanding
literature. We refer to the excellent textbook by Ma and Marinescu [2007] for a detailed discussion and
history of many classical results in this direction.
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Our work fits into this broad context; however, we consider perhaps the most singular objects one can
work with: positively curved metrics on a pseudoeffective line bundle. Despite the fact that potentials of
these positively curved metrics are only integrable in general, we will be able to recover their volumes
and partial equilibrium measure using quantization, significantly extending the scope of previous results
in the literature.

The volume of a pseudoeffective line bundle We now describe our results. Let L be a holomorphic line
bundle on a compact connected Kähler manifold .X; !/ of dimension n. Let h be a smooth metric on L,
and let � WD c1.L; h/ denote the Chern form of h. Let .T; hT / be an arbitrary Hermitian holomorphic
vector bundle on X of rank r , which will be used to twist powers of L.

By PSH.X; �/ we will denote the space of quasi-plurisubharmonic (quasi-psh) functions v on X such
that � C ddcv D � C .i=2�/@x@v � 0 in the sense of currents. Here dD @Cx@ and dc D .i=4�/.�@Cx@/.

A priori PSH.X; �/ may be empty, but if there exists u 2 PSH.X; �/, then following terminology of
Demailly, we say that the pair .L; he�u/ is a pseudoeffective (psef) Hermitian line bundle. Moreover,
to such u one can associate a nonpluripolar complex Monge–Ampère measure �n

u , as introduced in
[Boucksom et al. 2010; Guedj and Zeriahi 2007], following ideas by Cegrell [1998] and Bedford and
Taylor [1976] in the local case; see Section 2.1 for more details.

We can associate to u the so-called I–model potential/envelope P Œu�I 2 PSH.X; �/, defined by

(1) P Œu�I WD supfw 2 PSH.X; �/ W w � 0; I.tw/� I.tu/ for t � 0g:

Here I.tu/ is a multiplier ideal sheaf, locally generated by holomorphic functions f such that jf j2e�tu

is integrable. To our knowledge P Œu�I was first considered in [Kim and Seo 2020], and we studied it in
detail in [Darvas and Xia 2022, Section 2.4]; see also [Trusiani 2022].

Let H 0.X;T ˝ Lk ˝ I.ku// be the space of global holomorphic sections s of T ˝ Lk satisfyingR
X hT ˝ hk.s; s/e�ku!n <1. We also introduce the notation

h0.X;T ˝Lk
˝I.ku// WD dimC H 0.X;T ˝Lk

˝I.ku//:

It was conjectured by Cao [2014, page 7] and Tsuji [2007, Section 4.4] that

lim
k!1

1

kn
h0.X;T ˝Lk

˝I.ku//

always exists. We show that this is indeed the case, and we give a precise formula for the limit in terms
of the nonpluripolar volume of P Œu�I:

Theorem 1.1 Let .L; he�u/ be a pseudoeffective Hermitian line bundle on X , and let T be a holomorphic
vector bundle of rank r on X . Then

(2) lim
k!1

1

kn
h0.X;T ˝Lk

˝I.ku//D
r

n!

Z
X

�n
P Œu�I

:

Geometry & Topology, Volume 28 (2024)
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When L is ample and T is a line bundle, Theorem 1.2 was obtained using non-Archimedean methods in
[Darvas and Xia 2022, Theorem 1.4]. As these techniques do not extend to the pseudoeffective case, we
take a more elementary approach in this work. In addition, in Section 4.2 we show that the analogue of
Theorem 1.1 holds for pseudoeffective R–line bundles as well.

In the case that u has analytic singularity type with smooth remainder (see Section 2.2 for the definition),
formula (2) is a well-known consequence of the Riemann–Roch theorem of Bonavero [1998, Théorème 1.1,
Corollaire 1.2]; see [Darvas and Xia 2022, Theorem 2.26]. In this case, it is possible to apply a resolution
of singularities to simplify/principalize the singularity locus of I.u/, allowing for a precise asymptotic
analysis. In addition, in this case one also has

R
X �n

P Œu�I
D
R
X �n

u [Darvas and Xia 2022, Proposition 2.20],
simplifying the right-hand side of (2). However, for general u 2 PSH.X; �/, one is forced to use
the measures �n

P Œu�I
, and this is one of the novelties of our work. Indeed, since u� supX u � P Œu�I,

[Witt Nyström 2019, Theorem 1.1] gives that
R
X �n

u �
R
X �n

P Œu�I
, and strict inequality is possible, as

pointed out in [Darvas and Xia 2022, Example 2.19].

Formula (2) is also known for u WD V� WD supf' 2 PSH.X; �/ W ' � 0g, the potential with minimal
singularity type in PSH.X; �/; see [Boucksom et al. 2010, Proposition 1.18]. In this case we again haveR
X �n

P ŒV� �I
D
R
X �n

V�
, recovering Boucksom’s formula [Boucksom 2002b; Boucksom et al. 2010]:

lim
k!1

1

kn
h0.X;Lk/D

1

n!

Z
X

�n
V�
:

The above expression is called the volume of the line bundle L in the literature [Boucksom 2002a;
Demailly 2012], justifying our terminology calling .1=n!/

R
X �n

P Œu�I
the volume of the pair .L; he�u/.

As T is allowed to be an arbitrary vector bundle in Theorem 1.1, one can hypothesize a version of this
result with T being a coherent sheaf on X . This was pointed out to us by László Lempert.

At the slight expense of precision, we briefly describe the strategy behind the proof of Theorem 1.1. By
[Witt Nyström 2019, Theorem 1.2], both the left and right sides of (2) only depend on the singularity type
of the potential u. As a result, we can use the metric topology of singularity types introduced in [Darvas
et al. 2021], and further developed in [Darvas and Xia 2022]. Let us very briefly recall the terminology.
For v;w 2 PSH.X; �/ we say that

� v is more singular than w, and we write v � w, if there exists C 2R such that v � wCC ;

� v has the same singularity type as w, and we write v ' w, if v � w and w � v.

The classes Œv� 2 S WD PSH.X; �/=' of this latter equivalence relation are called singularity types. As
pointed out in [Darvas et al. 2021], and recalled in Section 2.2, S admits a natural pseudometric dS,
making .S; dS/ complete (in the presence of positive mass).

By [Darvas and Xia 2022, Proposition 2.20], we have

H 0.X;T ˝Lk
˝I.ku//DH 0.X;T ˝Lk

˝I.kP Œu�I// and P Œu�I D P ŒP Œu�I�I;

Geometry & Topology, Volume 28 (2024)
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ie u! P Œu�I is a projection. Hence, it is enough to prove (2) for potentials of the form P Œu�I. In
Section 3 we show that the singularity types ŒP Œu�I� 2 S can be dS–approximated by analytic singularity
types Œuj � 2 S. It is crucial to work with potentials of the form P Œu�I, as the same property does not hold
for general potentials u.

The proof is then completed by an approximation argument. We take a decreasing sequence uj 2

PSH.X; �/ composed of potentials with analytic singularity types such that dS.Œuj �; Œu�/ ! 0. By
Bonavero’s theorem we know that (2) holds for each uj . It is known that dS.Œuj �; Œu�/! 0 impliesR
X �n

P Œuj �I
!
R
X �n

P Œu�I
, and we will prove a similar convergence result for the left-hand side of (2) as

well, to finish the argument.

Let us mention applications of Theorem 1.1 that are treated elsewhere. By [Lazarsfeld and Mustat,ă 2009;
Kaveh and Khovanskii 2012] we can naturally assign a family of convex Okounkov bodies�.L/ to a given
big line bundle L, depending only on the numerical class of L. Moreover, vol LD vol�.L/. In [Xia
2021], based on Theorem 1.1, the second author extended this construction to Hermitian pseudoeffective
line bundles: it is possible to define a natural family of convex bodies �.L; �/ associated with a given
Hermitian pseudoeffective line bundle .L; �/ such that vol�.L; �/D vol.L; �/.

Another application concerns automorphic forms. Consider an automorphic line bundle L on a Shimura
variety or mixed Shimura variety X . The global sections of Lk correspond to certain automorphic forms.
It is a natural and important question in number theory to understand the asymptotic dimensions of
these automorphic forms. In general, X is not compact, but it admits natural smooth compactifications
[Ash et al. 2010]. Usually the smooth equivariant metrics on L only extends to singular metrics on a
compactification. In this case, Theorem 1.1 can be naturally applied. In the special case of Siegel–Jacobi
modular forms, this idea has been carried out concretely in the recent preprints [Botero et al. 2022a;
2022b]. Using a particular case of Theorem 1.1, they managed to prove that the ring of Siegel–Jacobi
modular forms is not finitely generated, disproving a well-known claim by Runge [1995].

Convergence of partial Bergman measures As another application of Theorem 1.1, we give a very
general convergence result for partial Bergman measures to the partial equilibrium, extending the scope
of numerous results in the literature.

First we recall terminology introduced in [Berman and Boucksom 2010]. A weighted subset of X is a
pair .K; v/ consisting of a closed nonpluripolar subset K �X and a function v 2 C 0.K/. Next, given
u 2 PSH.X; �/, we tailor the definition of I–model envelope from (1) to the pair .K; v/:

(3) P Œu�I.v/ WD usc
�
supfw 2 PSH.X; �/ W wjK � v and I.tw/� I.tu/; t � 0g

�
:

Here usc. � / denotes the least upper semicontinuous envelope. In case that KDX , usc. � / is unnecessary,
moreover we have P Œu�I.0/D P Œu�I.

Geometry & Topology, Volume 28 (2024)
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As a consequence of Corollary 5.7 below, �n
P Œu�I.v/

does not put mass on the set .X nK/[fP Œu�I.v/ < vg.
What is more, when K DX and v 2 C 2.X /, the main result of Di Nezza and Trapani [2021] implies that

�n
P Œu�I.v/

D 1fP Œu�I.v/Dvg�
n
v :

Analogous properties of equilibrium type measures in different contexts were obtained in [Shiffman
and Zelditch 2003; Berman 2009; Ross and Witt Nyström 2017]. With this in mind, we will call the
measure �n

P Œu�I.v/
the partial equilibrium (measure) associated to u and .K; v/. Theorem 1.2 will further

justify this choice of terminology.

Let .T; hT / be a Hermitian line bundle. Let � be a Borel probability measure on K. We consider the
norms on H 0.X;Lk ˝T / given by

N k
v;�.s/ WD

�Z
K

hk
˝ hT .s; s/e

�kv d�
�1=2

and N k
v;K .s/ WD sup

K

.hk
˝ hT .s; s/e

�kv/1=2:

Note that we always have N k
v;�.s/ � N k

v;K
.s/. The measure � is a Bernstein–Markov measure with

respect to .K; v/ if for each " > 0, there is a constant C" > 0 such that

(4) N k
v;K .s/� C"e

"kN k
v;�.s/

for any s 2H 0.X;Lk ˝T /. A broad class of Bernstein–Markov measures are probability volume forms
with respect to .X; v/, where v 2 C1.X /. For more complicated examples we refer to [Berman et al.
2011, Section 1.2].

We introduce the associated partial Bergman kernels: for any k 2N, x 2K,

Bk
v;u;�.x/ WD supfhk

˝ hT .s; s/e
�kv.x/ WN k

v;�.s; s/� 1; s 2H 0.X;Lk
˝T ˝I.ku//g:

The associated partial Bergman measures on X are identically zero on X nK and on K are defined as

(5) ˇk
v;u;� WD

n!

kn
Bk
v;u;� d�:

Our next result states that the partial Bergman measures ˇk
v;u;� quantize the nonpluripolar measure

�n
P Œu�I.v/

, the partial equilibrium of this setting:

Theorem 1.2 Let .L; he�u/ be a pseudoeffective Hermitian holomorphic line bundle on X , and let
.T; hT / be a Hermitian line bundle. Suppose that � is a Bernstein–Markov measure with respect to a
weighted subset .K; v/. Then ˇk

u;v;�*�n
P Œu�I.v/

weakly as k!1.

To our knowledge, this result is new even in the case when L is assumed to be ample. An important
particular case is when T is trivial, K D X , v � 0 and � D !n=

R
X !n. In this case we simply put

ˇk
u WD ˇ

k
u;0;!n and recall that P Œu�I D P Œu�I.0/. We have the following corollary:

Corollary 1.3 For u 2 PSH.X; �/ we have that ˇk
u *�n

P Œu�I
weakly as k!1.

Geometry & Topology, Volume 28 (2024)
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When T is the trivial line bundle and u has minimal singularity, Theorem 1.2 recovers [Berman et al.
2011, Theorem B]. As part of our argument, in Sections 5 and 6 we also extend [Berman and Bouck-
som 2010, Theorems A and B] to our partial setting. We suspect that using our results one can now
prove equidistribution theorems for (partial) Fekete point configurations, extending [Berman et al. 2011,
Theorem A] to our context. However, to stay brief we omit this discussion here.

When T is the trivial line bundle, KDX , v 2C 2.X /, �D!n=
R
X !n and u has minimal or exponentially

continuous singularity type, we are essentially in the setting of [Berman 2009, Theorem 1.4] and [Ross
and Witt Nyström 2017, Theorem 1.4]. Our Theorem 1.2 extends these results, to the extent that our
singular setting allows. Indeed, as Œu� is of I–model type in these cases, we automatically get that
P Œu�.v/D P Œu�I.v/, where

P Œu�.v/ WD usc supfh 2 PSH.X; �/ W h� v; Œh�� Œu�g:

See Section 3 for more details. Hence, in this case the (partial) Bergman measures converge weakly
to �n

P Œu�.v/
. Berman [2009] and Ross and Witt Nyström [2017] actually argue pointwise convergence of

the density functions as well, on the locus where P Œu�.v/D v and �v > 0. As our v in Theorem 1.2 is
only continuous, it is not clear how to interpret the condition �v > 0 in our context.

Observe that
R
X ˇk

v;u;�Dn!k�nh0.X;Lk˝T ˝I.ku//. In particular, Theorem 1.2 recovers Theorem 1.1
after an integration. In fact, this plays a crucial role in the argument of Theorem 1.2. As all the
measures ˇk

u;v;� have uniformly bounded masses, they form a weakly compact family. The difficulty is to
prove that each subsequential limit measure is dominated by �n

P Œu�I.v/
. Then the argument is concluded

by simply comparing total masses of the limit measures.

The literature on partial Bergman kernels/measures has been fast expanding in many directions. One
particular line of study concerns partial Bergman kernels arising from sections vanishing along a smooth
divisor V, with the vanishing order increasing in the large limit. As pointed out in numerous works
mentioned below, this setup is closely related to ours, when one considers L2 integrable sections with
respect to a weight that has logarithmic singularity along V . It would be interesting to study this
connection in the future. One of the first works on this topic was that of Berman [2009], who proved
L1 convergence of the volume densities of the partial Bergman measures. Ross and Singer [2017] and
Zelditch and Zhou [2019b] considered this problem in the presence of an S1–symmetry near the vanishing
locus, identified the forbidden region in terms of the Hamiltonian action, and gave detailed asymptotic
expansions. When symmetries are not present, Coman and Marinescu [2017] proved that the partial
Bergman kernel has exponential decay near the vanishing locus. For recent extensions to smooth and
singular subvarieties V, see [Coman et al. 2019; Sun 2020].

Applications of partial Bergman kernels related to test configurations and geodesic rays were explored in
[Ross and Witt Nyström 2014; Darvas and Xia 2022].

In another line of study, Zelditch and Zhou [2019a] initiated the study of partial Bergman kernels that arise
from spectral subspaces of the Toeplitz quantization of a smooth Hamiltonian. They showed that their

Geometry & Topology, Volume 28 (2024)
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partial density of states also converges to an equilibrium type measure, suggesting possible connections
with our Theorem 1.2. Specifically, given the Hamiltonian data .H;E/ of [Zelditch and Zhou 2019a], we
wonder if there exists v 2 C1.X / and u 2 PSH.X; �/ such that fH.z/ <Eg D fP Œu�I.v/D vg. If the
answer to this question is affirmative, then using the terminology of [Zelditch and Zhou 2019a, Main
Theorem] we would obtain that

Q
k;Sk

!n *�n
P Œu�I.v/

.
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Lempert, Yaxiong Liu, Duc-Viet Vu and Steven Zelditch for discussions related to the topic of the
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Organization In Section 2 we recall the relevant notions of envelopes, and adapt results in the literature
about the metric topology of singularity types to our context. In Section 3 we characterize the closure of
analytic singularity types in a big cohomology class. In Section 4 we prove Theorem 1.1. In Sections 5
and 6 we extend the related results of [Berman and Boucksom 2010; Berman et al. 2011] to our partial
context, and prove Theorem 1.2.

2 Preliminaries

2.1 Nonpluripolar products and singularity types

Let X be a compact Kähler manifold. Let � be a smooth real .1; 1/–form on X . Let PSH.X; �/ be
the set of �–plurisubharmonic (�–psh) functions on X . Assume that the cohomology class of � is
pseudoeffective, ie that PSH.X; �/ is nonempty.

Let V� WD supfv 2 PSH.X; �/ W v � 0g be the potential with minimal singularity in PSH.X; �/. We recall
the construction of nonpluripolar product associated to u1; : : : ;un 2 PSH.X; �/ from [Boucksom et al.
2010].

Let k 2N. Using Bedford–Taylor theory [1976], one can consider the following sequence of measures
on X :

1T
j f'j>V��kg.� C ddc max.'1;V� � k//^ � � � ^ .� C ddc max.'n;V� � k//:

It has been shown in [Boucksom et al. 2010, Section 1] that these measures converge weakly to the
so-called nonpluripolar product �'1

^ � � � ^ �'n
as k!1. All complex Monge–Ampère measures will

be interpreted in this sense in our work.

The resulting positive measure �'1
^ � � � ^ �'n

does not charge pluripolar sets. The particular case when
u WD u1 D � � � D un will yield �n

u , the nonpluripolar complex Monge–Ampère measure of u.

For any u 2 PSH.X; �/, let I.u/ denote Nadel’s multiplier ideal sheaf of u, namely, the coherent ideal
sheaf of holomorphic functions f , such that jf j2e�u is integrable. These objects allow us to introduce

Geometry & Topology, Volume 28 (2024)
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an algebraic refinement of the notion of singularity type from the introduction. For u; v 2 PSH.X; �/ we
have the following relations:

� u�I v (also written as Œu��I Œv�) if I.tu/� I.tv/ for all t > 0.

� u'I v (also written as Œu�'I Œv�) if u�I v and v �I u.

The relation 'I induces equivalence classes called I–singularity types Œu�I, for any u 2 PSH.X; �/. As
pointed out in [Darvas and Xia 2022], Œu�D Œv� implies Œu�I D Œv�I, but not vice versa.

The different equivalence relations (' and 'I) admit two different envelope notions, as already alluded
to in the introduction. Let us revisit them in a very general setup, that will be needed later. Let K �X

compact and nonpluripolar, and let v W K ! Œ�1;1� measurable. To such v and u 2 PSH.X; �/ we
associate the following notion of envelope:

P �
K Œu�.v/ WD .supfw 2 PSH.X; �/ W Œw�� Œu�; wjK � vg/;

P �
K Œu�I.v/ WD usc.supfw 2 PSH.X; �/ W Œw��I Œu�; wjK � vg/:

Here and later usc. � / denotes the upper semicontinuous regularization. We omit � and X from our
notation when there is no risk of confusion. In addition, we will use the following shorthand notation,
ubiquitous in the literature:

P Œu� WD P �
X Œu�.0/; P Œu�I WD P �

X Œu�I.0/:

A potential u 2 PSH.X; �/ is model if uD P Œu�, and it is I–model if uD P Œu�I.

For any usc function f WX ! Œ�1;1/ we define

(6) P � .f / WD usc supf' 2 PSH.X; �/ W ' � f g:

Building on the above, for usc functions f1; : : : ; fN we define a notion of rooftop envelope:

P � .f1; : : : ; fN / WD P � .minff1; : : : ; fN g/:

The following lemma was essentially proved in [Darvas et al. 2021]. We recall the short proof as a
courtesy to the reader:

Lemma 2.1 Let u; v 2 PSH.X; �/ such that P � .u; v/ 2 PSH.X; �/. If u; v are model (resp. I–model ),
then P � .u; v/ is also model (resp. I–model ).

Proof Since P .u; v/�min.u; v/, we get that P ŒP .u; v/��P Œu�D u and P ŒP .u; v/��P Œv�D v, hence
P ŒP .u; v/� � P .u; v/. This implies P ŒP .u; v/� D P .u; v/, as desired. The statement about I–model
potentials is proved in the same way.

For any x 2 X and u 2 PSH.X; �/, we denote by �.u;x/ the Lelong number of ' at x. We recall
the following result from [Boucksom et al. 2008], adapted to our context in [Darvas and Xia 2022,
Corollary 2.16]:

Geometry & Topology, Volume 28 (2024)
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Proposition 2.2 Let u; v 2 PSH.X; �/. Then

(i) Œu��I Œv� if and only if �.��u;y/� �.��v;y/ for any smooth modification � W Y !X and any
y 2 Y .

(ii) Œu�'I Œv� if and only if �.��u;y/D �.��v;y/ for any smooth modification � W Y !X and any
y 2 Y .

Corollary 2.3 Let u0;u1; v0; v1 2 PSH.X; �/ with Œu0��I Œv0� and Œu1��I Œv1�. For any t 2 Œ0; 1� we
have Œ.1� t/u0C tu1��I Œ.1� t/v0C tv1�.

Proof This follows from Proposition 2.2(i) and the additivity of Lelong numbers [Boucksom 2017,
Corollary 2.10].

Lastly, we show concavity properties for the envelopes defined above:

Proposition 2.4 Let v 2 C 0.K/ and u0;u1 2 PSH.X; �/. The following hold :

(i) For any t 2 Œ0; 1�, let ut D tu1C .1� t/u0. Then

(7) tPK Œu1�I.v/C .1� t/PK Œu0�I.v/� PK Œut �I.v/; tPK Œu1�.v/C .1� t/PK Œu0�.v/� PK Œut �.v/:

(ii) If Œu0��I Œu1� (resp. Œu0�� Œu1�), then PK Œu0�I.v/� PK Œu1�I.v/ (resp. PK Œu0�.v/� PK Œu1�.v/).

Proof The proof of (ii) follows from the definitions. To prove (i), let h0; h1 2 PSH.X; �/ be such
that Œhi � �I Œui � and hi jK � v. Then by Corollary 2.3, Œth1 C .1 � t/h0� �I Œut �. It is clear that
th1jK C .1� t/h0jK � v. Hence, th1C .1� t/h0 � PK Œut �I.v/.

As h1 and h0 are arbitrary candidates, we conclude the first inequality in (7). The proof of the second
inequality is similar.

2.2 The metric topology of singularity types

Let S.X; �/ be the set of singularity types of �–psh functions: S.X; �/ WDPSH.X; �/='. Let A.X; �/�

S.X; �/ be the set of analytic singularity types, namely, all singularity types Œu� represented by an element
u 2 PSH.X; �/ such that u is locally of the form

(8) uD c log
NX

iD1

jfi j
2
Cg;

where c 2QC, f1; : : : ; fN are holomorphic functions and g is a bounded function. When g can be taken
to be smooth, then following [Demailly 2018] we say that Œu� is a neat analytic singularity type.

Darvas et al. [2021] constructed a pseudometric dS on S.X; �/. As we will use the dS topology extensively
in this work, we recall here a few basic facts, and refer to [Darvas et al. 2021] for a more complete picture.
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The definition of dS involves embedding S.X; �/ into the space of L1 geodesic rays [Darvas et al. 2021,
Section 3]. We do not recall the exact definition, but simply recall that there is a constant C > 0, depending
only on n, such that for any Œu�; Œv� 2 S.X; �/ we have

(9) dS.Œu�; Œv�/�

nX
jD0

�
2

Z
X

�
j
V�
^ �

n�j

maxfu;vg�

Z
X

�
j
V�
^ �n�j

u �

Z
X

�
j
V�
^ �n�j

v

�
� CdS.Œu�; Œv�/:

Note that the term in the middle is independent of the choices of representatives u and v, as a consequence
of [Darvas et al. 2018, Theorem 1.1].

Theorem 2.5 [Darvas et al. 2021, Theorem 1.1] For any ı > 0, the space

Sı.X; �/ WD

�
Œu� 2 S.X; �/

ˇ̌̌ Z
X

�n
u � ı

�
is dS–complete.

We paraphrase another result, to make it easily adaptable to our context:

Lemma 2.6 [Darvas et al. 2021, Lemma 4.3] Let u; v 2 PSH.X; �/ be such that Œu�� Œv� and
R
X �n

u > 0.
For any

b 2

�
1;

� R
X �n

vR
X �n

v �
R
X �n

u

�1=n �
;

there exists h 2 PSH.X; �/ such that hC .b� 1/v � bu. This allows to introduce:

(10) P .buC .1� b/v/ WD usc supfh 2 PSH.X; �/ W hC .b� 1/v � bug 2 PSH.X; �/:

To clarify, when
R
X �n

v D
R
X �n

u the condition on b in the above result is b 2 .1;1/. In addition, by (10),
we have that P .buC .1� b/v/C .b� 1/v � u a.e. on X , hence this inequality holds globally, since both
the left- and right-hand side are quasi-psh functions.

Next we prove continuity results for the envelopes defined above.

Proposition 2.7 Let K � X be a compact and nonpluripolar subset. Let v 2 C 0.K/. Suppose that
uj ;u 2 PSH.X; �/ are such that dS.Œuj �; Œu�/! 0 and

R
X �n

u > 0. Then the following hold :

(i) If uj & u then PK Œuj �I.v/& PK Œu�I.v/ and PK Œuj �.v/& PK Œu�.v/.

(ii) If uj % u then PK Œuj �I.v/% PK Œu�I.v/ a.e. and PK Œuj �.v/% PK Œu�.v/ a.e.

The argument is very similar to that of [Darvas and Xia 2022, Lemma 2.21].

Proof We first prove (i). Since
R
X �n

uj
&
R
X �n

u > 0 [Darvas et al. 2021, Proposition 4.8], by Lemma 2.6,
there exists j̨&0 and hj WDP

�
.1= j̨ /uC.1�.1= j̨ //uj

�
2PSH.X; �/ satisfying .1� j̨ /ujC j̨ hj �u.

By Proposition 2.4,

.1� j̨ /PK Œuj �I.v/C j̨ PK Œhj �I.v/� PK Œ.1� j̨ /uj C j̨ hj �I.v/� PK Œu�I.v/:
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Since fuj gj is decreasing, so is fPK Œuj �I.v/gj , hence w WD limj PK Œuj �I.v/ � P Œu�I.v/ exists. Since

j̨ ! 0 and supX PK Œhj �I.v/ is bounded, we can let j !1 in the above estimate to conclude that
w D PK Œu�I.v/. The same ideas yield that PK Œuj �.v/& PK Œu�.v/.

Proving (ii) is similar. Since
R
X !n

uj
%
R
X !n

u > 0 [Darvas et al. 2018, Theorem 2.3], by [Darvas et al.
2021, Lemma 4.3] there exists j̨ & 0 and hj WD P

�
.1= j̨ /uj C .1� .1= j̨ //u

�
2 PSH.X; �/ satisfying

.1� j̨ /uC j̨ hj � uj . By Proposition 2.4,

.1� j̨ /PK Œu�I.v/C j̨ PK Œhj �I.v/� PK Œ.1� j̨ /uC j̨ hj �I.v/� PK Œuj �I.v/:

Since fuj gj is increasing, so is fPK Œuj �I.v/gj , hence w WD usc limj PK Œuj �I.v/ � PK Œu�I.v/ exists.
Since j̨ ! 0 and supX PK Œhj �I.v/ is bounded, we can let j !1 in the above estimate to conclude
that w D PK Œu�I.v/. The same proof yields that PK Œuj �.v/% PK Œu�.v/ a.e.

2.3 An approximation result of Demailly

Let X be a compact Kähler manifold of dimension n. Let � be a smooth representative of a pseudoeffective
.1; 1/–class on X . Let ! be a Kähler form on X .

Following the terminology of Cao [2014, Defintion 2.3], we recall the existence of quasi-equisingular
approximation for potentials in PSH.X; �/. As elaborated below, this result is implicit in the proof
of [Demailly et al. 2001, Theorem 2.2.1; Demailly and Paun 2004, Theorem 3.2; Demailly 2015,
Theorem 1.6].

Theorem 2.8 Let u 2 PSH.X; �/. Then there exists uD
k
2 PSH.X; � C "k!/ with "k & 0 such that

(i) uD
k
& u,

(ii) ŒuD
k
� 2A.X; � C "k!/,

(iii) I
�
.s2k=.2k � s//uD

k

�
� I.su/� I.suD

k
/ for all s > 0.

Proof Parts (i) and (ii) follow from [Demailly 2015, Theorem 1.6]. The second inclusion of (iii) follows
from u� uD

k
, whereas the first inclusion of (iii) follows from [Demailly 2015, Corollary 1.12].

As shown in [Demailly 2012, page 135, formula (13.14)] (or [Demailly and Paun 2004, Theorem 3.2(iv)]),
for each uD

k
in the above theorem, there exists a holomorphic modification �k W Yk!X , a smooth closed

.1; 1/–form ˇk , and a Q–divisor Dk with snc singularities on Y such that

(11) �uD
k
D ŒDk �Cˇk :

In particular, uD
k
ı�k has neat analytic singularity type; recall (8).

When the pseudoeffective class is induced by a line bundle, we have a related approximation result:
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Remark 2.9 In the case that .L; h/!X is a Hermitian line bundle with c1.L; h/D f�g, .T; hT /!X

is an arbitrary Hermitian line bundle , and �u is a Kähler current with Œu� 2A.X; �/, it is possible to work
with the following alternative approximating sequence:

(12) zuD
k D

1

k
log sup

s2H 0.X ;Lk˝T /R
X hk˝hT .s;s/e

�ku!n�1

hk
˝ hT .s; s/:

For k big enough , this sequence will satisfy zuD
k
CC log k=k � u, by the Ohsawa–Takegoshi theorem.

However , it is not monotone in general. On the other hand , a stronger form of condition (iii) will hold in
this case , namely Œu�� ŒzuD

k
�� Œ˛ku� for some ˛k % 1.

Proof This is a known consequence of the Briancon–Skoda theorem [Demailly 2012], but as a courtesy
to the reader we give a brief argument for the estimate ŒzuD

k
�� Œ˛ku�, the only part that needs to be proved.

As we point out now, this actually follows from the arguments of [Demailly 2012, Remark 5.9].

Let J be the coherent sheaf of holomorphic functions g satisfying jgj �Deu=2c with c 2QC, as in (8),
and D > 0 some positive constant. As pointed out in [Demailly 2012, Remark 5.9], we may assume that
the fj in (8) are local generators of J.

Let � W Y ! X be a smooth modification such that ��1J � OY D O.�D/, where D D
P

j �j Dj is a
normal crossing divisor on Y . The existence of such � follows from Hironaka desingularization.

Now suppose that s 2H 0.X;Lk˝T / satisfies
R
X hk˝hT .s; s/e

�ku!n � 1. By pulling back we obtainZ
Y

hk
˝ hT .s ı�; s ı�/e

�kuı�.��!/n � 1:

As uı�'c
P

j �j log gj for some local generators gj of O.�Dj /, by Fubini’s theorem hk˝hT .sı�; sı�/

vanishes to order at least bkc�jcCd along Dj , where d is an absolute constant, only dependent on � . In
particular, one can find ˛k% 1 such that hk˝hT .sı�; sı�/ vanishes to order at least c˛kk�j along Dj .
Since uı� ' c

P
j �j log gj , we obtain that Œ.1=k/ log hk˝hT .s ı�; s ı�/�� Œ˛kuı��, which in turn

gives ŒzuD
k
ı�� � Œ˛ku ı��, since H 0.X;Lk ˝T ˝I.ku// is finite-dimensional. By pushing forward,

we obtain that ŒzuD
k
�� Œ˛ku�, as desired.

3 The closure of analytic singularity types in S.X; �/

In this section we only assume that � is a smooth representative of a big .1; 1/–cohomology class on X .
Our goal is to prove that the dS–closure of A.X; �/ is the space of I–model singularity types, in the
presence of positive mass. We start with an elementary lemma:

Lemma 3.1 Let � WX 0!X be a smooth modification and u 2 PSH.X; �/. Then we have

��P � Œu�I D P��� Œ��u�I:
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Proof Recall that

(13) P � Œu�I D supfv 2 PSH.X; �/ W v � 0; Œv��I Œu�g:

Let v 2PSH.X; �/ be a candidate of the sup in (13). Then by Proposition 2.2, for any smooth modification
p W Y !X and any y 2 Y , �.p�v;y/� �.p�u;y/. In particular, for any smooth modification q WZ!X 0

and any z 2 Z, we have �.q���v; z/ � �.q���u; z/. By Proposition 2.2 again, Œ��v� �I Œ�
�u�. In

particular, ��v � P��� Œ��u�I. We arrive at the inequality

��.P � Œu�I/� P��� Œ��u�I:

It remains to prove the reverse inequality. There is a unique h 2 PSH.X; �/ such that ��hD P � Œ��u�I.
We need to prove that P � Œu�I � h. It suffices to prove the following claim: for any k > 0, I.ku/�I.kh/.
But we already know that I.k��u/D I.k��h/, while by [Demailly 2012, Proposition 5.8],

I.ku/D ��.KX 0=X ˝I.k��u// and I.kh/D ��.KX 0=X ˝I.k��h//:

Hence, we conclude that I.ku/D I.kh/.

Lemma 3.2 If u 2 PSH.X; �/ satisfies Œu� 2A.X; �/, then Œu�D ŒP Œu��D ŒP Œu�I�.

Proof Since u�I P Œu�I, we get Œu�D ŒP Œu�I� from [Kim 2015, Theorem 4.3]. Since Œu�� ŒP Œu��� ŒP Œu�I�,
it also follows that Œu�D ŒP Œu��.

Proposition 3.3 Let u 2 PSH.X; �/. Then P �C"j! ŒuD
j �I & P � Œu�I as j !1, where the sequence

uD
j 2 PSH.X; � C "j!/ is the approximating sequence of Theorem 2.8. Moreover , if �u is a Kähler

current , then P � ŒuD
j �I& P � Œu�I as j !1.

Proof We can suppose that u� 0. Since ŒuD
j �� Œu� we have that P �C"j! ŒuD

j �I �P �C"j! Œu�I �P � Œu�I.
Since fuD

j gj is decreasing, we have that v WD limj P �C"j! ŒuD
j �I 2 PSH.X; �/ exists and u� v.

Observe that P � Œv�I D v, since any candidate h 2 PSH.X; �/ for P � Œv�I is also a candidate for each
P �C"j! ŒuD

j �I. Hence, to finish the argument, it is enough to show that I.tu/ D I.tv/ for all t > 0.
By Theorem 2.8, for any ı > 1 and t > 0 there exists k0.ı; t/ > 0 such that for all k � k0 we have
I.tıv/ � I.tıuD

k
/ � I.tu/. Letting ı & 1, the strong openness theorem of Guan and Zhou [2015]

implies that I.tv/� I.tu/. Since the reverse inclusion is trivial, the proof of the first assertion is finished.

To prove the second assertion, assume that �u is a Kähler current. Hence, for j large enough, it holds
that uD

j 2 PSH.X; �/. On the other hand, observe that P �C"j! ŒuD
j �I � P � ŒuD

j �I � P � Œu�I, hence
P � ŒuD

j �I& P � Œu�I as j !1.

We note the following important corollary of this result, which will be used numerous times in this work:
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Corollary 3.4 Let u 2 PSH.X; �/. ThenZ
X

.� C "j!/
n

uD
j

D

Z
X

.� C "j!/
n

P
�C"j ! ŒuD

j
�I
&

Z
X

�n
P� Œu�I

as j !1;

where uD
j 2 PSH.X; � C "j!/ is the approximating sequence of Theorem 2.8.

Proof The equality follows from Lemma 3.2 and [Witt Nyström 2019, Theorem 1.1].

Since P �C"j! ŒuD
j �I � P � Œu�I, we can start with the following inequality:

lim
j!1

Z
X

.� C "j!/
n

P
�C"j ! ŒuD

j
�I
� lim

j!1

Z
X

.� C "j!/
n
P� Œu�I

D

Z
X

�n
P� Œu�I

:

To finish the proof, we will argue that limj

R
X .�C"j!/

n

P
�C"j ! ŒuD

j
�I
�
R
X �n

P� Œu�I
. Indeed, fixing j0 2N,

lim
j!1

Z
X

.� C "j!/
n

P
�C"j ! ŒuD

j
�I
D lim

j!1

Z
fP
�C"j ! ŒuD

j
�ID0g

.� C "j!/
n

P
�C"j ! ŒuD

j
�I

� lim
j!1

Z
fP
�C"j ! ŒuD

j
�ID0g

.� C "j0
!/n

P
�C"j ! ŒuD

j
�I

�

Z
fP� Œu�ID0g

.� C "j0
!/n

P� Œu�I
;

where in the first line we have used that P �C"j! ŒuD
j �I D P �C"j! ŒuD

j � from [Darvas and Xia 2022,
Proposition 2.20] together with [Darvas et al. 2018, Theorem 3.8], and in the last line we have used
Proposition 3.3 and [Darvas et al. 2021, Proposition 4.6]. Letting j0 !1, we arrive at the desired
conclusion:

lim
j!1

Z
X

.� C "j!/
n

uD
j

� lim
j0!1

Z
fP� Œu�ID0g

.� C "j0
!/n

P� Œu�I
D

Z
fP� Œu�ID0g

�n
P� Œu�I

�

Z
X

�n
P� Œu�I

:

Corollary 3.5 Let  2 PSH.X; �/. The following hold :

(i)
R
X .� C "!C ddcP �C"! Œ �I/

n&
R
X �n

P� Œ �I
as "& 0.

(ii) If � is a Kähler current , then
R
X .� � "!C ddcP ��"! Œ �I/

n%
R
X �n

P� Œ �I
as "& 0.

Proof We approximate  with  D
j 2 PSH.X; � C "j!/ from Theorem 2.8. For " > 0, applying

Corollary 3.4 for 2PSH.X; �C"!/ (for the same approximating sequence D
j 2PSH.X; �C."C"j /!/

independent of ") we get thatZ
X

.� C "!C ddcP �C"! Œ �I/
n
D lim

j!1

Z
X

.� C ."C "j /!C ddc D
j /n;Z

X

.� C ddcP � Œ �I/
n
D lim

j!1

Z
X

.� C "j!C ddc D
j /n:

Using the multilinearity of nonpluripolar products, (i) follows. The proof of (ii) follows the same pattern
and is left to the reader.
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Proposition 3.6 Let u 2 PSH.X; �/ be such that
R
X �n

u > 0. Then there exists v 2 PSH.X; �/ such that
u� v and �v � ı! for some ı > 0.

Proof We may assume that u� 0. Since u� V� and
R
X �n

V�
�
R
X �n

u > 0, by Lemma 2.6 there exists
b > 0 such that h WD P ..1C b/u� bV� / 2 PSH.X; �/ and

b

bC1
V� C

1

bC1
h� u:

By [Boucksom 2002b], there exists w 2 PSH.X; �/ such that w � 0 and �w � ı0! for some ı0 > 0. Since
w � V� , we obtain that

v WD
b

bC1
wC

1

bC1
h� u

and �v � .bı0=.bC 1//!.

Next we extend [Darvas and Xia 2022, Theorem 2.24] to big cohomology classes.

Lemma 3.7 Let u 2 PSH.X; �/. Assume that �u is a Kähler current. Let uD
k

be the approximation
sequence in Theorem 2.8. Then

(14) dS.Œu
D
k �;P

� Œu�I/! 0 as k!1:

In particular ,

(15) lim
k!1

Z
X

�n

uD
k

D

Z
X

�n
P� Œu�I

:

Proof First observe that uD
k
2 PSH.X; �/ when k is large enough, so (14) indeed makes sense. The

second assertion follows from the first and [Darvas et al. 2021, Lemma 3.7], so it suffices to prove the
first. By Proposition 3.3, P � ŒuD

k
�I decreases to P � Œu�I as k!1.

Since the potentials P � ŒuD
k
�I are model [Darvas and Xia 2022, Proposition 2.18(i)], by [Darvas et al. 2021,

Lemma 3.6, Proposition 4.8] we obtain that dS.ŒP
� Œu�I�; ŒP

� ŒuD
k
��I/! 0 as k!1. By Lemma 3.2 we

conclude (14) .

Theorem 3.8 Suppose that u 2 PSH.X; �/ is such that
R
X �n

u > 0. Then Œu� 2A.X; �/dS if and only if
ŒP Œu�� D ŒP Œu�I�. Additionally , if ŒP Œu�� D ŒP Œu�I� and �u is a Kähler current , then the regularization
sequence fŒuD

k
�gk of Theorem 2.8 dS–converges to Œu�.

Here the notation A.X; �/dS means the closure of A.X; �/ in S.X; �/ with respect to the dS–metric.

Proof To begin, let v 2 PSH.X; �/ be such that v � u and �v � ı! for some ı > 0. Such v exists by
Proposition 3.6. Let vt WD .1� t/vC tu, with t 2 Œ0; 1�. Then �vt

is a Kähler current for t 2 Œ0; 1/ and
vt % u a.e. as t % 1.

Assume first that ŒP Œu�I�D ŒP Œu��. By replacing u with P Œu�I, we can additionally assume that uDP Œu�I.
By [Darvas and Xia 2022, Lemma 2.21(iii)] we obtain that P Œvt �I%P Œu�IDu a.e. as t! 1. In particular,
by [Darvas et al. 2021, Lemma 4.1] we obtain that dS.P Œvt �I; Œu�/! 0 as t ! 1.
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Let us fix t 2 Œ0; 1/. By the above, it is enough to argue that ŒP Œvt �I� 2 AdS . For this we apply the
regularization method of Theorem 2.8 to vt , obtaining vD

t;k
2 PSH.X; �/ such that ŒvD

t;k
� 2A.X; �/ (we

used here that �vt
is a Kähler current). By Lemma 3.7, dS.Œv

D
t;k
�; Œvt �/! 0 as k!1. So ŒP Œvt �I� 2AdS,

and we conclude.

In the reverse direction, suppose there exists Œvj � 2A.X; �/ such that dS.Œvj �; Œu�/! 0. By Lemma 3.2,
we can assume that vj DP Œvj �IDP Œvj �. In addition, we can assume that uDP Œu�, since dS.u;P Œu�/D 0

[Darvas et al. 2021, Theorem 3.3]. Since
R
X �n

u > 0, after possibly restricting to a subsequence of vj ,
we can use [Darvas et al. 2021, Theorem 5.6] to conclude existence of an increasing sequence of model
potentials fwj g 2 PSH.X; �/ such that wj � vj and dS.Œwj �; Œu�/! 0. As pointed out after the statement
of [Darvas et al. 2021, Theorem 5.6], after possibly taking a subsequence of the vj , we can take

wj WD lim
k!1

P .vj ; vjC1; : : : ; vjCk/:

Since all the vj are I–model, an iterated application of Lemma 2.1 implies that so is

hj ;k WD P .vj ; vjC1; : : : ; vjCk/:

Moreover, since wj is the decreasing limit of the hj ;k , then wj is I–model too [Darvas and Xia 2022,
Lemma 2.21(i)]. Lastly, since u is the increasing limit of the wj , then u is I–model as well [Darvas and
Xia 2022, Lemma 2.21(iii)].

4 Proof of Theorem 1.1

Let X be a connected compact Kähler manifold of dimension n. For this section, let T be an arbitrary
holomorphic vector bundle on X , with rank r .

4.1 The case of integral line bundles

Let L be a pseudoeffective line bundle on X . Let h be a smooth Hermitian metric on L such that
� WD c1.L; h/. We fix a Kähler form ! on X such that ! � � is a Kähler form.

Proposition 4.1 Suppose that u 2 PSH.X; �/. Then

lim
k!1

1

kn
h0.X;T ˝Lk

˝I.ku//�
r

n!

Z
X

�n
P Œu�I

:

Proof Since P ŒP Œu�I�I D P Œu�I and I.sP Œu�I/D I.su/ for all s > 0 [Darvas and Xia 2022, Proposi-
tion 2.18(ii)], we can replace u with P Œu�I to assume that u is I–model.

Next we apply the regularization method of Theorem 2.8 to u, obtaining uD
j 2 PSH.X; �C"j!/ such that

ŒuD
j � 2A.X; � C "j!/ and uD

j & u. Let �k W Yk !X be the smooth resolution of singularities of (11).
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By [Demailly 2012, Proposition 5.8] and [Bonavero 1998, Théorème 2.1] applied to q D 0 on Yk (see
also [Ma and Marinescu 2007, Theorem 2.3.18]), we obtain that

lim
k!1

1

kn
h0.X;T ˝Lk

˝I.ku//� lim
k!1

1

kn
h0.X;T ˝Lk

˝I.kuD
j //

D lim
k!1

1

kn
h0.Y; ��k T ˝ .��k L/k ˝KY=X ˝I.kuD

j ı�k//

�
r

n!

Z
Yk.0/

��k �
n

uD
j

D
r

n!

Z
�k.Yk.0//

�n

uD
j

�
r

n!

Z
�k.Yk.0//

.� C "j!/
n

uD
j

�
r

n!

Z
X

.� C "j!/
n

uD
j

;

where Yk.0/ � Yk is the set contained in the smooth locus of the .1; 1/–current ��
k
�uD
j

where the
eigenvalues of ��

k
�uD
j

are all positive. By Corollary 3.4, limj!1

R
X .� C "j!/

n

uD
j

D
R
X �n

u , finishing the
argument.

Lemma 4.2 Let u 2 PSH.X; �/ such that �u is a Kähler current. Let ˇ 2 .0; 1/. Then there exists
k0 WD k0.u; ˇ/ such that for all k � k0 there exists vˇ;k 2 PSH.X; �/ satisfying

(i) P Œu�I � .1�ˇ/u
D
k
Cˇvˇ;k ,

(ii)
R
X �n

vˇ;k
> 0.

Proof Due to Lemma 3.7, we have that
R
X �n

uD
k

&
R
X �n

P Œu�I
. In particular, there exists k0 > 0 such that

1

ˇn
<

R
X �n

uD
kR

X �n

uD
k

�
R
X �n

P Œu�I

for all k � k0:

By Lemma 2.6 we obtain that

vk;ˇ WD P
�

1

ˇ
P Œu�I�

1�ˇ

ˇ
uD

k

�
2 PSH.X; �/ and P Œu�I � .1�ˇ/u

D
k Cˇvˇ;k :

Now we show that vˇ;k has positive mass. Pick ˇ0 2 .0; ˇ/ such that

1

ˇ0n
<

R
X �n

uD
kR

X �n

uD
k

�
R
X �n

P Œu�I

for all k � k0:

Then
h WD P

�
1

ˇ0
P Œu�I�

1�ˇ0

ˇ0
uD

k

�
2 PSH.X; �/

is defined as well, and vk;ˇ � .ˇ
0=ˇ/hC ..ˇ�ˇ0/=ˇ/uD

k
2 PSH.X; �/, implying thatZ

X

�n
vk;ˇ
�
.ˇ�ˇ0/n

ˇn

Z
X

�n

uD
k

�
.ˇ�ˇ0/n

ˇn

Z
X

�n
u > 0;

where we applied [Witt Nyström 2019, Theorem 1.1] twice.
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Proposition 4.3 Suppose that u 2 PSH.X; �/ with �u > ı! for some ı > 0. Then

lim
j!1

1

j n
h0.X;T ˝Lj

˝I.j u//�
r

n!

Z
X

�n
P Œu�I

:

Proof To start, we fix a number ˇD p=q 2 .0;min.ı; 1//\Q. It suffices to show that there is a constant
C > 0, only dependent on r , n and � , such that

lim
j!1

1

j n
h0.X;T ˝Lj

˝I.j u//�
r

n!

Z
X

�n
P Œu�I

�Cˇ:

Writing j D aqC b for some b D 0; : : : ; q� 1, observe that

h0.X;T ˝Lj
˝I.j u//� h0

�
X;T ˝Lb�q

˝L.aC1/q
˝I..aC 1/qu/

�
:

Absorbing Lb�q into T , and noticing that b� q can only take a finite number of values, we find that it
suffices to prove that

(16) lim
j!1

1

j nqn
h0.X;T ˝Ljq

˝I.j qu//�
r

n!

Z
X

�n
P Œu�I

�Cˇ

for an arbitrary twisting bundle T .

By Lemma 4.2, there is k0 > 0 depending on ˇ and u such that for k � k0, there exists a potential
vˇ;k 2 PSH.X; �/ of positive mass such that

P Œu�I � wˇ;k WD .1�ˇ/u
D
k Cˇvˇ;k for all k � k0:

For big enough k0 we also have �uD
k
> ˇ! � ˇ� for all k � k0. In particular, uD

k
2 PSH.X; .1�ˇ/�/.

We have H 0.X;T ˝Ljq˝I.j qu//�H 0.X;T ˝Ljq˝I.j qwˇ;k//, hence

(17) h0.X;T ˝Ljq
˝I.j qu//� h0.X;T ˝Ljq

˝I.j qwˇ;k//:

For each fixed k > 0, we can take a resolution of singularities � WY !X such that ��uD
k

has neat analytic
singularities along a normal crossing Q–divisor, as described in (11). By [Demailly 2012, Proposition 5.8]
and the projection formula,

(18) h0.X;T ˝Ljq
˝I.j qwˇ;k//D h0.Y; ��T ˝KY=X ˝ .�

�L/jq
˝I.j q��wˇ;k//:

Since
R

Y .�
�� C ddc��vˇ;k/

n D
R
X �n

vˇ;k
> 0, there exists a nonzero section

sj 2H 0.Y; ��Lˇjq
˝I.ˇj q��vˇ;k//DH 0.Y; ��Ljp

˝I.jp��vˇ;k//

for all j large enough, by Lemma 4.4. Hence applying Lemma 4.5 for T WD��T˝KY=X , E1D�
�Lq�p ,

E2 D �
�Lp, �1 WD q��uD

k
, �2 WD p��vˇ;k , sj WD sj and " WD ˇ, we find

(19) h0.Y; ��T ˝KY=X ˝�
�Ljq

˝I.j q��wk;ˇ//

D h0
�
Y; ��T ˝KY=X ˝�

�L.q�p/j
˝��Lpj

˝I..1�ˇ/j q��uD
k C jp��vˇ;k/

�
� h0.Y; ��T ˝KY=X ˝�

�L.q�p/j
˝I.j q��uD

k //

for j large enough (depending on k).
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Since �uD
k
>ˇ!�ˇ� , we notice that quD

k
2PSH.X; �.q�p//. Hence, by [Bonavero 1998, Théorème 2.1,

Corollaire 2.2] (see also [Darvas and Xia 2022, Theorem 2.26]), we have the estimates

(20) lim
j!1

1

j nqn
h0.Y; ��T ˝KY=X ˝�

�L.1�ˇ/qj
˝I.j q��uD

k //

D lim
j!1

1

j nqn
h0.Y; ��T ˝KY=X ˝�

�L.q�p/j
˝I.j q��uD

k //

D
r

qnn!

Z
Y

..q�p/��� C qddc��uD
k /

n
D

r

n!

Z
X

..1�ˇ/� C ddcuD
k /

n

�
r

n!

Z
X

�n

uD
k

�Cˇ;

where C > 0 depends only on r , n and � . Putting together (17)–(20), we obtain

lim
j!1

1

j n
h0.X;T ˝Lj

˝I.j u//�
r

n!

Z
X

�n

uD
k

�Cˇ:

Letting k!1 and applying Lemma 3.7, we conclude (16).

Lemma 4.4 Suppose that L!X is a big line bundle , with smooth Hermitian metric h. Let � D c1.L; h/.
Let v 2 PSH.X; �/ with

R
X �n

v > 0. Then for m big enough there exists an s 2 H 0.X;Lm˝ I.mv//

which is nonvanishing.

Proof By Proposition 3.6 there exists w 2 PSH.X; �/ such that w � v and �w � ı!. By [Demailly
2012, Theorem 13.21], for m big enough there exists an s 2 H 0.X;Lm˝I.mw// which is nonzero.
Since w � v, we get that s 2H 0.X;Lm˝I.mv//.

Lemma 4.5 Suppose that E1, E2 and T are vector bundles over a connected complex manifold Y, with
rank E2 D 1, and that �1 and �2 are quasi-psh functions on Y, with �1 having normal crossing divisorial
singularity type. Suppose that there exists a nonzero section sj 2 H 0.Y;E

˝j
2
˝I.j�2// for all j big

enough. Then for any " 2 .0; 1/, the map w 7! w˝ sj between the vector spaces

H 0.Y;T ˝E
˝j
1
˝I.j�1//!H 0

�
Y;T ˝E

˝j
1
˝E

˝j
2
˝I.j .1� "/�1C j�2/

�
is well defined and injective for all j big enough.

Proof Suppose that the singularity type of �1 is given by the effective normal crossing R–divisorP
j j̨ Dj with j̨ > 0. By [Demailly 2012, Remark 5.9] we have that

I.j�1/D OY

�
�

X
m

b˛mj cDj

�
:

We obtain that we�j.1�"/�1 is bounded for any w 2H 0.Y;T ˝E
j
1
˝I.j�1// and j big enough. Since

sj 2H 0.Y;E
˝j
2
˝I.j�2//, we obtain that

w˝ sj 2H 0
�
Y;T ˝E

˝j
1
˝E

˝j
2
˝I.j .1� "/�1C j�2/

�
:

Injectivity of w 7! w˝ sj follows from the identity theorem of holomorphic functions.
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Theorem 4.6 Suppose that u 2 PSH.X; �/. Then

(21) lim
k!1

1

kn
h0.X;T ˝Lk

˝I.ku//D
r

n!

Z
X

�n
P Œu�I

:

Proof Since both sides of (21) only depend on P Œu�I, we can assume that P Œu�I D u. Proposition 4.1
implies (21) for

R
X �n

u D0, so we can also assume that
R
X �n

u >0. In particular, L is a big line bundle and X

is projective. By Proposition 3.6, there exists v�u such that �v is a Kähler current. Let vt WD .1�t/vCtu.
Then �vt

is a Kähler current for t 2 Œ0; 1/, so we can apply Proposition 4.3 to obtain that

lim
k!1

1

kn
h0.X;T ˝Lk

˝I.ku//� lim
k!1

1

kn
h0.X;T ˝Lk

˝I.kvt //�
r

n!

Z
X

�n
P Œvt �I

:

Letting t ! 0 and using [Darvas and Xia 2022, Lemma 2.21(iii)], we obtain that

lim
k!1

1

kn
h0.X;T ˝Lk

˝I.ku//�
r

n!

Z
X

�n
P Œu�I

:

The reverse inequality follows from Proposition 4.1.

4.2 The case of R–line bundles

In this subsection we extend Theorem 4.6 to R–line bundles. First we deal with the case of Q–line
bundles.

Corollary 4.7 Let L be a pseudoeffective Q–line bundle on X , represented by an effective Q–divisor D.
Let � be a smooth form representative of c1.L/. Let u 2 PSH.X; �/. Then

(22) lim
k!1

1

kn
h0.X;T ˝OX .bkDc/˝I.ku//D

r

n!

Z
X

�n
P Œu�I

:

Proof We may assume that D0 WD aD is a line bundle L0 for some a 2N. For each k 2N, write

k D k0aC k 0; where k0 2N; k 0 2 Œ0; a� 1/:

Note that the difference bkDc�k0D0 can represent only a finite number of different line bundles. Hence,
in order to prove (22), it suffices to establish the following: for each fixed k 0 2 Œ0; a� 1/,

lim
k0!1

1

kn
0
an

h0.X;T ˝L0k0 ˝I.k0auC k 0u//D
r

n!

Z
X

�n
P Œu�I

:

Observe that I.k0auC k 0u/� I.k0au/, so by Theorem 4.6 we have

lim
k0!1

1

kn
0
an

h0.X;T ˝L0k0 ˝I.k0auC k 0u//�
r

n!

Z
X

�n
P Œu�I

:
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On the other hand, as I.k0auC k 0u/� I..k0C 1/au/, we get

lim
k0!1

1

kn
0
an

h0.X;T ˝L0k0 ˝I.k0auC k 0u//

� lim
1

kn
0
an

h0
�
X;T ˝L0k0 ˝I..k0C 1/au/

�
D lim

k0!1

1

..k0C 1/a/n
h0
�
X;T ˝L0�˝L0k0C1

˝I..k0C 1/au/
�

D
r

n!

Z
X

�n
P Œu�I

;

where in the last step we again used Theorem 4.6, finishing the proof.

Corollary 4.8 Assume that X is projective. Let D be a big R–divisor on X . Let � be a smooth form
representing the cohomology class ŒD�. Let u 2 PSH.X; �/. Then

(23) lim
k!1

1

kn
h0.X;T ˝OX .bkDc/˝I.ku//D

r

n!

Z
X

�n
P Œu�I

:

Proof We first deal with the � direction in (23). Fix ı > 0. Fix " > 0, so thatZ
X

.� C "!C ddcP �C"! Œu�I/
n <

Z
X

�n
P Œu�I

C ı:

This is possible by Corollary 3.5(i). Take a Q–divisor Dı such that the cohomology class fDı�Dg has a
smooth positive representative �ı � "!. As a result, Dı �D is ample. This is possible as X is projective.
We have u 2 PSH.X; �C�ı/. Then OX .bkDıc�bkDc/ has a nonzero global section s for k big enough.
As a result, the map H 0.X;T ˝ OX .bkDc/˝ I.ku//! H 0.X;T ˝ OX .bkDıc/˝ I.ku// given by
s0 7! s0˝ s is injective, allowing us to write the estimates

lim
k!1

1

kn
h0.X;T ˝OX .bkDc/˝I.ku//� lim

k!1

1

kn
h0.X;T ˝OX .bkDı

c/˝I.ku//

D
r

n!

Z
X

.� C �ıC ddcP �C�ı Œu�I/
n

�
r

n!

Z
X

.� C "!C ddcP �C"! Œu�I/
n

�
r

n!

Z
X

�n
P Œu�I

C
rı

n!
;

where in the second line we have used Theorem 4.6. Letting ı! 0C, we conclude the � direction in (23).

For the reverse direction, we can replace u by P Œu�I, as in the proof of Theorem 4.6. Hence, we can assume
that u is I–model. If

R
X �n

u D 0, we are done by the previous arguments, so we can assume that
R
X �n

u > 0.

We first treat the case where �u > "0! for some "0 > 0. Fix ı > 0. Fix " 2 .0; "0/, so thatZ
X

.� � "!C ddcP ��"! Œu�I/
n >

Z
X

�n
P Œu�I

� ı:
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This is possible by Corollary 3.5(ii). Take a Q–divisor Dı so that fD �Dıg has a smooth positive
representative �ı � "!. As a result, D �Dı is ample. Then we have u 2 PSH.X; � � �ı/. As before,
we have the estimates

lim
k!1

1

kn
h0.X;T ˝OX .bkDc/˝I.ku//� lim

k!1

1

kn
h0.X;T ˝OX .bkDı

c/˝I.ku//

D
r

n!

Z
X

.� � �ıC ddcP ���ı Œu�I/
n

�
r

n!

Z
X

.� � "!C ddcP ��"! Œu�I/
n

�
r

n!

Z
X

�n
P Œu�I

�
rı

n!
;

where in the second line we have used Theorem 4.6. Letting ı! 0C, we conclude (23) in this case.

Finally, we treat the general case. By Proposition 3.6, there exists v 2 PSH.X; �/, such that v � u and
�v is a Kähler current. Set ut WD .1� t/uC tv for t 2 Œ0; 1�. For t 2 .0; 1�, �ut

is still a Kähler current.
By the special case treated above, we get

(24) lim
k!1

1

kn
h0.X;T ˝OX .bkDc/˝I.ku//� lim

k!1

1

kn
h0.X;T ˝OX .bkDc/˝I.kut //

D
r

n!

Z
X

�n
P Œut �I

for t 2 .0; 1�. As t & 0 we have ut % u, hence P Œut �I% P Œu�I a.e. by Proposition 2.7(ii). By [Darvas
et al. 2018, Theorem 2.3],

R
X �n

P Œut �I
%
R
X �n

P Œu�I
. Letting t & 0 in (24), we find the desired inequality

lim
k!1

1

kn
h0.X;T ˝OX .bkDc/˝I.ku//�

r

n!

Z
X

�n
P Œu�I

:

5 Envelopes of singularity types with respect to compact sets

Let X be a connected compact Kähler manifold of dimension n. For this whole section, let K � X

be a closed nonpluripolar set. Let � be a closed real .1; 1/–form on X representing a pseudoeffective
cohomology class. Let u 2 PSH.X; �/.

Let v W K ! Œ�1;1/ be a function. We introduce the following K–relative envelopes and their
regularizations, refining the definitions from Section 2.1:

E�
K Œu�I.v/ WD supfh 2 PSH.X; �/ W hjK � v and Œh��I Œu�g; P �

K Œu�I.v/ WD usc.E�
K Œu�I.v//;

E�
K Œu�.v/ WD supfh 2 PSH.X; �/ W hjK � v and Œh�� Œu�g; P �

K Œu�.v/ WD usc.E�
K Œu�.v//:

We omit � and K from the notation when there is no risk of confusion. When v is bounded, neither of
the above candidate sets are empty: one can always take hD u�C for a large enough constant C .
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We note the following maximum principles, that follow from the above definitions:

Lemma 5.1 Let v 2 C 0.K/. Let h 2 PSH.X; �/. Assume that Œh�� Œu�, then

(25) sup
K

.h� v/D sup
X nfhD�1g

.h�EK Œu�.v//D sup
X nfEK Œu�.v/D�1g

.h�EK Œu�.v//:

Proof We prove the first equality first. We write S D fhD�1g.

By definition, EK Œu�.v/jK � v, so

.h�EK Œu�.v//jKnS� hjKnS � vjKnS :

This implies that supK .h� v/� supX nS .h�EK Œu�.v//.

Conversely, observe that supK .h� v/ > �1 as K is nonpluripolar. Let h0 WD h� supK .h� v/. Then h0

is a candidate in the definition of EK Œu�.v/, hence h0 �EK Œu�.v/, namely

h� sup
K

.h� v/�EK Œu�.v/;

the latter implies that supK .h� v/� supX nS .h�EK Œu�.v//, finishing the proof of the first identity.

We have fEK Œu�.v/D�1g�S , and we notice that points in S nfEK Œu�.v/D�1g do not contribute to
the supremum of h�EK Œu�.v/ on X nfEK Œu�.v/D�1g, hence the last equality of (25) also follows.

Next we make the following observations about the singularity types of our envelopes:

Lemma 5.2 For any v 2 C 0.K/ we have ŒPK Œu�.v/�D ŒP Œu�� and ŒPK Œu�I.v/�D ŒP Œu�I�. In particular ,
if Œu� 2A.X; �/, then PK Œu�.v/D PK Œu�I.v/.

Proof Let C > 0 such that �C � v � C . Then P Œu��C � PK Œu�.v/. Since K is nonpluripolar, for
h2PSH.X; �/ the condition hjK �v�C implies that h� zC on X for some zC WD zC .C;K/>0; see [Guedj
and Zeriahi 2007, Corollary 4.3]. This implies that PK Œu�.v/�P Œu�C zC , giving ŒPK Œu�.v/�D ŒP Œu��. The
exact same argument applies in case of the P Œ � �I envelope as well. Finally, when Œu� 2A.X; �/, we have
that Œu�D ŒP Œu�I�D ŒP Œu�� (Lemma 3.2). We claim that for h2PSH.X; �/, Œh�� Œu� if and only if Œh��I Œu�.
This claim immediately gives PK Œu�.v/D PK Œu�I.v/. The forward direction of the claim is trivial, so
suppose Œh��I Œu�. We then have P Œh�I � P Œu�I. This implies that Œh�� ŒP Œh�I�� ŒP Œu�I�D Œu�.

Corollary 5.3 Let u 2 PSH.X; �/ and v 2 C 0.X /. Then PK Œu�I.v/D PK ŒPK Œu�I.v/�I.v/.

Proof By definition, the right-hand side is the usc regularization of

supfh 2 PSH.X; �/ W hjK � v; Œh��I PK Œu�I.v/g:

By Lemma 5.2 and [Darvas and Xia 2022, Proposition 2.18(ii)], this expression can be rewritten as

supfh 2 PSH.X; �/ W hjK � v; Œh��I Œu�g:

The usc regularization of the latter expression is just PK Œu�I.v/.
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Lemma 5.4 Let u 2 PSH.X; �/ be a potential with positive mass. Let v 2 C 0.K/. Let S � X be a
pluripolar set. Let h 2 PSH.X; �/ satisfy Œh�� Œu�. Assume that h has positive mass and hjKnS � vjKnS .
Then h� PK Œu�.v/.

Proof By the global Josefson theorem [Guedj and Zeriahi 2005, Theorem 7.2], there is � 2 PSH.X; �/
such that S � f�D�1g. We claim that we can choose � so that �� h. In fact, since

R
X �n

h
> 0, fixing

some � and " > 0 small enough, we haveZ
X

�n
"�C.1�"/V�

C

Z
X

�n
h >

Z
X

�n
V�
:

Thus, by [Darvas et al. 2021, Lemma 5.1], we have P ."�C .1� "/V� ; h/ 2 PSH.X; �/. Since we have
P ."�C .1� "/V� ; h/� "�, the claim is proved by replacing � with P ."�C .1� "/V� ; h/.

Fix �� h as above. For any ı 2 .0; 1/, we have

.1� ı/hjK C ı�jK � v and Œ.1� ı/hC ı��� Œu�:

Hence, .1� ı/hC ı�� PK Œu�.v/. Letting ı& 0, we conclude that h� PK Œu�.v/.

Corollary 5.5 Let u 2 PSH.X; �/ be a potential with positive mass. Let v 2 C 0.K/. Then

PK Œu�.v/D PX Œu�.PK ŒV� �.v//:

Proof It is clear that PK Œu�.v/� PX Œu�.PK ŒV� �.v//. For the reverse direction, it suffices to prove that
any h 2 PSH.X; �/ such that Œh� � Œu�, h � PK ŒV� �.v/ satisfies h � PK Œu�.v/. As u has positive mass,
we can assume that h has positive mass as well. Let S D fPK ŒV� �.v/ >EK ŒV� �.v/g. By [Bedford and
Taylor 1982, Theorem 7.1], S is a pluripolar set. Observe that hjKnS � vjKnS , hence by Lemma 5.4,
h� PK Œu�.v/ and we conclude.

The next result motivates our terminology to call the measures �n
PK Œu�.v/

the partial equilibrium measures
of our context.

Lemma 5.6 Let v 2 C 0.K/. Let u 2 PSH.X; �/. Then �n
PK Œu�.v/

does not charge X nK. Moreover ,
PK Œu�.v/jK D v a.e. with respect to �n

PK Œu�.v/
. More precisely, we have

(26) �n
PK Œu�.v/

� 1K\fPK Œu�.v/DPK ŒV� �.v/Dvg �
n
PK ŒV� �.v/

:

Proof First we address the case when uD V� .

Let S �X be a closed pluripolar set such that V� is locally bounded on X nS .

For the first assertion, it suffices to show that �n
PK ŒV� �.v/

does not charge any open ball B b X n .S [K/.

By Choquet’s lemma, we can take an increasing sequence hj 2 PSH.X; �/ converging to PK ŒVmin�.v/

a.e. and hj jK � v. By [Bedford and Taylor 1982, Proposition 9.1], we can find wj 2 PSH.X; �/ such
that .� C ddcwj jB/

n D 0 and wj agrees with hj outside B. Note that wj is clearly increasing and
wj � hj , along with wj jK � v. It follows that wj converges to PK ŒV� �.v/ as well. By continuity of the
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Monge–Ampère operator along increasing bounded sequences [Darvas et al. 2018, Theorem 2.3], we find
that �n

PK ŒV� �.v/
does not charge B, as desired.

For the second assertion, let x 2 .X nS/\K be a point such that PK ŒV� �.v/.x/ < v.x/� " for some
" > 0. Let B be a ball centered at x, small enough so that � has a local potential on B, allowing us to
identify �–psh functions with psh functions (on B). By shrinking B, we can further guarantee

(i) B �X nS ,

(ii) PK ŒV� �.v/jB < v.x/� ",

(iii) vjB\K > v.x/� ".

Construct the sequences hj and wj as above. On B, by choosing a local potential of � , we may identify
hj and wj with the corresponding psh functions in a neighborhood of B. By 2. we have wj � v.x/� "

on @B, hence by the comparison principle, wj jB � v.x/� ". By (3) we have wj jB\K � vjB\K . Thus,
we conclude that �n

PK ŒV� �.v/
does not charge B, as in the previous paragraph.

For the general case, we can assume
R
X �n

u > 0. Indeed, due to Lemma 5.2, we have
R
X �n

PK Œu�.v/
D
R
X �n

u ,
hence there is nothing to prove if

R
X �n

u D 0. By Corollary 5.5, PK Œu�.v/ D PX Œu�.PK ŒV� �.v//. Now
[Darvas et al. 2018, Theorem 3.8] gives

�n
PK Œu�.v/

� 1fPK Œu�.v/DPK ŒV� �.v/g�
n
PK ŒV� �.v/

� 1fPK Œu�.v/Dvg�
n
PK ŒV� �.v/

;

where in the last inequality we have used the first part of the argument.

Corollary 5.7 Let v 2 C 0.K/. Let u 2 PSH.X; �/. Then �n
PK Œu�.v/

(resp. �n
PK Œu�I.v/

) does not charge
.X nK/[fPK Œu�.v/ < vg (resp. .X nK/[fPK Œu�I.v/ < vg).

Proof The first part of the corollary follows from Lemma 5.6. For the second part, we can assume thatR
X �n

PK Œu�I.v/
>0, otherwise there is nothing to prove. By definition, we have PK Œu�I.v/DPK ŒP Œu�I�I.v/.

Next we show that PK ŒP Œu�I�I.v/D PK ŒP Œu�I�.v/. The inequality PK ŒP Œu�I�I.v/ � PK ŒP Œu�I�.v/ is
trivial. By Lemma 5.2 we get that ŒPK ŒP Œu�I�I.v/� D ŒP Œu�I�. Due to Choquet’s lemma, we get that
PK ŒP Œu�I�I.v/� v on KnS , where S is pluripolar. As a result, due to the nonvanishing mass assumption,
Lemma 5.4 allows to conclude that PK ŒP Œu�I�I.v/� PK ŒP Œu�I�.v/.

Since PK ŒP Œu�I�I.v/D PK Œu�I.v/, we get that �n
PK Œu�I.v/

does not charge .X nK/[fPK Œu�I.v/ < vg,
using the first part of the corollary.

Proposition 5.8 Let u 2 PSH.X; �/ be a potential with positive mass. Let v 2 C 0.K/. Then

(27) PK Œu�.v/D PK ŒP Œu��.v/:

In particular , PK Œu�.v/D PK ŒPK Œu�.v/�.v/.

Proof It is obvious that PK Œu�.v/� PK ŒP Œu��.v/. We to prove the reverse inequality. As PK Œu�.v/ and
PK ŒP Œu��.v/ have the same singularity types (Lemma 5.2), by the domination principle [Darvas et al.
2018, Corollary 3.10], it suffices to show that PK Œu�.v/ � PK ŒP Œu��.v/ a.e. with respect to �n

PK Œu�.v/
.
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By (26), PK Œu�.v/ D PK ŒV� �.v/ D v a.e. with respect to �n
PK Œu�.v/

. Hence, PK ŒP Œu��.v/ D v a.e. with
respect to �n

PK Œu�.v/
. We conclude that PK Œu�.v/D PK ŒP Œu��.v/.

Finally, that PK Œu�.v/D PK ŒPK Œu�.v/�.v/ follows from Lemma 5.2 and (27).

Lemma 5.9 Fix a Kähler form ! on X . For v 2 C 0.K/ there exists an increasing bounded sequence
fv�j gj in C1.X / and a decreasing bounded sequence fvCj gj in C1.X / such that for all u 2 PSH.X; �/
with

R
X �n

u > 0, and ı 2 Œ0; 1�, we have

(i) P �Cı!
X

Œu�.vCj /& P �Cı!
K

Œu�.v/,

(ii) P �Cı!
X

Œu�.v�j /% P �Cı!
K

Œu�.v/ a.e.,

(iii) supX jv
�
j j � C.kvkC 0.K /;K; � C!/ and supX jv

C
j j � C.kvkC 0.K /;K; � C!/.

Proof We fix ı 2 Œ0; 1�. First we prove the existence of fv�j gj . Let

CK ;v WD sup
˚
sup
X

w W w 2 PSH.X; � C!/; wjK � v
	
:

Since K is nonpluripolar, we have that CK ;v 2R. Now let zv WX!R so that zvjK Dv and zvjX nK DCK ;vC1.
Since zv is lsc, there exists an increasing and uniformly bounded sequence fv�j gj in C1.X / such that
v�j % zv.

Observe that P �Cı!
X

Œu�.v�j / is increasing in j , and that P �Cı!
X

Œu�.v�j / � P �Cı!
K

Œu�.v/. To prove that
P �Cı!

X
Œu�.v�j /% P �Cı!

K
Œu�.v/ a.e., let w be a candidate for P �Cı!

K
Œu�.v/ such that supK .w � v/ < 0.

Then, since w is usc and w < zv, by Dini’s lemma there exists j0 such that w < v�j for j � j0,
ie w � P �Cı!

X
Œu�.v�j /, proving existence of fv�j gj .

Next we prove the existence of fvCj gj . Since h WD max.P �C!
K

ŒV�C! �.v/; infK v � 1/ is usc, there
exists a decreasing and uniformly bounded sequence fvCj gj in C1.X / such that vCj & h. Trivially,
� WD limj!1 P �Cı!

X
Œu�.vCj / � P �Cı!

K
Œu�.v/. In particular, � has positive mass, since it has the same

singularity types as P �Cı!
K

Œu�.v/ (Lemma 5.2). We introduce

S WD fE�C!
K

ŒV�C! �.v/ < P �C!
K

ŒV�C! �.v/g:

By [Bedford and Taylor 1982, Theorem 7.1], S is a pluripolar set. Observe that P �Cı!
X

Œu�.vCj /� v
C
j for

all j . Thus, ��h. On the other hand, h� v on KnS . So in particular, �jKnS � vjKnS . By Lemma 5.2 we
also have that Œ��D ŒP �Cı!

K
Œu�.v/�. Hence, by Lemma 5.4, ��P �Cı!

K
ŒP �Cı!

K
Œu�.v/�.v/DP �Cı!

K
Œu�.v/,

where we also used the last statement of Proposition 5.8.

We recall the relative Monge–Ampère energy I�
Œu�
W E1.X; � IP Œu�/!R from [Darvas et al. 2018]:

(28) I�Œu�.'/ WD
1

nC1

nX
iD0

Z
X

.' �P Œu�/ � i
' ^ �

n�i
P Œu�:
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Using integration by parts (see [Xia 2019; Lu 2021, Theorem 1.2; Vu 2022, Theorem 2.6], and compare
with [Boucksom et al. 2010, Theorem 1.14]), the argument of Berman and Boucksom [2010, Corollary 4.2]
can be reproduced line by line to yield the following cocycle property: for '1; '2 2 E1.X; � IP Œu�/ such
that Œ'i �D ŒP Œu�� for i D 1; 2, we have

(29) I�Œu�.'1/� I�Œu�.'2/D
1

nC1

nX
iD0

Z
X

.'1�'2/ �
i
'1
^ �n�i

'2
:

Following Berman and Boucksom [2010], we define the partial equilibrium energy I�
Œu�;K

of v 2 C 0.K/:

(30) I�Œu�;K .v/ WD I�Œu�.PK Œu�.v//:

Berman and Boucksom [2010] used the symbol E for the above quantity. Due to potential confusion with
the notation for (relative) full mass classes (that also uses the symbol E), we use the symbol I instead.

Next we extend [Berman and Boucksom 2010, Theorem B] using the arguments of [Darvas 2019,
Proposition 4.32], itself reproducing ideas from [Lu and Nguyen 2015]:

Proposition 5.10 Let K �X be a closed nonpluripolar set , consider v; f 2 C 0.K/ and u 2 PSH.X; �/
satisfying

R
X �n

u > 0. Then t 7! I�
Œu�;K

.vC tf / for t 2R is differentiable and

(31) d
dt

I�Œu�;K .vC tf /D

Z
K

f �n
PK Œu�.vCtf /:

In this work, we will only need this result in the case that Œu� 2A.X; �/.

Proof It suffices to prove (31) at t D 0, which is equivalent to

(32) lim
t!0

I�
Œu�
.PK Œu�.vC tf //� I�

Œu�
.PK Œu�.v//

t
D

Z
K

f �n
PK Œu�.v/

:

By switching f to �f , we may assume that t > 0 in the above limit.

By the comparison principle [Darvas et al. 2018, Proposition 3.5] and (29), we find that

I�Œu�;K .vC tf /�I�Œu�;K .v/D
1

nC1

nX
iD0

Z
X

�
PK Œu�.vC tf /�PK Œu�.v/

�
� i

PK Œu�.vCtf / ^ �
n�i
PK Œu�.v/

�

Z
X

.PK Œu�.vC tf /�PK Œu�.v// �
n
PK Œu�.v/

:

By Lemma 5.6, Z
X

.PK Œu�.vC tf /�PK Œu�.v// �
n
PK Œu�.v/

� t

Z
K

f �n
PK Œu�.v/

:

Thus, we get the inequality

lim
t!0C

I�
Œu�
.PK Œu�.vC tf //� I�

Œu�
.PK Œu�.v//

t
�

Z
K

f �n
PK Œu�.v/

:
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Similarly, we have

I�Œu�.PK Œu�.vC tf //� I�Œu�.PK Œu�.v//�

Z
X

.PK Œu�.vC tf /�PK Œu�.v// �
n
PK Œu�.vCtf /

� t

Z
K

f �n
PK Œu�.vCtf /:

Together with the above, this implies (32).

In the next lemma, we prove convergence results for the partial equilibrium energy:

Lemma 5.11 Let v 2 C 0.K/ and u 2 PSH.X; �/ with
R
X �n

u > 0. Let v�j and vCj be the sequences
constructed in Lemma 5.9. Then

lim
j!1

I�Œu�;X .v
�
j /D I�Œu�;K .v/ and lim

j!1
I�Œu�;X .v

C
j /D I�Œu�;K .v/:

Proof This follows from Lemmas 5.2 and 5.9, and [Darvas et al. 2018, Theorem 2.3].

6 Quantization of partial equilibrium measures

In this section, we give a proof for Theorem 1.2. Throughout the section, L!X is a pseudoeffective
line bundle and h is a Hermitian metric on L such that � WD c1.L; h/. Let T !X be a Hermitian line
bundle on X with a smooth Hermitian metric hT . We normalize the Kähler metric ! on X so thatZ

X

!n
D 1:

6.1 Bernstein–Markov measures

Let K �X be a closed nonpluripolar subset. Let v be a measurable function on K and let � be a positive
Borel probability measure on K. We introduce the following functions on H 0.X;Lk ˝T /, with values
possibly equaling1:

N k
v;�.s/ WD

�Z
K

hk
˝ hT .s; s/e

�kv d�
�1=2

and N k
v;K .s/ WD sup

KnfvD�1g

.hk
˝ hT .s; s/e

�kv/1=2:

We start with the following elementary observation.

Lemma 6.1 Let v1 � v2 be two measurable functions on X . Assume that fv1 D�1g D fv2 D�1g.
Then for any s 2H 0.X;Lk ˝T / and any k > 0, we have

N k
v1;K

.s/�N k
v2;K

.s/:

If � puts no mass on fv D�1g, then we always have

(33) N k
v;�.s/�N k

v;K .s/:

We recall terminology introduced in [Berman and Boucksom 2010], providing a natural context in which
the converse of (33) holds, with subexponential growth. A weighted subset of X is a pair .K; v/ consisting
of a closed nonpluripolar subset K �X and a function v 2 C 0.K/.
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Let .K; v/ be a weighted subset of X . A positive Borel probability measure � on K is Bernstein–Markov
with respect to .K; v/ if for each " > 0, there is a constant C" > 0 such that

(34) N k
v;K .s/� C"e

"kN k
v;�.s/

for any s 2 H 0.X;Lk ˝ T / and any k 2 N. We write BM.K; v/ for the set of Bernstein–Markov
measures with respect to .K; v/. As pointed out in [Berman et al. 2011], any volume form measure on X

is Bernstein–Markov with respect to .X; v/, with v 2 C1.X /.

Proposition 6.2 Assume that .K; v/ is a weighted subset of X . Then:

(i) N k
v;K

is a norm on H 0.X;Lk ˝T /.

(ii) For any � 2 BM.K; v/, N k
v;� is a norm on H 0.X;Lk ˝T /.

Proof (i) As v is bounded, N k
v;K

is clearly finite on H 0.X;Lk˝T /. In order to show that it is a norm,
it suffices to show that for any s 2H 0.X;Lk ˝T /, N k

v;K
.s/D 0 implies that s D 0. In fact, we have

sjK D 0; hence s D 0 by the connectedness of X .

(ii) As v is bounded, clearly N k
v;� is finite and satisfies the triangle inequality. Nondegeneracy follows

from the fact that N k
v;K

is a norm and (34).

6.2 Partial Bergman kernels

In this section, with the terminology and context of the previous section, we fix a weighted subset .K; v/
of X and � 2BM.K; v/. We introduce the associated partial Bergman kernels: for any k 2N and x 2K,

(35) Bk
v;u;�.x/ WD supfhk

˝ hT .s; s/e
�kv.x/ WN k

v;�.s; s/� 1; s 2H 0.X;Lk
˝T ˝I.ku//g:

The associated partial Bergman measures on X are identically zero on X nK, and on K are defined as

(36) ˇk
v;u;� WD

n!

kn
Bk
v;u;� d�:

Observe that

(37)
Z

K

ˇk
v;u;� D

n!

kn
h0.X;Lk

˝T ˝I.ku//:

Our aim is to show the following weak convergence result:

(38) ˇk
v;u;�*�n

PK Œu�I.v/
; as k!1:

We focus momentarily on the case when d� D !n and K D X . That (38) holds in this particular case
follows from [Ross and Witt Nyström 2017, Theorem 1.4]. Relying on the recent paper of Di Nezza and
Trapani [2021], we give here a short proof of this result, borrowing ideas from Berman [2009] as well.

Proposition 6.3 Let u2PSH.X; �/ be such that �u is a Kähler current and Œu�2A.X; �/. If v2C1.X /,
then ˇk

v;u;!n *�n
PX Œu�I.v/

D �n
PX Œu�.v/

as k!1.
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Proof That �n
PX Œu�I.v/

D �n
PX Œu�.v/

follows from Lemma 5.2. We start with noticing that as k!1,

ˇk
v;u;!n � ˇ

k
v;V� ;!n *�n

PX ŒV� �.v/
D 1fvDPX ŒV� �.v/g�

n
v ;

where the convergence follows from [Berman 2009, Theorem 1.2], and the last identity is due to [Di Nezza
and Trapani 2021, Corollary 3.4]. Letting � be the weak limit of a subsequence of ˇk

v;u;!n , we obtain

(39) �� lim
k!1

ˇk
v;V� ;!n D 1fvDPX ŒV� �.v/g�

n
v :

Let s 2 H 0.X;Lk ˝ T ˝ I.ku// be a section such that N k
v;!n.s; s/ � 1. Then by [Berman 2009,

Lemma 4.1], there exists C > 0 such that hk˝hT .s; s/e
�kv �Bk

v;u;!n �Bk
v;V� ;!n � knC . This implies

1

k
log hk

˝ hT .s; s/� vC
log C

k
C n

log k

k
:

However, we also have that Œ.1=k/ log hk˝hT .s; s/�� Œzu
D
k
��˛k Œu�, where zuD

k
is as defined in Remark 2.9,

and ˛k 2 .0; 1/ is also from the notation of Remark 2.9. Let " > 0. Observe that for all k � k0."/, we
have .1=k/ log hk ˝ hT .s; s/ 2 PSH.X; � C "!/. In particular,

1

k
log hk

˝ hT .s; s/�
log C

k
� n

log k

k
� P �C"!

X
Œ˛ku�.v/:

Now, taking the supremum over all candidates s, we obtain that

(40) Bk
v;u;!n � C knek.P

�C"!
X

Œ˛ku�.v/�v/ for k � k0:

We claim that � does not put mass on fP �C"!
X

Œu�.v/ < vg for any " > 0. Since by Proposition 2.7
P �C"!

X
Œ˛ku�.v/& P �C"!

X
Œu�.v/, we get that fP �C"!

X
Œ˛ku�.v/ < vg % fP �C"!

X
Œu�.v/ < vg. As a result,

to argue the claim, it suffices to show that � does not put mass on the set fP �C"!
X

Œ˛ku�.v/ < vg for any k.
Note that the latter set is open, hence (40) implies our claim.

Since u 2 A.X; �/, we have that P �C"!
X

Œu�.v/ D Œu� for all " � 0 by Lemma 5.2. As a result,
P �C"!

X
Œu�.v/& P �

X
Œu�.v/. We can let "& 0 to conclude that � does not put mass on fPX Œu�.v/ < vg DS

">0fP
�C"!
X

Œu�.v/ < vg. Putting this together with (39), we obtain that

�� 1fPX Œu�.v/Dvg�
n
v D �

n
PX Œu�.v/

;

where the last equality is due to [Di Nezza and Trapani 2021, Corollary 3.4]. Comparing total masses
(via (37) and Theorem 1.1), we conclude that �D �n

PX Œu�.v/
. As � is an arbitrary limit point of ˇk

v;u;!n ,
we conclude that ˇk

v;u;!n converges weakly to �n
PX Œu�.v/

as k!1.

Let Norm
�
H 0.X;Lk˝T˝I.ku//

�
be the space of C–norms on the vector space H 0.X;Lk˝T˝I.ku//

and let Lk;u W Norm
�
H 0.X;Lk ˝T ˝I.ku//

�
!R be the partial Donaldson functional, extending the

definition from [Berman and Boucksom 2010],

Lk;u.H /D
n!

knC1
log

volfs WH.s/� 1g

volfs WN k
0;!n.s/� 1g

;

where vol is simply the Euclidean volume.
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Proposition 6.4 Let w;w0 2 C 0.X /. Suppose that u 2 PSH.X; �/ is such that �u is a Kähler current and
Œu� 2A.X; �/. Then

(41) lim
k!1

�
Lk;u.N

k
w;!n/�Lk;u.N

k
w0;!n/

�
D I�Œu�;X .w/�I�Œu�;X .w

0/:

In particular ,

(42) lim
k!1

Lk;u.N
k
w;!n/D I�Œu�;X .w/:

Proof First observe that by Proposition 6.2, for any k > 0, both N k
w;!n and N k

w0;!n are norms, hence
the expressions inside the limit in (41) make sense.

To start, we make the following classical observation:

Lk;u.N
k
w;!n/�Lk;u.N

k
w0;!n/D

Z 1

0

d
dt

Lk;u.N
k
wCt.w0�w/;!n/ dt D

Z 1

0

Z
X

.w0�w/ˇk
wCt.w0�w/;u;!n dt:

By Proposition 6.3, we have

lim
k!1

Z
X

.w0�w/ˇk
wCt.w0�w/;u;!n D

Z
X

.w0�w/ �n
PX Œu�.wCt.w0�w//:

By Theorem 1.1 we have
ˇ̌R

X .w
0�w/ˇk

wCt.w0�w/;u;!n

ˇ̌
� C supX jw�w

0j. Hence, by the dominated
convergence theorem we obtain that

lim
k!1

�
Lk;u.N

k
w;!n/�Lk;u.N

k
w0;!n/

�
D

Z 1

0

Z
X

.w0�w/ �n
PX Œu�.wCt.w0�w// dt DI�Œu�;X .w/�I�Œu�;X .w

0/;

where in the last equality we have used Proposition 5.10.

Finally, (42) is just a special case of (41) with w0 D 0.

Lemma 6.5 Let u 2 PSH.X; �/. Let .K; v/ be a weighted subset of X . Let � 2 BM.K; v/. Then

(43) lim
k!1

�
Lk;u.N

k
v;K /�Lk;u.N

k
v;�/

�
D 0:

This is a direct consequence of the definition of Bernstein–Markov measures (34).

Corollary 6.6 Take w 2 C 0.X / and u 2 PSH.X; �/ such that �u is a Kähler current and Œu� 2A.X; �/.
Then

lim
k!1

Lk;u.N
k
w;X /D I�Œu�;X .w/:

Proof This follows from Lemma 6.5 and Proposition 6.4 and the fact that !n 2 BM.X; 0/.

Using these preliminary facts we extend Proposition 6.4 for much less regular data, again relying on ideas
from [Berman and Boucksom 2010]:
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Proposition 6.7 Let u 2 PSH.X; �/ be such that �u is a Kähler current and Œu� 2A.X; �/. Let .K; v/
and .K0; v0/ be two weighted subsets of X . Then

(44) lim
k!1

�
Lk;u.N

k
v;K /�Lk;u.N

k
v0;K 0/

�
D I�Œu�;K .v/�I�Œu�;K 0.v

0/:

In particular ,

(45) lim
k!1

Lk;u.N
k
v;K /D I�Œu�;K .v/:

Proof First observe that by Proposition 6.2, for any k > 0, both N k
v;K

and N k
v0;K 0

are norms, hence the
expressions inside the limit in (44) make sense. Moreover, (45) is just a special case of (44) for K0 DX

and v0 D 0.

To prove (44) it is enough to show that for any fixed w 2 C1.X / we have

(46) lim
k!1

�
Lk;u.N

k
v;K /�Lk;u.N

k
w;!n/

�
D I�Œu�;K .v/�I�Œu�;X .w/:

For " 2 .0; 1/ small enough we have that �.1�"/u is still a Kähler current. Let us fix such ", along with an
arbitrary "0 2 .0; 1/.

Let fv�j gj and fvCj gj be the sequence of smooth global functions constructed in Lemma 5.9 for the data
.K; v/.

By Remark 2.9 there exists k0."; "
0/ 2 N such that Œ.1=k/ log hk ˝ hT .s; s/� � Œ.1� "/u�, as well as

.1=k/ log hk ˝ hT .s; s/ 2 PSH.X; � C "0!/ for any s 2H 0.X;T ˝Lk ˝I.ku// and k � k0."; "
0/.

In particular, Lemma 5.1 gives that

N k

E
�C"0!
K

Œ.1�"/u�.v/;X
.s/DN k

v;K .s/;

N k

E
�C"0!
X

Œ.1�"/u�.v�
j
/;X
.s/DN k

v�
j
;X .s/;

N k

E
�C"0!
X

Œ.1�"/u�.v
C

j
/;X
.s/DN k

v
C

j
;X
.s/:

As E�C"0!
X

Œ.1� "/u�.v�j /�E�C"0!
K

Œ.1� "/u�.v/�E�C"0!
X

Œ.1� "/u�.vCj /, by Lemma 6.1 we have

N k

v
C

j
;X
.s/�N k

v;K .s/�N k
v�
j
;X .s/ for s 2H 0.X;T ˝Lk

˝I.ku// and k � k0."; "
0/:

Composing with Lk;u, we arrive at

Lk;u.N
k
v�
j
;X /� Lk;u.N

k
v;K /� Lk;u.N

k

v
C

j
;X
/ for k � k0."; "

0/:

For any j > 0, by Corollary 6.6 we get

I�Œu�;X .v
�
j /�I�Œu�;X .w/D lim

k!1

�
Lk;u.N

k

v
C

j
;X
/�Lk;u.N

k
w;X /

�
� lim

k!1

�
Lk;u.N

k
v;K /�Lk;u.N

k
w;X /

�
� lim

k!1

�
Lk;u.N

k
v;K /�Lk;u.N

k
w;X /

�
� lim

k!1

�
Lk;u.N

k
v�
j
;X /�Lk;u.N

k
w;X /

�
D I�Œu�;X .v

C
j /�I�Œu�;X .w/:
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Using Lemma 5.11, we can let j !1 to arrive at

I�Œu�;K .v/�I�Œu�;K .w/� lim
k!1

�
Lk;u.N

k
v;K /�Lk;u.N

k
w;X /

�
� lim

k!1

�
Lk;u.N

k
v;K /�Lk;u.N

k
w;X /

�
� I�Œu�;K .v/�I�Œu�;K .w/:

Hence, (46) follows.

Corollary 6.8 Let u 2 PSH.X; �/ such that �u is a Kähler current and Œu� 2A.X; �/. Let .K; v/ be a
weighted subset of X . Assume that � 2 BM.K; v/. Then

lim
k!1

Lk;u.N
k
v;�/D I�Œu�;K .v/:

Proof Our claim follows from Proposition 6.7 and Lemma 6.5.

Proposition 6.9 Suppose that u 2 PSH.X; �/ with Œu� 2A.X; �/, and assume that �u is a Kähler current.
Let .K; v/ be a weighted subset of X . Let � 2 BM.K; v/. Then ˇk

v;u;�*�n
PK Œu�I.v/

D �n
PK Œu�.v/

weakly
as k!1.

The following proof is similar to that of [Berman et al. 2011, Theorem B].

Proof For w 2 C 0.X /, let

fk.t/D Lk;u.N
k
vCtw;�/ and g.t/ WD I�Œu�;K .vC tw/:

By Corollary 6.8 lim k!1 fk.t/D g.t/. Note that fk is concave by Hölder’s inequality (see [Berman
et al. 2011, Proposition 2.4]), so by [Berman and Boucksom 2010, Lemma 7.6], limk!1 f

0
k
.0/D g0.0/,

which is equivalent to ˇk
v;u;�*�n

PK Œu�.v/
, by Proposition 5.10.

Next we deal with the case of Kähler currents:

Proposition 6.10 Suppose that u 2 PSH.X; �/ such that �u is a Kähler current. Let .K; v/ be a weighted
subset of X and � 2 BM.K; v/. Then ˇk

u;v;�*�n
PK Œu�I.v/

as k!1.

Proof Let � be the weak limit of a subsequence of ˇk
v;u;� . We claim that

(47) �� �n
PK Œu�I.v/

:

Observe that this claim implies the conclusion. In fact, by Theorem 1.1, we have equality of the total
masses, so equality holds in (47). As � is an arbitrary subsequential limit of the weak compact sequence
fˇk
v;u;�gk , we get that ˇk

v;u;�*�n
PK Œu�I.v/

as k!1.

We prove the claim. Let fuD
j gj be the approximation sequence of Theorem 2.8. By Lemmas 5.2 and 3.7,

we know that dS.Œu
D
j �; ŒPK Œu�I�/D dS.Œu

D
j �; ŒPK Œu�I.v/�/! 0. In particular,

(48) lim
j!1

Z
X

�n

PK Œu
D
j
�I.v/
D

Z
X

�n
PK Œu�I.v/

:

We know that �uD
j

are Kähler currents for high enough j . Since u � uD
j , we trivially obtain that

ˇk
v;u;� � ˇ

k
v;uD

j
;� for any k � 1. As � 2 BM.K; v/, by Proposition 6.9, � � �n

PK Œu
D
j
�I.v/

for any j � 1
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fixed. By Proposition 2.7, PK Œu
D
j �I.v/& PK Œu�I.v/ as j !1. Hence, by (48) and [Darvas et al. 2018,

Theorem 2.3], (47) follows.

Finally, the main result:

Theorem 6.11 Suppose that u 2 PSH.X; �/. Let .K; v/ be a weighed subset of X , let � 2 BM.K; v/.
Then ˇk

v;u;�*�n
PK Œu�I.v/

as k!1.

Proof By Lemma 5.2 and [Darvas and Xia 2022, Proposition 2.18] we have that

H 0
�
X;Lk

˝T ˝I.ku/
�
DH 0

�
X;Lk

˝T ˝I.kP Œu�I/
�
DH 0

�
X;Lk

˝T ˝I.kP Œu�I.v//
�
:

This allows us to replace u with PK Œu�I.v/. In addition, by Theorem 1.1 we can also assume thatR
X �n

u > 0, otherwise there is nothing to prove.

By Proposition 3.6, there exists uj 2 PSH.X; �/ such that uj % u a.e. and �uj are Kähler currents. This
gives ˇk

v;uj ;�
� ˇk

v;u;� . Let � be the weak limit of a subsequence of ˇk
v;u;� . Then by Proposition 6.10,

�n
PK Œuj �I.v/

� �. By Proposition 2.7 and [Darvas et al. 2018, Theorem 2.3], �n
PK Œuj �I.v/

% �n
PK Œu�I.v/

.
Hence,

(49) �n
PK Œu�I.v/

� �:

A comparison of total masses ((37) and Theorem 1.1) gives that equality holds in (49). As � is an
arbitrary subsequential limit of the weak compact sequence fˇk

v;u;�gk , we obtain that ˇk
v;u;�*�n

PK Œu�I.v/

as k!1.
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