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Abstract – Electric vehicles (EVs) typically emit little noise at low driving speeds, which increases the risk of
accidents for vulnerable road users such as pedestrians. To reduce this risk, regulations demand that newly sold
EVs have to be equipped with an acoustic vehicle alerting system (AVAS), which radiates artificial warning
sounds. Developing AVAS sounds that provide a sufficient warning capability while limiting traffic noise
annoyance requires laboratory listening experiments; such experiments need accurate auralization methods.
Even though several auralization tools are already established in the research field, those frameworks require
additional data to simulate EVs. This paper presents an electric vehicle auralization toolchain combined with
an open-access database, including AVAS measurements, synthesis algorithms, and numerically calculated
sound source directivities for three different electric passenger cars. The auralization method was validated
numerically and in a listening experiment, comparing simulated EV passages to binaural in-situ recordings.
The results of this perceptual validation indicate that stimuli generated with the presented method are per-
ceived as slightly less plausible than in-situ recordings and that they result in a similar distribution of annoy-
ance ratings but a higher perceived vehicle velocity compared to the reference recordings.

Keywords: Auralization, AVAS, Electric vehicles, Perceptual evaluation, Plausibility

1 Introduction

Electric vehicles (EVs) have become increasingly popu-
lar in the last few years, especially in urban environments
[1]. EVs typically radiate less sound at low driving speeds
than internal combustion engine vehicles [2, 3]. This reduced
noise emission might, in general, be beneficial as it is known
that high road traffic noise levels can cause serious health
problems, such as chronic annoyance, sleep disturbance,
and cardiovascular diseases [4]. However, the low sound
emission of electric vehicles also increases the risk of acci-
dents for pedestrians and vulnerable road users, such as
the visually impaired, who can not localize approaching
EVs using acoustic cues [5]. To reduce this risk, recently
implemented regulations demand that all newly produced
electric vehicles have to be equipped with an acoustic vehicle
alerting system (AVAS) [6], i.e., a loudspeaker that radiates
artificial warning sounds indicating the vehicle’s location
and driving speed. In the EU, these regulations specify min-
imum and maximum AVAS sound levels that the EV must
comply with for driving speeds of up to approximately
20 km/h. Additionally, the AVAS signal should cover at
least two third-octave bands, have content within or below
the 1600 Hz third-octave band, and at least one tone should

shift in frequency proportional to vehicle speed by an aver-
age of at least 0.8% per 1 [7]. Regarding the sound type,
the regulation states that “the sound shall be similar to the
sound of a vehicle of the same category equipped with an
internal combustion engine”, allowing manufacturers to
design various vehicle-specific AVAS sounds.

A challenge in designing these AVAS sounds is to
achieve a sufficient warning effect while simultaneously lim-
iting the negative impact on the acoustic environment.
Therefore, a fundamental requirement for developing effi-
cient AVAS systems is to understand which sound charac-
teristics are relevant to localize a vehicle acoustically and
how those sounds affect bystanders. A common approach
to studying such psychoacoustic effects is to conduct listen-
ing experiments in controlled acoustic environments. Such
studies require an accurate reproduction of the acoustic sce-
nes of interest, a process that is also referred to as auraliza-
tion [8]. In the last decades, several different auralization
models for internal combustion engine vehicles have been
proposed. For example, passenger car and heavy-vehicle
engine noise has been successfully synthesized using a
sample-based synthesis approach, i.e., by deconstructing
engine noise recordings into short grains that represent
the sound emitted during one engine cycle and recombining
those samples using sophisticated algorithms [9, 10]. Other
researchers used a spectral modeling approach, i.e., adding*Corresponding author: leon.mueller@chalmers.se
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different sinusoids and filtering complex broadband source
signals, to model both tire and propulsion noise [11]. Addi-
tionally, different auralization approaches specifically for
tire/road noise exist, utilizing both statistical engineering
methods and detailed numerical models [12, 13]. While
some aspects of those established methods, such as the out-
door sound propagation modeling, could be directly applied
to electric vehicle auralizations, the broad range of different
AVAS signals makes it difficult to use one of those methods
as a complete “one-fits-all” solution for AVAS signal
synthesis.

The limited number of existing AVAS-related psychoa-
coustic studies often relied on auralization methods based
on static recordings of EV passages obtained by, e.g., plac-
ing a microphone array on the side of a test track [14]. This
approach generally results in realistic stimuli since it auto-
matically includes complex acoustic properties, such as
source directivity and sound propagation path. However,
performing real-life recordings can be time- and resource-
intensive and does not provide the flexibility of changing
parameters such as vehicle speed or the AVAS signal after
conducting the measurement. Other researchers combined
recordings of microphones placed on a moving vehicle [15]
and synthesized AVAS signals [16] with a general auraliza-
tion model, resulting in more flexible simulations. Neverthe-
less, those auralizations do not necessarily include an
accurate source directivity model, which can be expected
to be perceptually relevant, especially for recently devel-
oped directional AVAS systems [17]. Even though several
commercial and open-source auralization frameworks for
rendering virtual acoustic scenes are already available
[18–21], only few AVAS signals or EV directivity models
are currently openly accessible to the scientific community,
limiting the possibilities for researchers to conduct AVAS-
related psychoacoustic studies. Additionally, most existing
tire/road noise auralization methods are designed for veloc-
ities above 25 km/h, as combustion engine noise is typically
considered dominating at lower speeds [22]. However, elec-
tric vehicles radiate significantly less motor noise than inter-
nal combustion engine vehicles; hence, even low-speed
rolling noise can become audible and should, therefore, be
included in the auralization.

This work offers resources and methods for researchers
to conduct listening experiments related to Acoustic Vehi-
cle Alerting Systems. It introduces an open-access database
containing AVAS and tire-noise recordings, along with
AVAS synthesis models for three electric vehicles. These
models are paired with an auralization framework designed
for headphone-based reproduction. Thereby, AVAS and
tire/road noise are included, but the model omits propul-
sion and wind noise. While the presented methods can be
used to model changes in velocity, acceleration-specific
effects, such as increased tire/road friction forces, are not
considered. The paper begins by outlining the measurement
process and examining the characteristics of the recorded
AVAS and tire/road noise signals in Section 2. Building
on these measurements, Section 3 describes techniques for
synthesizing AVAS and tire/road noise signals, including
methodologies for modeling their radiation directivities

and sound propagation. In Section 4, these methods are
applied to re-create measured vehicle passages, allowing
for numerical validations through comparisons with the ref-
erence recordings. Finally, Section 5 presents an assessment
of the perceptual quality of the auralization results through
a laboratory listening experiment.

2 Measurements

In order to obtain reference data for the auralization
model, pass-by measurements of three different electric
vehicles were conducted: a Tesla Model Y 2021 (vehicle
A, Fig. 1a), a Volkswagen ID.3 Pro Performance 2021
(vehicle B, Fig. 1b) and a Nissan Leaf 2018 (vehicle C,
Fig. 1c). These vehicles can be classified as small to med-
ium-sized electric passenger cars, which all utilize a single
AVAS loudspeaker mounted in the front bumper. All vehi-
cles were equipped with radial non-studded winter tires
with an external rolling noise value of 72 dB according to
EU regulation 2020/740 [23].

2.1 Methods

AVAS signals of each vehicle were measured by placing
a microphone in front of the AVAS loudspeaker with
approximately 10 cm distance as shown in Figure 1d. Addi-
tionally, a second microphone was mounted at 40 cm dis-
tance perpendicular to the tire as shown in Figure 1e to
record isolated tire/road noise. The sound pressure at a sta-
tionary observer position was measured by placing a HEAD
acoustics HMS V artificial head and a microphone at the
roadside, as shown in Figure 1f. All microphones were omni-
directional, free-field equalized, and of the type GRAS
46AE with 90 mm foam windscreens. Vehicle velocity and
position relative to the roadside observer were recorded
via GPS using HEAD acoustics SQadriga III and SQobold
data acquisition systems, allowing for the exact reproduc-
tion of the recorded scenarios and the comparison to their
simulated counterparts. The measurements were conducted
with a sampling frequency of 48 kHz and on a road with
dense asphalt concrete surface under dry and windless con-
ditions. Several passages with different constant and accel-
erating velocity profiles up to 30 km/h were recorded for
each vehicle, driving both forward and backward. All mea-
sured data is openly accessible at [24].

2.2 Measurement results

The following section presents the measured AVAS sig-
nals for the three evaluated vehicles as well as the results of
the tire/road noise recordings.

2.2.1 AVAS signals

Figure 2 shows the measurement results of the micro-
phone placed in front of the AVAS loudspeaker for all three
vehicles. For these plots, the measured time signals were
downsampled to a sampling rate of 12 kHz and divided into
overlapping blocks of 512 samples. Each block was assigned
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a velocity value based on the GPS recordings, transformed
into a magnitude spectrum, and the spectra for blocks with
similar velocity values were averaged. This results in

frequency over velocity plots, which visualize the character-
istic velocity dependency of the AVAS signals. Thereby, the
three measured electric vehicles differ quite substantially, as

Figure 1. Vehicle A – Tesla Model Y 2021 (a), vehicle B – Volkswagen ID.3 Pro Performance 2021 (b), vehicle C – Nissan Leaf 2018
(c), microphone placed in front of vehicle A AVAS speaker (d), microphone placed in front of vehicle C tire (e), and measurement
setup on roadside (f).

Figure 2. Measured velocity-dependent magnitude spectra jHðf ; vÞj from microphones mounted on moving vehicle: vehicle A
forward AVAS (a), vehicle A backward AVAS (b), vehicle B forward and backward AVAS (c), vehicle C forward AVAS (d), vehicle C
backward AVAS (e) and vehicle C tire/road noise (f).
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described in the following. We recommend listening to the
example sounds provided at [24] for a better understanding
of the different signals.

Vehicle A As shown in Figure 2a, vehicle A radiates a
band-pass filtered noise in combination with a lower, more
narrow-band component when driving forward. The center
frequency, as well as the bandwidth of both components,
increases with vehicle velocity. When driving backward,
vehicle A radiates two highly tonal components, which also
increase in frequency with velocity (cf. Fig. 2b). Listening to
the recorded signal reveals a clearly audible amplitude mod-
ulation, which is also visible in the form of sidebands when
analyzing the corresponding frequency over time spectro-
gram (not shown here for reasons of conciseness).

Vehicle B Vehicle B radiates the same AVAS sound in
both driving directions, consisting of a large number of dif-
ferent tonal components which partly seem to have a har-
monic relation to each other as shown in Figure 2c. Most
of those tones increase in frequency when accelerating,
others decrease in frequency, and some are strongly ampli-
tude-modulated. Of all measured AVAS signals, we per-
ceive vehicle B as the most “chaotic”; it is also the only
signal that contains strong tonal components above
3 kHz. Overall, the signal reminds us more of a science-fic-
tion spaceship sound than the noise expected of a medium-
sized passenger car. Whether or not this perceptual discrep-
ancy has consequences for factors such as annoyance or
localization accuracy compared to more conservative
AVAS sounds is an example for a future study that could
be performed using the methods presented in this paper.

Vehicle C The forward AVAS of vehicle C consists of both
high-frequency tonal components and lower-frequency
band-pass filtered noise components (cf. Fig. 2d). Com-
pared to, for example, vehicle B, individual tonal compo-
nents are perceptually not as pronounced and partly
masked by background noise. When driving backward,
vehicle C emits a recurring “pling” sound with a duration
of 1 s per repetition that appears to be independent of the
vehicle velocity as shown in Figure 2e.

Summarized, one can divide the evaluated AVAS sig-
nals into three categories: signals that mainly consist of a
number of tones, signals that mainly consist of band-pass
filtered noise components, and signals that consist of a
repeating sound. Section 3.1 presents methods to synthesize
those three different signal types for arbitrary vehicle veloc-
ities based on the presented reference measurements.

2.2.2 Tire/road noise

Figure 2f shows the measured tire/road noise spectrum
for vehicle C. The results for vehicles A and B were found to
be very similar and are, for reasons of conciseness, not pre-
sented here. It can be seen that the spectrogram contains a
pronounced pressure maximum centered around 1 kHz
above a velocity of approximately 15 km/h. This pressure
maximum is characteristic of tire/road noise [25] and

increases in amplitude as well as slightly broadens in fre-
quency range for higher vehicle speeds. Additionally, the
spectrogram shows strong low-frequency components that
increase in amplitude and upper-frequency limits for higher
velocities. These components are assumed to correspond to
wind-induced noise in the microphone [26], which are, due
to the microphone positioning, expected to be more pro-
nounced for the tire noise measurements than for the AVAS
measurements where the car body partly shielded the
microphone.

3 Auralization

The first step in auralizing a vehicle passage is to accu-
rately synthesize all relevant source signals, which are, for
the scope of this paper, limited to the AVAS signal as well
as tire/road noise. As the previously described measure-
ments showed, the three evaluated vehicles use substan-
tially different AVAS signal types, requiring the
implementation of different synthesis techniques as
described in Section 3.1. Besides the source signal, the radi-
ation characteristics of the different sources need to be
taken into account, e.g., the sound radiation from an AVAS
loudspeaker mounted to the front bumper of a car will most
likely be strongest in the forward direction, and tire/road
noise typically shows a strong, frequency dependent, ampli-
fication perpendicular to the contact surface due to the horn
effect [27]. Section 3.2 presents a boundary element
approach to numerically estimate the AVAS radiation
directivity for all three evaluated vehicles and uses previ-
ously performed tire radiation measurements to construct
a generic tire/road noise directivity pattern. All source
directivities are encoded into spherical harmonic coefficients
to simplify the subsequent processing. Once all source sig-
nals and radiation directivities are known, the sound prop-
agation from all sources to a receiver position is modeled
using spherical harmonic extrapolation while additionally
taking into account vehicle movement, air attenuation,
and binaural hearing as described in Section 3.3. The entire
auralization model was implemented in Matlab R2023a; all
relevant code is available under MIT license at https://
github.com/leonpaulmueller/evat.

3.1 AVAS and tire/road noise synthesis

Based on the evaluation of the measured reference sig-
nals described in Section 2, we differentiate between three
different synthesis methods for generating AVAS and
tire/road noise signals: (i) subtractive synthesis, where
broadband noise is filtered with vehicle velocity-dependent
band-pass filters, (ii) additive synthesis, where sine wave
oscillators are added up and modulated in amplitude and
frequency depending on the vehicle velocity and (iii) sam-
ple-based synthesis, where a sample, i.e. a short sound
recording, gets repeatedly played back and modified based
on the vehicle velocity. The following sections describe
methods to analyze the recorded reference signals and re-
synthesize them using those three approaches. While this
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paper focuses on recreating measured AVAS signals of
existing vehicles, the synthesis methods are designed in a
way that allows for creating arbitrary new AVAS sounds.

3.1.1 Subtractive synthesis

The subtractive synthesis model used in this paper
assumes that the output signal, i.e., the AVAS or tire/road
noise, can be described by convolving Gaussian white noise
with a set of vehicle velocity-dependent impulse responses.
The process of determining these impulse responses and
subsequently generating a new signal can be divided into
an analysis and a synthesis stage, as described below.

Analysis In order to determine a set of velocity-dependent
filter functions describing the characteristics of a given
AVAS or tire/road noise recording, the recorded pressure
signal is divided into blocks of N samples, and each block
is assigned a mean velocity value based on the recorded
vehicle velocity signal. Those blocks are then transformed
into magnitude spectra and averaged depending on the
desired velocity resolution. Magnitude spectra for missing
velocity values are linearly interpolated, and a smoothing
function is applied to avoid discontinuities between individ-
ual velocity values, resulting in the final matrix of velocity-
dependent magnitude spectra jHðf ; vÞj (c.f. Fig. 2).

Synthesis To synthesize a signal for an arbitrary vehicle
velocity, the new velocity signal is averaged over blocks of
N samples. Since the magnitude spectra jHðf ; vÞj do not
contain any phase information, a minimum phase represen-
tation is computed using the real cepstrum [28], resulting in
a set of velocity-dependent impulse responses hðn; vÞ. This
allows block-wise computing of the output signal by con-
volving the impulse response corresponding to each block’s
velocity value with a block of Gaussian white noise. Addi-
tionally, the same noise block is convolved with the impulse
response corresponding to the previous velocity value, and
both results are cross-faded using a raised cosine function
to avoid clicking artifacts between blocks.

Results The subtractive synthesis approach was used to re-
synthesize the forward AVAS signals of vehicles A and C
and all tire/road noise signals. Figure 3 shows an exemplary
comparison between the measured and the re-synthesized
forward AVAS signal of vehicle A using a window size of
N = 512 samples at fs = 6 kHz. Thereby, it can be seen that
the synthesized signal resembles the measured signal very
well up to 3 kHz, which was set as the upper-frequency limit
for this synthesis. A perceptual validation of the resulting
auralization is presented in Section 5, and both signals can
be listened to via the supplementary online repository.

3.1.2 Additive synthesis

Additive synthesis describes the process of adding up
multiple sinusoidal signals to create a complex sound [29,
30]. Thereby, the individual signal components are typically
generated by individual oscillators, which, independent of

each other, may have a time-varying amplitude or
frequency. This can either result in relatively simple sounds,
such as the backward AVAS of vehicle A consisting of two
tones that increase their pitch with velocity (c.f. Fig. 2b), or
in more complex sounds such as the vehicle B AVAS, con-
sisting of a large number of different tones that are partly in
harmonic relation to each other (c.f. Fig. 2c). Figure 4 gives
a high-level overview of the implemented additive analysis
and synthesis model described in the following.

Synthesis We assume that the desired signal consists of
the sum of U different simple harmonic oscillators where
the u-th oscillator at time sample n has an amplitude of
AuðnÞ and a frequency fuðnÞ that both change depending
on the vehicle velocity vðnÞ. Furthermore, the amplitude
of each oscillator is modulated by an additional time-vary-
ing harmonic oscillation with amplitude �AuðnÞ and fre-
quency �f uðnÞ. This means that an individual oscillator is
characterized by the four parameters AuðnÞ, fuðnÞ, �AuðnÞ
and �f uðnÞ, which all depend on the vehicle velocity. For
each oscillator, the relation between those parameters and
the velocity is described by four sets of polynomial coeffi-
cients Cf

u;q, C
A
u;q, C

�f
u;q and C

�A
u;q which can either be manually

set to design an arbitrary new AVAS signal or can be
obtained from analyzing an existing AVAS recording as
described in the next paragraph. This means that, for exam-
ple, the frequency of the u-th oscillator at time sample n can
be calculated from the polynomial coefficients Cf

u;q with
degree Q and the vehicle velocity vðnÞ as

Figure 3. Vehicle A forward AVAS measurement (a) and
synthesized forward AVAS signal (b) including measured vehicle
velocity profile.

L. Müller and W. Kropp: Acta Acustica 2024, 8, 27 5



fuðnÞ ¼
XQ

q¼0

Cf
u;q vðnÞq : ð1Þ

Since the modulation signal for each oscillator is expected
to change in amplitude and frequency over time and the
phase argument of such a time-varying signal is propor-
tional to the integral of the instantaneous frequency [31,
Sec. 5.6], the modulation signal �suðnÞ can be constructed as

�suðnÞ ¼ �AuðnÞ cos 2p
fs

Xn

i¼0

�f uðiÞ
 !

: ð2Þ

The output signal sðnÞ then corresponds to the sum of all U
oscillators, which each consist of a frequency-modulated
sinusoidal multiplied with the corresponding amplitude
modulation signal:

sðnÞ ¼
XU

u¼1

AuðnÞ þ �suðnÞð Þ cos 2p
fs

Xn

i¼0

fuðiÞ
 !

: ð3Þ

Analysis To determine the coefficient sets Cf
u;q, C

A
u;q, C

�f
u;q

and C
�A
u;q from a recorded AVAS signal, the same velocity-

dependent magnitude spectra jHðf ; vÞj used in Section 3.1.1
are analyzed to find peaks with a user-defined prominence,
threshold and inter-peak distance for each velocity value.
Those peaks’ amplitude and frequency values are then pro-
cessed using a sequential random sample consensus (RAN-
SAC) approach [32, 33] as visualized in Figure 5. Thereby,
NR random subsets, each containing N s peak values, are
used to fit NR different polynomials with degree Q in the
frequency-velocity plane. The polynomial that covers the
most data points within a certain user-defined distance,
i.e., corresponds to the model with the most inliers, is
selected as frequency over velocity description for the first
oscillator, Cf

1;q. Those inlier points are then removed from
the peak data set and used to fit the corresponding magni-
tude-velocity polynomial coefficients, CA

1;q. The remaining
data points are re-iterated to find descriptors for all U oscil-

lators. This process results in two sets of polynomials, Cf
u;q

and CA
u;q, describing the velocity-dependent frequency and

amplitude behavior of all oscillators. The red lines in the
spectrogram shown in Figure 4 visualize those polynomials
for the Vehicle B AVAS signal, where each line represents
an individual oscillator. As can be seen, the estimated poly-
nomials cover most but not all of the tonal components
included in the analyzed AVAS signal.

Additionally, the strength and frequency of the
amplitude modulation for each oscillator are analyzed by
block-wise band-pass filtering the recorded AVAS signal
according to the previously determined frequency for each
oscillator. Taking an FFT of the Hilbert envelope of those
band-pass filtered signals then allows determining the veloc-
ity-dependent amplitude modulation frequency and
strength which are then described by the two polynomial
sets C

�f
u;q and C

�A
u;q.

Results Figure 6 shows a time-frequency representation of
the measured and additively re-synthesized AVAS signal for
vehicle B using U ¼ 27 oscillators, a window size ofN= 512
samples at fs = 6 kHz, frequency-velocity polynomial coeffi-
cients Cf

u;q with degree Qf ¼ 1 and magnitude-velocity poly-
nomial coefficients CA

u;q with degree QA ¼ 6. It can be seen
that the generated signal successfully reproduced a large
number of tonal components contained in the original
recording, but not all of them. This lower number of oscilla-
tor voices is not a limitation of the synthesis method itself
but is caused by the sequential RANSAC approach failing
to reliably identify more than 27 different tones in the veloc-
ity-dependent magnitude spectrum jHðf ; vÞj for this specific
AVAS recording. This could be improved by either fine-tun-
ing the peak detection and RANSAC settings or by manu-
ally adding more harmonics to the coefficient set Cf

u;q.
Unlike the recorded signal, the synthesized tones show a

fast frequency modulation caused by small fluctuations in
the measured vehicle velocity signal. This undesired modu-
lation can be avoided by smoothing the recorded velocity
signal as it was done for the auralized signals evaluated in

Figure 4. Additive analysis and synthesis model. The red lines in the spectrogram visualize RANSAC results for vehicle B, i.e.,
amplitude and frequency of individual oscillators. The velocity-dependent magnitude spectrum jHðf ; vÞj is obtained from the analysis
stage of the subtractive synthesis method described in Section 3.1.1.
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Sections 4 and 5. When using generated instead of recorded
velocity profiles, this problem does not occur. Therefore, it
was decided not to include this velocity smoothing step in
the additive synthesis algorithm but instead assume that
the input velocity signal has already been pre-processed.

Additionally, the recorded and the generated signals dif-
fer in background noise level as the synthesized signal solely
consists of pure tones while the recorded signal contains a
broadband background noise of around 30 dB. However,

in this specific case, the background noise most likely corre-
sponds to wind-induced noise in the microphone and cross-
talk from tire/road noise; hence, it is assumed not to be part
of the AVAS signal and should not be included in the
source signal synthesis. However, other AVAS signals
might contain strong tonal and broadband noise compo-
nents, requiring a combination of additive and subtractive
synthesis.

3.1.3 Sample-based synthesis

In contrast to subtractive and additive synthesis, sam-
ple-based synthesis uses a pre-recorded sound, a so-called
sample, instead of simple sinusoidals or noise as a synthesis
foundation. Different variations of sample-based synthesis
have been previously used to, for example, auralize combus-
tion engine noise [9, 10], using sophisticated algorithms like
granular synthesis or pitch-synchronous overlap-add to
modify sample properties such as pitch or time scale. How-
ever, for this paper, only the backward AVAS of vehicle C,
consisting of a simple “plinging” sound played back repeat-
edly with a constant pitch, is of interest for a sample-based
synthesis approach. Therefore, the implemented method
was limited to only modulating sound pressure level and
repetition rate depending on the vehicle velocity.

Synthesis The implemented sample-based synthesis model
constructs an output signal based on repetitions of a pre-
recorded sound sample. Thereby, both the equivalent con-
tinuous sound pressure level and the repetition rate are
assumed to be velocity dependent and are described by a
set of polynomial coefficients, similar to the polynomials
used for the additive synthesis approach in Section 3.1.2.
To synthesize an AVAS signal for an arbitrary new veloc-
ity, the instantaneous repetition rate and sound pressure
level are calculated from those polynomials according to
equation (1) and then used to distribute the pre-recorded
samples in an output signal vector as well as scale them
to achieve the desired RMS-values.

Figure 5. Sequential RANSAC tone detection procedure.

Figure 6. Vehicle B AVAS measurement (a) and additively
synthesized AVAS signal (b) including the measured vehicle
velocity profile.
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Analysis Analyzing a recorded AVAS signal for sample-
based synthesis requires manually selecting one period of
the desired sound sample in the recording. The entire
recording is then analyzed by calculating the cross-correla-
tion between the selected reference signal excerpt and a
time-shifted copy of the entire recording to find repetitions
of the selected sound. The RMS value of each repetition and
the spacing between repetitions is assigned to the corre-
sponding recorded vehicle velocity value, which allows for
the fitting of polynomials describing the velocity depen-
dency of both parameters. Signal repetitions correlating
strongly with the selected reference sound are then aver-
aged in the time domain to obtain a clean signal sample
and suppress potential background noise.

Results Figure 7 shows a comparison between the recorded
and the re-synthesized sample-based backward AVAS sig-
nal of Vehicle C. Both signals appear to be very similar both
in time and frequency structure, apart from the fact that
the synthesized signal shows a lower overall background
noise level. However, similarly to the additive synthesis
results, we assume that the background noise in the record-
ing is rather an artifact than part of the AVAS signal,
which means that the lower noise level in the generated sig-
nal is beneficial for auralization purposes.

3.1.4 Source signal synthesis conclusion

Based on the characteristics of the measured AVAS
and tire/road noise signals, three different source signal

synthesis methods have been implemented. All three meth-
ods have been shown to work well for the signals generated
by the evaluated vehicles. However, additional fine-tuning
might be required when adapting the methods to synthesize
other types of signals. Thereby, the choice of the method
should, of course, be determined by the character of the sig-
nal of interest.

3.2 Directivity

For the auralization approach presented in this paper,
we assume that the sound radiated by an electric vehicle
is a superposition of two types of sources: tire/road noise
and the AVAS warning sound. While the previous section
described the synthesis of the corresponding source signals,
one also has to consider sound radiation properties, which
are expected to be both frequency and space-dependent.
Whether or not this spatial directivity is perceptually rele-
vant could be a subject of a future study; to allow such
research, this work aimed to reproduce the source directiv-
ities as accurately as possible. Therefore, the AVAS radia-
tion patterns for all three vehicles were numerically
estimated using the boundary element method (BEM) as
described in Section 3.2.1, and the tire/road noise directiv-
ity was modeled based on previous measurements (c.f. Sec-
tion 3.2.2). Both AVAS and tire directivities were encoded
using spherical harmonic expansion as described in Sec-
tion 3.2.3 to allow more straightforward spatial processing
and propagation modeling.

3.2.1 AVAS directivity

Methods In order to obtain a numerical estimate of the
AVAS radiation directivity, all three vehicles were modeled
using the boundary element method (BEM) in Comsol
Multiphysics 6.1. The vehicle geometries were based on sim-
plified, commercially available 3D models of the individual
cars where the AVAS loudspeaker was substituted by a
single disk with a 5 cm radius embedded in the vehicle chas-
sis. This disk was then exited with a velocity proportional
to 1

jx, which means that the radiated sound pressure would

be constant over all frequencies if the source would be a
monopole in free field. An infinite, sound-hard ground was
included in the simulation by introducing a symmetry
boundary condition. A simple, porous absorber impedance
model was assigned to the vehicle floor to avoid numerical
problems caused by resonances between the vehicle and
the ground. The resulting sound pressure was then evalu-
ated at 5810 points of a 131st order Lebedev sphere [34]
with 3 m radius surrounding the vehicle as visualized in
Figure 8. Since the complex sound pressure on a surface
enclosing all sources is known, this pressure can be extrap-
olated to any position outside of the sphere [35], in this case
by using spherical harmonic expansion as described in
Section 3.2.3. Thereby, the fact that the introduced symme-
try boundary condition leads to a mirrored pressure field
below the ground plane automatically results in correct
ground reflections when extrapolating the pressure from
the evaluation sphere. This correct extrapolation would

Figure 7. Vehicle B AVAS measurement (a) and additively
synthesized AVAS signal (b) including the measured vehicle
velocity profile.
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not be the case when setting the pressure below ground to
zero or only evaluating the upper half-sphere; one can also
interpret this approach as introducing an additional image
source below the ground.

The model was solved up to 3 kHz in 30 Hz steps, which,
when transformed to time domain, results in impulse
responses describing the propagation from the AVAS loud-
speaker to receiver positions on the evaluation grid with a
sampling rate of 6 kHz and a duration of 33.3 ms. This
upper-frequency limit was set due to high computational
demands and effectively limits the maximum possible fre-
quency for the AVAS signal auralization to 3 kHz. Since
none of the measured AVAS signals except for vehicle B
showed significant contents above 3 kHz and higher fre-
quency BEM calculations would have been infeasible with
the available computational resources, it was decided to
accept this limitation for the purposes of this study. When
higher frequency radiation patterns are needed, the BEM
model could be solved using more computational power or
be extended by a less computationally demanding approach
for higher frequencies, such as ray tracing.

Results Figure 9 shows polar representations of the cal-
culated AVAS radiation directivity for vehicle A. These
results show that the radiation in the horizontal plane is
focused towards 330� and that the sound radiation in the
frontal plane is also skewed towards this direction for all
evaluated frequency bands. This directivity appears reason-
able as the AVAS loudspeaker of this vehicle is mounted on
the right side of the front bumper (c.f. Fig. 1d). While the
details of the radiation patterns obtained from the BEM
calculations might not be perfectly accurate due to, e.g.,
deviations in the vehicle geometry and unknown material
properties, they strongly indicate that this specific vehicle
radiates the AVAS signal mostly to the front right relative
to its driving direction and less to the back and to the left
side. This observation was also confirmed by in-situ direc-
tivity measurements of the vehicle A AVAS system, which
we, in order to limit the extent of this paper, do not describe

in further detail. The radiation directivities calculated for
vehicles B and C were calculated using the same methods
and are attached in Appendix A (Fig. A1). How exactly
these patterns differ and whether or not they are beneficial
for the intended AVAS warning purposes would be a rele-
vant topic for a follow-up study. For the scope of this paper,
we conclude that the AVAS radiation in the relevant fre-
quency range is not omnidirectional and should, as long
as it is not shown to be perceptually irrelevant, be included
in the auralization.

3.2.2 Tire directivity

The implemented tire directivity is based on static lab-
oratory measurements performed in [27]. Thereby, a micro-
phone was flush mounted to the ground below the rolling
surface of a commercial tire (type 155SR13) with a distance
of 10 mm to the tire/road contact point. The tire itself was
installed on a middle-class car, and a loudspeaker was
placed with 7.5 m distance to the center of the tire and
1.2 m above the ground at a horizontal angle of 0�, 15�,
30�, 45�, 60�, 75�, 90� relative to the tire normal axis. Trans-
fer functions between the loudspeaker and the microphone
were measured outdoors on a dense asphalt surface using
the maximum length sequence technique. Assuming
reciprocity, these transfer functions describe the radiation
from the tire/road contact point to the environment, which
were then normalized by the transfer function measured for
0� and mirrored to construct a full sphere 360� radiation
pattern. Half of this radiation directivity was manually
attenuated by up to 12 dB to compensate for the car body
blocking parts of the radiated sound, which resulted in a
polar pattern as shown in Figure 10. For the tires on the
opposite side of the car, the pattern was rotated by 180�.
While the resulting directivity is certainly not as accurate
as, for example, a detailed radiation simulation of the exact
tires used for the reference pass-by measurements, the main
focus of this work is the accurate auralization of the specific
AVAS systems more than the exact reproduction of the
tire/road noise. We, therefore, assume that the obtained
generic tire/road noise radiation pattern is sufficient for this
purpose.

3.2.3 Spherical harmonic expansion

The previously described radiation directivities, i.e., the
transfer functions from the sound source to a spherical grid
of evaluation points, can be used to directly calculate the
sound propagation from a moving electric vehicle to a recei-
ver position. However, doing so is not very convenient, espe-
cially when considering that other researchers might want
to embed the presented radiation directivities in their own
auralization tools. One complication with directly using
the obtained transfer functions for the auralization is that
the AVAS and tire directivities have different spatial reso-
lutions, and the exact coordinates of the evaluation points
need to be known for further processing. Additionally, cal-
culating the directivity for a polar angle that does not lie on
the evaluation grid requires some form of interpolation, and

Figure 8. Simplified 3D model of vehicle A with BEM results
for radiated sound pressure at f = 2 kHz and evaluation points
on Lebedev grid. The mirrored pressure below the ground plane
is a consequence of the symmetry boundary condition used to
model an infinite sound-hard ground.
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for real-time auralizations, the spatial resolution of the
AVAS directivities might need to be decreased.

All these problems are simplified by encoding the radia-
tion patterns using spherical harmonic (SH) expansion [36–
39]. While already established for virtual acoustics applica-
tions, this concept of handling complex radiation patterns
has also gained entry to other fields such as railway acous-
tics [40] or road traffic noise auralizations [41]. Thereby, the
fundamental approach is that a sound field defined on the
surface of a sphere with radius r0 is decomposed into a
sum of orthogonal spherical harmonic basis functions,
resulting in a set of spherical harmonic coefficients. This
set of SH coefficients then allows the extrapolation of the
pressure at an arbitrary angle and distance as well as the
reduction of the spatial resolution by truncating the order
of the spherical harmonics. The following paragraphs
describe the implemented spherical harmonic encoding
and extrapolation methods and evaluate how well the
AVAS radiation patterns are reproduced using these
techniques.

Encoding If pðr0;/; h;xÞ represents the pressure on an
observation sphere with radius r0, which, in our case,

corresponds to the BEM calculations and tire radiation
measurement results, this pressure can be expanded into a
set of spherical harmonic expansion coefficients W m

l ðr0;xÞ
as [35, Ch. 6.3.3]

pðr0;/; h;xÞ ¼
X1

l¼0

Xl

m¼�l

W m
l ðr0;xÞ Y m

l ð/; hÞ: ð4Þ

Thereby, Y m
l ð/; hÞ represents the SH basis functions with

order l and degree m for the azimuth angle / and the colat-
itude angle h. When limiting the maximum SH order to
l ¼ L and considering spatially discrete pressure observa-
tion points, equation (4) can be written in vector-matrix
form as [39]

p ¼ YW: ð5Þ
If the number of discrete observation points in p is greater
than or equal to gg � ðLþ 1Þ2, equation (5) can be solved in
a least-squares sense to obtain the SH coefficient matrix W
[42]. Thereby, gg represents the degree of overdeterminacy
of the pressure sampling scheme, which corresponds to
gg ¼ 1:3 for the Lebedev grid used in this study [43]. The
maximum SH order L determines the spatial resolution of
the encoded directivities; an advantage of the spherical har-
monic encoding is that the spatial resolution can be reduced
without any additional interpolation or down-sampling by
simply truncating W m

l ðr0;xÞ to a lower SH order. Based
on the number of pressure observation points obtained from
the BEM calculations and the tire measurements, the
AVAS directivities were encoded with SH order L ¼ 64
and the tire directivity with L ¼ 16 which, based on studies
such as [44, 45] and the perceptual validation performed in
Section 5, is expected to be sufficient for auralization
purposes.

Extrapolation Assuming that the reference pressure was
observed on a sphere with radius r0, the pressure
pðr;/0; h0;xÞ at any position with r � r0 can be extrapo-
lated by multiplying the SH coefficients, W m

l ðr0;xÞ, and
the SH basis functions for those new positions, Y m

l ð/0; h0Þ,
and scaling the result with the l-th order spherical Hankel
function of the first kind, hlðkrÞ, as [35, Eq. 6.94]

Figure 10. Tire Directivity in octave bands, normalized to the
maximum for each band and attenuated towards the direction of
the vehicle body.

Figure 9. Vehicle A AVAS radiation directivity results of BEM calculation for the horizontal, median, and frontal plane. Normalized
to the maximum for each frequency band.
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pðr;/0; h0;xÞ ¼
XL

l¼0

hlðkrÞ
hlðkr0Þ

Xl

m¼�l

W m
l ðr0;xÞ Y m

l ð/0; h0Þ : ð6Þ

For the AVAS directivities, the symmetry condition
embedded in the BEM model results in a mirrored pressure
field below the ground (c.f. Section 3.2.1), which, when
included in the SH expansion, leads to the extrapolation
method correctly reproducing all ground reflections. For
the tire/road noise, we assume that the sound source corre-
sponds to the tire contact point on the ground; hence, there
are no first-order ground reflections. Second-order ground
reflections, such as tire/road noise scattered from the tire
or vehicle chassis to the ground, are not correctly extrapo-
lated using the measured tire directivities.

Validation To evaluate the accuracy of the SH encoding
and extrapolation method, the modal assurance criterion
(MAC) [46] between the pressure extrapolated from the
SH coefficient set with r0 ¼ 3 m to a 2861-point spherical
validation grid with r ¼ 6 m and the BEM results for the
same validation positions was calculated as

MACðxÞ ¼ jpH
SHðxÞpBEMðxÞj2

ðpH
BEMðxÞpBEMðxÞÞðpH

SHðxÞpSHðxÞÞ
: ð7Þ

Thereby, pSH and pBEM correspond to the complex pressure
values obtained from the SH extrapolation and the BEM
simulation; the superscript H marks the Hermitian trans-
pose. Similar to a correlation coefficient, the MAC describes
the degree of linearity between the extrapolated SH pres-
sure and the pressure at the validation grid obtained
directly from BEM. A MAC value of 1 indicates a perfectly
linear spatial dependency between both pressure sets,
which, compared to spatially independent measures such
as the RMS error, gives more meaningful insights into the
actual similarity of the radiation patterns. This comparison
allows estimating how well the SH extrapolation method
can reproduce pressure at positions other than the ones
used to calculate the SH directivities.

Figure 11 shows the MAC results as a function of SH
order and frequency. It can be seen that higher frequencies,
in general, require higher SH orders to reproduce the AVAS
radiation pattern correctly. At the maximum evaluated SH
order of L ¼ 64, both pressure sets have a perfectly linear
dependency up to a frequency of 1600 Hz. This result indi-
cates that the SH extrapolation correctly reproduces the
direct pressure radiated by the AVAS speaker as well as
captures the ground reflections and scattering on the vehi-
cle body included in the BEM simulations. Around
2500 Hz, the MAC for L ¼ 64 drops to zero, indicating a
significant error between the SH extrapolated data and
the BEM results. This comparably large error for low SH
orders is a consequence of the acoustic center of the sound
source not being placed in the center of the evaluation
sphere [47], which results in a more complicated pressure
pattern on the evaluation sphere and hence requires a
higher SH order than when the evaluation sphere would
be aligned with the acoustic center of the sound source. This

influence of the evaluation sphere position was confirmed
by calculating an additional set of directivities with the
Lebedev pressure evaluation grid centered on the AVAS
loudspeaker instead of the center of the vehicle. This shift
resulted in a significantly lower required SH order of
between L ¼ 10 and L ¼ 24, depending on the exact vehicle
type. While the resulting auralizations do not differ percep-
tually, those lower-order speaker-centered directives are a
more efficient way to describe the sound radiation and
result in lower computational demand. However, since scat-
tering from the vehicle has to be considered part of the
sound source, the entire car must be enclosed by the evalu-
ation sphere. Centering the sphere on the AVAS speaker
mounted in the front bumper hence requires a larger radius
r0, resulting in an increase of the minimum auralization dis-
tance from 3 m to 5 m. This makes the speaker-centered
directivities less suitable for the auralization of close-dis-
tance vehicle passages compared to the vehicle-centered
directivities used in this paper.

While the upper-frequency limit of the vehicle-centered
directivities with L ¼ 64 is sufficiently high to cover the
most relevant parts of the measured AVAS signals, the
MAC validation indicates that not all AVAS components
are reproduced correctly without increasing the SH order
even further. Fortunately, several perceptual studies have
shown that high-frequency deviations in sound source direc-
tivity are often not audible and that much lower SH orders
may be sufficient for auralization purposes [44, 45]. Addi-
tionally, the modal assurance criterion evaluates the simi-
larity of both magnitude and phase, whereas, in practice,
it is often considered acceptable only to reproduce the cor-
rect magnitude of sound source directivities, significantly
reducing the required SH order [39]. Since the overall goal
of this work was to create perceptually accurate rather than
numerically perfect simulations, it was concluded that an
AVAS SH order of L � 64 for a vehicle-centered directivity
is sufficient for this purpose. This assumption was further
investigated in a listening experiment presented in
Section 5.

3.3 Propagation

The movement of the outdoor sound source was imple-
mented using the concept of moving Green’s functions [48].
This means that the desired trajectory of the vehicle is spa-
tially discretized according to the desired sampling fre-
quency, i.e., each audio sample is assigned to a
corresponding source position. Transfer functions describ-
ing the propagation from each of those discrete source posi-
tions to the receiver position are then calculated by
extrapolating the SH directivities using equation (6) apply-
ing an inverse Fourier transform results in a set of Green’s
functions gjðnÞ for all discrete source positions j. The num-
ber of source positions N is equal to the number of output
samples and source signal samples; the length of each
Green’s function depends on the frequency resolution of
the SH coefficients. Combining these Green’s functions with
a source signal sðnÞ obtained from the synthesis methods
described in Section 3.1 allows for calculating the resulting
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pressure at the receiver position precðnÞ by convolving each
Green’s function with the corresponding sample of the
source signal as

precðnÞ ¼
XN�1

i¼0

sðn� iÞ � gn�iðiÞ : ð8Þ

To account for atmospheric absorption, the resulting pres-
sure is filtered according to ISO 9613-1:1993 [49] by atten-
uating individual third-octave bands depending on the
instantaneous distance between the source and the receiver.
For a headphone-based reproduction, the pressure signal is
then block-wise convolved with head-related transfer func-
tions (HRTFs) corresponding to the instantaneous angle
between the source and the receiver, resulting in a binaural
output signal. Alternatively, the HRTF for each sample n
can be convolved with the corresponding Green’s function
to directly obtain a binaural signal from equation (8). Since
the auralization model assumes that the overall vehicle radi-
ation is composed of five different sound sources, i.e., four
independent tires and the AVAS loudspeaker, which all
have a different spatial orientation relative to the receiver
position, the previously described process is performed sep-
arately for all five sound sources and the resulting binaural
pressure signals are added up to obtain a summation of all
sound sources. Finally, binaural ambient noise recorded at
the exact location used for the measurements in Section 2
is added to the output signal to create a more lifelike sce-
nario instead of simulating a vehicle passing by in a per-
fectly silent environment.

4 Evaluation

In order to numerically evaluate the quality of the aural-
ization model, several passages of all vehicles were simu-
lated using the velocity profiles of the corresponding
recordings. Since those recorded velocity signals contain
small fluctuations that can result in unwanted modulations
during the synthesis step, as shown in Section 3.1.2, they
were smoothed by replacing them with a 5th-order polyno-
mial fitted to the velocity recordings. Using the same veloc-
ity profile and vehicle type means that, ideally, the
auralization should result in a signal identical to the

recorded signal. Figure 12 shows an exemplary comparison
between a recorded and auralized passage of vehicle B,
including the measured and smoothed vehicle velocity pro-
file for a roadside observer position. Comparing the spectro-
grams of the recorded and generated signals (c.f. Fig. 12a,
Fig. 12b) shows that the generated signal misses some of
the weaker tonal components above 630 Hz, resulting in
temporary differences of up to 6 dB in the 2 kHz and
4 kHz octave bands. However, this difference in the number
of tones is not as pronounced in the final auralization as
when comparing the isolated AVAS source signals (see
Fig. 6). This could be explained by directivity and propaga-
tion modeling attenuating those weak tones to a level below
the background noise floor.

When listening to both the recording and the auraliza-
tion results, a noticeable difference is that the tire/road
noise in the recording contains transient crackling sounds,
most likely caused by small stones on the road surface.
While the subtractive tire/road noise synthesis method
alone is not able to reproduce such sounds, the auralization
could be improved by combining the subtractive synthesis
method for broadband tire/road noise components with a
sample-based synthesis approach for those crackling
sounds.

Additionally, the tonal components in the generated sig-
nal decrease drastically as soon as the vehicle passes the
observer at ca. 15 s, while, in the recorded signal, tonal com-
ponents fade out more slowly. This difference is also evident
in the octave band comparison over time shown in
Figure 12d. A possible explanation for these deviations
might be that the numerically estimated AVAS directivity
is inaccurate, i.e., the AVAS radiation is more omnidirec-
tional than the BEM results indicate. This might be caused
by the simplified vehicle geometry and the lack of surface
roughness and diffuse reflections in the BEM model.
Another factor that could lead to such an overly pro-
nounced magnitude change during the vehicle passage is
that the simulated signals, except the ground reflections
included in the directivities, assume free field sound propa-
gation. The recordings, however, were made in proximity to
buildings, resulting in additional reflections and, hence, a
more diffuse sound field at the receiver position. Even if
the AVAS radiation is highly directional, additional diffuse
reflections would automatically decrease the influence of the
source directivity during the passage. Implementing an
image source model by mirroring the calculated directivities
would allow the inclusion of those reflections in the simula-
tion, potentially resulting in more accurate auralizations at
the cost of higher computational demand. Finally, omitting
the time structure and comparing both signals in third-
octave bands, as shown in Figure 12c, reveals that the
auralization relatively accurately reproduces the overall
time-averaged sound pressure levels, which might be of
interest for research in the context of traffic noise regula-
tions. To summarize, the numerical comparison between
the recorded and synthesized passage of vehicle B revealed
differences in the time/frequency structure of the signals,
which could originate from an incorrect directivity model
or a lack of environmental reflections. Similar differences

Figure 11. Modal assurance criterion between SH directivities
extrapolated to validation grid and corresponding BEM results
as a function of SH order and frequency.
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are also visible when comparing auralizations and reference
recordings for the other evaluated vehicle as shown in
Appendix A (Fig. A2).

5 Perceptual validation

While the previously presented numerical validations
already revealed that the auralization results are no perfect
reproductions of the reference recordings, a perceptual val-
idation is necessary to determine whether or not those dif-
ferences are relevant to the method’s intended purpose of
performing AVAS-related listening experiments. Thereby,
one has to first specify the needs of this application to be
able to decide on which “quality level” is required. For
example, does the auralization necessarily have to be
numerically identical to in-situ measurements? Or is it suf-
ficient if the auralization is “authentic”, i.e., perceptually
indistinguishable in direct comparison to a real sound act-
ing as external reference [50, 51]? Or might the quality of
the auralization already be acceptable if it is perceived as
“plausible”, meaning the simulation corresponds to a lis-
tener’s expectation of the corresponding real event [52]
based on an internal reference that is built up by everyday
life experiences [53]. In the context of virtual acoustic envi-
ronments, one could also say that authenticity means that
all perceivable “quality features” [54] of an acoustic environ-
ment are copied, while plausibility means that only the fea-
tures required for a specific purpose are simulated.
Following this definition, one could argue that it is enough
for any application to strive for “plausibility” as there is no
point in reproducing unnecessary features. This, however,
implies that one needs to know exactly which features are
required for a specific application. In the context of psy-
choacoustic experiments, that is not always possible, as
the sole purpose of such studies might lie in estimating
which features of a complex auditory scene are perceptually

relevant. This could be seen as an argument to always strive
for authenticity in the context of auralizations for listening
experiments.

From a more pragmatic point of view, we concluded
that, while there are some areas of virtual acoustics where
authenticity might be achievable, an authentic auralization
of complex acoustic scenarios such as electric vehicle pas-
sages is very ambitious and comes at the cost of high effort
and low flexibility. Listening to the auralization results pre-
sented in Section 4, it becomes clear that some small audible
differences would stand out in a direct A/B comparison,
even when the results are perceived as very similar to
real-life recordings. To design and fine-tune an AVAS sys-
tem for a specific existing vehicle, the overall auralization
should be as authentic or, when it comes to estimating com-
pliance with regulations, even as numerically correct as pos-
sible. Nevertheless, for our goal of investigating the human
response to AVAS signals, we argue that it is secondary
whether the auralization sounds exactly like an existing
electric vehicle as long as it is perceived as plausible and
we are aware of and have complete control over all signal
properties. Even when the overall perception of a stimulus
is “only” plausible, there could nevertheless be some individ-
ual features that are perceived as authentic. For example, in
this work, we prioritize the AVAS signal auralization over
the tire/road noise, which could mean that the isolated
AVAS signal is perceived as authentic while the overall
combination of AVAS and tire/road noise is not.

Based on these considerations, we evaluated plausibility
in terms of “sounds like it could be an electric vehicle pas-
sage” by performing a laboratory listening experiment with
20 participants. Additionally, an indirect parametric com-
parison to the reference recordings was performed by asking
the subjects to rate perceptual attributes such as annoyance
and vehicle speed for both auralizations and recordings.
The following sections describe the experiment setup and
discuss the implications of the obtained results.

Figure 12. Recorded (a) and auralized (b) passage of vehicle B including the measured (a) and smoothed (b) vehicle velocity, third-
octave band levels of vehicle B recording and auralization (c) and difference in octave-band fast-weighted levels between vehicle B
recording and auralization (d).
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5.1 Procedure and stimuli

The listening experiment was divided into two parts: In
the first part, the participants were presented with ten bin-
aural in-situ recordings, two for each vehicle and driving
direction. The subjects were informed that they were listen-
ing to real recordings and were asked to rate perceived vehi-
cle speed and annoyance for each passage. When recruiting
a group of non-experts, one has to assume that not all sub-
jects have sufficient experience to rate plausibility without
any training phase, especially since electric vehicle sounds
are not yet well established in our everyday lives. The pur-
pose of this first experiment part was, therefore, to familiar-
ize the participants with the sound of electric vehicle
passages and, by this, build up an internal reference while,
at the same time, obtaining a “ground truth” for the subjec-
tive vehicle speed and annoyance ratings.

In the second part of the experiment, participants were
again presented with five out of the ten in-situ recordings
from the first experiment part, one for each vehicle and
driving direction. Additionally, the subjects listened to 20
generated passages synthesized using a smoothed version
of the vehicle velocity profiles belonging to the correspond-
ing reference recordings. This means that, ideally, the gen-
erated signals in the second experiment part should be
indistinguishable from the reference recordings presented
in the first experiment part. Of those 20 generated stimuli,
ten passages were rendered with spherical harmonic order
L ¼ 64, five passages were rendered with L ¼ 16, and five
passages were low-quality renderings included to act as
anchors. This group of low-quality renderings consisted of
(i) amplitude-panned white noise, (ii) amplitude-panned
white noise combined with a binaural ambience recording,
(iii) an auralization without ambience sounds, and (iv)
auralizations without spatialization for two different vehi-
cles. The stimuli without spatialization were generated by
using a static HRTF for 0� azimuth angle instead of HRTFs
varying according to the source position. This means they
include radiation directivity and distance attenuation but
no binaural movement cues. For each stimulus, the partic-
ipants were asked to rate perceived annoyance, vehicle
speed, and plausibility compared to their internal reference
based on the recordings presented in the first experiment.

5.2 Participants and implementation

The experiment was performed by 20 participants (12
male, 7 female, 1 preferred not to specify) recruited from
Chalmers students and faculty members. The participants
were aged between 22 and 37 years, with a median age of
27 years. All participants had self-reported normal hearing
and an educational background in acoustics and gave their
written consent for participation as well as collection and
processing of their personal data. All stimuli were presented
via calibrated headphones (Sennheiser HD 650), and the
experiment was conducted using a HEAD acoustics SQala
jury testing system. The order of stimuli within both exper-
iment parts was randomized for each participant. All aural-
izations were rendered using HRTFs measured for a HEAD

acoustics HMS II.3 artificial head [55], which has the exact
dimensions and ear shape as the HMS V artificial head used
for the reference measurements.

5.3 Results

5.3.1 Plausibility

In the second part of the experiment, participants rated
the plausibility of in-situ recordings, auralizations with
spherical harmonic order L ¼ 64 and L ¼ 16 as well as
low-quality anchor signals on a unipolar numerical 11-point
interval scale ranging from the value 0 (“not at all
plausible”) to the value 10 (“extremely plausible”). Figure 13
shows the arithmetic mean and 95% confidence intervals of
the obtained results. Independent of vehicle type, it can be
seen that the in-situ recordings consistently scored the high-
est plausibility rating and that the anchor signals are rated
as least plausible, with the amplitude panned noise achiev-
ing the lowest plausibility score. Comparing the different
vehicle types, the backward passages of vehicle C were
rated as least plausible for both recordings and auraliza-
tions. This could be due to the fact that the vehicle C back-
ward AVAS consists of a constantly repeating “plinging”
sound that, in itself, could be perceived as artificial. Fur-
thermore, there seems to be no consistent difference pattern
between both evaluated spherical harmonic orders.

To further investigate the difference between in-situ
recordings and auralizations, the plausibility ratings were
averaged over vehicle type as shown in Figure 14. It can
be seen that the recordings achieved a mean plausibility
of around 8.0 out of 10 while the auralization scored a lower
average plausibility rating of 6.3 for SH order L ¼ 64 and
6.7 for L ¼ 16. The overall difference between those three
stimuli groups was determined as statistically significant
according to a repeated measures analysis of variance with

Figure 13. Arithmetic mean of plausibility ratings with 95%
confidence intervals. Vehicle B was only evaluated driving
forward since its AVAS signal does not change with driving
direction.
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Greenhouse-Geisser correction (F ð1:502; 28:540Þ ¼ 15:134;
p < :001; partial g2 ¼ :443). A Bonferroni-adjusted post-
hoc analysis revealed a significant difference between in-situ
recordings and auralizations with SH order L ¼ 64 (MD =
1.725, 95%–CI[0.719, 2.731], p < :001) as well as between
the recordings and auralizations with L ¼ 16 (MD =

1.330, 95%–CI[0.381, 2.279], p ¼ :005) but not between
auralizations with L ¼ 16 and L ¼ 64 (MD = �0.395,
95%�CI[�0.961, 0.171], p ¼ :248). This indicates that the
auralizations are not perceived as plausible as the in-situ
recordings and that there is no significant difference in plau-
sibility between spherical harmonic orders L ¼ 16 and
L ¼ 64 for this specific application. The fact that even the
in-situ recordings were not rated as perfectly plausible
shows that, despite the training phase in the first experi-
ment part, not all participants had a sufficiently strong
internal reference to identify the authentic signals reliably.
Even though not as good as the recordings, the auralization
plausibility ratings are still relatively high on the scale and
significantly better than for the low-quality anchor signals.
Looking at the difference between the individual anchor sig-
nals, it becomes clear that both the added binaural ambient
noise and the spatialization are relevant features for the
overall perceived plausibility since the signals rendered
without those attributes are rated as less plausible than
the complete auralizations.

5.3.2 Annoyance and vehicle velocity

In both experiment parts, the participant rated per-
ceived annoyance and vehicle velocity for all stimuli.
Thereby, annoyance was measured on a unipolar numerical

Figure 14. Arithmetic mean of plausibility ratings with 95%
confidence intervals, averaged over all vehicle types.

Figure 15. Annoyance and vehicle velocity ratings for both
experiment parts and linear regression with correlation coeffi-
cient r. Observe that the used interval scale only allows for
integer answers; data points with identical values were slightly
offset to better visualize the distribution. The data combines the
results for all evaluated vehicles; only auralizations with SH
order L = 64 are included.

Figure 16. Distribution of differences in annoyance and vehicle
velocity ratings between both experiment parts. The data
combines the results for all evaluated vehicles; only auralizations
with SH order L = 64 are included.
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11-point scale labeled from 0 (“not at all annoying”) to 10
(“extremely annoying”) as recommended by ISO/TS
15666 [56], the perceived vehicle velocity was rated on an
8-point unipolar scale labeled as <5 km/h, 5–10 km/h,
10–15 km/h, 15–20 km/h, 20–25 km/h, 25–30 km/h, 30–
35 km/h and 35–40 km/h. Since absolute velocity values
are not of interest for the following evaluation, those eight
velocity categories were translated to integer values ranging
from 0 (<5 km/h) to 7 (35–40 km/h).

Using the ratings obtained for the in-situ recordings in
the first experiment part as a reference allows for evaluating
how well the auralizations presented in the second experi-
ment part reproduce features relevant to the perception of
annoyance and vehicle velocity. Since half of the in-situ
recordings from the first experiment part were also repeated
in the second part, we can additionally determine how con-
sistent those subjective ratings are throughout the experi-
ment. Figure 15 compares the annoyance and vehicle
velocity ratings obtained for auralizations and recordings
in the second experiment part to the results from the first
part. Thereby, only ratings for stimuli pairs that exactly
match each other were compared for each participant,
i.e., values for the exact same recordings in experiment
parts one and two, as well as ratings for auralizations in
part two, matched with ratings for the recordings in part
one that they aimed to reproduce. If the ratings in experi-
ment part two would perfectly match the results of the first
experiment part, all data points in Figure 15 would lie on
the identity line. However, that is not the case, neither
for the recordings nor for the auralizations.

In order to better understand the difference between the
results of both experiment parts, a simple linear regression
was performed. The resulting regression lines presented in
Figure 15 indicate that, for both repeated in-situ recordings
and auralizations, participants tend to less extreme ratings
in the second experiment part than in the first part, i.e., all
regression lines have a similar slope smaller than one. This
tendency could be statistically explained by a regression to
the mean effect [57], i.e., assuming the annoyance and veloc-
ity ratings of each subject to be random variables with a
certain distribution around a mean value, it is statistically
more likely that subjects who gave an extreme rating in
the first experiment part tend to ratings closer to this mean
value in the second experiment part. Alternatively, this
trend could be interpreted as a repetition priming effect
[58], meaning that, after hearing all stimuli of the first
experiment part, the participants might have adjusted their
internal reference, resulting in more conservative ratings in
the following part. Similar response patterns were described
as “simple order effect” in other laboratory noise annoyance
studies such as [59]. Independent of the cause, this observa-
tion means that it is not sufficient for the perceptual valida-
tion of the auralization only to compare the difference
between both experiment parts since even a “perfect” aural-
ization that exactly reproduces the in-situ recordings would
show this inconsistency in the subjective ratings.

While the correlation between the data for both exper-
iment parts is slightly higher for the repeated in-situ record-
ings than for the auralizations, both data sets are only

moderately correlated (r < 0:7). This means that the rela-
tion of the data obtained for both experiment parts is not
perfectly linear. Therefore, a simple linear regression might
not be the most suitable tool for evaluating whether the dif-
ference between ratings for auralizations and in-situ record-
ings is statistically significant. Instead, the distribution of
differences between both experiment parts was compared
by subtracting the ratings obtained in the second experi-
ment part from the ratings for the first part as shown in
Figure 16. These distributions were then compared using
a Wilcoxon signed-rank test, which showed that the distri-
bution of differences in annoyance ratings compared to the
reference in-situ recordings in the first experiment part,
averaged over vehicles for each participant, does not signif-
icantly differ between recordings and auralizations
(Z ¼ �:081; p ¼ :936). The difference in vehicle velocity
rating was found to be statistically significant
(Z ¼ 3:825; p < :001) which, in combination with the shape
of the distributions shown in Figure 16 and the offset
between the recording and auralization velocity regression
lines in Figure 15, leads to the conclusion that the auraliza-
tion results in higher subjective vehicle velocity ratings than
obtained for the corresponding in-situ recordings.

Based on the numerical comparison between auraliza-
tions and in-situ recordings discussed in Section 4, we
assume that these differences in perceived vehicle velocity
are related to the fact that the auralizations tend to show
a more drastic change in time/frequency structure when
the vehicle passes the observer which could be a conse-
quence of inaccurate radiation directivities and missing
environmental reflections. However, more research is
needed to determine which features of an auralized vehicle
passage influence the perceived velocity. While the percep-
tual validation results indicate that the implemented aural-
ization method is unsuitable for experiments where the
authenticity of the overall perceived vehicle speed is essen-
tial, it still allows for comparisons between stimuli, e.g.,
whether two different AVAS signals result in different
speed perceptions.

6 Conclusion

This paper presented an auralization approach for elec-
tric vehicle passages based on in-situ measurements of three
electric passenger cars. Different AVAS and tire/road syn-
thesis methods were combined with radiation directivity
and propagation models to generate pass-by auralizations
suitable for AVAS-related psychoacoustic experiments.
The numerical validation of the auralization results shows
that, while the reproduction of the AVAS source signals
is accurate, some discrepancies in the propagation modeling
may be caused by inaccurate radiation directivities or miss-
ing environmental reflections. The auralization method
achieved relatively high plausibility ratings in a perceptual
evaluation, even though the generated stimuli were per-
ceived as less plausible than in-situ recordings. While per-
ceived annoyance ratings for the auralization results are
consistent with the ratings for in-situ recordings, there is
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a statistically significant difference in velocity ratings
between measurements and auralizations, which requires
further investigation. Overall, we conclude that, while there
are possibilities for improvement, the presented methods
constitute a suitable foundation for AVAS-related listening
experiments.
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Appendix A

Figure A1. Vehicle B (a) and vehicle C (b) AVAS radiation directivity results of BEM calculation for the horizontal, median, and
frontal plane. Normalized to the maximum for each frequency band. For vehicle A, see Figure 9.
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Figure A2. Vehicle A forward recording (a) and auralization (b), vehicle A backward recording (c) and auralization (d), vehicle C
forward recording (g) and auralization (h) and vehicle C backward recording (i) and auralization (j). The red lines visualize the
recorded and smoothed velocity profiles. For vehicle B, see Figure 12.
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