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ABSTRACT
Magnetic resonance imaging (MRI) is the method of choice for noninvasive studies of micrometer-scale structures in biological tissues via
their effects on the time- and frequency-dependent (restricted) and anisotropic self-diffusion of water. While new designs of time-dependent
magnetic field gradient waveforms have enabled disambiguation between different aspects of translational motion that are convolved in
traditional MRI methods relying on single pairs of field gradient pulses, data analysis for complex heterogeneous materials remains a challenge.
Here, we propose and demonstrate nonparametric distributions of tensor-valued Lorentzian diffusion spectra, or “D(ω) distributions,” as a
general representation with sufficient flexibility to describe the MRI signal response from a wide range of model systems and biological tissues
investigated with modulated gradient waveforms separating and correlating the effects of restricted and anisotropic diffusion.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0213252

I. INTRODUCTION

Nuclear magnetic resonance (NMR) and magnetic resonance
imaging (MRI) offer noninvasive characterization of cellular-level
structures in intact biological tissues by employing time-dependent
magnetic field gradients to monitor the micrometer-scale transla-
tional motion of water molecules1,2 and, by inference, their inter-
actions with cell membranes and macromolecules.3,4 While the use
of diffusion MRI is, in current clinical practice, limited to rather
basic measurements of diffusion-weighted images and apparent
diffusion coefficients5 to detect and grade ischemic stroke6 and
tumors,7 there is a recent trend of applying increasingly advanced
motion-encoding gradients to isolate specific aspects of translational
motion, such as anisotropy,8 restriction,9 flow,10 and exchange.11

Despite the developments of specific encoding strategies and

numerous examples of promising applications in clinical research,12

data analysis and interpretation remain challenging—in particu-
lar for heterogeneous tissues where each imaging voxel contains
multiple water populations with distinct diffusion properties.13,14

Translational motion of an ensemble of particles can be
described in the time domain, with mean-square displacements,15

apparent diffusivities,16 and velocity autocorrelation functions,17 or
in the frequency domain with tensor-valued diffusion spectra D(ω)
being the Fourier transformation of the latter.18,19 The relations
between the time- and frequency-domain descriptions are explained
in detail in text books1,2 and reviews.20–22 Although it is challeng-
ing to decide if time- or frequency-domain analysis is “best” suited
for a given application, numerous recent papers indicate that the
frequency-domain approach may be preferred for in vivo human
studies.23–29
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While the ω-dependence of D(ω) can be approximated as
Lorentzian, corresponding to an exponential velocity autocorrela-
tion function,17,30 more accurate expressions have been derived for
simple pore shapes, such as parallel planes, cylinders, and spheres,31

as well as random permeable barriers.32 The latter model implies
structural disorder rather than a particular geometric shape and has
been applied for analysis of in vivo human brain data in several
recent publications.24,27,33,34 The ω-dependence of the elements of
D(ω) may be mapped out in detail by applying modulated gradi-
ents g(t), yielding tensor-valued encoding spectra b(ω) with spectral
power focused on selected sets of tensor elements and values of
ω.22 The experimentally accessible range of ω is determined by the
performance of the gradient hardware and, in practice, is often lim-
ited to the rather narrow windows ∼10–100 Hz for human26,27 and
∼10–1000 Hz for small-specimen35 MRI systems, thus making it dif-
ficult to distinguish between different candidate models from the
observed ω-dependence alone.

For measurements performed with a fixed ω-range, data anal-
ysis is often based on an ω-independent diffusion tensor D corre-
sponding to a section of the full spectrum D(ω). Here, the relevant
acquisition variable is the encoding tensor b,36 given by the integral
of b(ω) over all ω,37 and conveniently parameterized by its magni-
tude b, anisotropy bΔ, asymmetry bη, and orientation (Ψ, Θ, Φ).38–40

The presence of multiple water populations in heterogeneous tissues
is frequently described in terms of discrete41–46 or continuous47–51

diffusion tensor distributions (DTDs). While conventional diffusion
MRI with motion encoding by a single pair of gradient pulses52 is
constrained to the acquisition parameters b and (Θ, Φ), colloquially
known as the “b-value” and “b-vector,” more sophisticated gradi-
ent modulation schemes53,54 give access to the tensor “shape”55,56

parameters bΔ and bη,38–40 which enable Monte Carlo data inver-
sion into nonparametric DTDs57–60 with limited contributions from
spurious components that occur when the shape dimensions are not
sufficiently explored.61,62

We have recently introduced a family of “double-rotation” gra-
dient waveforms for the exploration of both the spectral and tenso-
rial aspects of b(ω).37,63 Special cases of these waveforms include the
classical single pair of gradient pulses sensitive to anisotropy, restric-
tion, and flow;52 two pulse pairs for flow compensation;64 trains of
pulse pairs19 or cosine-modulated oscillating gradients to probe dif-
fusion at a well-defined frequency;65 circularly polarized oscillating
gradients to increase the b-value for a given frequency and maxi-
mum gradient strength;66 magic-angle spinning of the q-vector67 to
minimize the influence of anisotropy;54 and variable-angle spinning
of the q-vector68 for probing the tensor “shape” dimensions,55,56

thereby allowing convenient collection of rich datasets incorporat-
ing subsets that can be identified as diffusion tensor imaging (low
b-values, multiple directions, constant spectral content, and lin-
ear b-tensor shape),69 diffusional kurtosis imaging (high b-values,
multiple directions, constant spectral content, and linear b-tensor
shape),70 diffusion dispersion imaging (low b-values, few direc-
tions, multiple encoding frequencies, and linear b-tensor shape),24

and microscopic anisotropy imaging (high b-values, multiple direc-
tions, limited variation of spectral content, and multiple b-tensor
shapes).71,72

With the availability of rich and multifaceted data comes the
challenge of data analysis having sufficient flexibility to incorporate
all the acquisition variables (b-values, directions, spectral contents,

and b-tensor shapes) of the methods mentioned above. In particu-
lar, previous versions of DTD analysis41–51,57–60 neglect the effects
of time- and frequency-dependent diffusivities. When extending the
DTD approach to restricted diffusion, one option is confinement
tensor distributions,73 which are ideally suited for time-domain
analysis.74 Our focus on the frequency domain, however, makes
distributions of frequency-dependent diffusion tensors, or “D(ω)
distributions,” a more natural choice. Expanding on and partially
incorporating a preprint with detailed description of the theoreti-
cal background and formal analogy with NMR relaxation dispersion
of biological macromolecules,75 we here demonstrate the ability of
our proposed method to reproduce the synthetic data generated by
the random permeable barrier model,32 resolve and quantify restric-
tion and anisotropy for multiple components in well-defined phan-
toms, and generate maps of parameters correlating restriction and
anisotropy in ex vivo rat brain and excised tissue from a xenograft
model of neuroblastoma.76 Encouraged by the recent profusion of
in vivo human studies using nearly identical MRI pulse sequences to
explore either the spectral23–29 or tensorial60,77–81 aspects of the dif-
fusion encoding, we envision that our unification of the traditionally
separate strategies into a common analysis framework will catalyze
the design of more informative and time-efficient data acquisition
protocols for clinical research studies of tissue microstructure in
health and disease.

II. THEORETICAL BACKGROUND
A. Tensor-valued diffusion spectra for some special
cases

Consider an ensemble of spins with individual velocities v(t),
which can be separated into the ensemble mean ⟨v⟩ and fluctuating
part u(t), according to

u(t) = v(t) − ⟨v⟩. (1)

The tensor-valued diffusion spectrum D(ω) is defined from the
velocity correlation function ⟨u(t)u(t′)T⟩, where T denotes a matrix
transpose, via the Fourier transformation,1,2

D(ω) = 1
2∫

∞

−∞
⟨u(t)u(t′)T⟩ exp (iω(t′ − t)) d(t′ − t), (2)

which can be expanded as

D(ω) = R(ψ, θ,ϕ)
⎛
⎜⎜
⎝

DXX(ω) 0 0
0 DYY(ω) 0
0 0 DZZ(ω)

⎞
⎟⎟
⎠

R−1(ψ, θ,ϕ),

(3)
where R(ψ, θ, ϕ) is a rotation matrix; (ψ, θ, ϕ) are Euler angles; and
DXX(ω), DYY (ω), and DZZ(ω) are the diagonal diffusion spectra in
the principal axis system.

Approximating the velocity correlation with one positive expo-
nential with decay rate Γ0 for the transition from the ballistic
to diffusive regime17 and a negative exponential with decay rate
Γ1 for interactions with the pore walls30 leads to a bi-Lorentzian
expression,

D(ω) = D0

1 + ω2/Γ2
0
− D0 −D∞

1 + ω2/Γ2
1

, (4)
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where D(ω) symbolizes any or all of DXX(ω), DYY (ω), and DZZ(ω);
D0 is the diffusivity of the pure liquid; and D∞ is the long-time dif-
fusivity of the liquid in the porous matrix. For water and other low
molecular weight liquids, the value of Γ0 is many orders of mag-
nitude larger than the maximum value of ω accessible with NMR
methods, and the first term in Eq. (4) can be replaced with D0.

The exact expression for planar, cylindrical, and spherical pores
can be written as31,82

D(ω) = D0 −
∞

∑
k=1

wk
D0 −D∞
1 + ω2/Γ2

k
, (5)

where DZZ(ω) = D(ω) and DXX(ω) = DYY (ω) = D0 for the planar,
DZZ(ω) = D0 and DXX(ω) = DYY (ω) = D(ω) for the cylindrical,
and DXX(ω) = DYY (ω) = DZZ(ω) = D(ω) for the spherical model.
The multi-Lorentzian transition in the second term of Eq. (5) is
determined by the weights wk and rates Γk, given by

wk =
2

ζ2
k + 1 − d

(6)

and

Γk =
ζ2

k D0

r2 , (7)

where d = 1, 2, and 3 for the planar, cylindrical, and spherical cases,
respectively; r is the pore radius; and ζk is the kth solution of

ζJd/2−1(ζ) − (d − 1)Jd/2(ζ) = 0, (8)

and Jν is the νth order Bessel function of the first kind.
The random permeable barrier model developed by Novikov

et al.83 can be expressed as

D(ω) = D0

D0
D∞
+ 2zω(1 − zω)[

√
1 + D0/D∞−1

(1−zω)2 − 1]
, (9)

where

zω = i
√

iω/Γ, (10)

and Γ is the characteristic transition rate. The parameters D∞ and
Γ are related to the permeability and average spacing between the
barriers.

Figure 1 shows the diffusion spectra calculated with Eqs. (4),
(5), and (9) using parameters selected to produce similar isotropic
diffusivity Diso(ω), defined as

Diso(ω) =
1
3

trace{D(ω)}. (11)

In the diffusion NMR and MRI literature, the term “Gaussian
diffusion” refers to a mean-square displacement scaling linearly
with time, which corresponds to diffusivities independent of time
and frequency. Thus, Fig. 1 shows low- and high-ω limits with
Gaussian diffusion separated by a transition region with restricted
diffusion characterized by time- and frequency-dependent diffu-
sivities. On the scale shown in Fig. 1, the Lorentzian, planar,

FIG. 1. Theoretical tensor-valued diffusion spectra D(ω) for selected special cases.
The tensor elements are color coded according to the legend (top right), and the
isotropic diffusivity Diso(ω), see Eq. (11), is shown in gray. All the cases have Diso(0)
= 2 × 10−9 m2s−1, transition from low- to high-ω plateau centered on ∼100 Hz,
bulk diffusivity D0 = 3 × 10−9 m2s−1, and Euler angles (ψ, θ, ϕ) = (0, 0, 0). (a)
1D Lorentzian with DXX (ω) = DYY (ω) = D0 and DZZ(ω) is given by Eq. (4) with
rate Γ1 = 2π × 100 s−1. (b) Parallel planes with DXX (ω) = DYY (ω) = D0 and
DZZ(ω) given by Eq. (5) with d = 1 and r = 5 μm. (c) Cylinder with DZZ(ω) = D0
and DXX (ω) = DYY (ω) given by Eq. (5) with d = 2 and r = 5 μm. (d) Sphere with
DXX (ω) = DYY (ω) = DZZ(ω) given by Eq. (5) with d = 3 and r = 5 μm. (e) Random
permeable barrier model with DXX (ω) = DYY (ω) = DZZ(ω) given by Eq. (9) with
Γ = 100 s−1.

cylindrical, and spherical cases in panels (a)–(d) yield Diso(ω) that
are nearly indistinguishable, with a transition region that extends
over more than two orders of magnitude of ω. Closer inspection
reveals that the transition gets increasingly broader from the top
to the bottom of the figure, with the random permeable barrier
model in panel (e) being distinctly smoother than the others. As
mentioned in the introduction, clinical and preclinical MRI equip-
ment offer one and two orders of magnitude of experimentally
accessible ω-ranges, respectively, thus making it challenging to esti-
mate both the low- and high-ω plateaus and the details of the
transition.
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B. Frequency-domain analysis of motion
with modulated gradient NMR

Within the Gaussian phase distribution approximation (not to
be confused with the term Gaussian diffusion),18,22,31,84 the signal
S[qv, b(ω)] is given by

S[qv, b(ω)] = S0 exp(iqv ⋅ ⟨v⟩ − ∫
∞

−∞
b(ω) : D(ω)dω), (12)

where the motion encoding properties are summarized by the
velocity encoding vector qv and the tensor-valued diffusion encod-
ing spectrum b(ω), which are obtained from the time-dependent
magnetic field gradient vector g(t) via

q(t) = γ∫
t

0
g(t′) dt′, (13)

qv = ∫
τ

0
q(t) dt, (14)

q(ω) = ∫
τ

0
q(t) exp (iωt) dt, (15)

and

b(ω) = 1
2π

q(ω)q(−ω)T. (16)

In the equations above, S0 is the reference signal at g(t) = 0, the
colon denotes a generalized scalar product,36 γ is the gyromagnetic
ratio of the studied atomic nucleus, τ is the overall duration of
the motion-encoding gradients, q(t) is the time-dependent dephas-
ing vector subject to the echo condition q(τ) = 0, and q(ω) is the
frequency-domain spectrum of q(t).

While the full ω-dependent and tensorial representation of
b(ω) is used in our data processing, we find it instructive to
summarize its most important aspects using the magnitude b,36,85

“effective”86 or “centroid”24 frequency ωcent, and the anisotropy bΔ
and asymmetry bη quantifying the tensor “shape” using conventions
from the field of solid-state NMR.38–40 These variables are defined
through the equations,

b = ∫
∞

−∞
b(ω) dω, (17)

b(ω) = trace{b(ω)}, (18)

b = trace{b} = ∫
∞

−∞
b(ω) dω, (19)

ωcent =
1
b∫

∞

−∞
∣ω∣b(ω) dω, (20)

bΔ =
1
b
(bZZ −

bYY + bXX

2
), (21)

and

bη =
3
2

bYY − bXX

bbΔ
. (22)

In Eq. (17), b is the conventional (ω-independent) b matrix36 with
eigenvectors given by the three Euler angles (Ψ, Θ, and Φ). In
Eqs. (21) and (22), bXX , bYY , and bZZ are the eigenvalues of b ordered
according to the Haeberlen convention ∣bZZ − b/3∣ > ∣bXX − b/3∣
> ∣bYY − b/3∣.87

Conventional diffusion MRI is constrained to the acquisition
variables b and (Θ, Φ) with bΔ = 1, bη = 0, and constant ωcent.
Oscillating gradients allow exploration of the ωcent dimension,21 and
tensor-valued encoding brings in variation of bΔ and bη as well as
the third Euler angle Ψ.40 All these variables are accessible with
the double-rotation gradient waveforms generated according to the
recipe described in detail by Jiang et al.37 and summarized in the
following.

1. Select a one-dimensional waveform g1D(t) from a dephasing
lobe with quarter-sine ramp up of duration εup and half-cosine
ramp down of duration εdown, as well as a rephasing lobe
obtained by inversion and time-reversal of the dephasing one.

2. Calculate the magnitude of a rotating gradient waveform
grot(t) by

grot(t) =
Δψ2q3(t)

γb
, (23)

where

q(t) = γ∫
t

0
g1D(t′) dt′ (24)

and

ψ2(t) =
Δψ2

b ∫
t

0
q2(t′) dt′. (25)

In Eq. (25), Δψ2 is an overall angle of rotation during the
waveform duration τ.

3. Assemble the scalar g1D(t) and grot(t) into a vectorial double-
rotation waveform gDOR(t), according to

gDOR(t) = g1D(t)
⎛
⎜⎜
⎝

a+ cos ψ+(t) + a− cos ψ−(t) + a2 cos ψ2(t)
a+ sin ψ+(t) − a− sin ψ−(t) + a2 sin ψ2(t)

a0 − a1 cos ψ1(t)

⎞
⎟⎟
⎠

+ grot(t)
⎛
⎜⎜
⎝

−(n + 1)a+ sin ψ+(t) − (n − 1)a− sin ψ−(t) − a2 sin ψ2(t)
(n + 1)a+ cos ψ+(t) − (n − 1)a− cos ψ−(t) + a2 cos ψ2(t)

na1 sin ψ1(t)

⎞
⎟⎟
⎠

, (26)
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where

ψ1(t) = nψ2(t),
ψ±(t) = (n ± 1)ψ2(t),

(27)

and

a0 = cos ζ1 cos ζ2,
a1 = sin ζ1 sin ζ2,
a2 = cos ζ1 sin ζ2,

a± = sin ζ1
cos ζ2 ± 1

2
⋅

(28)

In Eq. (28), ζ1 = 90○ and ζ2 = −54.7○ for positive integer values
of the double-rotation ratio n and ζ1 = 54.7○ and ζ2 = 0○ for
n = 0.

4. Scale and rotate the components of gDOR(t) by

g(t) = Rz(Φ)Ry(Θ)Rz(Ψ)

⎡⎢⎢⎢⎢⎢⎢⎣

gDOR,X(t)
√

1 − bΔ(1 + bη)
gDOR,Y(t)

√
1 − bΔ(1 − bη)

gDOR,Z(t)
√

1 + 2bΔ

⎤⎥⎥⎥⎥⎥⎥⎦

.

(29)

Figure 2 shows an example of a double-rotation gradient wave-
form to investigate the spectral and tensorial aspects of D(ω), which
are manifested as unequal diagonal elements and finite off-diagonal
elements in the ω = 0 regime in panel (a). The waveform yields an
encoding spectrum b(ω), which determines the signal attenuation
via the integral of the generalized scalar product b(ω) : D(ω) over ω
according to Eq. (12). The encoding power is focused on a narrow
band in the approximate range of ω from nΔψ2/τ to (n + 1)Δψ2/τ,37

which at constant Δψ2 and τ is conveniently shifted by varying n.
Correspondingly, the values of bΔ and bη determine the balance
between the eigenvalues of b(ω) and the sensitivity of the signal to
anisotropy of D(ω). A rather complete investigation of restriction
and anisotropy could thus be achieved by performing measurements
as a function of n, bΔ, and bη, in addition to the variables b and
(Θ, Φ) of conventional diffusion MRI.

C. Multiple sub-ensembles and the axisymmetric
Lorentzian approximation

For a heterogeneous system comprising multiple sub-
ensembles i with weights wi, Eq. (12) can be generalized to

S[qv, b(ω)] =∑
i

wi exp(iqv ⋅ ⟨vi⟩ − ∫
∞

−∞
b(ω) : Di(ω)dω). (30)

The popular diffusion tensor distribution41–51,58–60 approach
to account for intravoxel heterogeneity of biological tissues relies
on the assumptions ⟨vi⟩ = 0 and Di(ω) being constant within the
range of ωwhere b(ω) is non-zero. With these assumptions, Eq. (30)
reduces to the more familiar expression,

S(b) =∑
i

wi exp (−b : Di). (31)

For analysis of the experimental data in this paper, we do
not make these conventional assumptions but instead use gradient

FIG. 2. Frequency-domain analysis of restricted and anisotropic diffusion with mod-
ulated gradients. (a) Tensor-valued diffusion spectrum D(ω) for a liquid confined
in a cylindrical compartment calculated with Eqs. (3) and (5) using bulk diffusiv-
ity D0 = 2 × 10−9 m2s−1, long-time diffusivity D∞ = 0.1 × 10−9 m2s−1, radius
r = 3 μm, and Euler angles (ψ, θ, ϕ) = (0○, −30○, 20○). Color coding of the ele-
ments Dij (ω) is given in the legend to the right and the isotropic diffusivity Diso(ω),
see Eq. (11), is shown in gray. (b) Tensor-valued encoding spectrum b(ω) obtained
via Eqs. (13), (15), and (16) from the double-rotation gradient g(t), shown in the
inset, calculated with Eqs. (23)–(29) using τ = 25 ms, εup = 0.03τ, εdown = 0.12τ,
Δψ2 = 2π, n = 3, bΔ = bη = 0, and (Ψ, Θ, Φ) = (0, 0, 0). The arrow points out
the centroid frequency ωcent defined from the trace of b(ω) in Eq. (20). (c) Gener-
alized scalar product b(ω) : D(ω), which, upon integration over ω, gives the signal
attenuation factor according to Eq. (12).

waveforms for which qv = 0 and enable inversion of Eq. (30) by mak-
ing an educated guess that each sub-ensemble is described with an
axisymmetric tensor,

Di(ω) = R(θi,ϕi)
⎛
⎜⎜
⎝

D�,i(ω) 0 0
0 D�,i(ω) 0
0 0 D∥,i(ω)

⎞
⎟⎟
⎠

R−1(θi,ϕi), (32)

where the parallel and perpendicular eigenvalues, D∥,i(ω) and
D�,i(ω), are given by Lorentzian transitions, at the frequencies Γ∥,i
and Γ�,i, between the zero-ω values, D∥,i and D�,i, and the common
high-ω plateau, D0,i, according to

D∥,i(ω) = D0,i −
D0,i −D∥,i
1 + ω2/Γ2

∥,i
(33)

and

D�,i(ω) = D0,i −
D0,i −D�,i

1 + ω2/Γ2
�,i

. (34)

We emphasize that the axisymmetric Lorentzian approxima-
tion is made for mathematical convenience and does not imply
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any specific compartment geometry or model as the expressions in
Eqs. (5) and (9). In the following, we will demonstrate its utility by
reproducing data synthesized with the random permeable barrier
model and providing meaningful analysis of experimental data with
well-defined restricted and anisotropic diffusion.

D. Data inversion and visualization
With the axisymmetric Lorentzian approximation, each dis-

crete component in the D(ω) distribution is described with its weight
w and the parameter set [D∥, D�, θ, ϕ, D0, Γ∥, Γ�]. Data inversion
can then be performed by straightforward extension of the Monte
Carlo method88 that has previously been applied for various diffu-
sion and relaxation correlation measurements, including [D∥, D�],57

[D∥, D�, θ, ϕ],58–60 [D∥, D�, θ, ϕ, R2],89,90 [D∥, D�, θ, ϕ, R1],91 and
[D∥, D�, θ, ϕ, R1, R2],61,92 where R1 and R2 are the longitudinal
and transverse relaxation rates. The Monte Carlo inversion yields
ensembles of solutions that are all consistent with the data but where
the individual realizations of the ensemble are “overfits,” contain-
ing spurious details consistent with, but not necessarily required
by, the acquired data. From the solution ensemble, it is possible to
derive coarse-grained metrics, such as means and (co)variances over
relevant dimensions, which are determined with higher precision
quantifiable by bootstrapping.58,88,93

The discrepancy between the broad transition widths shown in
Fig. 1 and the narrow ω-ranges experimentally accessible makes it
nearly impossible to determine the low-ω plateaus D∥ and D� simul-
taneously as the high-ω plateau D0, thus making the primary analysis
space [D∥, D�, θ, ϕ, D0, Γ∥, Γ�] unsuitable for extracting quantitative
metrics. As a workaround, we propose evaluating the D(ω) distribu-
tions at selected values of ω within the narrow range actually probed
by the gradient waveforms, giving [D∥(ω), D�(ω), θ, ϕ] via Eqs. (33)
and (34). Following common practice in the field,69 we also visual-
ize the data by projecting the eigenvalues onto dimensions cleanly
separating the magnitude and anisotropy of the diffusion tensors,
in our case expressed in terms of the isotropic diffusivity Diso(ω),
via Eq. (11), and squared normalized anisotropy DΔ

2(ω), defined
as38,58,94

D2
Δ(ω) =

[D∥(ω) −D�(ω)]
2

[D∥(ω) + 2D�(ω)]
2 . (35)

The distributions can then be visualized as contour plots in the
2D Diso-DΔ

2 projections as well as condensed into (bin-resolved)
signal fractions fbinn, means Ebinn[X], variances Vbinn[X], and covari-
ances Cbinn[X, Y] suitable for generating parameter maps.58 These
metrics are given by

fbinn =
1
S0
∑

i∈binn
wi, (36)

Ebinn[X] =
1

S0 fbinn
∑

i∈binn
wiXi, (37)

Vbinn[X] =
1

S0 fbinn
∑

i∈binn
wi(Xi − E[X])2, (38)

and

Cbinn[X, Y] = 1
S0 fbinn

∑
i∈binn

wi(Xi − E[X])(Yi − E[Y]), (39)

where X and Y symbolize Diso(ω) or DΔ
2(ω),

S0 =∑
i

wi (40)

is the total signal extrapolated to b = 0, and the sums in
Eqs. (36)–(39) are taken over components i belonging to the nth bin
in the 2D Diso-DΔ

2 space.58 Following previous oscillating gradient
studies,24,95,96 the effects of restriction are quantified as a finite dif-
ference approximation of the rates of change of these metrics within
the investigated frequency window from ωmin to ωmax, for instance,

Δω/2πEbinn[Diso] =
Ebinn[Diso(ωmax)] − Ebinn[Diso(ωmin)]

(ωmax − ωmin)/2π
. (41)

To avoid clutter, the subscript “binn” is omitted for the statistical
descriptors E[X], V[X], and C[X,Y] in the remainder of this paper.

Several of the metrics defined in Eqs. (36)–(41) are equiv-
alent to well-known parameters from the literature:58 E[Diso] is
identical to the mean diffusivity; E[DΔ

2] contains the same infor-
mation as the microscopic anisotropy index,97 microscopic frac-
tional anisotropy,71,98 and fractional eccentricity;99 V[Diso] has
appeared under numerous symbols, such as μ2

iso,71 V I,72 and
VMD;56 and Δω/2πE[Diso] is more commonly known as Δf ADC95

or the diffusion dispersion rate.100 Conversely, the popular frac-
tional anisotropy (FA) parameter entangles information about
microscopic anisotropy and orientation dispersion101 and may be
expressed as a function of more fundamental metrics reporting
exclusively on the underlying anisotropy and orientation proper-
ties.71 Analogously, conventional kurtosis metrics70 contain aggre-
gated information about intra-compartmental deviations from non-
Gaussian diffusion and various kinds of inter-compartmental (or
intravoxel) heterogeneity.102 Neglecting intra-compartmental kur-
tosis, the metrics V[Diso] and E[DΔ

2], including their literature
counterparts, may be related to the isotropic, anisotropic, and total
kurtosis.56,71,102 Consequently, the Δω/2πV[Diso] and Δω/2πE[DΔ

2]
metrics report on the isotropic and anisotropic contributions to
time- and frequency-dependence of the mean kurtosis.103

III. METHODS
A. Simulations

The random permeable barrier model (RPBM) in Eq. (9) was
used to simulate signals for two acquisition schemes exploring (a)
narrow and (b) wide frequency ranges at constant number of data
points. The protocols were based on double-rotation waveforms
with (a) 36 b-values, n = 0, and τ = 5 ms, as well as (b) 4 b-values;
n = 0, 1, 3, 7, 15, 31, 63, 127, and 255; and τ = 256 ms. Both the pro-
tocols used waveforms with εup = 0.001τ, εdown = 0.002τ, and Δψ2

= 2π; b values geometrically spaced between 0.5 and 4 × 109 sm−2;
bΔ = 1, 0, and −0.5; bη = 0; eleven rotations (Ψ = 0, Θ, Φ) taken
from the electrostatic repulsion scheme,104 and a single acquisition
with b = 0, yielding a total of 1189 acquisitions with different wave-
forms. Each waveform g(t) was discretized in 1000 time steps, and
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FIG. 3. Examples of acquisition schemes and corresponding signals calculated for the random permeable barrier model (RPBM). The acquisition schemes are shown as
plots of magnitude b, frequency ω, normalized anisotropy bΔ, and orientation (Θ, Φ) of the tensor-valued encoding spectrum b(ω) vs the acquisition number nacq. Diffusion
encoding was performed with double-rotation gradient waveforms of the type shown in Fig. 2(b), giving encoding power over a range of frequencies represented by the
vertical gray lines from the tenth to the 90th percentiles and black dots indicating the centroid frequency ωcent. The left and right columns feature schemes with narrow and
wide ranges of ωcent, respectively. The simulated signals S[b(ω)] (gray circles) were obtained with the RPBM using high-ω diffusivity D0 = 2 × 10−9 m2s−1, low-ω diffusivity
D∞ = 0.2 × 10−9 m2s−1, and characteristic transition rate Γ, as indicated in the three bottom panels to the left. The fitted signals (black dots) were back-calculated from
the D(ω) distributions obtained by Monte Carlo inversion of the simulated signals. The signals were normalized with the fitted signal S0 extrapolated to b = 0 according
to Eq. (40).

the tensor-valued encoding spectra b(ω) were obtained by numeric
evaluation of Eqs. (13), (15), and (16) using zero-filling in the time
domain and resampling in the frequency domain to 500 linearly
spaced frequencies from 0 to 1200 Hz. The acquisition protocols
are shown in the top panels of Fig. 3 using values of b, ωcent,
and bΔ numerically recalculated from the discretized b(ω) using
Eqs. (17)–(20). Correspondingly, (Θ, Φ) was extracted from the
eigenvectors corresponding to the bZZ eigenvalue obtained by diag-
onalization of b. The ω vs acquisition number nacq panels in Fig. 3
show both ωcent and the tenth to 90th percentile ω-ranges of each
b(ω), illustrating that scheme a exhibits a similar ω range within
each acquisition as the spread ofωcent between acquisitions. For both

the schemes, the encoding power is centered on ω/2π of ∼200 Hz,
as shown in Fig. 4. Using D(ω) from the RPBM in Eq. (9) and
b(ω) obtained from g(t) as described above, signals S[b(ω)] were
calculated by numeric evaluation of Eq. (30) under the condition
⟨v⟩ = 0.

B. Experiments
MRI phantoms with well-defined diffusion properties were

assembled from NMR tubes with yeast cell sediment, salt solution,
lamellar liquid crystal, and water. Magnesium nitrate hexahydrate,
cobalt nitrate hexahydrate, and 1-decanol were purchased from
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FIG. 4. Mean isotropic diffusivity E[Diso(ω)], defined in Eqs. (11) and (37), calculated with the RPBM (blue lines) and from the D(ω) distributions obtained by Monte Carlo
inversion of the simulated signal data shown in Fig. 3 (tenth, 50th, and 90th percentiles over bootstrap replicates shown with the gray, black, and gray lines, respectively) using
acquisition protocols with narrow (left) and wide (right) ωcent ranges illustrated with the vertical lines (tenth, 50th, and 90th percentiles of the b-weighted ωcent distributions
represented by the gray, black, and gray lines, respectively).

Sigma-Aldrich Sweden AB, sodium octanoate from J & K Scientific
via Th. Geyer in Sweden, and fresh baker’s yeast (trade name: Kro-
njäst) from a local supermarket. Unless otherwise stated, water was
purified with a Millipore-Q system. The yeast sample was prepared
by dispersing a block of yeast in an equal amount of tap water,
transferring 1 ml of the cell suspension to a 5 mm NMR tube, and
allowing the cells to sediment under the action of gravity at 4 ○C
overnight.105 To remove water-soluble nutrients and metabolites
contributing to water T2-relaxation via proton chemical exchange,
the cells in the tube were washed by three cycles of removing the
supernatant with a syringe, adding 2 ml tap water, resuspending by
vigorous shaking, and renewed sedimentation at 4 ○C. The aque-
ous salt solution comprised saturated magnesium nitrate106 doped
with cobalt(II) nitrate to reach T2 of about 100 ms. The lamel-
lar liquid crystal was prepared from 85.79 wt. % water, 9.17 wt. %

1-decanol, and 5.04 wt. % sodium octanoate.107 A composite
phantom was assembled by inserting 4 mm NMR tubes with
salt solution and liquid crystal into a 10 mm NMR tube with
water.

Experiments on ex vivo rat brain were approved by the Ani-
mal Committee of the Provincial Government of Southern Finland
in accordance with the European Union Directives 2010/63/EU.
A healthy adult rat Sprague–Dawley was transcardially perfused
with 0.9% saline, followed by 4% paraformaldehyde in 0.1M phos-
phate buffer (pH = 7.4). After extraction, the brain was sagittally
sectioned along the brain midline and placed in a solution of
phosphate buffered saline 0.1M and gadoteric acid 50 μl/10 ml
(Dotarem 279.3 mg/ml; Guerbet, France) for 24 h. During MRI mea-
surements, the brain was immersed in perfluoropolyether (Galden;
TMC Industries, USA) within a 10 mm NMR tube.
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TABLE I. MRI acquisition and processing parameters.

Phantoms Ex vivo rat brain Excised tumor

Spectrometer Avance-Neo Avance-III HD Avance-III HD
Magnetic field / T 11.7 11.7 14.0
Acquisition software TopSpin 4.0.7 ParaVision 6.0.1 TopSpin 3.5.6
Image read-out RARE MSME RARE
Acquisition resolution / mm3 0.15 × 0.3 × 1 0.09 × 0.09 × 0.09 0.15 × 0.3 × 1
Matrix size 32 × 16 × 1 111 × 111 × 10 32 × 16 × 1
Diffusion gradient duration / ms 25 8 10
Max b-value / 109 sm−2 6.4 3.5 11
Double-rotation ratio n 0, 1, 2, 3, 4, 5 0 0
Range centroid frequency ωcent / 2π Hz 20–260 53–160 44–140
Normalized anisotropy bΔ −0.5, 0, 0.5, 1 −0.5, 0, 0.5, 1 −0.5, 0, 0.5, 1
No. directions 15 11 15
No. acquired volumes 2880 312 480
Echo time / ms 74.5 21.2 52.5
Repetition time / s 5.1 0.2 1.1
Measurement time / h 4 50 0.3
Reconstruction software Matlab R2018b ParaVision 6.0.1 Matlab R2018b
Reconstructed voxel size / mm3 0.15 × 0.15 × 1 0.09 × 0.09 × 0.09 0.15 × 0.15 × 1

Human neuroblastoma cells were cultured at 37 ○C and 5%
CO2 in complete medium (RPMI 1640 supplemented with 10% fetal
bovine serum and 1% penicillin/streptomycin). A female BALB/c
mouse (Janvier Labs, France) was s.c. inoculated with 2 × 106 tumor
cells.76 After ∼5 weeks, the mouse was sacrificed; the tumor was
removed and immediately transferred to a 10 mm NMR tube con-
taining 4% formaldehyde in phosphate buffer solution (Histolab,
Sweden). The sample was stored at room temperature for 1 day
before being investigated with MRI.

MRI measurements were performed on three different Bruker
spectrometers (Karlsruhe, Germany) equipped with MIC-5 probes,
giving up to 3 Tm−1 gradient amplitude on-axis. Diffusion encoding
employed pairs of double-rotation gradient waveforms bracketing
the 180○ pulse in a spin echo sequence.71 Numerical calculation of
b(ω) included all the diffusion and imaging gradients between the
centers of the excitation pulse and the spin echo. Additional acquisi-
tion and processing parameters are presented in Table I and detailed
acquisition protocols are shown in Figs. 5 and 6. Reconstructed
images were exported to NIfTI format for further analysis with the
md-dmri Matlab toolbox.108

C. Monte Carlo data inversion and extraction
of relevant metrics

Monte Carlo inversion of simulated and experimental signals
S[b(ω)] into nonparametric D(ω) distributions in the [D∥, D�, θ,
ϕ, D0, Γ∥, Γ�] space was performed with the MATLAB code avail-
able at https://github.com/daniel-topgaard/md-dmri using D∥, D�,
and D0 limited to the range from 5 × 10−12 to 5 × 10−9 m2s−1,
Γ∥ and Γ� in the range from 0.1 to 105 s−1, 20 steps of prolifera-
tion, 20 steps of mutation/extinction, 200 input components per step

of proliferation and mutation/extinction, ten output components,
and bootstrapping by 100 repetitions using random sampling with
replacement. For each of the 100 bootstrap replicates and ten com-
ponents i, the values of D∥,i, D�,i, D0,i, Γ∥,i, and Γ�,i were converted to
D∥,i(ω) and D�,i(ω) at specific values of ω, using Eqs. (33) and (34)
and, subsequently, to Diso,i(ω), DΔ,i

2(ω), and Di(ω) with Eqs. (11),
(32), and (35). For each of the 100 bootstrap replicates, total and
bin-resolved signals S0; fractions fbinn; statistical descriptors E[X],
V[X], and C[X,Y]; and frequency-dependence metrics Δω/2πE[X],
Δω/2πV[X], and Δω/2πC[X,Y] were calculated with Eqs. (36)–(41)
using the limits bin1: Diso < 1× 10−9 m2s−1 and DΔ

2 > 0.25; bin2: Diso
< 1 × 10−9 m2s−1 and DΔ

2 < 0.25; and bin3: Diso > 1 × 10−9 m2s−1.
Finally, display parameters med(S0) and med(E[X]) were obtained
by taking the medians over the 100 bootstrap replicates. To simplify
the notation, the median operators are not shown explicitly in the
following text and figures.

IV. RESULTS
Figure 3 shows signals S[b(ω)] calculated with Eq. (30) for a

tensor-valued diffusion spectrum D(ω) with all the eigenvalues given
by the random permeable barrier model (RPBM) in Eq. (9) using
three values of the characteristic transition rate Γ. The two acquisi-
tion schemes rely on double-rotation gradient waveforms (see Fig. 2)
to cover the narrow and wide ranges, respectively, of centroid fre-
quencies ωcent defined from the tensor-valued encoding spectrum
b(ω) via Eqs. (18) and (20). Visual inspection of the data in Fig. 3
reveals the absence of signal modulations from the acquisition para-
meters bΔ, Θ, and Φ at constant b and ωcent, indicating isotropic
diffusion. Conversely, modulations as a function of ωcent at con-
stant b, bΔ, Θ, and Φ show that diffusion is ω-dependent (restricted)
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FIG. 5. Comprehensive acquisition scheme and experimental results for b(ω)-encoded diffusion MRI. (a) Magnitude b, centroid frequency ωcent, normalized anisotropy bΔ,
and orientation (Θ, Φ) of the tensor-valued encoding spectrum b(ω) vs the acquisition number nacq with the maximum value 2880. Diffusion encoding was performed with
pairs of gradient waveforms of the type shown in Fig. 2(b) with 25 ms duration and 3 Tm−1 maximum amplitude. (b) Experimental data (circles: measured, points: back-
calculated from the D(ω) distributions) obtained at 11.7 T on a yeast cell sediment and a composite phantom comprising an assembly of glass tubes with pure water, a
saturated salt solution (brine), and a lamellar liquid crystal. Monte Carlo inversions of the b(ω)-encoded signals yield D(ω) distributions shown in the panels to the right as
projections onto the 2D plane and 1D axes of the isotropic diffusivity Diso and squared normalized anisotropy DΔ

2 for five values of ω (indicated with the linear gray scale of
contour lines). The intracellular water in the yeast is restricted (ω-dependent), while the four other water pools are Gaussian (ω-independent) within the investigated range
from 20 to 260 Hz.
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FIG. 6. Abbreviated acquisition schemes based on the 2880-point comprehensive one shown in Fig. 5. (a) Ex vivo rat brain scheme with 312 points limited to ωcent/2π from
53 to 160 Hz and b values up to 3.6 × 109 sm−2. (b) Excised tumor scheme with 480 points limited to ωcent/2π from 44 to 140 Hz and b values up to 11 × 109 sm−2. In the
ω panels, the black dots indicate ωcent, while the vertical gray lines show the tenth to 90th percentiles of b(ω).

within the investigatedωcent range. The effects of restriction are most
clear for the wide ωcent-range scheme and the intermediate value
of Γ.

Monte Carlo inversion of Eq. (30) using the axisymmetric
Lorentzian approximation in Eqs. (32)–(34) yields D(ω) distribu-
tions, which, upon back-calculation of S[b(ω)] with Eq. (30), per-
fectly reproduces the results from the RPBM. The ω dependencies
of the mean isotropic diffusivity E[Diso(ω)] of the obtained D(ω)
distributions and the ground-truth RPBM are compared in Fig. 4,
showing general agreement within the ωcent range defined by the
acquisition scheme. Outside this range, the D(ω) distributions are
highly variable across the bootstrap replicates, illustrating the chal-
lenges of estimating both the low- and high-ω plateaus. For the
narrow ωcent-range scheme, minor systematic differences between
the D(ω) distributions and the RPBM can be discerned, particu-
larly for the intermediate Γ case despite the fact that the signals are
perfectly overlapping, as shown in Fig. 3. At the finite noise levels
and more limited exploration of the acquisition variable space in
most experimental studies, the smooth low-ω to high-ω transition of
the RPBM would consequently be indistinguishable from a smooth
transition originating from a distribution of Lorentzians. Contrar-
ily, we do not expect the inherently smooth RPBM to have a general
ability to reproduce the sharper transitions for a single Lorentzian or
the planar, cylindrical, or spherical compartments.

Experimental demonstration of our approach is shown in
Fig. 5 for two samples with well-defined and previously investi-
gated restriction and anisotropy properties,37 namely, a yeast cell
sediment105 and an assembly of glass tubes with pure water,109 sat-
urated salt solution,106 and lamellar liquid crystal.107 In the case of
isotropic Gaussian diffusion, the signal attenuation is completely

determined by the value of b and independent of all other vari-
ables ωcent, bΔ, Θ, and Φ. The observed sensitivity to ωcent/2π in the
investigated range 20–260 Hz for the yeast cell sediment indicates
restriction in micrometer-scale compartments, while the depen-
dence on bΔ for the composite phantom reveals anisotropy. These
qualitative observations of restriction and anisotropy from the raw
signal data are filled in with more details by the obtained D(ω) distri-
butions: The yeast sample comprises two isotropic (DΔ

2 = 0) pools,
one Gaussian (ω-independent) and one restricted (ω-dependent)
originating from the extra- and intra-cellular spaces, respectively,
separated by the virtually impermeable plasma membranes.110 The
composite phantom yields three Gaussian pools, one of which being
anisotropic with a value DΔ

2 = 0.25 consistent with the essentially
two-dimensional diffusion of water confined to the nanometer-
scale gaps between the planar detergent bilayers in a lamellar liquid
crystal.68 With frequencies on the scale of 109 Hz, it would be
possible to observe the effects of restricted diffusion across these
gaps. Correspondingly, frequencies approaching 1012 Hz would
allow investigating the regime of ballistic motion of the individual
water molecules.111 These high-ω regimes are, however, far beyond
the range accessible with MRI methods based on magnetic field
gradients.

Figure 7 shows the data for a few representative voxels in an
ex vivo rat brain. The D(ω) distributions for voxels in pure white
matter (WM), gray matter (GM), and phosphate buffered saline
(PBS) in the ventricles are qualitatively consistent with the ear-
lier in vivo mouse results59 (WM: low Diso and high DΔ

2, GM:
low Diso and low DΔ

2, and PBS: high Diso and low DΔ
2) with only

barely detectable ω-dependence in the investigated range from 53
to 160 Hz. The voxel in the granule cell layer in the dentate gyrus
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FIG. 7. D(ω) distributions for selected voxels in the ex vivo rat brain. The figures show b(ω)-encoded signals, according to the scheme shown in Fig. 6(a), and corresponding
D(ω) distributions for the four voxels indicated with crosses in the S0 map, see Eq. (40). The results for the individual voxels at ω/2π = 53 Hz guide the division of the 2D
Diso-DΔ

2 projection into three bins—nominally specific for white matter, gray matter, and phosphate buffered saline—for the purpose of image segmentation by coding the
per-bin signal fractions fbin1, fbin2, and fbin3 into RGB colors and extraction of bin-specific diffusion metrics according to Eqs. (36)–(41). The voxels from the granule cell layer
in the dentate gyrus and white matter show the hallmarks of restriction (ω-dependence) and anisotropy (DΔ

2
≈ 1), respectively.

gives a D(ω) distribution resembling the one from GM, but with a
more pronounced ω-dependence in agreement with earlier obser-
vations using oscillating gradient encoding.95 The ω-dependence is
consistent with granule cell dimensions on the 10 μm scale as seen

in histology.112 The D(ω) distributions for WM, GM, and PBS guide
the definition of the three bins in the 2D Diso-DΔ

2 projection to gen-
erate maps of nominally tissue type-specific per-bin signal fractions
and diffusion metrics. Figure 8 shows the maps of per-voxel and bin-
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FIG. 8. Parameter maps calculated from the per-voxel D(ω) distributions for the ex vivo rat brain using Eqs. (36)–(41). (a) S0 map, definition of bins in the 2D Diso-DΔ
2

projection, and map of per-bin signal fractions [fbin1, fbin2, fbin3] coded into RGB colors. (b) Per-voxel statistical descriptors E[X ], V[X ], and C[X , Y ] over the Diso and DΔ
2

dimensions of the D(ω) distributions evaluated at a selected frequency ω/2π = 53 Hz. (c) Rates of change with frequency, Δω/2πE[X ], Δω/2πV[X ], and Δω/2πC[X , Y ], of the
per-voxel metrics highlighting areas with effects of restricted diffusion. (d) Bin-resolved signal fractions and means E[X ] of the diffusion metrics at 53 Hz coded into image
brightness (vertical brightness bars) and blue–green–red color scale (horizontal color bars). Color-coding of orientation derives from the lab-frame (shown with the red, green,
and blue arrows) diagonal values [Dxx , Dyy , Dzz ] normalized by the maximum eigenvalue D33. (e) Bin-resolved rates of change with frequency over the range 53–160 Hz. The
white arrows in panels (c) and (e) indicate elevated values of Δω/2πE[Diso] for the granule cell layer in the dentate gyrus.
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resolved statistical descriptors E[Diso], E[DΔ
2], V[Diso], V[DΔ

2], and
C[Diso,DΔ

2], typically associated with tensor-valued encoding,12,58

and rates of change of the diffusion metrics with frequency,
for instance, Δω/2πE[Diso] often used to display the results from

oscillating gradient encoding,24,95,96 as well as novel metrics corre-
lating information about restriction and anisotropy. Of special note
in this latter category is the separation of high- and low-DΔ

2 com-
ponents with similar Diso (bin1 and bin2), and the association of the

FIG. 9. Parameter maps for part of an excised tumor immersed in an aqueous formaldehyde solution using the acquisition scheme shown in Fig. 6(b). See the caption of
Fig. 8 for detailed explanation of the panels. The arrows in panels (c) and (e) show tumor areas with pronounced effects of restricted diffusion.
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effects of restricted diffusion to the low-DΔ
2 component (bin2), as

shown in Fig. 8(e).
The maps of the excised tumor shown in Fig. 9 feature

an extended area with pronounced effects of restricted diffusion
(high Δω/2πE[Diso]) as well as regions with high V[Diso] resulting
from the co-existence of low- and high-Diso water pools within
the same imaging voxel, tentatively originating from dense tumor
and formaldehyde solution or tissues with degraded cell mem-
branes. These maps may permit non-invasive resolution of apop-
totic, necrotic, and viable tumor tissues having distinctly different
cell densities, sizes, shapes, and membrane properties.

V. DISCUSSION
The set of experimental data demonstrates that our proposed

model-free approach enables the estimation of quantitative metrics
related to restricted and anisotropic diffusion within a single set
of measurements, thereby merging oscillating gradient and tensor-
valued encoding into a common experimental and analysis frame-
work. Although the complete tensor-valued encoding spectra b(ω)
are used in the data inversion, the acquisition schemes shown in
Figs. 5 and 6 are reported in terms of the five variables b, Θ, Φ,
ωcent, and bΔ, see definitions in Eqs. (17)–(20). These variables pro-
vide a convenient short-hand notation of the investigated diffusion
properties and are all familiar from the literature—the first three
being the b value and b vector of diffusion tensor imaging,36,85

the fourth being the characteristic encoding frequency of oscillat-
ing gradients,19,24,65 and the fifth being the normalized anisotropy of
tensor-valued encoding.38 At high ωcent and bΔ = 0, the signal as a
function of b depends solely on the distribution of high-ω isotropic
diffusivities. Decreasing ωcent and using non-zero values of bΔ bring
in the effects of restriction and anisotropy, respectively. At the lowest
values of ωcent and bΔ = 1, these effects are maximized and the varia-
tion of signal with (Θ,Φ) gives information about the orientations of
anisotropic compartments. Conventional diffusion MRI36,85 is per-
formed in this latter limit and is sensitive to all the microstructural
properties without being able to resolve their individual contribu-
tions.63 Sampling of the multidimensional space spanned by all five
effective acquisition variables, on the other hand, allows retrieval of
the corresponding multidimensional D(ω) distributions with infor-
mation about diffusivity, orientation, restriction, anisotropy, and
their correlations.

The quality of the fits in Figs. 3 and 5 show that our proposed
signal expression, being the sum of contributions from compo-
nents with D(ω) approximated as tensor-valued Lorentzians, see
Eqs. (32)–(34), is sufficiently flexible to capture all relevant signal
modulations over exhaustive ranges of acquisition variables for both
the random permeable barrier model and the investigated samples
selected for their well-known effects of restrictions and anisotropy.
Correspondingly, the obtained D(ω) distributions shown in Figs. 5
and 7 and derived parameter maps shown in Figs. 8 and 9 are all
consistent with the design of the phantoms and previous results in
the literature,37,95,105,106,109 showing that the good fits do not come
at the expense of excessive overfitting that would lead to spuri-
ous peaks in the distributions and noisy parameter maps. Despite
the successful data fitting and reproduction of expected results, we
emphasize that the proposed approximation is merely a convenient

mathematical representation that yields an acceptable compromise
between physical correctness, mathematical convenience, and util-
ity for solving scientific questions without tempting the user to
overinterpretation.

With the comprehensive 2880-point acquisition scheme shown
in Fig. 5, the presence of restriction and anisotropy can be deduced
by simple visual inspection of the signal intensities as a function
of the acquisition variables—especially ωcent and bΔ for a given
value of b—and quantified from the 2D Diso-DΔ

2 projections of the
obtained D(ω) distributions. Admittedly, the data shown in Fig. 5
were acquired under exceptionally favorable circumstances, using
3 Tm−1 gradient hardware and samples with sufficiently large val-
ues of the transverse relaxation time T2 to allow for in total 0.050 s
of diffusion-encoding gradients and the broad frequency range
20–260 Hz even at the highest b value 6.4 × 109 sm−2. Conversely,
the data shown in Figs. 7–9 represent more realistic conditions with
short-T2 fixated tissues and abbreviated acquisition schemes com-
prising only 312 or 480 data points over the limited ranges 53–160 or
44–140 Hz. Despite these limitations, the data shown in Fig. 8 repro-
duce earlier findings on both restriction95 and anisotropy59 in the
rodent brain, as well as bring novel information on the correlations
between the properties. The number of acquisitions is comparable
to the 10 min and 300 point schemes used in early clinical imple-
mentations of tensor-valued encoding for studies of brain tumors,72

later to be truncated and optimized for 3 min measurements con-
sistent with applications in clinical practice,79 thus indicating the
potential for the implementation of our proposed method for both
clinical and pre-clinical research studies—initially maybe by simply
interleaving the latest protocols for oscillating gradient24 and tensor-
valued encoding81 using identical pulse sequences and imaging
settings.

Our analysis relies on the Gaussian phase distribution
approximation,18,84 the validity limits of which have been investi-
gated in the diffusion NMR literature.113,114 In the extreme case of
porous media with well-defined compartment sizes and/or inter-
compartment distances as well as optimal acquisition parameters
where both the wavelength of the dephasing vector q(t), see Eq. (13),
and the diffusional displacement matches some structural length
scale, the phase distribution may include sharp edges or mul-
tiple maxima, leading to signal attenuation with diffraction-like
features, as observed for polystyrene sphere packs,115 water-in-oil
emulsions,116 cylinders,117 and red blood cells.118 At diffusional dis-
placements smaller than the characteristic length scales, deviations
from the Gaussian phase distribution approximation give rise to
signal decay that appears multiexponential and may be misinter-
preted as originating from multiple separate compartments.119 For
biological tissues with less ideal pore geometries studied with less
optimal acquisition parameters, the deviations may be challeng-
ing to distinguish from the often overwhelming effects of various
sources of intravoxel heterogeneity that are quantified with, for
instance, the variance and covariance metrics in Eqs. (38) and (39).
In contemporary diffusion MRI literature, the more subtle devia-
tions from the Gaussian phase distribution approximation are often
termed intra-compartmental kurtosis, which may be teased apart
from other sources of kurtosis using the correlation tensor approach
relying on a rather specific double diffusion encoding acquisition
protocol and a truncated cumulant expansion analysis.102 As our
current acquisition protocol, combining oscillating gradients and
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tensor-valued encoding, do not fulfill the conditions for correla-
tion tensor analysis, we are here unable to estimate the effects of
intra-compartmental kurtosis. If deviations from the Gaussian phase
distribution are indeed present, we expect that our analysis based
on Eq. (30) yields bias in the estimated values of, in particular,
E[DΔ

2], V[Diso], Δω/2πE[Diso], Δω/2πV[Diso], and Δω/2πE[DΔ
2]. Mod-

ifying the correlation tensor analysis to be applicable to our type of
experimental data is, however, beyond the scope of this paper.

VI. CONCLUSION
In this work, we have taken a crucial step toward model-free

investigations of restriction and anisotropy in heterogeneous bio-
logical tissues, having potentially far-reaching implications for our
understanding of microstructural changes associated with pathology
or normal brain development. Through simulations and measure-
ments on phantoms, ex vivo rat brain, and excised tissue from a
mouse model of human neuroblastoma, we demonstrated that our
proposed model-free approach is sufficiently flexible to capture the
signal modulations for extreme cases of restriction and anisotropy
over exhaustive ranges of acquisition variables, while still being
robust enough to give quantitative parameter maps reporting on
relevant microstructural properties using abbreviated measurement
protocols compatible with clinical research studies.
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