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Equivariant deep learning with applications in computer vision
Georg Bökman

Department of Electrical Engineering
Chalmers University of Technology

Abstract
We study equivariant deep learning for image data. A neural network is said
to be equivariant to a transformation of its input if there is a corresponding
transformation of the network output. In the first part of this thesis we
cover key definitions and background theory in the hope of providing a useful
reference for newcomers to the field.

Papers A and B study equivariance in the context of keypoint description.
We introduce the concept of steerers, which are transformations of keypoint
descriptions that correspond to specific transformations of the input images.
We argue why rotation steerers appear naturally when training keypoint de-
scriptor neural networks. Further, we propose affine steerers for arbitrary
differentiable image transformations.

Paper C studies to what extent each layer of a convolutional neural network
becomes close to reflection equivariant when trained on natural images. We
find that the closer a convolutional neural network is to being equivariant, the
closer it is to satisfying an equivariance constraint in each layer.

Convolutional neural networks are equivariant to translations of the input.
In paper D, we show that image translations do not correspond to rigid mo-
tions of the camera taking the images. Instead, we propose methods to make
neural networks more equivariant to rotational homographies, the only image
transformations corresponding to rigid camera motions.

In paper E, we demonstrate that a state-of-the-art (semi-)dense image-
matching neural network can be made close to rotation invariant without
a drop in performance on upright images. This is done by replacing the
backbone feature extractor neural network with one layerwise constrained to
be equivariant.

Keywords: Computer vision, deep learning, equivariance, image matching.
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Overview





CHAPTER 1

Introduction

Computer vision can be summarised briefly as the study of visual information
using computers. Much of computer vision concerns algorithms with visual
data as input and more structured data as output. For instance, computer
vision covers algorithms that output semantic information, such as the type
of bird seen in an image. Other examples are algorithms that reconstruct 3D
information from images, e.g. producing 3D models of cities from images only.

Over the past decade, computer vision has gone from primarily algorithms
hand-crafted by researchers and engineers to algorithms based on machine
learning being the best for many tasks. The idea in machine learning is to
start with a flexible algorithm with free parameters that can be changed to
modify the algorithm’s behaviour. This flexible algorithm is called a model.
The model’s parameters are tuned based on training data, i.e. large collections
of pairs of input and output for the task at hand, so that the model with tuned
parameters is as consistent with the training data as possible. The tuning of
the model parameters on training data is also called training the model. After
training, the model will approximate a function for which we know the correct
output on our training data, but the aim is that the model will generalise to
new data as well. The specific branch of machine learning currently domi-



4 CHAPTER 1. INTRODUCTION

nating computer vision research is deep learning, machine learning with deep
neural networks. A neural networks is a specific form of computer algorithm
that is structured in layers and contains many tuneable parameters.

In this thesis, we study both how geometric symmetries are learnt by neural
networks when they are trained with image data and how we can use prior
knowledge of what symmetries are present in the data when we construct neu-
ral networks. Equivariant deep learning is the sub-field of deep learning that
considers approximating functions that respect some symmetry. Specifically,
an algorithm is equivariant if applying the symmetry to the input before using
the algorithm gives the same result as applying the symmetry to the output
of the algorithm. For instance, an algorithm that detects forests in aerial
imagery should be equivariant to rotations.

The computer vision task covered most in this thesis is image matching,
which entails finding corresponding points in two different images of the same
scene or object. This is a precursor task to many computer vision applications,
such as 3D reconstruction. We will see that image matching is a good example
of a task that is equivariant to geometric transformations of the input images.

The first part of the thesis covers background theory, while the second part
contains the five research papers that form the basis of the thesis. Basic
knowledge of deep learning will be assumed of the reader.



CHAPTER 2

Image representations and group representations

The word representation is overloaded with several meanings in the computer
vision and machine learning literature. Two of these meanings are central to
this work and will be covered in this chapter.

First, we have image representations, meaning the encodings of images ob-
tained by feeding them through an algorithm, typically a neural network.
Neural networks are composed of layers, and the output of each layer is said
to be a representation of the image.

Second, we have the mathematical construct of group representations. A
group representation is the concretisation of an abstract mathematical group
(such as the group of rotations) as a group of linear maps. The branch of
mathematics studying group representations is called representation theory.

Notably, group representations can act on image representations. This will
be the topic of the next chapter.

2.1 Image representations
The most general definition of image representations is that they are the
output of algorithms taking images as input. For instance, object bounding
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boxes, segmentation masks and keypoint locations are all examples of image
representations. More abstract image representations are, e.g. the output
of compression algorithms or the output of intermediate layers of a neural
network. Intermediate outputs of neural networks are also often called feature
maps. We show a feature map from a neural network used in this thesis in
Figure 2.1.

Digital images are arrays of pixels, where we associate each pixel with the
red, green and blue colour intensities of its location in the array. Hence, an
image can be considered a 3×H ×W array, where H, W are the image height
and width. Image representations are often themselves arrays of shape c×h×
w, where the first dimension is the channel or feature dimension, here with c

channels, and h, w are the height and width. h, w are not necessarily the same
as H, W since the algorithm might downsample or rescale the image’s spatial
dimensions. However, the idea is that if we rescale the image representation
to size H, W , we can associate each pixel in the image with a c-dimensional
feature vector. For example, a segmentation mask associates a vector to each
pixel, where each dimension encodes the probability that the pixel corresponds
to a specific segmentation class. Similarly, the output of a keypoint detector
can be considered a 1×H ×W array, where each pixel is given a probability of
being a keypoint. h = w = 1 is a special case where the image representation
is a single c-dimensional vector associated with the entire image.

It is generally impossible to give a concrete interpretation of the c dimen-
sions encoded in the intermediate outputs of neural networks. Instead, we
consider the image representation an abstract quantity useful for producing
the network’s final output. In this context, the image representation is often
called a latent representation.

Rather than thinking of an image as a finite array of pixels, it is often
beneficial to consider it a function on an infinite pixel grid I : Z2 → R3,
or even take a continuous viewpoint and think of an image as a function
I : R2 → R3, assigning an RGB tuple to every point in the plane. The digital
array of pixels is then a discrete approximation of this function. Similarly, an
image representation can be thought of as a function F : R2 → Rc, assigning a
c-dimensional feature vector to each point in the plane. This framing is extra
useful when the resolution of the image input to an algorithm is different to
the resolution of the output image representation.
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Figure 2.1: Example of an input image and 3 dimensions of an intermediate feature
map of a neural network from Paper A.
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2.2 Representation learning

Representation learning is a subfield of machine learning where the aim is to
use training data to tune a neural network1 to output representations that
are more useful for downstream tasks than the raw data is. What is a useful
representation of course depends on the task, however, a guiding principle for
representation learning is often invariance. That is, we would like to have im-
age representations that are invariant to such perturbations of the input that
are not relevant to the task at hand. For instance, in many image processing
tasks, the illumination of the image should not influence the output of our
algorithm. If we have image representations that are invariant to illumina-
tion changes and feed them as input to an algorithm, we guarantee that the
algorithm output is not influenced by illumination.

One important aspect of representation learning is that it does not require
labelled data. For instance, in contrastive learning, one specifies a set of
transformations that should not influence the output representation and trains
the neural network to output the same representation for images related by
one of the specified transformations, but different representations for images
that are not related by one of the specified transformations.

In the next chapter, we will see that invariance can often be formalized
in terms of mathematical group theory, for which we need the formalism of
group representations introduced in the next section. Further, we will contrast
invariance with equivariance. For instance, a neural network being equivariant
to illumination changes would mean that the output of the network changes
when the input changes illumination, but the change of the output is given by
a specific function. Knowing the function in output space that corresponds to
certain transformations in input space can make the learned representations
even more useful for downstream tasks than invariant representations. It
allows us to modify the network’s output as if the input were modified, but
without actually rerunning the network. We will see this in Papers A and B.

1Other models than neural networks can also be used, but will not be considered in this
thesis.
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2.3 Group representations

This section assumes basic knowledge of groups and vector spaces. We will
only consider vector spaces over the real numbers R.

Definition 1: Given a group G, a (linear) representation of G consists of
a vector space V and a group homomorphism ρ : G → GL(V ).

Here GL(V ) is the general linear group of V , i.e., the group of all invertible
linear maps from V to itself. Often, we will refer to ρ as the representation,
although strictly the representation is the pair (V, ρ). Occasionally, we will
also refer to V as the representation. When we have a representation ρ of G,
we will say that G acts on V by ρ.

If V has finite dimension D, then GL(V ) can be viewed as the group of
invertible D × D matrices. Hence, a group representation ρ is a map that
encodes group elements as matrices and the group operation as matrix multi-
plication.

The following examples are illustrated in Figure 2.2.
Example 1: Let G = SO(2) be the group of planar rotations. SO(2)

can be defined as the interval [0, 2π) with the group operation being addition
modulo 2π. The most common representation of SO(2) is on the vector space
R2 by the ordinary rotation matrices

R(θ) =
[
cos θ − sin θ

sin θ cos θ

]
. (2.1)

For illustration, we sketch how to check that R is a representation. First, R(θ)
is linear by definition and invertible since it has the easily checked inverse
R(θ)T. Finally, R is a group homomorphism since R(θ + ω) = R(θ)R(ω) by
the addition formulae of sine and cosine.

Example 2: The following gives another representation of SO(2). Con-
sider the vector space R2×2 of 2 × 2 matrices and let for M ∈ R2×2, θ ∈ SO(2)

R2(θ)[M ] = R(θ)MR(θ)T, (2.2)

with R as in (2.1). R2 is, in fact, the tensor product of R by itself and can be
interpreted as rotating linear maps M by θ. By “flattening” R2×2 we obtain
the isomorphic vector space R4, and R2(θ) is equivalent to the Kronecker
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Figure 2.2: The planar rotation group acts differently on different objects. Top: The
standard representation R(π/4) in Example 1 rotates points in the plane,
e.g. the blue points to the orange points. Center: The representation
in Example 2 rotates linear maps. Left: A linear map M : R2 → R2 is
defined by where it maps the standard basis vectors, i.e. the mapping
from the black to the blue vectors. Center: The rotated version of the
mapping does onto the rotated standard basis as the original mapping
does onto to the standard basis. Right: This means that on the standard
basis, the rotated version of the mapping is R(π/4)MR(π/4)T. Bottom:
Contour lines of the polynomial p(x) = 5x2

1 − 16x1x2 + 8x2
2 in blue,

and of p(R(π/4)Tx) in orange, corresponding to the representation in
Example 3.
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product R(θ) ⊗ R(θ) acting on R4. By slight abuse of notation we can write

R2(θ) = R(θ) ⊗ R(θ) = 1
2


cos 2θ + 1 − sin 2θ − sin 2θ 1 − cos 2θ

sin 2θ cos 2θ + 1 cos 2θ − 1 − sin 2θ

sin 2θ cos 2θ − 1 cos 2θ + 1 − sin 2θ

1 − cos 2θ sin 2θ sin 2θ cos 2θ + 1


(2.3)

Example 3: SO(2) can also act on functions R2 → R, e.g. we can let V

be the three-dimensional vector space of homogeneous polynomial functions
p : R2 → R of degree 2 and define

R̃(θ)[p](x) = p
(
R(θ)Tx

)
. (2.4)

If we set p(x) = a · x2
1 + b · x1x2 + c · x2

2, we obtain after some algebraic
manipulation, that

p
(
R(θ)Tx

)
= 1

2

1 + cos 2θ sin 2θ 1 − cos 2θ

−2 sin 2θ 2 cos 2θ 2 sin 2θ

1 − cos 2θ − sin 2θ 1 + cos 2θ

 a

b

c

 ·

 x2
1

x1x2
x2

2

 , (2.5)

i.e. the coefficient vector (a, b, c)T (which defines the polynomial) transforms
under rotation by the matrix

R̃(θ) = 1
2

1 + cos 2θ sin 2θ 1 − cos 2θ

−2 sin 2θ 2 cos 2θ 2 sin 2θ

1 − cos 2θ − sin 2θ 1 + cos 2θ

 (2.6)

where we use the notation R̃ again for simplicity.
Group representations can often be decomposed into smaller parts, called

sub-representations.
Definition 2: Given a representation (ρ, V ) of a group G, a representation

(σ, W ) of G is called a sub-representation of ρ, if W ⊂ V and for all g ∈ G

and w ∈ W

σ(g)w = ρ(g)w. (2.7)

Definition 3: A proper sub-representation of (ρ, V ) is a sub-representation
(σ, W ), where W is neither 0-dimensional nor equal to V .
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Example 4: Consider again the representation R2 of SO(2) on 2 × 2-
matrices from Example 2. Clearly, for any scaling of the identity matrix M =
λI, we have R2(θ)[λI] = λI. Furthermore, since planar rotations commute,
we have for scalings of the 90◦ rotation matrix

M = λR(π/2) = λ

[
0 −1
1 0

]
, (2.8)

that R2(θ)[λR(π/2)] = λR(π/2). Thus, on the subspaces W0 and W1 of R2×2

spanned by [
1 0
0 1

]
and

[
0 −1
1 0

]
(2.9)

respectively, we have sub-representations σ0 and σ1 of R2 defined by

σ0(θ)[M ] = M and σ1(θ)[M ] = M. (2.10)

σ0 and σ1 are both trivial representations, so called because they are constant.
Example 5: The representation R̃ in Example 3 also has a trivial sub-

representation. This is easily seen from the fact that any multiple of the
polynomial x2

1+x2
2 is invariant to rotations. I.e., the coefficient vector (1, 0, 1)T

spans a subspace W corresponding to a trivial representation.
Definition 4: An irreducible representation (short irrep) is a representa-

tion which has no proper sub-representations.
An immediate consequence of the definition is that any one-dimensional

representation is irreducible. Irreps are a form of basic building block for
representations. For commonly encountered groups, all irreps are known,
and for finite and compact groups, it is the case that all finite-dimensional
representations are direct sums of irreps. I.e. any representation ρ can be
written as

ρ(g) = Q

 n⊕
j=1

σj(g)

 Q−1, (2.11)

for some irreps σj and an invertible linear map Q. In terms of matrices, ⊕
means assembling the matrices into a block diagonal. To illustrate (2.11), we
will decompose the representations in Examples 1, 2 and 3 into irreps.
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Example 6: For the ordinary 2 × 2 rotation matrices in Example 1, it
is clear that there is no proper sub-representation, since there is no proper
subspace of R2 that is closed under R(θ). Thus, R is irreducible.

Example 7: Let’s now consider R2(θ) from Examples 2 and 4. The trivial
representations σ0 and σ1 in Example 4 are one-dimensional and hence irre-
ducible. The orthogonal complement of the corresponding subspaces is the
space spanned by

A =
[
1 0
0 −1

]
and B =

[
0 1
1 0

]
. (2.12)

Plugging each of these into (2.2), we obtain

R(θ)AR(θ)T =
[
cos 2θ sin 2θ

sin 2θ − cos 2θ

]
= cos(2θ)A + sin(2θ)B (2.13)

and

R(θ)BR(θ)T =
[
− sin 2θ cos 2θ

cos 2θ sin 2θ

]
= − sin(2θ)A + cos(2θ)B. (2.14)

Hence, in the flattened vector space R4, A and B span a two-dimensional
subspace where SO(2) acts by the frequency two rotation[

cos 2θ − sin 2θ

sin 2θ cos 2θ

]
, (2.15)

which is irreducible by the same argument as in Example 6. Indeed, we can
decompose (2.3) as

R(θ) ⊗ R(θ) = Q


1 0 0 0
0 1 0 0
0 0 cos 2θ − sin 2θ

0 0 sin 2θ cos 2θ

 Q−1, (2.16)
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where

Q =


1 0 1 0
0 1 0 1
0 −1 0 1
1 0 −1 0

 . (2.17)

Example 8: Next, we consider the representation R̃ from Examples 3 and
5, which rotates polynomials ax2

1 + bx1x2 + cx2
2. We identify the function

space of polynomials with the space of coefficients (a, b, c)T. We saw already
in Example 5 that one trivial irrep corresponds to the subspace spanned by
(1, 0, 1)T. The orthogonal subspace is spanned by u = (−1, 0, 1)T and v =
(0, 2, 0)T, which (after some calculation) are found to be acted on by the irrep[

cos 2θ − sin 2θ

sin 2θ cos 2θ

]
. (2.18)

Similarly to in the previous example, we can write

R̃(θ) = Q̃

1 0 0
0 cos 2θ − sin 2θ

0 sin 2θ cos 2θ

 Q̃−1, (2.19)

for

Q̃ =

1 −1 0
0 0 2
1 1 0

 . (2.20)

We conclude this series of examples by mentioning that one complete set
of irreps for SO(2) consists of precisely the rotation matrices R(kθ) with fre-
quencies k ∈ Z≥1 together with the one-dimensional trivial representation.
This means that any finite-dimensional representation of SO(2) corresponds
to a direct sum of the mentioned irreps.

To decompose a general representation into irreps, one can use so-called
character theory, we refer to the literature for details. Hopefully, the examples
in this chapter have given the reader a flavour of key concepts in elementary
representation theory. For more in-depth treatments, which go beyond what
will be required knowledge for this thesis, we recommend the books by Serre
and Hall [1], [2].



CHAPTER 3

Equivariance

As mentioned in the previous chapter, neural network feature maps are typ-
ically not interpretable. However, if a group representation acts on a feature
map, then we know how the feature map changes under the group. A neural
network outputting feature maps changing under a specific group representa-
tion is called equivariant. In this chapter we define equivariance and discuss
equivariance for linear functions, neural networks and neural networks acting
on images specifically.

3.1 Equivariance
Given a function f , taking images as input, we are interested in how the out-
put f(I) changes as the image I undergoes some transformation, for example,
rotation. If there exists a representation σ of SO(2) such that f(rotθ(I)) =
σ(θ)f(I), where rotθ signifies image rotation by θ radians, then we call f

rotation equivariant. Given σ, we know precisely how f behaves under rota-
tions of the input, which can be practically of great use. In this section, we
will give a general description of equivariant linear maps using the so-called
Schur’s lemma.
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Definition 5: Given a group G and two representations (V, ρ) and (W, σ)
of G, a function f : V → W is called equivariant (with respect to ρ and σ) if
for all g ∈ G and v ∈ V

f(ρ(g)v) = σ(g)f(v). (3.1)

A special case of equivariance is invariance, where the representation σ in
(3.1) is taken to be constant equal to the identity transformation on W .

Example 9: Let’s again consider the representations R2 and R̃ of SO(2)
acting on matrices (Example 2) and homogeneous quadratic polynomials in
two variables (Example 3). We will try to find the general form of equivariant
linear maps L : R3 → R4. I.e. L such that

LR̃(θ) = R2(θ)L. (3.2)

By multiplying both sides by R̃(−θ) from the right and using the decomposi-
tions found in Examples 7 and 8 we can write

L = R2(θ)LR̃(−θ)

= Q


1 0 0 0
0 1 0 0
0 0 cos 2θ − sin 2θ

0 0 sin 2θ cos 2θ

 Q−1LQ̃

1 0 0
0 cos 2θ sin 2θ

0 − sin 2θ cos 2θ

 Q̃−1 (3.3)

which after the change of variables L̃ = Q−1LQ̃ becomes

L̃ =


1 0 0 0
0 1 0 0
0 0 cos 2θ − sin 2θ

0 0 sin 2θ cos 2θ

 L̃

1 0 0
0 cos 2θ sin 2θ

0 − sin 2θ cos 2θ

 . (3.4)

Since the left side is independent of θ, the θ’s on the right side must cancel
out. After staring at the equation for a while, one concludes that the only
way to make this happen is if L̃ has the form

L̃ =


a 0 0
b 0 0
0 c −d

0 d c

 , (3.5)
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where the structure of the lower right part comes from the fact that it has to
commute with rotation matrices. Knowing that L is equivariant thus implies
that it is parameterized by 4 values, rather than the 3 · 4 = 12 an arbitrary
linear map requires.

A general specification of equivariant linear maps comes from Schur’s lemma.
Schur’s lemma is typically stated for representations over the complex num-
bers, but for applications we are more interested in representations over the
real numbers. We therefore give a version of Schur’s lemma for real repre-
sentations here, following [3], [4]. The statement is also included in a deep
learning context in [5].

Lemma 1 (Schur’s lemma for real irreps):

1. Let (V, ρ) and (W, σ) be (real) irreps of a group G and let f : V → W

be an equivariant linear map. Then either f is identically 0 or f is
invertible.

2. Let E be the vector space of equivariant linear maps from the finite-
dimensional real irrep (V, ρ) of G to (V, ρ) itself. Then E is either one-,
two-, or four-dimensional.

Proof. Sketch:

1. One shows that the image f(V ) of f must be a sub-representation of
W , i.e. since W is an irrep, either f(V ) = W or f(V ) = {0}. Similarly,
one shows that the nullspace f−1(0) of f is a sub-representation of V ,
so that either f−1(0) = V or f−1(0) = {0}. The statement follows.

2. By 1, E consists of invertible linear maps and the 0-map. Thus E forms
a finite-dimensional associative division algebra over the real numbers,
the bilinear product of the algebra being composition of maps. By the
so-called Frobenius theorem, E must be isomorphic (as a division algebra
over the reals) to either the real numbers, the complex numbers or the
quaternions—having dimensions 1, 2 and 4 respectively.

If f : V → W is an invertible equivariant linear map, we call it an isomor-
phism of representations and we call (V, ρ) and (W, σ) isomorphic whenever
such f exists. (V, ρ) is clearly isomorphic to itself. The space E of all equi-
variant linear maps V → V is called the endomorphism space of (V, ρ). For
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Lie groups, the dimensionality (one, two or four) of E for a given finite-
dimensional irrep (V, ρ) can be determined using character theory [3].

In Example 9, Schur’s lemma manifested itself through the fact that L̃

has zeros for all entries that correspond to mappings between non-isomorphic
irreps in the decompositions of R̃ and R2. Further, the endomorphism space
of the frequency-two irrep was the two-dimensional space of matrices

[
c −d
d c

]
,

isomorphic to the complex numbers. All the two-dimensional irreps of SO(2)
have the same two-dimensional endomorphism space.

Schur’s lemma gives a recipe for equivariant linear maps between represen-
tations (V, ρ) and (W, σ), as a generalization of Example 9. First decompose
ρ and σ into irreps, then solve the equivariance constraint (3.1) for each irrep.
An alternative approach is to solve (3.1) numerically [6]. It is worth mention-
ing that the approach of decomposing a representation into irreps can fail for
non-compact groups.

3.2 Equivariance in neural networks

Neural networks consist of simple layers that are stacked into a large function.
For instance, so-called fully connected neural networks take the form

f(x) = LK(η(· · · L2(η(L1(x))) · · · )), (3.6)

where the Li are affine maps and η is a non-linear function, typically applied
to each component of its input vector independently. Each η and Li is called
a layer of the neural network, and the Li’s contain the trainable parameters
of the network. One principled manner of making f equivariant to a group
G is to specify Li and η to be equivariant—this is sometimes referred to as
the Geometric Deep Learning Blueprint [7]. Typically, the representation of
G on the input and output is known (say, rotating an image and rotating
an image segmentation). However, to make every Li equivariant, we need to
specify a representation of G on the output of every layer. This represents a
hyperparameter choice, and optimally choosing the representations is an open
research problem. Once we have chosen G-representations in every layer, we
can solve for equivariant linear layers, for instance using Schur’s lemma as
described in the previous section. Similarly, the non-linearity η can be chosen
to be equivariant.
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Example 10: A common neural network type for image processing is the
convolutional neural network (ConvNet) [8], [9]. In a ConvNet, the linear
layers consist of correlations of the input with trainable filter kernels. If the
input to a layer is F : Z2 → RC , F is correlated with a matrix-valued filter
M : Z2 → RD×C , where D is the output feature dimension.1 The output of
the correlation is a feature map M ⋆ F : Z2 → RD. Explicitly, we have

(M ⋆ F )(x) =
∑

x′∈Z2

M(x′)F (x + x′). (3.7)

If we translate the input image by t, then since the same filter M is applied
at every spatial location, the output M ⋆F will also be spatially translated by
t. This means that the linear layers in ConvNets are translation equivariant.2

Example 11: Next, we want to make ConvNet-layers equivariant to, say,
rotations by 90◦ [11], [12]. By choosing a representation of the group of
90◦ rotations, (RC , ρ) on the input feature dimension and (RD, σ) on the
output, M defines a rotation equivariant correlation if rotating F followed by
correlating with M yields the same result as rotating M ⋆ F , i.e.

σ(θ)(M ⋆ F )
(
R(θ)Tx

)
=

∑
x′∈Z2

M(x′)ρ(θ)F
(
R(θ)T (x + x′)

)
. (3.8)

It is worth pointing out that if M satisfies (3.8), then the layer is equivariant
to roto-translations since any roto-translation can be written as a transla-
tion followed by a rotation, and correlation is translation equivariant by the
previous example. Changing variables x 7→ R(θ)x and x′ 7→ R(θ)x′ in (3.8)
gives

σ(θ)(M ⋆ F )(x) =
∑

x′∈Z2

M(R(θ)x′)ρ(θ)F (x + x′). (3.9)

And by equating M ⋆ F in (3.7) and (3.9) we find a condition on M in order
for (3.9) to hold for all F :

σ(θ)M(x′) = M(R(θ)x′)ρ(θ), (3.10)

which can be solved numerically [12] or analytically [13]. The condition (3.10)

1Here we consider F and M to be 0 outside a small bounded region of the pixel grid Z2.
2In practice, translation equivariance can fail in ConvNets due to border effects and

subsampling [10].
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is known as the kernel constraint.3 In Paper C, we will study how close ordi-
nary ConvNets are to fulfilling the kernel constraint for the group of horizontal
reflections when trained on natural images.

Example 12: Due to the presence of R(θ) on the right-hand-side of the
kernel constraint (3.10), it is not at first sight an equivariance constraint on a
linear map. In fact, in the literature (3.10) is typically solved directly without
appealing to Schur’s lemma [12], [13]. However, intuitively, Schur’s lemma
should apply here since correlations (3.7) consist of applying a linear function
at each position of the incoming feature map. This local linear function defined
by M takes feature maps F : Z2 → RC to feature vectors in RD:

F 7→
∑

x′∈Z2

M(x′)F (x′) (3.11)

We can obtain this linear map by evaluating M ⋆ F at 0. In order to look
at the equivariance properties of M , we let R be the action rotating feature
maps spatially around 0 and get from (3.8)

σ(θ)(M⋆F )(0) =
∑

x′∈Z2

M(x′)ρ(θ)F
(
R(θ)Tx′) =

∑
x′∈Z2

M(x′)ρ(θ)(R(θ)[F ])(x′),

(3.12)
which together with the definition (3.7) of (M ⋆ F )(0) means that the lo-
cal linear map (3.11) defined by M must be equivariant with respect to the
combined action of ρ and R on the input and σ on the output. We can use
translation equivariance of the correlation to see that the layer then becomes
equivariant to rotations for x ̸= 0 as well. Since M in practice will have finite
support, say some finite square S ⊂ Z2, we can consider (3.11) as a linear
function from cropped feature maps F : S → RC to feature vectors in RD.
R is then a finite-dimensional permutation representation and we can apply
Schur’s lemma to solve for valid kernels M .

Above, we discussed how to enforce equivariance in neural networks by
hard-coding the constraint into the linear maps. An alternative approach to
making a neural network equivariant is to add a loss during training that
encourages equivariance. This has the benefit of not requiring the hyper-
parameter choice of a G-representation per layer, and instead relies on the

3The kernel constraint can also be derived for continuous groups in much the same way
as above [13], [14]. Kernels fulfilling the kernel constraint can be found by decomposing ρ
and σ into irreps and solving the kernel constraint for each irrep-pair.
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flexibility of the neural network to approximate arbitrary functions (includ-
ing equivariant functions). Furthermore, more complicated neural network
architectures than the stacking of linear layers (3.6), such as the currently
very popular Transformer [15], require more effort to specify each layer to be
equivariant.

Some tasks have training losses that implicitly encourage equivariance,
meaning that no extra loss has to be added to the training, and ordinary
training over a data distribution that is symmetric under a group G4 implic-
itly encourages equivariance. In the next chapter, we will consider keypoint
description as an example of a task that is naturally equivariant to planar
rotations.

One interesting question in this setting is whether each layer in (3.6) has to
be equivariant for the entire network to be equivariant. In Paper C, we show
experimentally that this is commonly the case in practice, but we also find
theoretical counterexamples.

3.3 Steerable image representations
We will now specialize the discussion to image representations. As discussed
in Section 2.1 we will take the view that images are functions I : R2 →
R3 and image representations are functions F : R2 → Rc, where c is the
feature/channel dimension of the image representation.

Images and image representations can be warped by functions ϕ : R2 → R2

describing the movement of each position in the plane to a new position in the
plane. We introduce a warping operator Wϕ for the transformation of images
and image representations by ϕ:

Wϕ[F ](x) = F (ϕ−1(x)). (3.13)

In particular, we will consider warps by differentiable functions, i.e. ϕ satis-
fying

ϕ(x + ∆x) = ϕ(x) + Jϕ(x)∆x + o(∥∆x∥). (3.14)

4By symmetric data distribution, we here mean that the probability of a particular
training sample is equal to the probability of the same sample transformed by any g ∈ G.
Data distributions that are symmetric under some transformation are commonly obtained
through data augmentation.
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In (3.14), Jϕ : R2 → R2×2 is the Jacobian of ϕ. Note that J can also be
warped by (3.13).

Example 13: If ϕ is a roto-translation, we can write ϕ(x) = t + R(θ)x for
some rotation angle θ and translation vector t. Thus,

ϕ(x + ∆x) = t + R(θ)(x + ∆x) = ϕ(x) + R(θ)∆x, (3.15)

so the Jacobian Jϕ(x) is constant in x and given by the rotation matrix R(θ).
If we have a set Φ of continuously differentible functions ϕ, with invertible

Jacobians, such that Φ forms a group under function composition, then by
the chain rule

Jϕ2◦ϕ1 = Jϕ2Jϕ1 (3.16)

and by the inverse function theorem,

Jϕ−1 = J−1
ϕ (3.17)

so the Jacobians of the functions in Φ generate a subgroup of GL(2), which
we will call GΦ. In the case of Φ being roto-translations as in Example 13,
GΦ is the planar rotation group SO(2).

If there exists a group representation (Rc, ς) of GΦ such that

f(Wϕ[I]) = Wϕ[ς(Jϕ)f(I)], (3.18)

then we call ς a GΦ-steerer for f .5 We also say that ς steers f(I) and that
f(I) is steerable. Equation (3.18) is a specific equivariance condition on f

that means that the features at each location of f(I) are warped spatially,
but also modified by the steerer ς in the channel dimension.

Steerable image representations can be obtained by using neural networks
built from equivariant layers as described in Section 3.2. However, it is also
possible to train the networks to approximately satisfy the condition (3.18)
by including it in the loss function. Specifically in the case of representation
learning, where an image I and an augmented image Wϕ[I] are input to a
feature extractor f , trained to minimize the discrepancy between the features

5ς is the greek letter sigma in word-final position. Sigma stands for steerer and we choose
the word-final form since the steerer is applied to the output of the feature extractor f . The
name steerer is an hommage to the steerable filters by Adelson and Freeman [16].
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extracted from I and Wϕ[I],∥∥f(I) − Wϕ−1 [f(Wϕ[I])]
∥∥ , (3.19)

it is very simple to include a steerer in the loss∥∥ς(Jϕ)f(I) − Wϕ−1 [f(Wϕ[I])]
∥∥ , (3.20)

without introducing a new loss term. As a special case of representation
learning, we will study steerers for keypoint description in Papers A and B.





CHAPTER 4

Keypoint description and matching

This chapter reviews the basics of keypoint description and matching, which
is the topic of Papers A, B and E of this thesis. A keypoint is a position in
an image that contains some distinctive content. For instance, given multi-
ple images taken in the same scene, keypoints would ideally be projections
of recognizable 3D points, so that the same 3D point will be detected as a
keypoint in multiple images. Such keypoints are helpful for 3D reconstruction
because with enough keypoint correspondences in multiple images, we can use
structure-from-motion algorithms to calculate both the camera motion from
each image capture to the next, as well as the 3D structure of the objects in
the scene. To go from keypoints to keypoint correspondences, we will assign to
each keypoint a description—a D-dimensional vector—and match keypoints
in different images with similar descriptions. An example of matches is shown
in Figure 4.1. To obtain descriptions, we will use neural networks, which will
be called descriptors. Often in the literature, what we call keypoint descrip-
tions are called keypoint descriptors. We will stick to the convention that a
descriptor is a function that outputs descriptions.1 We will also use the verb
describe for the application of a keypoint descriptor.

1This convention was suggested to the author by Johan Edstedt.
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Figure 4.1: Example of matching keypoints in two images of the same building.



4.1. BACKGROUND ON KEYPOINT DESCRIPTION 27

4.1 Background on keypoint description
We will consider keypoint descriptors as functions f that take as input an
image I and a keypoint x and output a description v = f(I, x). This notation
is less cumbersome than the more accurate f(I)(x), which is what we would
have if we view the image representation f(I) as a function R2 → RD, from
which we extract descriptions. In practice, a descriptor will take multiple
keypoints as input and describe them all in parallel, but we consider the
single keypoint case for conceptual simplicity. Once we have descriptions for
a set of keypoints in two images, we can match the descriptions in the first
image with the ones in the second image. The matching is typically done
through variants of mutual nearest neighbours.

For keypoint descriptors to be useful, they must output descriptions that
can disambiguate keypoints that belong to different 3D points. On the other
hand, the descriptions must not lead to false negatives when the same 3D
point is photographed in different lighting conditions or from different viewing
directions. Of course, whether false negatives are obtained or not is not only
dependent on the descriptions but also on the matching procedure, i.e., a
matching procedure that is more strict will produce more false negatives.

Before neural networks were introduced to the problem of keypoint de-
scription, there were many hand-crafted descriptors. The most famous one
is probably the Scale Invariant Feature Transform (SIFT) [17], which is still
heavily used in practice.

Example 14: SIFT is an algorithm for both keypoint detection and de-
scription, but we will focus on the description part here. Importantly, however,
we must mention that SIFT keypoints consist not only of a position in an im-
age but also of an orientation and a scale. The SIFT descriptor computes the
description of a keypoint (in a grayscale image) through the following steps.

1. For each keypoint, a square grid of 16 image patches is centred at the
keypoint. The scale of the keypoint determines the scale of the square,
and the square is rotated according to the orientation of the keypoint.

2. Each of the 16 image patches obtained is further divided into 16 smaller
sub-patches.

3. In each of the sub-patches, the image gradient is calculated and weighted
by the amplitude of a Gaussian window centred at the keypoint.
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4. For each of the 16 image patches, the scaled gradients of its sub-patches
are summarized in a histogram with 8 bins, corresponding to 8 angle
intervals.

5. The final description of the keypoint consists of all the histograms from
the image patches. A SIFT description is, therefore, 16 · 8 = 128 dimen-
sional.

Recent developments have seen neural network-based descriptors outper-
form classical methods such as SIFT by large margins. The drawback is that
the descriptions are less interpretable.

Example 15: DeDoDe [18] is a recent neural network-based keypoint de-
scriptor. Training data is extracted from large-scale 3D reconstructions (re-
constructed using e.g. SIFT!). A diverse set of image pairs with varying
amounts of overlap between them is needed for descriptor training. Further-
more, we need a way to obtain keypoints and determine whether keypoints
in two images correspond to the same 3D point. DeDoDe uses a separately
trained DeDoDe keypoint detector to obtain keypoints, but it is also common
to train a detector and a descriptor jointly. To determine whether a key-
point correspondence is correct, we backproject the keypoints into 3D using
depth maps and camera poses from the 3D reconstructions. Keypoint cor-
respondences that correspond to close enough 3D points are determined to
be correct matches. For DeDoDe, descriptions are always normalized to unit
norm. The similarity between descriptions is measured in cosine similarity,
i.e. by their scalar product. Given two images and n keypoints in each, we
form the similarity matrix

Sij =
〈
f(I, xi), f(I ′, x′

j)
〉

. (4.1)

S is normalized by using softmax over the rows and columns, and the training
objective is to maximize the entries of S corresponding to correct matches.2
This normalization ensures that the similarity of correct matches is maximized
and the similarity of incorrect matches minimized during training.

2In fact, the negative logarithms of the entries are minimized during training.
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Figure 4.2: Illustration of the fact that keypoint patches are likely to appear in all
orientations while training a keypoint descriptor on upright images. Left:
Three upright images with corners in all 90◦ rotations. Right: abstract
illustration of the latent space where descriptions of the keypoints lie
on a (D − 1)-dimensional hypersphere. Different orientations will be
pushed to different locations in latent space. If we assume that the
description of 1 is as close to the description of 2 as the description of
1′ is to the description of 2′, then the red and blue triangles must be
isometric. An extension of this argument serves as the motivation for
rotation equivariance given in Section 4.2.

4.2 Rotation equivariant keypoint description
In this section, we will explain why rotation equivariance is a natural property
of keypoint descriptors, i.e. we will explain why keypoint descriptors have
steerers. The argument stems from Paper A, Section 5, but we aim to make it
more precise here, highlighting what parts of the argument are hand-wavy and
what parts are rigorous. Figure 4.2 might help when following the argument.

Consider the setting of the DeDoDe descriptor in Example 15 again. We
will argue that DeDoDe has a steerer for 90◦ rotations and make the following
assumptions:

1. The descriptor network f only considers the local neighbourhood of a
keypoint x when generating a description for it. Such local neighbour-
hoods will be called patches.

2. Each patch is as likely to appear in each 90◦ orientation.
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Assumption 1 is likely to be approximately true in practice, especially when
using ConvNets with small kernel sizes. Assumption 2 is likely to be approx-
imately true when using datasets with man-made environments (e.g. corners
of windows) but also in natural environments.

Using Assumption 1, we will suppress the dependence of f on an image and
simply write f(x) for the description of keypoint x, associated with some image
patch. To rotate x from here on means to rotate the patch around x. Let’s
take two pairs of (not necessarily matching) keypoints x, x′ and y, y′, such that
the patches around x and x′ are 90◦ rotations of the patches around y and y′.
Recall that the network is trained by maximizing cosine similarities between
matching keypoint pairs while minimizing cosine similarities of non-matching
pairs. Using Assumption 2, we make the case that the pair x, x′ is treated
equivalently during training as the pair y, y′. Thus, it is reasonable to assume
that after training, the similarity of f(x) and f(x′) should be approximately
the same as the similarity of f(y) and f(y′):

⟨f(x), f(x′)⟩ ≈ ⟨f(y), f(y′)⟩ . (4.2)

From (4.2), we conclude that there must be some orthogonal transformation
mapping the line segment f(x), f(x′) to the line segment f(y), f(y′) on the
hypersphere of descriptions. Thus, a rotation on the input space is encoded
as a high-dimensional orthogonal transformation of the description space. We
call this orthogonal transformation of description space a steerer. The steerer
is under-specified so far, but it will be uniquely defined by considering more
keypoints.

Thus, we must explain why the steerer is the same for all keypoints. To
argue this, let x1, x2, . . . , xd be keypoints such that {f(xi)}d

i=1 form a linear
basis for the span of the range of f . Let yi be keypoints whose patches
correspond to 90◦ rotations of the patches of the xi. Then, by (4.2),

⟨f(xi), f(xj)⟩ ≈ ⟨f(yi), f(yj)⟩ (4.3)

for all pairs i, j. The sequence of descriptions (f(xi))d
i=1 and the sequence

(f(yi))d
i=1 are thus related by some orthogonal matrix Q:

f(yi) ≈ Qf(xi). (4.4)



4.2. ROTATION EQUIVARIANT KEYPOINT DESCRIPTION 31

Next, we show that Q works for any keypoint x, and its rotated version y. We
assume (again from (4.2)) that

⟨f(x), f(xi)⟩ ≈ ⟨f(y), f(yi)⟩ (4.5)

for all i, meaning that

⟨QTf(y), f(xi)⟩ ≈ ⟨QTf(y), QTf(yi)⟩ = ⟨f(y), f(yi)⟩ ≈ ⟨f(x), f(xi)⟩. (4.6)

But since the f(xi)’s form a basis of the span of the range of f , this means
that Qf(x) ≈ f(y).

Finally, the fact that the steerer Q generates a group representation follows
immediately from applying the preceding argument to the rotated keypoint,
i.e. from the fact that rotating a keypoint twice corresponds to multiplying
the description by Q2. A similar argument to the above can also be made for
continuous rotations, see further Theorem 5.1 in Paper A.

Steerers enable rotation invariant matching in several ways. We outline the
simplest version here. Refer to Paper A for more details. Given a 90◦-steerer
Q, we can match images up to a global rotation by matching descriptions
f(I, x) in one image with rotated versions of descriptions Qkf(I ′, x′), k =
0, 1, 2, 3 in a second image and keeping the matches from the multiple k of 90◦

with the most matches. Using the steerer gives a clear computational benefit
over having to apply the descriptor network f once for each rotation k · 90◦.

The argument given in this section did not preclude Q being the identity
matrix. In short, Q becomes the identity when there is no benefit in f being
able to differentiate between x and its rotated version y. However, when train-
ing a keypoint descriptor on upright images, the training loss encourages f to
distinguish e.g. corners in different orientations (see for instance Figure 4.2).
So, Q will not be the identity in this case. If we apply rotation augmentation
to upright images naively during training, the loss will encourage f to be ro-
tation invariant, i.e. Q to be the identity. Rotation invariance typically leads
to worse performance on upright images.





CHAPTER 5

Summary of included papers

This chapter provides a summary of the included papers.

5.1 Paper A
Georg Bökman, Johan Edstedt, Michael Felsberg, Fredrik Kahl
Steerers: A framework for rotation equivariant keypoint descriptors
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR),
pp. 4885-4895, 2024
https://arxiv.org/abs/2312.02152 .

We demonstrate experimentally that neural network keypoint descriptors
trained on upright images become equivariant to rotations. We call the group
representation in the latent space steerer. We give a geometrical argument for
why it is not entirely surprising that steerers exist for descriptors trained on
upright images. Having argued for the naturality of rotation equivariance for
the problem, we train descriptors and steerers jointly and also train descriptors
for fixed steerers. Practically, we show state-of-the-art results.

https://arxiv.org/abs/2312.02152
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5.2 Paper B
Georg Bökman, Johan Edstedt, Michael Felsberg, Fredrik Kahl
Affine steerers for structured keypoint description
To be presented at European Conference on Computer Vision (ECCV),
2024
https://arxiv.org/abs/2408.14186 .

We generalize steerers from the rotation group to the affine group GL(2).
This allows us to treat equivariance to arbitrary differentiable image warps.
We show experimentally that affine steerers work and that pretraining with
affine steerers leads to SotA results on upright images.

5.3 Paper C
Georg Bökman, Fredrik Kahl
Investigating how ReLU-networks encode symmetries
Advances in Neural Information Processing Systems (NeurIPS),
vol. 36, pp. 13720–13744, 2023
https://arxiv.org/abs/2305.17017 .

We investigate how neural networks encode symmetries. In particular, we
show a connection between the permutation conjecture by Entezari et al. and
the layerwise equivariance of convolutional neural networks. Experimentally,
we observe that the more invariant to horizontal flips a convolutional neural
network is, the closer it is in structure to a group convolutional neural network.

https://arxiv.org/abs/2408.14186
https://arxiv.org/abs/2305.17017
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5.4 Paper D
Lucas Brynte∗, Georg Bökman∗, Axel Flinth, Fredrik Kahl
Rigidity preserving image transformations and equivariance in perspec-
tive
Scandinavian Conference on Image Analysis (SCIA),
pp. 59–76, 2023
https://arxiv.org/abs/2201.13065 .

Convolutional neural networks are equivariant with respect to pixel trans-
lations. We show that pixel translations do not correspond to rigid motions
of the camera. The only pixel transformations that correspond to any rigid
motions of the camera are rotational homographies (corresponding to rota-
tions of the camera). We propose two methods for increased equivariance to
rotational homographies, namely data augmentation and warping the images
from rectilinear to an azimuthal equidistant projection.

5.5 Paper E
Georg Bökman, Fredrik Kahl
A case for using rotation invariant features in state of the art feature
matchers
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops,
pp. 5110-5119, 2022
https://arxiv.org/abs/2204.10144 .

We modify the LoFTR semi-dense image matching model to make it more
robust to inplane rotations. This is done by replacing all convolutional layers
with layers equivariant under rotations. Experiments show that this leads to
large improvements in performance on image pairs with large inplane rotations
while not sacrificing much performance on upright image pairs.

∗Equal contribution

https://arxiv.org/abs/2201.13065
https://arxiv.org/abs/2204.10144
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