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Evolutionary-based machine learning models have emerged as a fascinating approach to mapping the
landscape for protein evolution. Lian et al. demonstrated that evolution-based deep generative models, spe-
cifically variational autoencoders, can organize SH3 homologs in a hierarchical latent space, effectively dis-
tinguishing the specific Sho1SH3 domains.
Proteins are the building blocks of life.

Variations in their sequences, and sec-

ondary and tertiary structures, contribute

to the diversity of life forms. The boom in

biological big data, driven by rapid

sequencing technologies and atom-level

structure prediction, has allowed us a

glimpse into some of the evolutionary

trajectories of proteins over millions of

years using both sequence-based and

structure-based models.1 With machine

learning (ML), sequential and structural in-

formation could be converted into distrib-

uted vector representations, linked to

functional properties via transfer learning,

and further used for evolutionary fitness

landscape mapping.2

Although protein structures can also be

clustered with approaches such as Fold-

seek cluster,3 sequence-based ML

models advance faster in the area of pro-

tein evolution due to the lower computa-

tional consumption and setup complexity

compared with structure prediction and

alignment. Latent space models can

theoretically model high-order epistasis

of sequences without exponentially

increasing the number of parameters.

Thanks to recent advances in stochastic

variational inference, such as the varia-

tional autoencoder (VAE) approach,

continuous latent space models can be

readily learned for hundreds of thousands

of sequences. Ding et al.4 learned latent

space models with the VAE and captured

phylogenetic relationships between se-

quences from the alignment of multiple

sequences of the fibronectin type III

domain and the cytochrome P450 family.

Ziegler et al.5 further constructed a latent

generative landscape with the VAE that

could capture the phylogenetic, func-
This is an open access article un
tional, and fitness properties of various

protein families. These and other similar

approaches allow researchers to capture

snapshots of the static evolutionary state

of functional proteins. Additionally, when

it comes to understanding why certain

proteins within the same family are

favored and endowed with unique func-

tions across species, Ziegler et al.5 pro-

vided some evidence in the local regions

of the landscape, which showed the dis-

tance between cold-sensitive transmem-

brane protein 8 and non-cold-sensitive

ones. However, overall speaking, we still

lack a systematic approach to unveil the

full evolutionary mystery of proteins.

To untangle some of the mysteries,

Lian et al. described in their paper

published recently in Cell Systems6 a

hierarchical latent space mapping

approach with the VAE to reflect

hierarchical relationships, distinguishing

between Sho1SH3 orthologous and pa-

ralogous sequences within the Src ho-

mology 3 (SH3) family. Sho1SH3 is the

only SH3 domain among 26 other paral-

ogous domains in the genome that

can support osmosensing in the

Sho1 pathway. The authors compared

the Boltzmann machine direct-coupling

analysis model and two VAE models

(a generic form called vanillin VAE and

a variant form, InfoVAE, known for infor-

mation maximizing) in learning the

sequential information of the SH3 family.

They found that InfoVAE outperformed

the other models in capturing epistatic

information and showed higher accu-

racy in producing a hierarchical organi-

zation of SH3 homologs, where func-

tional distinctions are primary, and

phylogeny is secondary. The Sho1SH3
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group seemed to fall into a constrained

space in the 3D latent space embedding

mapping of all 5,299 natural SH3

homologs.

More significantly, Lian et al. presented

a wet-lab assay to calibrate the Sho1

functionality of all 5,299 natural SH3 ho-

mologs. They demonstrated that the

experimentally validated functional se-

quences were localized in the vicinity of

the Sho1SH3 paralog group in the 3D latent

space embedding mapping. The annota-

tions of these 132 validated sequences

revealed that they were all orthologs of

Sho1SH3 across the fungal kingdom,

including Sho1SH3 domains from distant

Basidiomycota and even non-Dikarya

species.

The authors further defined a minimal

polygon in the latent space (‘‘convex

hull’’) that bounds the natural sequences

displaying full function in the S. cerevisiae

Sho1 pathway, and the majority of

Sho1SH3 orthologs in the fungal kingdom

(155/172) lie within the hull, and only

very few sequences within the hull are

not functional. After sequence generation

by InfoVAE, Lian et al. provided an

approach for synthetic sequence selec-

tion by sampling locally within the convex

hull from the 3D latent space mapping.

Remarkably, 78.3% of the synthetic se-

quences sampled from the convex hull in

the InfoVAE 3D latent space mapping

were proven to be functional in the osmo-

sensing assay, which offers a novel

approach for functional synthetic protein

sequence design.

The mystery of evolution is akin to an

iceberg; while various approaches can

describe and unravel the visible part

above water, the vast majority of the
e Author(s). Published by Elsevier Inc. 1
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latent space remains largely unexplored

beneath the surface. Intriguingly, the

authors introduced the concept of protein

design and engineering by attempting

to define locality within a representation

space. With advancements in fast

sequencing and structural biology, re-

searchers can now apply various models

to perform multiple sequence alignments

and structural analyses, aiming to identify

essential amino acid locations either

sequentially in 1D or in the physical 3D

structure. Lian et al. contributed to this

endeavor by defining a constrained region

in latent space, offering a new perspective

to explore the depths of evolutionarymys-

teries beneath the surface. It would be

fascinating to investigate whether similar

constrained regions exist for orthologs in

other protein families, how these regions

have changed over millions of years of

evolution, and whether it is possible to

predict future changes. Additionally, ef-

forts in encoding and decoding 3D struc-

tural coordinates using VAEs have been

successful,7 which, together with this

work, makes us wonder how latent space

embeddings will look like when decoding

and encoding structural information and

whether this will provide additional di-

mensions for inferring orthologous

relationships.

Inferring orthology is important for clar-

ifying the evolutionary history of genes

and reconstructing phylogenetic trees;

however, it remains challenging, which is

still like mysteries hidden under the sur-

face. High computational demand is
2 Patterns 5, August 9, 2024
generally needed for conventional

computational tools of orthology analysis

to compare hundreds or thousands of ge-

nomes or proteomes with each other.8

Lian et al.’s approach could possibly infer

orthology by capturing the epistatic rela-

tionships from just the amino acid se-

quences of proteins, which makes it

more accessible and scalable for orthol-

ogy analysis.

Practically, it will also be fascinating to

investigate whether the approach devel-

oped by Lian et al. has broader applica-

bility for ortholog analysis and design in

other protein kinds, such as antigens

and enzymes. For instance, polyethylene

terephthalate (PET)-degrading enzymes,

primarily from the hydrolase family, have

garnered significant interest in recent

years. Although most hydrolases cannot

catalyze PET, certain hydrolases across

different prokaryotic9 and eukaryotic10

species can degrade PET. It would be

compelling to determine if similar con-

strained regions in the latent space land-

scape could also be defined for enzymes

such as PET-degrading hydrolases and

further apply the results for protein design

and engineering.
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