
A thermodynamic framework for ductile phase-field fracture and
gradient-enhanced crystal plasticity

Downloaded from: https://research.chalmers.se, 2024-09-20 10:16 UTC

Citation for the original published paper (version of record):
Auth, K., Brouzoulis, J., Ekh, M. (2024). A thermodynamic framework for ductile phase-field
fracture and gradient-enhanced crystal
plasticity. European Journal of Mechanics, A/Solids, 108.
http://dx.doi.org/10.1016/j.euromechsol.2024.105418

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



European Journal of Mechanics / A Solids 108 (2024) 105418

A
0
(

Contents lists available at ScienceDirect

European Journal of Mechanics / A Solids

journal homepage: www.elsevier.com/locate/ejmsol

Full length article

A thermodynamic framework for ductile phase-field fracture and
gradient-enhanced crystal plasticity
Kim Louisa Auth a,∗, Jim Brouzoulis b, Magnus Ekh a

a Division of Material and Computational Mechanics, Department of Industrial and Materials Science, Chalmers University of Technology, 41296, Sweden
b Division of Dynamics, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 41296, Sweden

A R T I C L E I N F O

Keywords:
Phase-field fracture
Ductile
Gradient-enhanced plasticity
Crystal plasticity
Staggered solution scheme
Micromorphic
Damage irreversibilty

A B S T R A C T

This study addresses ductile fracture of single grains in metals by modeling of the formation and propagation
of transgranular cracks. A proposed model integrates gradient-extended hardening, phase-field modeling for
fracture, and crystal plasticity. It is presented in a thermodynamical framework in large deformation kinematics
and accounts for damage irreversibility. A micromorphic approach for variationally and thermodynamically
consistent damage irreversibility is adopted. The main objective of this work is to analyze the capability of
the proposed model to describe transgranular crack propagation. Further, the micromorphic approach for
damage irreversibility is evaluated in the context of the presented ductile phase-field model. This is done
by analyzing the impact of gradient-enhanced hardening considering micro-free and micro-hard boundary
conditions, studying the effect of the micromorphic regularization parameter, evaluating the performance of
the model in ratcheting loading and testing its capability to predict three-dimensional crack propagation. In
order to solve the fully coupled global and local equation systems, a staggered solution scheme that extends
to the local level is presented.
1. Introduction

The initiation and propagation of cracks, which play an impor-
tant role in determining the lifespan of engineering components, are
preceded by significant plastic deformation. To simulate and predict
the fracture process, particularly the initiation and growth of short
(microscopic) cracks evolving into macroscopic cracks, it is imperative
to delve into detailed modeling at the grain scale.

Damage and fracture within the grains may occur in the slip planes
as a consequence of the localization of plastic slip. The propagation of
small cracks follows crystallographic directions (Rovinelli et al., 2018),
making it natural to couple damage modeling with crystal plasticity
(cf. Flouriot et al., 2003; Aslan et al., 2011). In order to capture
size-dependent behavior resulting from geometrical necessary disloca-
tions at grain boundaries (or other obstacles), gradient-extended crystal
plasticity models have been introduced, see e.g. Gurtin (2002), Evers
et al. (2004) and Ekh et al. (2007). These models introduce a length-
scale parameter, providing a size-dependent response and helping to
overcome mesh-dependence issues for softening behavior (De Borst
et al., 1999).

For modeling the fracture of grains, a combination of damage
mechanics and crystal plasticity has been extensively employed, as
for example seen in Aslan et al. (2011) and Ekh et al. (2004). The
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phase-field approach has in recent years become a popular choice for
modeling fracture. In this approach, the discrete crack is represented as
a diffuse field whose width is determined by a length scale parameter.
The advantageous feature of phase-field modeling in fracture lies in
its capability to predict arbitrary crack propagation patterns, including
crack branching and coalescence. Moreover, in elasticity, it aligns
with classical fracture mechanics, when the length scale parameter
approaches zero. This modeling approach has found application in
predicting ductile fracture in several works, as discussed in Alessi
et al. (2018) and references therein, and has been coupled with crystal
plasticity in Hernandez Padilla and Markert (2014), De Lorenzis et al.
(2016) and Maloth and Ghosh (2023). It has been shown to be a
promising approach for transgranular fracture of metals.

Phase-field models, however, require special treatment in order
to ensure damage irreversibility, which is necessary to obtain physi-
cally realistic responses upon unloading and reversed loading. While
a number of different approaches have been suggested to address its
numerical treatment, e.g. Bourdin et al. (2008), Miehe et al. (2010b),
Gerasimov and De Lorenzis (2019) and Alessi et al. (2015), one of the
most commonly adopted approaches is the so called history-variable
approach by Miehe et al. (2010a). This approach introduces the history
variable in the strong form of the phase-field equation. It thereby ren-
ders it impossible to retrieve the energy functional back from the strong
vailable online 12 August 2024
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from and thus results in the loss of variational consistency. Bharali et al.
(2023) have recently proposed to use a micromorphic approach instead,
offering the advantage that irreversibility can be directly formulated
on a local damage field. The micromorphic extension, as presented
in Forest (2009), has in earlier works addressed challenges such as
avoiding mesh dependence for softening behavior (Dimitrijevic and
Hackl, 2011), modeling size-dependent hardening (Dimitrijevic and
Hackl, 2011), and enhancing numerical robustness (Miehe et al., 2017).

The objective of this work is to propose a ductile fracture model
that allows to account for micro-structural effects on crack initiation
and growth in metals. We aim at integrating gradient-extended hard-
ening and phase-field modeling within a crystal plasticity framework.
Since ductile fracture in metals is usually preceeded by the devel-
opment of large amounts of (plastic) strain, the model is presented
in a thermodynamical framework with large deformation kinematics.
The incorporation of gradient-extended hardening is motivated by the
resistance to edge dislocation motion at grain boundaries which affects
the stress field and therefore the fracture behavior.

The novelty of the presented work lies in the incorporation of the
gradient-hardening extension to a crystal plasticity based phase field
fracture model on one hand and in the choice of damage irreversibility
criterion on the other hand. Bharali et al. (2023) have applied the
micromorphic irreversibility criterion to a small strain elasticity frame-
work with a porous media extension and employed a convexification
scheme in order to solve the resulting equation system monolitically.
Additionally to applying the irreversibility scheme to a more complex
finite strain base model, we employ a staggered solution scheme with-
out convexification. Primary objectives of the paper are to analyze
model behavior for different choices of gradient hardening boundary
conditions, as well as the interaction between the micromorphic and
ductile contributions to the phase-field formulation. We further explore
the robustness of the micromorphic phase-field formulation to the
change of global solution strategy and the related removal of the
convexification technique.

The structure of the paper is as follows: Section 2 provides an
overview of the thermodynamic framework underlying the model. Sec-
tion 3 introduces a prototype large strain crystal plasticity model, while
Section 4 deals with formulations concerning damage irreversibility.
The weak formulation of the balance equations is outlined in Section 5.
Section 6 comments on important details of the numerical implemen-
tation, in particular on the staggered solution scheme in presence of
multiple local variables. To highlight aspects of the proposed model,
numerical results for single crystal boundary value problems in two-
dimensional (2D) and three-dimensional (3D) settings are presented
and analyzed in Section 7. Concluding remarks are given in Section 8.

2. Thermodynamic modeling framework

In this section, a thermodynamic framework for a phase-field frac-
ture model based on an underlying gradient crystal plasticity formula-
tion is presented. The derivations follow Ekh et al. (2007) for a gradient
crystal plasticity model but are here extended with phase-field fracture.
For comparison, a derivation based on the microforce balances is given
in Appendix B.

We formulate the model in a large strain setting and assume a
multiplicative decomposition of the deformation gradient 𝑭 into an
elastic part 𝑭e and a plastic part 𝑭p

𝑭 = 𝑭e ⋅ 𝑭p . (1)

Further, we introduce the set of isotropic hardening variables {𝑘𝛼}
𝑛𝛼
𝛼=1,

here 𝑘𝛼 signifies the isotropic hardening variable on the 𝛼-th of 𝑛𝛼
lip systems and a damage (phase-field) variable 𝑑. The free energy 𝛹
s then assumed to depend on the elastic Cauchy–Green deformation

T

2

radient 𝑪e = 𝑭e ⋅ 𝑭e, the state variable 𝑞, the isotropic hardening (
ariables {𝑘𝛼}
𝑛𝛼
𝛼=1, the damage variable 𝑑 and the spatial gradients

𝛁0𝑘𝛼}
𝑛𝛼
𝛼=1 and 𝛁0𝑑

= 𝛹
(

𝑪e, 𝑞, {𝑘𝛼}
𝑛𝛼
𝛼=1, {𝛁0𝑘𝛼}

𝑛𝛼
𝛼=1, 𝑑, 𝛁0𝑑

)

(2)

he dissipation inequality under quasistatic and isothermal conditions
s given by

∫𝑉0
𝑷 ∶ �̇� d𝑉0 − ∫𝑉0

�̇� d𝑉0 ≥ 0 . (3)

here 𝑷 is the first Piola–Kirchhoff stress, 𝑭 is the deformation gradi-
nt and 𝑉0 represents the initial domain with boundary 𝛤0. Introducing
he free energy (2) into the dissipation inequality (3) and using the
tandard Coleman–Noll arguments (Coleman and Noll, 1963) yields the
lastic second Piola–Kirchhoff stress 𝑺e as (see e.g. Simo (1988))

e = 2 𝜕𝛹
𝜕𝑪e

, (4)

and we obtain the reduced dissipation inequality

 = ∫𝑉0

(

𝑴e ∶ 𝑳p −
𝜕𝛹
𝜕𝑞

�̇� −
𝑛𝛼
∑

𝛼=1

𝜕𝛹
𝜕𝑘𝛼

�̇�𝛼 −
𝑛𝛼
∑

𝛼=1

𝜕𝛹
𝜕𝛁0𝑘𝛼

⋅ 𝛁0�̇�𝛼

− 𝜕𝛹
𝜕𝑑

�̇� − 𝜕𝛹
𝜕𝛁0𝑑

⋅ 𝛁0�̇�

)

d𝑉0 ≥ 0 . (5)

n Eqs. (4)–(5), the Mandel stress 𝑴e = 𝑪e ⋅ 𝑺e, like the second Piola–
irchhoff stress on the intermediate configuration, as well as the plastic
elocity gradient 𝑳p = �̇�p ⋅ 𝑭 −1

p were introduced. Using the divergence
heorem, the reduced dissipation inequality can be rewritten as

= ∫𝑉0

(

𝑴e ∶ 𝑳p +𝑄 �̇� +
𝑛𝛼
∑

𝛼=1
𝜅𝛼 �̇�𝛼 + 𝑌 �̇�

)

d𝑉0

+ ∫𝜕𝑉0

( 𝑛𝛼
∑

𝛼=1
𝜅𝛤
𝛼 �̇�𝛼 + 𝑌 𝛤 �̇�

)

d𝐴0 ≥ 0 , (6)

here 𝑄 = −𝜕𝛹∕𝜕𝑞 and the gradient-extended dissipative hardening
tress 𝜅𝛼 and its boundary ‘‘traction’’ 𝜅𝛤

𝛼 were introduced as

𝜅𝛼 = − 𝜕𝛹
𝜕𝑘𝛼

+ 𝛁0 ⋅
𝜕𝛹

𝜕𝛁0𝑘𝛼
, (7)

𝜅𝛤
𝛼 = −𝑵 ⋅

𝜕𝛹
𝜕𝛁0𝑘𝛼

, (8)

where 𝑵 is the unit normal to 𝛤0. The corresponding dissipative
quantities for the phase-field are

𝑌 = − 𝜕𝛹
𝜕𝑑

+ 𝛁0 ⋅
𝜕𝛹
𝜕𝛁0𝑑

(9)

𝑌 𝛤 = −𝑵 ⋅
𝜕𝛹
𝜕𝛁0𝑑

(10)

The phase-field equation is obtained by assuming that 𝑌 = 0 (purely
energetic)

− 𝜕𝛹
𝜕𝑑

+ 𝛁0 ⋅
𝜕𝛹
𝜕𝛁0𝑑

= 0 (11)

nd thereby it can be noted that the phase-field will not contribute
o the dissipation on 𝑉0. Hence, the reduced dissipation inequality
ecomes

= ∫𝑉0

(

𝑴e ∶ 𝑳p +𝑄 �̇� +
𝑛𝛼
∑

𝛼=1
𝜅𝛼 �̇�𝛼

)

d𝑉0

+ ∫𝜕𝑉0

( 𝑛𝛼
∑

𝛼=1
𝜅𝛤
𝛼 �̇�𝛼 + 𝑌 𝛤 �̇�

)

d𝐴0 ≥ 0 (12)

ppendix B presents an alternative derivation in terms of microforce
alances. Opposed to the derivation in Appendix B, we do not obtain
local definition of the dissipation inequality in Eq. (12), instead we

btain boundary terms, which is not obtained from the microforce
alance based derivation.

These boundary terms must be respected when formulating bound-
ry conditions for the field equations. The resulting field Eqs. (7) and

11) are the same independently which derivation approach is chosen.
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3. Prototype crystal plasticity model

We will assume the following form of the free energy

𝛹 = 𝑔e
(

𝑑, 𝜖p
)

�̂�e
(

𝑪e
)

+ 𝑔p (𝑑) �̂�p
(

{𝑘𝛼}
𝑛𝛼
𝛼=1, {𝛁0𝑘𝛼}

𝑛𝛼
𝛼=1

)

+ 𝛹d
(

𝑑,𝛁0𝑑
)

(13)

he effective (undamaged) elastic part of the free energy �̂�e is assumed
o be of Neo-Hookean type

̂ e
(

𝑪e
)

=
𝜇
2

(

tr(𝑪e) − 3
)

− 𝜇 ln(𝐽e) +
𝜆
2

(

ln(𝐽e)
)2 with 𝐽 2

e = det(𝑪e)

(14)

where 𝜆 and 𝜇 are the elastic Lamé constants. For simplicity, we have
assumed elastic isotropy and disregarded a tension–compression split.
The elastic degradation function 𝑔e is adopted from the ductile fracture
model presented by Ambati et al. (2015)

𝑔e
(

𝑑, 𝜖p
)

= (1 − 𝑑)2
(

𝜖p∕𝜖pcrit
)𝑛

, (15)

where 𝜖p is the accumulated plastic strain (in the thermodynamic
modeling framework above represented by 𝑞). It can be noted that the
degradation is only active when 𝜖p > 0 and that the parameters 𝜖pcrit
and 𝑛 > 0 control how the degradation increases when 𝜖p increases.
As shown by Ambati et al. (2015), the formulation gives a positive
contribution to the dissipation, i.e. 𝑄 �̇� ≥ 0.

The effective plastic free energy �̂�p is chosen as (compare Ekh et al.
(2007))

�̂�p =
1
2

𝑛𝛼
∑

𝛼=1
𝐻𝛼 𝑘

2
𝛼 +

𝑙2g
2

𝑛𝛼
∑

𝛼=1
𝐻g

𝛼 (�̄�𝛼 ⋅ 𝛁0𝑘𝛼)2 , (16)

where 𝐻𝛼 is the isotropic hardening modulus, 𝐻g
𝛼 is the gradient-

enhanced hardening modulus and 𝑙g is the length scale for gradient-
enhanced hardening. We adopt the standard assumption that the slip
direction �̄�𝛼 and normal vector to the slip plane �̄�𝛼 on the intermediate
configuration are fixed (and equal to their corresponding vectors on
the undeformed configuration). For simplicity, the plastic degradation
function is chosen as 𝑔p = 1. The yield function 𝛷𝛼 is defined in terms
of the effective Schmid stress 𝜏𝛼 as

𝛷𝛼 = |

|

𝜏𝛼|| − (𝜏y + 𝜅𝛼) (17)

with 𝜏𝛼 = 𝜏𝛼 ∕ 𝑔e (𝑑, 𝜖p) wherein 𝜏𝛼 is the standard crystal plasticity
chmid stress 𝜏𝛼 = 𝑴e ∶

(

�̄�𝛼 ⊗ �̄�𝛼
)

. Furthermore, 𝜏y is the initial
yield stress. The evolution equation for the plastic velocity gradient is
assumed to be of associative type

�̄�p = �̇�p ⋅ 𝑭 −1
p =

𝑛𝛼
∑

𝛼=1
�̇�𝛼

𝜕𝛷𝛼
𝜕𝑴e

=
𝑛𝛼
∑

𝛼=1

�̇�𝛼
𝑔e (𝑑, 𝜖p)

(

�̄�𝛼 ⊗ �̄�𝛼
)

sign
(

𝜏𝛼
)

(18)

and we apply a viscoplastic regularization for the multiplier

�̇�𝛼 = 1
𝑡∗

⟨

𝛷𝛼
𝜎d

⟩𝑚
, (19)

where 𝑡∗, 𝑚 and 𝜎d control the viscosity of the model and ⟨∙⟩ denotes
Macualey brackets. The accumulated plastic strain 𝜖p is based on �̇�𝛼
defined as

𝜖p = ∫

𝑡

0

√

√

√

√

𝑛𝛼
∑

𝛼=1
�̇�2𝛼 d𝑡 . (20)

he gradient-extended hardening stress 𝜅𝛼 is derived from Eq. (7) as

𝛼 = −𝐻𝛼 𝑘𝛼 +𝐻g
𝛼 𝑙2g �̄�𝛼 ⋅ (𝛁0 ⊗ 𝛁0𝑘𝛼) ⋅ �̄�𝛼 (21)

nd the evolution of the hardening variable 𝑘𝛼 is also assumed to be of
ssociative type

̇ 𝛼 = �̇�𝛼
𝜕𝛷𝛼 = −�̇�𝛼 . (22)
3

𝜕𝜅𝛼
These assumptions for the hardening can be extended, see e.g.
Bargmann et al. (2010) to account for more complex models such as
kinematic hardening, cross-hardening and nonlinear hardening.

For the phase-field fracture model, the free energy contribution
is based on an AT2 surface energy functional 𝛤d, cf. Ambrosio and
Tortorelli (1990)

𝛹d
(

𝑑,𝛁0𝑑
)

= d0 𝛤d
(

𝑑,𝛁0𝑑
)

with 𝛤d =
1

2𝓁0

(

𝑑2 + 𝓁2
0
|

|

𝛁0𝑑||
2
)

(23)

where d0 represents fracture toughness and 𝓁0 is the length-scale
parameter controlling the width of the diffuse crack model. By inserting
the choices of degradation functions and 𝛹d, the phase-field Eq. (11)
becomes

2
(

𝜖p∕𝜖pcrit
)𝑛 (1 − 𝑑)2

(

𝜖p∕𝜖pcrit
)𝑛

−1�̂�e −
d0
𝓁0

𝑑 + d0 𝓁0 𝛁0 ⋅ 𝛁0𝑑 = 0 (24)

hich is similar to the formulation used in De Lorenzis et al. (2016)
ut extended with the exponent 𝑛.

. Irreversibility

As discussed in the introduction, one of the most common ap-
roaches for enforcing damage irreversibility is the history variable
pproach introduced by Miehe et al. (2010a) where the effective elastic
ree energy �̂�e in the phase-field equation (Eq. (24)) is replaced by a
istory variable

(𝑡) = max
𝑡≤𝑡

�̂�e . (25)

his approach though has been shown to be variationally inconsistent,
ee e.g. De Lorenzis and Gerasimov (2020). Within this work we
herefore explore a micromorphic approach (Forest, 2009), which has
ecently been shown to allow for a variationally consistent framework
or locally enforced damage irreversibility (Bharali et al., 2023).

It introduces an additional local variable 𝜑 and includes a penalty
erm in the free energy that connects the global damage 𝑑 with the
new) local damage 𝜑. The local damage 𝜑 then replaces 𝑑 in all terms
xcept for the new penalty term and the damage gradient term.

= 𝑔e
(

𝜑, 𝜖p
)

�̂�e
(

𝑪e
)

+ 𝑔p (𝜑) �̂�p
(

{𝑘𝛼}
𝑛𝛼
𝛼=1, {𝛁0𝑘𝛼}

𝑛𝛼
𝛼=1

)

+ 𝛹d
(

𝜑,𝛁0𝑑
)

+ 𝛼
2
(𝜑 − 𝑑)2 (26)

The dissipation inequality (6) is thereby modified to

 = ∫𝑉0

(

𝑴e ∶ 𝑳p +𝑄 �̇� +
𝑛𝛼
∑

𝛼=1
𝜅𝛼 �̇�𝛼 + 𝑌𝜑 �̇� + 𝑌d �̇�

)

d𝑉0

+ ∫𝜕𝑉0

( 𝑛𝛼
∑

𝛼=1
𝜅𝛤
𝛼 �̇�𝛼 + 𝑌 𝛤 �̇�

)

d𝐴0 ≥ 0 (27)

here equivalently to the procedure leading to Eq. (11), 𝑌d = 0 yields
he global phase-field equation

d = 𝛼 (𝜑 − 𝑑) + d0 𝓁0 𝛁0 ⋅ 𝛁0𝑑 = 0 (28)

nd hence the global phase-field 𝑑 does not contribute to the dissi-
ation on 𝑉0. The micromorphic approach introduces an additional
egularization to the model. In Miehe et al. (2017) it was mainly
sed for robustness of numerical implementation but can as suggested
y Bharali et al. (2023) conveniently be used to ensure irreversibility.
he evolution of the local phase-field 𝜑 is then derived from the

nequality 𝑌𝜑 �̇� ≥ 0. For the suggested choice of model 𝑌𝜑 is given by

𝜑 = − 𝜕𝛹
𝜕𝜑

= 2
(

𝜖p∕𝜖pcrit
)𝑛 (1 − 𝜑)2

(

𝜖p∕𝜖pcrit
)𝑛

−1�̂�e −
d0
𝓁0

𝜑 − 𝛼 (𝜑 − 𝑑) . (29)

For pure loading, the local phase-field 𝜑 can be computed from as-
suming that 𝑌𝜑 is energetic, i.e. 𝑌𝜑 = 0. In order to obtain a ther-
modynamically consistent formulation for unloading however, the full
inequality must be considered. By introducing an intermediate local
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variable �̃� = arg
{

𝑌𝜑(𝜑) = 0
}

, the Karush-Kuhn-Tucker conditions to
nsure irreversibility of 𝜑 can be formulated as

̇ ≥ 0 , �̇� 𝑓𝜑 = 0 , 𝑓𝜑 = �̃� − 𝜑 ≤ 0 . (30)

hereby, we obtain 𝑌𝜑 �̇� = 0, since 𝑌𝜑 = 0 during loading (𝜑 = �̃�) and
̇ = 0 during unloading (𝜑 = const). Notice that the local phase-field
ere becomes a history variable.

. Weak form of balance equations

The weak form of balance of momentum when neglecting inertial
orces and body forces is expressed in terms of the first Piola–Kirchhoff
tress 𝑷 as

u = ∫𝑉0
𝑷 ∶

(

𝛿𝒖⊗ 𝛁0
)

d𝑉0 − ∫𝜕𝑉0
𝒕∗0 ⋅ 𝛿𝒖 d𝐴0 , (31)

here 𝒕∗0 is a prescribed traction on the boundary 𝜕𝑉0. The expression
or the gradient-extended hardening stress 𝜅𝛼 in Eq. (21) is, due to
he spatial gradients, also a field equation. We adopt the dual mixed
rocedure described in Svedberg and Runesson (1998) and introduce

𝛼 = 𝛁0𝑘𝛼 (32)

hereby

𝛼 = −𝐻𝛼 𝑘𝛼 +𝐻g
𝛼 𝑙2g �̄�𝛼 ⋅ 𝛁0𝒈𝛼 ⋅ �̄�𝛼 (33)

ecomes a local equation. Instead, the weak form of Eq. (32) is in-
roduced as a field equation and by using the divergence theorem we
btain

g
𝛼 = ∫𝑉0

𝒈𝛼 𝛿𝒈𝛼 d𝑉0 − ∫𝜕𝑉0
𝑘𝛼 𝑵 ⋅ 𝛿𝒈𝛼 d𝐴0 + ∫𝑉0

𝑘𝛼 𝛁0 ⋅ 𝛿𝒈𝛼 d𝑉0 . (34)

his procedure has been shown to be numerically robust (Ekh et al.,
007; Carlsson et al., 2017) and has the same benefit as a micromorphic
pproach that no special treatment to account for loading/unloading
onditions is needed since it can be controlled locally in the material
oints. Finally, the phase-field Eq. (28) is formulated in weak form as

d = ∫𝑉0
𝛼 (𝜑 − 𝑑) 𝛿𝑑 d𝑉0 + ∫𝜕𝑉0

d0 𝓁0 𝑵 ⋅ 𝛁0𝑑 𝛿𝑑 d𝐴0

− ∫𝑉0
d0 𝓁0 𝛁0𝑑 ⋅ 𝛁0𝛿𝑑 d𝑉0 , (35)

here the standard boundary condition 𝑵 ⋅ 𝛁0𝑑 = 0 will be assumed
hereby the boundary integral term disappears.

The choice of the micromorphic penalty parameter 𝛼 can conve-
iently be based on the employed effective fracture energy d0∕𝓁0 by
efining it in terms of a dimensionless scalar 𝛽 such that 𝛼 = 𝛽 d0∕𝓁0.

. Numerical implementation

.1. Time integration

Time integration schemes are needed for the plastic evolution equa-
ions, Eqs. (18) and (22), as well as for the accumulated plastic strain,
q. (20) and the evolution of the local phase-field, Eq. (30). Backward
uler time integration is applied to the evolution equations for the
lastic deformation gradient 𝑭 p and the hardening variables 𝑘𝛼 . For
ime points n+1𝑡 and n𝑡, a time step 𝛥𝑡 = n+1𝑡 − n𝑡 and 𝛥𝜆𝛼 = 𝛥𝑡 n+1�̇�𝛼 ,
e obtain the following expressions
n+1𝑘𝛼 = n𝑘𝛼 − n+1𝛥𝜆𝛼 (36)

n+1𝑭 −1
p = n𝑭 −1

p ⋅

(

𝑰 −
𝑛𝛼
∑

𝛼=1

n+1𝛥𝜆𝛼
𝑔e( n+1𝜑)

(

�̄�𝛼 ⊗ �̄�𝛼
)

sign
( n+1𝜏𝛼

)

)

. (37)

The signs of the Schmid stresses n+1𝜏𝛼 are computed based on the
elastic trial stress. The evolution of the local phase-field 𝜑 is discretized
as
n+1𝜑 = max

( n+1�̃�, n𝜑
)

(38)
4

𝑌

nd thereby accounting for the irreversibility condition. An explicit
cheme is applied to the accumulated plastic strain 𝜖p, such that the
lastic degradation is computed based on the accumulated plastic strain
rom the previous time step n𝜖p

e (𝜑) = (1 − 𝜑)2
(

n𝜖p∕𝜖pcrit
)𝑛

. (39)

hereby, two coupled local residual equations with unknowns n+1�̃� and
n+1𝛥𝜆𝛼 need to be solved for every time step within the global residual
Eqs. (31), (34) and (35).

𝛥𝜆𝛼

(

𝛥𝜆𝛼 , 𝜑
)

= 𝛥𝜆𝛼 −
𝛥𝑡
𝑡∗

⟨

𝛷𝛼
(

𝑪 , 𝛁0𝒈𝛼 , 𝛥𝜆𝛼 , 𝜑
)

𝜎d

⟩m

(40)

𝜑
(

𝛥𝜆𝛼 , �̃�
)

= −
𝜕𝑔e (�̃�)
𝜕�̃�

�̂�e
(

𝑪 , 𝛥𝜆𝛼 , �̃�
)

−
d0
𝓁0

�̃� − 𝛼 (�̃� − 𝑑) (41)

6.2. Dimension-free formulation

For the following presentation of numerical results a representation
with dimension free volumes and derivatives is employed. We intro-
duce a global length scale 𝐿 representing the overall domain size and
dimension free coordinates 𝝃 such that the initial coordinates 𝑿 can be
expressed as

𝑿 = 𝝃 𝐿 (42)

which also leads to the following relations

𝛁0 = 𝛁𝜉
1
𝐿

, 𝑉0 = 𝑉𝜉 𝐿
3 , 𝐴0 = 𝐴𝜉 𝐿

2 . (43)

The field variables 𝒖 and 𝒈𝛼 can be expressed by their dimensionless
counterparts 𝒖𝜉 and 𝒈𝛼𝜉

𝒖 = 𝒖𝜉 𝐿 , 𝒈 = 1
𝐿

𝒈𝛼𝜉 . (44)

Further, we introduce the dimension-free phase-field length-scale 𝓁𝜉 ,
the dimension-free gradient hardening length-scale 𝑙g𝜉 and the effective
fracture energy d𝜉 as

𝓁𝜉 =
𝓁0
𝐿

, 𝑙g𝜉 =
𝑙g
𝐿

and d𝜉 =
d0
𝐿

(45)

The weak forms, Eqs. (31), (34) and (35), can be formulated in terms
of the dimension free coordinates as

𝛿u = 𝐿3

(

∫𝑉𝜉
𝑷 ∶

(

𝛿𝒖𝜉 ⊗ 𝛁𝜉
)

d𝑉𝜉 − ∫𝜕𝑉𝜉
𝒕∗0 ⋅ 𝛿𝒖𝜉 d𝐴𝜉

)

, (46)

𝑔 = 𝐿

(

∫𝑉𝜉
𝒈𝛼𝜉 𝛿𝒈𝛼𝜉 d𝑉𝜉 − ∫𝜕𝑉𝜉

𝑘𝛼 𝑵 ⋅ 𝛿𝒈𝛼𝜉 d𝐴𝜉

+ ∫𝑉𝜉
𝑘𝛼 𝛁𝜉 ⋅ 𝛿𝒈𝛼𝜉 d𝑉𝜉

)

, (47)

𝛿d = 𝐿3

(

∫𝑉𝜉
𝛽
d0
𝓁𝜉

(𝜑 − 𝑑) 𝛿𝑑 d𝑉𝜉 + ∫𝜕𝑉𝜉
d𝜉 𝓁𝜉

(

𝑵 ⋅ 𝛁𝜉𝑑
)

𝛿𝑑 d𝐴𝜉

− ∫𝑉𝜉
d𝜉 𝓁𝜉

(

𝛁𝜉𝑑 ⋅ 𝛁𝜉𝛿𝑑
)

d𝑉𝜉

)

, (48)

howing that the solutions to the field equations are qualitatively
ndependent of the global length scale 𝐿 and quantitatively scale by 𝐿
s introduced in Eqs. (42)–(45). The local equations including length-
cale related parameters, Eqs. (21) and (29) can entirely be expressed
n terms of the dimension-free parameters instead and are thereby not
ependent on the choice of global length scale

𝜅𝛼 = −𝐻𝛼 𝑘𝛼 +𝐻g
𝛼 𝑙

g
𝜉
2 �̄�𝛼 ⋅

(

𝛁𝜉 ⊗ 𝛁𝜉𝑘𝛼
)

⋅ �̄�𝛼 , (49)

= 2
(

𝜖p∕𝜖p
)𝑛 (1 − 𝜑)2

(

𝜖p∕𝜖pcrit
)𝑛

−1�̂� − d 𝜑 − 𝛼 (𝜑 − 𝑑) . (50)
𝜑 crit e 𝜉
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Table 1
Field-wise tolerances applied for global convergence examination. A field is considered
converged when either of the residual or the field tolerance (relating to the update of
field variables during a single Newton-correction) is fulfilled.

Global residual
equation

Residual
tolerance

Field
tolerance

Displacement field 𝒖 u, Eq. (31) 𝐿2 ⋅ 10−7 N mm−2 𝐿 ⋅ 10−8

Hardening strain gradient 𝒈𝛼 g, Eq. (34) 𝐿2 ⋅ 10−11 𝐿−1 ⋅ 10−6

Global phase-field 𝑑 d, Eq. (35) 𝐿3 ⋅ 10−10 N mm−3 10−8

6.3. Staggered solution scheme

We apply a staggered algorithm in order to solve the coupled
problem. The algorithm is schematically represented in Fig. 1. The
residual equations resulting from the weak forms, Eqs. (31), (34), and
(35), are denominated u, g and d. The equilibrium equation u

nd the gradient-extended hardening field equation g are solved in a
monolithic way (referred to as ug in Fig. 1) in the first staggered step
and the global phase-field equation d is solved in a second staggered
step. Extending the staggered approach to the local equations, we group
variables in two sets corresponding to the staggered steps: Set 1: {𝒖,
𝒈𝛼 , 𝑘𝛼 , 𝑭 p} and set 2: {𝑑, 𝜑}. Within each staggered iteration only the
corresponding set of variables is updated, while the other set is frozen.
Thus, a decoupling of the local equations is achieved and only one of
the local residual equations needs to be solved within each staggered
step. This is a similar staggered approach as the one taken by Ambati
et al. (2015).

The local equations are solved by Newton iterations up to a toler-
ance of 10−8. Field-wise convergence criteria on the global fields and
their respective residuals are applied on the global system. A field is
considered converged when either the norm of the residuals is below
the respective residual tolerance or the norm of the update of field
values in a Newton iteration is below the respective field tolerance. The
tolerances applied for the numerical examples are displayed in Table 1.

The proposed model and finite element framework are implemented
n the Julia programming language (Bezanson et al., 2017), making
se of the Ferrite.jl (Carlsson et al., 2021) finite element and
ensors.jl (Carlsson and Ekre, 2019) tensor calculus toolboxes.

Plots are generated using the data visualization system Makie.jl
(Danisch and Krumbiegel, 2021).

7. Numerical experiments on single crystals

In this section, the behavior of the proposed prototype model is
investigated. We first demonstrate that the presented model can repro-
duce well known behavior of crystal plasticity phase-field models from
the literature. Then we display the effect of added gradient-enhanced
hardening. Subsequently, it is demonstrated that the model is capable
of capturing irreversible unloading. Finally, an example of damage
development in a three-dimensional setting with inhomogeneities is
shown.

The numerical examples, inspired by De Lorenzis et al. (2016),
employ an I-shaped specimen in 2D (plane strain) and 3D. A base set of
material parameters is shown in Table 2, deviating material parameters
are given in the descriptions of the respective numerical examples.
Fig. 2 shows the geometry and meshes for the numerical examples.
Both cases represent the same cross-sectional geometry and employ
unstructured meshes with a background element size of 0.04𝐿. Mesh
refinements are conducted at the sides and in the center of the web,
where the specimen is expected to break. The refinements in the 2D-
mesh consist of elements with an average size of 0.005𝐿, resulting in
9 738 nodes and 19 390 linear triangular elements in total. In the 3D-
mesh, center and sides are meshed with elements of 0.01 L average size
and two positions are additionally refined with elements of 0.005𝐿 on
5

average for imposing initial material inhomogeneities. The 3D mesh o
consists of 21 326 nodes and 123 183 linear tetrahedral elements in total.
inear function approximations have been used for all field variables. In
ll cases, FCC slip systems whose unit cell is aligned with the coordinate
xes are used. The slip systems are shown in Table 3 in Appendix A. The
lip systems with slip directions perpendicular to the loading direction
re omitted in all examples, since they have a negligible impact on the
lastification. Sections 7.1 and 7.2 thereby use 8 slip systems each.
ections 7.3 and 7.4 only employ the four most active slip systems,
hat is slip systems 1, 4, 7 and 10. Notice that the system size of the
ug-equation system grows quickly with the number of slip systems

ince it requires a vector field for the displacement field 𝒖 and a vector
ield per slip system for the gradient fields 𝒈𝛼 . This also means that
he mesh size at which the major computational cost shifts from being
ssociated with solving the local problems to being associated with
he global linear solver is much smaller than for comparable systems
ithout gradient-extension.

The reduction of the number of slip systems is motivated by the
eduction of the numerical cost. The number of employed slip systems
epresents a compromise between the computational cost of the respec-
ive simulations and the accuracy of the obtained plastification. When
hoosing the required number of slip systems, it should be noticed
hat the active slip systems might vary due to large deformations and
specially during the final stage of the fracturing process.

The I-shaped specimen is clamped on the bottom side and loaded
y prescribing a displacement of 0.1𝐿 ∕ 𝑡∗ in the vertical direction on
he upper side, while the horizontal displacement is zero.

.1. Boundary conditions for gradient-enhanced hardening

In a first step, we consider the I-shaped specimen under plane
train conditions. We investigate the model behavior without gradient
ardening, 𝑙g = 0.0𝐿, as well as for the two trivial possibilities of
oundary conditions on the strain gradient fields: micro-hard, 𝑘𝛼 = 0,
nd micro-free, 𝒈𝛼 ⋅ �̄�𝛼 = 0, slip transfer. Note that both boundary
onditions give no dissipation on the boundary, 𝜅𝛤

𝛼 �̇�𝛼 = 0 in Eq. (12).
ig. 3 displays the reaction force response of the three cases. All three
cenarios first undergo a linear elastic loading phase, followed by
ardening and finally softening behavior. The linear elastic behavior
s obtained even though an AT2-type phase-field model is applied,
ince the material degradation is based on a combination of accu-
ulated plastic strain and the phase-fields (compare Eq. (15)). As a

onsequence, the local phase-field can only develop once at least a
mall amount of plastic strain develops, thus recovering a true linear
lastic phase. As expected, the gradient hardening together with micro-
ard conditions gives a stiffer response in the nonlinear regime. Fig. 4
hows the material degradation at the last converged load step. The
ell known diamond shape crack pattern (compare e.g. De Lorenzis
t al. (2016)) is recovered without gradient hardening. The behavior
nder micro-free boundary conditions is similar, but shows smoothing
f the degradation field. Micro-hard boundary conditions disallow the
evelopment of plastic strains on the boundary in a weak sense (for the
hosen algorithmic formulation). Consequently, no damage can develop
n the boundaries for a sufficiently fine mesh. The micro-hard response
s more sensitive to the mesh, which is shown in Fig. 4 by the fact that
n unsymmetric mesh gives a slightly unsymmetric response. The mesh
or the micro-hard case has however already been refined compared to
he other cases by using elements with an average size of 0.25mm on
he left and right boundaries.

Notice that micro-free and micro-hard boundary conditions repre-
ent idealized conditions. Micro-hard boundary conditions represent
oundaries that do not allow any slip transmission and thereby com-
letely prevent plastic deformation on the boundary. Micro-free bound-
ry conditions in contrast represent the case where a boundary does
ot possess any resistance against slip transmission. In the following
imulations we choose to apply micro-free boundary conditions in

rder to represent free outer boundaries. In the case of polycrystalline
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equation system. The staggered algorithm solves for one set of variables at a time while freezing the other set. The iteration between the sets is stopped once the global residuals
fulfill the all convergence criteria presented in Table 1 at the same time.
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structures however, neither of the two ideal cases is well suited for
inner grain boundaries, since they typically show an intermediate level
of resistance against slip transmission. Such micro-flexible boundary
conditions for gradient-enhanced crystal plasticity are for example
discussed in Ekh et al. (2011) and Husser et al. (2017).

7.2. Effect of micromorphic penalty parameter

The micromorphic phase-field formulation adopts a penalty param-
eter 𝛼 = 𝛽 d0∕𝓁0. Bharali et al. (2023) have shown for linear elastic
problems that insufficient penalization leads to premature failure of
the specimen (since the formulation turns into a local damage model
in this case). For the chosen model problem, we have observed that
the reaction force response is relatively robust against the choice of
penalty parameter, but shows the same tendency of premature failure
for very low choices of 𝛽. The lower sensitivity in our case can largely
e attributed to the influence of plasticity in the proposed model. Fig. 5
isplays the effect of drastically reducing the micromorphic penalty
arameter 𝛽. Micro-free boundary conditions have been applied in
hese simulations. The resulting effect of a lower 𝛽 is a decoupling
f the local phase-field 𝜑 and the global phase-field 𝑑 (as expected,
ompare Eq. (26)). While both phase-fields show a similar shape and
agnitude for 𝛽 = 100, the global phase-field 𝑑 has much lower values

nd lacks localization for 𝛽 = 0.01. In contrast, the local phase-field
ver-localizes for an insufficient penalty parameter in this example.
he reason for this lack of regularization is that the local phase-
ield 𝜑 develops due to the increase of accumulated plastic strain 𝜖p
6

n this case, it is mostly uninfluenced by the global phase-field 𝑑.
his means that the effect of crack regularization inherent to phase-
ield fracture modeling, which occurs in the global equation system
compare Eq. (35)), does not permeate to the local problem described
n Eq. (29), which determines 𝜑. It should be noted that gradient-
nhanced plasticity represents a regularization of the plastic strain field
nd that the response for an insufficiently penalized micromorphic
hase-field model without gradient-enhanced plasticity shows even
ore pathological localization.

.3. Damage irreversibility

In the presented model, damage irreversibility is ensured by intro-
ucing a history variable for the local phase-field, compare Section 4.
n order to demonstrate the behavior of this formulation, the I-shaped
pecimen is loaded in a ratcheting manner, whereby the loading rate
f 0.1𝐿 ∕ 𝑡∗ is kept from the previous numerical example. The loading
urve is shown in the bottom right panel of Fig. 6. In addition to the
revious set-up, two inhomogeneities are added to the I-shaped speci-
en at positions 𝑿c1 = [0.45𝐿, 0.83125𝐿] and 𝑿c2 = [0.2𝐿, 0.7875𝐿].
he inhomogeneities are introduced by smoothly reducing the yield

imit in the vicinity of the points 𝑿c𝑖 by up to 95%, such that the
ffective yield limit is

y,red =
(

1 − 0.95 b
(

|

|

𝑿 −𝑿c𝑖
|

|

𝑟red

))

𝜏y , (51)

where b is a bump function

b (𝑥) = 1 −
exp (−1∕𝑥)

. (52)

exp (−1∕𝑥) + exp (−1∕(1 − 𝑥))
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Fig. 2. Meshes for the 2D (left) and 3D (right) numerical examples. The cross-sectional geometry of the 3D-example is the same as for the 2D-example and geometrical measures
are given in mm. Both examples employ unstructured meshes with a background element size of 0.04𝐿 and mesh refinements at the sides and in the center of the web, where
the sample is expected to break. The refinements in the 2D-mesh consist of elements with an average size of 0.005𝐿, resulting in 19 390 linear triangular elements in total. In
the 3D-mesh, center and sides employ elements of 0.01𝐿 average size and two positions are additionally refined with elements of 0.005𝐿 on average for imposing initial material
inhomogeneities. The 3D mesh consists of 123 183 linear tetrahedral elements in total.
Fig. 3. Reaction force response for the I-shaped beam exposed to different boundary conditions, as well as without gradient hardening (𝑙g = 0.0𝐿). All scenarios reach the
softening regime. The micro-hard restriction of slip transfer on the boundaries leads to a stiffer response in the hardening regime. The last point of the curves corresponds to the
last converged time step of the respective simulations.
A radius 𝑟red = 0.04𝐿 is chosen for the inhomogeneities and the mesh
is refined with an average element size of 0.0025𝐿 within this radius
around the points 𝑿c𝑖. The left part of Fig. 6 shows the degradation
𝑔e at the final step of the cyclic simulation. On the upper right of the
figure, the resulting reaction forces from the cyclic loading and the
equivalent monotonic loading are shown. On the lower right of the
figure, the prescribed displacement together with the development of
the local phase-field 𝜑 in a heavily degraded material point are shown.
Within the first two cycles elastic loading and unloading are observed.
During the subsequent cycles damage starts to develop in the vicinity of
the inhomogeneities, which has an impact on the global reaction force
7

curve. A noticeable viscous impact can be observed from the reaction
force response around the load reversals and when comparing to the
reaction force resulting from monotonic loading. The local phase-field
history in the chosen integration point is displayed in the bottom right
graph of Fig. 6. It begins to develop after 4 cycles. The phase-field grows
during progressive loading, but remains constant during unloading and
reloading. The same behavior can be observed for the degradation 𝑔e
and the global phase-field 𝑑. The obtained crack pattern shows a clear
influence of the circular inhomogeneities. The diamond-shaped crack
pattern observed in the previous numerical examples is disrupted and
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Fig. 4. Degradation 𝑔e at the final step of the three base scenarios. The well known diamond shape crack pattern (compare e.g. De Lorenzis et al. (2016)) is recovered without
gradient hardening. The behavior under micro-free boundary conditions is similar, but shows some smoothing of the crack shape. Under micro-hard boundary conditions plastic
strains cannot develop on the boundary, thereby preventing the development of damage on the boundary.
instead a zig-zag shaped crack pattern results from the slip system
orientation in conjunction with the inhomogeneities.

7.4. 3D simulation

A final simulation is conducted in order to display the capability
of the model and numerical implementation to capture crack fronts in
three dimensional space. The I-shaped specimen is extruded to a thick-
ness of 0.08𝐿. Following Eqs. (51) and (52), spherical inhomogeneities
are introduced at positions 𝑿c1 = [0.45𝐿, 0.83125𝐿, 0.05𝐿] and 𝑿c2 =
[0.2𝐿, 0.7875𝐿, 0.03𝐿]. Thereby a through-thickness inhomogeneous
response is expected. Micro-free boundary conditions are applied and
the phase-field length scale is set to 𝓁0 = 0.02𝐿. Fig. 7 displays the
degradation 𝑔e at the final step of the simulation from the front and the
back side of the sample. For degradation values below 0.4, the material
is assumed to be fractured and is displayed as transparent in Fig. 7.
While the overall degradation response is comparable to that from the
similar 2D cyclic simulation, differences in the crack patterns on the
front and back side of the sample can be observed. A three-dimensional
crack front develops, resulting from the two inhomogeneities placed at
different through-thickness positions.

8. Concluding remarks

We have presented a thermodynamical framework that incorpo-
rates gradient-enhanced crystal plasticity in conjunction with a ductile
phase-field fracture model in a large deformation setting. While the
framework allows different approaches to incorporate damage irre-
versibility, this work puts the major focus on testing a recently sug-
gested variationally and thermodynamically consistent micromorphic
formulation, that allows for a localized phase-field formulation and
enforces the irreversibility constraint on an integration point level. A
prototype model is introduced for performing numerical experiments of
the presented framework. It adopts an AT2-type of phase-field model
which gives ductile fracture behavior by the choice of degradation
8

function. The gradient-enhanced crystal plasticity model in conjunction
with the micromorphic phase-field formulation and the ductile (plastic-
strain based) degradation function leads to local equation systems
that involve full coupling between local variables pertaining to the
equilibrium equations as well as to the phase-field equation. Therefore,
a staggered solution scheme that extends the global staggered solution
scheme to the local level is presented and adopted. In the numerical
examples, we demonstrate the effect that gradient-enhanced plasticity
and the associated boundary conditions have on the fracture response.
It is shown how the micromorphic phase-field formulation relies on
sufficient penalization of the difference between the global and the
local phase-fields. For insufficient penalization, the model turns into
a local damage model and suffers from the associated drawbacks.
Further, our numerical examples display that the presented model
predicts unloading and reloading in a physically meaningful manner.
The degradation of the material remains constant during unloading and
advances once reloading goes past the previous level. Finally, the cyclic
and the 3D experiments show that the model is able to account for
material inhomogeneities and the resulting (arbitrary) crack patterns.

The presented work opens up for future investigation of poly-
crystalline fracture, where the authors in particular are interested in
investigating the effect of grain boundaries in polycrystalline trans-
granular fracture. The presented gradient-extended crystal plasticity
model allows to study the interaction between slip transfer at grain
boundaries and crack propagation, as well as the impact of size effects
in crack formation on the micro-scale. An essential feature for employ-
ing the model for the study of grain boundary effects in polycrystals
is to define micro-flexible boundary conditions which interact with
the phase-field fracture. In order to study crack propagation, solution
schemes that allow to trace unstable crack growth, such as arc-length
schemes (Bharali et al., 2022; Börjesson et al., 2022), and strategies
to address convergence problems in the local equations systems are
deemed important.
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Fig. 5. Effect of the micromorphic penalty parameter 𝛽: The top row shows results for a low penalty effect, the bottom row shows results for a sufficient penalty effect. If the
penalty parameter is chosen too low a decoupling between the global and the local phase-field occurs, resulting in a lack of regularization of the local phase-field 𝜑. In this case
the local phase-field 𝜑 is almost exclusively driven by the accumulated plastic strain 𝜖p, which leads to a high level of localization in the local phase-field. The global phase-field
𝑑 instead experiences a lack of localization, as the coupling to the local phase-field 𝜑 decreases.
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Fig. 6. Damage irreversibility can be observed under ratcheting loading. The I-shaped specimen with inhomogeneities is loaded under ratcheting loading in displacement control.
Elastic unloading and reloading with a visible viscous impact can be observed in the reaction force response (top right). The prescribed loading curve and the development of the
local phase-field 𝜑 in a specific material point are shown on the bottom right. After the initial elastic phase the local phase-field develops under advancing loading, but remains
constant under unloading and reloading. The left plot shows the crack shape at the end of the simulation.

Fig. 7. Degradation 𝑔e in the three-dimensional I-shaped specimen with two spherical inclusions at different through-thickness coordinates. Degradation values below 0.4 are
displayed as crack. Distinct crack patterns evolve on the front (left plot) and back (right plot) side of the specimen, highlighting the three-dimensional nature of the crack.
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Table 2
Base material parameters employed for the numerical experiments. 𝐿 is a global length scale for the
simulated structure and results are independent of 𝐿 upon scaling according to Section 6.2.
Parameter Value Unit

Bulk modulus 𝜅 71 660 MPa
Shear modulus 𝜇 27 260 MPa

Yield stress 𝜏y 345 MPa
Isotropic hardening modulus 𝐻iso 250 MPa
Gradient hardening modulus 𝐻g 1000 MPa
Gradient hardening length scale 𝑙g 0.04𝐿

Visco-plastic relaxation time 𝑡∗ 1 s
Visco-plastic drag stress 𝜎d 500 MPa
Visco-plastic exponent 𝑚 8 –

Effective fracture energy d
0∕𝓁0 300 N∕mm2

Phase-field length scale 𝓁0 0.005𝐿
Micromorphic penalty parameter 𝛼 200d

0 ∕𝓁0
Critical plastic strain 𝜖pcrit 0.1 –
Degradation exponent 𝑛 2 –
Table 3
FCC slip systems. The unit cell is aligned with the coordinate axes in the numerical examples. In the numerical examples slip systems 2, 5, 8, 11
are omitted, because they are perpendicular to the loading direction and have a negligible impact on the plastification process. In the cyclic
and the 3D example, only the 4 slip systems with the largest impact are used, that is slip systems 1, 4, 7, 10.
𝛼 �̄�𝛼 �̄�𝛼 𝛼 �̄�𝛼 �̄�𝛼 𝛼 �̄�𝛼 �̄�𝛼 𝛼 �̄�𝛼 �̄�𝛼

1
[

1̄ 1 0
]

[1 1 1] 4
[

1̄ 1̄ 0
] [

1 1̄ 1̄
]

7 [1 1 0]
[

1̄ 1 1̄
]

10
[

1 1̄ 0
] [

1̄ 1̄ 1
]

2
[

1 0 1̄
]

[1 1 1] 5 [1 0 1]
[

1 1̄ 1̄
]

8
[

1̄ 0 1
] [

1̄ 1 1̄
]

11
[

1̄ 0 1̄
] [

1̄ 1̄ 1
]

3
[

0 1̄ 1
]

[1 1 1] 6
[

0 1 1̄
] [

1 1̄ 1̄
]

9
[

0 1̄ 1̄
] [

1̄ 1 1̄
]

12 [0 1 1]
[

1̄ 1̄ 1
]
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Appendix A. Material parameters

See Tables 2 and 3.

Appendix B. Microforce derivation

An alternative derivation of the gradient-extended plasticity and
the phase-field following the procedure in Borden et al. (2018) is
summarized here in point-form.

• Microforce balances

𝛁0 ⋅ 𝝃𝛼 + 𝜋𝛼 + 𝑙𝛼 = 0 (53)
𝛁0 ⋅ 𝝃𝑑 + 𝜋𝑑 + 𝑙𝑑 = 0 (54)

with 𝑙 = 𝑙 = 0.
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𝛼 𝑑
• Dissipation inequality

𝑷 ∶ �̇� +
𝑛𝛼
∑

𝛼=1
𝝃𝛼 ⋅ 𝛁0�̇�𝛼 −

𝑛𝛼
∑

𝛼=1
𝜋𝛼 �̇�𝛼 + 𝝃𝑑 ⋅ 𝛁0�̇� − 𝜋𝑑 �̇� − �̇� ≥ 0 (55)

• Free energy

𝛹 = 𝛹
(

𝑪e, 𝑞, {𝑘𝛼}
𝑛𝛼
𝛼=1, {𝛁0 𝑘𝛼}

𝑛𝛼
𝛼=1, 𝑑, 𝛁0𝑑

)

(56)

gives

𝑺e = 2 𝜕𝛹
𝜕𝑪e

(57)

and the reduced dissipation inequality

 = 𝑴e ∶ 𝑳p +𝑄 �̇� −
𝑛𝛼
∑

𝛼=1

(

𝜕𝛹
𝜕𝑘𝛼

+ 𝜋𝛼

)

�̇�𝛼

−
𝑛𝛼
∑

𝛼=1

(

𝜕𝛹
𝜕𝛁0𝑘𝛼

− 𝝃𝛼
)

⋅ 𝛁0�̇�𝛼

−
( 𝜕𝛹
𝜕𝑑

+ 𝜋𝑑
)

�̇� −
(

𝜕𝛹
𝜕𝛁0𝑑

− 𝝃𝑑
)

⋅ 𝛁0�̇� ≥ 0 (58)

• By assuming 𝝃𝛼 , 𝜋𝑑 and 𝝃𝑑 energetic, i.e.

𝝃𝛼 = 𝜕𝛹
𝜕𝛁0𝑘𝛼

, 𝜋𝑑 = − 𝜕𝛹
𝜕𝑑

, 𝝃𝑑 = 𝜕𝛹
𝜕𝛁0𝑑

(59)

gives

𝑴e ∶ 𝑳p +𝑄 �̇� +
𝑛𝛼
∑

𝛼=1
𝜅𝛼 �̇�𝛼 ≥ 0 (60)

where

𝜅𝛼 = − 𝜕𝛹
𝜕𝑘𝛼

+ 𝛁0 ⋅
𝜕𝛹

𝜕𝛁0𝑘𝛼
(61)

by using the microforce balance. This is identical to 𝑌𝛼 = 0 in (7).
• Insert 𝜋𝑑 and 𝝃𝑑 into microforce balance

𝛁0 ⋅
𝜕𝛹
𝜕𝛁0𝑑

− 𝜕𝛹
𝜕𝑑

= 0 (62)

which is identical to 𝑌 = 0 in (9).
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