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Abstract
In this thesis we explore, theoretically and experimentally, the requirements
of developing an ideal low-noise amplifier for amplifying signals close to the
quantum limit, such as signals used in superconducting quantum systems. The
work is focused on how to enable exponential amplification in a travelling-wave
parametric amplifier (TWPA), especially the ones based on three-wave mixing
(3WM), although four-wave mixing (4WM) is also treated. These amplifiers
are composed of a long chain of cascaded nonlinear inductors and capacitors
that form a lumped-element transmission line. The nonlinearity of the in-
ductive element in each unitcell provides the possibility of frequency mixing
between the input signal and a strong pump. As a result, some of the pump
energy may be transferred to the signal (desired) and to up-converted frequen-
cies (undesired). We extend the theory of the continuous three-mode model
for 3WM, both for a discrete chain at frequencies close to the spectral cut-
off, as well as for small frequencies with an arbitrary amount of up-converted
modes included. In both cases we find that the gain is significantly reduced
compared to the prediction by the continuous three-mode model. Based on
our findings, we propose a prototype that uses frequencies close to the cut-
off frequency to prevent up-conversion, resonant phase matching for phase
matching and impedance matching networks for impedance matching. The
developed prototype shows very promising results, presented in one of the
appended papers, with the possibility of achieving a high gain of ∼ 20 dB in
a wide band of several GHz, using only 200 unitcells. Finally we investigate
the required peripheral circuitry to suppress leakage and provide isolation.

Keywords: Josephson junction, rf-SQUID, SNAIL, parametric amplifier,
quantum-limited amplifier, parametric amplification, travelling-wave para-
metric amplifier, three-wave mixing, four-wave mixing, lumped-element, res-
onant phase matching, down-conversion, up-conversion.
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Φ0
h

2e
The superconducting magnetic flux
quantum.

φ0
h̵

2e
The reduced superconducting mag-
netic flux quantum.

Ic − The critical current of a Josephson
junction.

∆ ϕ2 − ϕ1
The phase difference between two
neighbouring nodes.

IJ Ic sin ∆ The current through a Josephson
junction.

UJ φ0∆̇ The voltage over a Josephson junc-
tion.

i i2 = −1 The imaginary unit.

i
I

Ic

A normalised and unitless current
variable.

LJ0
φ0
Ic

The inductance of a Josephson
junction at zero bias.

LJ
LJ0

cos(∆0) The inductance of a Josephson
junction.

L0 See Table 4.3. The series inductance of a TWPA.
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CJ − The intrinsic capacitance of a
Josephson junction.

C CJ,1 ( 1N + α) The capacitance of a SNAIL.

C − The parasitic capacitance of a
TWPA.

C0 − The shunt capacitance of a TWPA.

C̃
C

C0

The capacitance ratio between the
parasitic and the shunt capaci-
tances.

N − The number of unitcells.

N − The number of junctions in arm 1
of a SNAIL.

x̃
x

a
A normalised spatial variable.

t̃ tω0 A normalised time variable.

ω0
1√
L0C0

An important reference frequency
of a TWPA.

ωpl
1√
L0C

The plasma frequency of the unit-
cell of a TWPA.

ωc
2ω0√
1 + 4C̃

The cutoff frequency of a TWPA.

ωp 2πfp The pump angular frequency.
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ωs 2πfs The signal angular frequency.

ωi ωp − ωs
The three-wave mixing idler angu-
lar frequency.

ωi 2ωp − ωs
The four-wave mixing idler angular
frequency.

ωmp mωp The m:th harmonic of the pump.

ωs+mp ωs +mωp
Short notation for the m:th up-
converted signal frequency.

ωi+mp ωi +mωp
Short notation for the m:th up-
converted idler frequency.

ω̃m

ωm

ω0
The frequency ωm normalised.

a − The unitcell physical length.

k̃m kma The wave number km normalised.

c3 See Table 4.3. The three-wave mixing coefficient.

c4 See Table 4.3. The four-wave mixing coefficient.

Am − The amplitude of mode m.

Ap0 Ap(0) The initial amplitude of the pump.

As0 As(0) The initial amplitude of the signal.
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Ai0 Ai(0) The initial amplitude of the idler.

Ā − The complex conjugate of A.

A′m ∂Am

∂x̃

The derivative of Am with respect
to x̃.

am
ωm

ωp

Am

Ap0

The rescaled amplitude of mode m.

g − The gain coefficient.

gk − The k:th coefficient in a microwave
filter or an impedance matching
network.

G ∣As(N)
As0

∣2 The power gain.
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ωp/2 The 3WM signal detuning.

δ
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ωp
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Thesis
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CHAPTER 1

Introduction

1

During recent years, the interest for quantum computing and quantum pro-
cessing has grown significantly. To build a large-scale, multiqubit quantum
processor, high fidelity qubit readout is necessary. A promising kind of quan-
tum computers are the quantum computers based on superconducting qubits.
These quantum systems are very sensitive, typically work at sub-Kelvin tem-
peratures and the results are read out with pulses that are very small in
amplitude. Therefore there is a need for the ideal low-noise amplifier, an am-
plifier with not only a high gain, low added noise and a large bandwidth, but
also with other properties. In this chapter we will outline the ideal low-noise
amplifier for these applications, and discuss the focus of this thesis.

The work presented in this thesis is centred around the work presented in
five publications [1]–[5]. These five publications are presented in Part II as
paper [A], paper [B], paper [C], paper [D] and paper [E] respectively.

1.1 Parametric amplifiers
A parametric amplifier is a specific kind of amplifier that uses nonlinear ele-
ments. Superconducting parametric amplifiers, which are built with nonlinear,
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Chapter 1 Introduction

superconducting lumped element oscillators or as transmission lines, demon-
strate high gain and near quantum-limited noise performance [6]–[11] and have
become an essential part of the circuit Quantum Electrodynamics (cQED) [12]
toolbox.

The general principle of parametric amplification is having a system with
a parameter that can be modulated. In a parametric amplifier, energy can
under certain conditions be transferred into a signal by modulating the pa-
rameter, without any need for energy dissipation. The absence of dissipation
removes additional fluctuations, which implies that parametric amplifiers have
the potential to realise quantum-limited noise performance [13], [14]. This is
a key difference between parametric amplifiers and transistor-based ampli-
fiers, where the transistors are dissipative. Energy conversion from the energy
source, the pump, to the signal in a parametric amplifier is provided by means
of frequency mixing.

There are several ways of classifying different types of parametric ampli-
fiers. One difference is whether the parametric amplifier is cavity-based, or a
travelling-wave parametric amplifier (TWPA). In this work we will focus on
the latter, due to its larger bandwidth. Another difference is the element it
uses to provide the nonlinearity. For example, the nonlinearity can originate
from the inductance of a Josephson junction [15]–[26] or the kinetic induc-
tance of a thin superconducting film [27]–[34]. The third difference is what
kind of nonlinear interaction it uses, typically either three-wave mixing (3WM)
or four-wave mixing (4WM). For TWPAs, there is also a difference in what
kind of dispersion engineering it uses, either periodic modulation (PM) [2],
resonant phase matching (RPM) [19] or none [25].

The specific principle of amplification in a TWPA is based on the nonlinear-
ity of a transmission line. Early works on TWPAs utilise the nonlinearity of
capacitors, such as varactor diodes, as well inductors based on ferromagnetic
materials [35], [36]. For cryogenic applications, the environment required for
superconducting qubits, we are not aware of many nonlinear elements. While
some work has been done on nonlinear capacitances [37], [38], this work will
be limited to the use of nonlinear inductances based on Josephson junctions.

The nonlinear inductance allows a nonlinear interaction between the small-
amplitude propagating signal with a large-amplitude copropagating wave known
as the pump. Under a phase-matching condition this results in an exponential
spatial growth of the signal amplitude [35], [36], [39]. In the quantum regime,

4



1.2 Nonlinear interactions

the TWPA is able to generate signal squeezing and photon entanglement [18],
[40], but that is not investigated in this thesis.

1.2 Nonlinear interactions
There are two different kinds of nonlinear interactions commonly used in para-
metric amplifiers, three-wave mixing (3WM) and four-wave mixing (4WM).

In the 3WM interaction, three photons are involved in every interaction.
The process uses the lowest order, cubic, nonlinearity of the inductive en-
ergy, which is similar to the χ(2) nonlinearity in optical crystals [41]. Such a
nonlinearity is associated with the broken time-reversal symmetry, which can
be introduced by applying a current-bias [29], [31], or a magnetic flux-bias
[7], [42]. The amplification occurs due to the down-conversion process of the
pump into the signal and an idler, which is able to provide an efficient am-
plification within a large bandwidth in a weakly dispersive medium already
at relatively small pump intensity [35]. An important property of this 3WM
regime is the separation of the amplification band from the pump frequency,
and also the possibility of phase-preserving as well as phase-sensitive ampli-
fication [43]–[45]. However, the amplification performance of 3WM devices
with a weak frequency dispersion is compromised by the generation of pump
harmonics [41] as well as signal and idler up-conversion [29], [46], [47].

In the 4WM interaction, there are four photons involved in every interac-
tion. The process uses the next order, quartic, nonlinearity of the inductive
energy, which is similar to the χ(3) nonlinearity in optical fibers [41]. Ampli-
fication in this regime is less efficient since it is a higher order effect, and it
also suffers from a phase mismatch due to Kerr effect that makes exponential
amplification impossible without dispersion engineering [19]–[21], [48]. Fur-
thermore, the pump position in the middle of the gain band is undesirable for
certain applications. However, an advantage with 4WM is that it does not
require any bias, and the generation of harmonics and upconversion is less of
a problem.

1.3 Quantum noise limits
When amplifying, an amplifier typically adds noise. This does not only happen
due to nonideal performance of the amplifier, but is a fundamental property of

5



Chapter 1 Introduction

any amplification process [6]. For any phase-preserving amplification process
with gain G, it can be shown that the added number of noise photons NN is

NN ≥ ∣1 − 1/G∣
2

. (1.1)

For small to no gain, G ∼ 1, no noise has to be added. In the large gain limit
G≫ 1, the number of added noise photons NN approaches 1/2.

The number of noise photons can be translated into a temperature, ‘the
noise temperature’. The total system noise temperature Tsys of a chain of N
amplifiers, where the i:th amplifier has a gain Gi and a noise temperature
TN,i, is given by Friis’ formula [49],

Tsys = N∑
i=1

TN,i∏i−1
j=1Gj

= TN,1 + TN,2

G1
+ TN,3

G1G2
+ ... G1→∞ÐÐÐÐ→ TN,1. (1.2)

As can be seen, if the first amplifier has a large gain, G1 ≫ 1, then the total
system noise temperature is dominated by the first amplifiers noise perfor-
mance. The aim of this work is thus to construct a quantum-limited amplifier
with large enough gain to make the total noise temperature of the system
approximately quantum-limited.

It is worth mentioning that loss of the signal between the signal source
and the amplifier is equivalent to adding noise [11]. Therefore it is important
to minimise the losses, and thus the number of contacts and components,
between the signal source and the amplifier.

One can achieve noiseless amplification with phase-sensitive amplification.
However, then only one quadrature is amplified, while the other is deampli-
fied [6]. To be able to use phase-sensitive amplification, we hence need to both
ensure that all the relevant information is coded in one quadrature, and that
the phase of the signal is such that the correct quadrature is amplified. While
phase-sensitive amplification is an interesting subject, we will not study it in
this work.

1.4 Signal insensitivity
A continuous monochromatic wave is determined by three properties: its fre-
quency, amplitude and phase. For pulses there is also a fourth property to
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1.5 Leakage

consider, the shape of the pulse. If we are going to use an amplifier for a large
quantum system, with many different signals that need amplification, we do
not want the amplifier to be sensitive to the different properties of the signals.
In other words, we want the transfer function of the amplifier to be ‘signal
insensitive’.

For the transfer function to be insensitive to the signal frequency, we need
a large bandwidth with ideally no gain ripples. This is why the focus of this
work is on travelling-wave parametric amplifiers, and not the cavity-based
ones, as the cavity-based ones typically have a much smaller bandwidth. We
will discuss how to get a large bandwidth through the thesis, and how to
minimise the gain ripples in Chapter 10.

For the transfer function to be insensitive to the signal amplitude, we need
an amplifier with a high saturation power. The saturation power is the limit
where the gain starts to decrease due to insufficient power in the amplifier to
amplify the signal. We will discuss how to increase the saturation power in
Sections 4.4 and 4.5.

For the transfer function to be insensitive to the signal phase, we simply
need to implement phase-preserving amplification. Phase-preserving amplifi-
cation, which is the focus of this work, is achieved when the signal and the idler
frequencies are not equal and the initial idler amplitude is zero, see Chapter 3.

Finally, for the transfer function to be insensitive to the signal shape, we
need to ensure that there is little to no distortion of pulses. This is, however,
out of the scope of this thesis.

1.5 Leakage

When we use a parametric amplifier, the signal and the pump enter the ampli-
fier. Ideally we would like to only have the amplified signal coming out of the
amplifier, and nothing else. However, in reality both the pump and the idler
exit together with the signal. There may also exist reflections of the pump,
the signal and the idler, see Figure 1.1.
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Chapter 1 Introduction

⋯ ⋯
Ap →
As → √

GAs →
TpAp →√

G − 1Ai →← ΓsAs← ΓpAp← ΓiAi

Figure 1.1: An illustration of leakage. The blue modes are the desired ones and
the red ones are the undesired ones.

A transmitted pump may saturate the next amplifier in the chain since it
typically has a large amplitude.

A transmitted idler can create problems in several ways. If the next am-
plifier in the chain is also a parametric amplifier, and it uses the same pump
frequency, its gain becomes phase-sensitive. If the next amplifier in the chain
is also a parametric amplifier, but uses another pump frequency, both the
amplified signal and the idler will generate idlers of their own, and our single
signal will become four signals. If the next amplifier in the chain is not a
parametric amplifier, it will still amplify the idler, which increases the risk of
saturating the next amplifier.

A reflected signal is a problem since it is a signal with the exact frequency
of the signal source, and it can thus interfere with the source.

A reflected pump is a problem since, even though it may be well detuned
in frequency from the signal source, it is still large in its amplitude and can
interfere with the source to some extent.

A reflected idler is a problem since, even though it does not have the exact
frequency of the signal source, it may be close in frequency to another signal
source.

1.6 Isolation
Ideally we would like our amplifier to be directional, so that the noise entering
at its output port does not propagate through the amplifier and to our signal
sources. In reality, however, any unwanted wave of amplitude Au entering at
the output port typically propagates through the amplifier without getting
amplified nor attenuated, see Figure 1.2.
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⋯ ⋯
Ap →
As → √

GAs →
← Au← Au

Figure 1.2: An amplifier without leakage but also without isolation. An unwanted
wave of amplitude Au propagates through the amplifier in the reverse
direction.

1.6.1 Isolation by attenuation

The simplest approach to get isolation is by adding an attenuator after the
amplifier, see Figure 1.3. Since the vacuum noise is amplified by the amplifier,
the noise will also be attenuated by the attenuator, so this solution should not
make the signal-to-noise ratio significantly worse.

While this approach could work in theory, it is challenging to deliver enough
gain to compensate for the signal loss in the attenuator. We typically want
a gain on the order of 20 dB and an isolation on the order of at least 30 dB.
The gain of the amplifier with the attenuator hence needs to be on the order
of 50 dB, which is a very challenging task to achieve.

⋯ ⋯
Ap →
As → √

GAs → √
G
A
As →

← Au← Au/√A← Au/√A
Figure 1.3: An amplifier followed by an attenuator.

1.6.2 Isolation by a second parametric process

An alternative way to get isolation is by using a second parametric process to
up-convert unwanted modes to another frequency, see Figure 1.4. This is, at
the time of writing, an actively researched technique [50], [51], but it is not
the focus of this work.
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⋯ ⋯
Ap →
As →

← Ap2

√
GAs →
← Au

← Au/√A
Figure 1.4: An amplifier with two pumps to get isolation. The first pump prop-

agates with the signal and ensures amplification (blue). The second
pump propagates in the reverse direction with the unwanted wave,
and ensures that the unwanted wave is attenuated (red).

1.6.3 Isolation by idler filtering
A third and final approach is the one of idler filtering, see Figure 1.5. When
using idler filtering, the amplifier is a four-port device, where the amplified
signal propagates to one port while the idler propagates to another port. If we
terminate the signal output and read out at the idler frequency, any unwanted
wave at the output port can be dumped into the fourth port. This works since
the idler contains the same information as the signal. This is the approach of
this work and how to realise it will be studied in Chapter 10.

1 2

4 3

As →
√
GAs →
√
G − 1Ai →← Au

← Au

Figure 1.5: An amplifier setup implementing idler filtering for isolation. The signal
propagates from port 1 to port 3 where it is terminated, while the
generated idler exits at port 2 (blue), which is what the user detects.
Any unwanted wave entering at port 2 exits at port 4 (red) where it is
terminated.

1.7 Physical size
A final desired property of the amplifier is that it is not physically large. The
space inside a cryostat, where these amplifiers are typically placed, is limited.
If one is going to do large-scale quantum computing, typically requiring qubits
on the order of millions, one will likely need more than tens of thousands of
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quantum-limited amplifiers. Therefore it is important that each amplifier is
as small as possible.

1.8 Thesis focus and outline
In this thesis we investigate how to build the ideal low-noise amplifier. We
especially study, both theoretically and experimentally, travelling-wave para-
metric amplifiers based on three-wave mixing. However, some desired proper-
ties, like a high saturation power and a small signal distortion, have not been
studied.

The thesis is organised as follows: In Chapters 2 to 4 we outline the basics of
TWPAs. In Chapters 5 to 7 we study more complicated models for three-wave
mixing, which are also presented in paper [A], as well as four-wave mixing. In
Chapters 8 to 10 we look at more complicated techniques for phase matching,
impedance matching, etc. This is also presented in paper [B] and paper [C].
Below is a more detailed outline of the chapters.

In Chapter 2 we derive the characteristics of both continuous and discrete
transmission lines. The former is a regular transmission line while the latter
is identical to a TWPA, except that the nonlinear interaction is neglected.

In Chapter 3 we study the discrete transmission line when the inductances
are nonlinear, thus giving rise to the nonlinear interaction needed for amplifi-
cation, and derive the discrete and continuous wave equations. The former is
the exact wave equation in the discrete transmission line, while the latter is
an approximation which is easier to solve.

In Chapter 4 we outline the different nonlinear inductors that can be used,
with a focus on the rf-SQUID and the SNAIL. We derive the inductance,
capacitance and mixing coefficients of these inductors.

In Chapter 5 we investigate three-wave mixing in the small frequency limit,
also known as the quasilinear dispersion regime. We develop an extended
model of the three-mode model by Tien [35] that captures the effects of up-
conversion.

In Chapter 6 we study what happens when the wavelengths become com-
parable with the unitcell. We develop an extended model of the three-mode
model by Tien [35] that describes a discrete chain close to the spectral cutoff.

In Chapter 7 we derive the equations for four-wave mixing, and study the
Kerr effect.
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In Chapter 8 we look at ways to use dispersion engineering to solve the
problems of phase matching we have encountered in the previous chapters.

In Chapter 9 we compare the TWPA with microwave filters, and see what
techniques can be implemented to help the TWPA with impedance matching.
We also discuss how microwave filter theory can be used to construct frequency
multiplexers.

In Chapter 10 we investigate different peripheral circuits to solve different
issues that prevent the TWPA from being the ideal low-noise amplifier. These
issues are the issues of leakage and lack of isolation.

In Chapter 11 we discuss how we simulate our devices, how we fabricate
them and how we measure them, including experimental data. The simulation
models are also presented in paper [D]. The experimental data is also presented
in paper [E].

In Chapter 12, we summarise the main conclusions made throughout the
thesis: how to build a travelling-wave parametric amplifier based on three-
wave mixing, how to build one based on four-wave mixing, and how to build
the ideal low-noise amplifier, as outlined in this chapter. We also discuss
future work to be done.
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CHAPTER 2

Transmission lines

2

The amplifiers outlined in this thesis are nonlinear transmission lines. How-
ever, to understand how nonlinear transmission lines work, it is crucial to first
understand how linear transmission lines work. In this chapter we will focus
on the characteristics of discrete transmission lines. In Section 2.1 we will
briefly go through transmission line theory for regular continuous tranmission
lines. In Section 2.2 we will define the discrete transmission line and derive
its wave equation. In Section 2.3 we will derive the dispersion relation and
phase velocity of the discrete transmission line. In Section 2.4 we will derive
the scattering parameters, the impedance and the resonance frequencies of
the discrete transmission line. In Section 2.5 we will summarise the results
of the discrete transmission line and the key differences from the continuous
transmission line.

2.1 The continuous transmission line
In this section we will briefly outline the theory for regular continuous trans-
mission lines. While the amplifiers outlined in this thesis are discrete lumped-
element transmission lines, it is instructive to compare them with regular
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Chapter 2 Transmission lines

continuous transmission lines, to identify similarities and differences.
The difference between circuit theory and transmission line theory is that

in circuit theory, the circuits are assumed to be much smaller than the electri-
cal lengths. In transmission line theory, no such assumption is made and the
voltages and currents may change continuously over the length of the trans-
mission line. We can still model a transmission line with lumped elements by
studying an infinitesimally short piece of it, see Figure 2.1. Here R′ is the
series resistance per unit length, L′ is the series inductance per unit length,
G′ is the shunt conductance per unit length and C ′ is the shunt capacitance
per unit length.

For a lossless line, we have R′ = G′ = 0 and the line characteristics are fully
determined by L′ and C ′. Following the derivation in Ref. [52], it can be
shown that the characteristic impedance of such a line is given by

Z0 =
√

L′
C ′ (2.1a)

and its phase velocity by
v = 1√

L′C ′ . (2.1b)

+ +

− −
dx

R′dx L′dx
G′dx C ′dxU(x)

→I(x)

U(x + dx)
→I(x + dx)

Figure 2.1: An infinitesimally short piece of a continuous transmission line.

2.2 The discrete transmission line
In this section we will define the discrete transmission line and derive its
wave equation. The discrete transmission line is constructed from a chain of

14



2.2 The discrete transmission line

lumped-element inductances and capacitances. The chain consists of a num-
ber of cascaded identical unitcells, see Figure 2.2. Each unitcell has a shunt
capacitance C0, to emulate the shunt capacitance per unit length C ′ of the
continuous transmission line. Each unitcell also has a series inductance L0,
to emulate the series inductance per unit length L′ of a continuous transmis-
sion line. Additionally, each unitcell has a capacitance C in parallel with the
inductance to capture the effects of the intrinsic capacitances of the inductive
elements. We will look closer at the inductive elements and their intrinsic
capacitances in Chapter 4.

. . . . . .

. . . . . .

L0

C

L0

CC0 C0 C0

a

Un−1 Un Un+1→In−1

→
In↓I0,n

↓IC,n

↑IL,n

Figure 2.2: A discrete transmission line with definitions of currents, voltage Un at
the node n, and physical length a.

Each unitcell has the physical length a and a voltage Un at node n. From
Kirchhoff’s current law it follows that, using the definitions in Figure 2.2, the
current relations at node n are

I0,n = In−1 − In, (2.2a)
In = IC,n + IL,n. (2.2b)

We define the node fluxes as

Φn(t) ∶= ∫ Un(t)dt (2.3)

and the node phases as ϕn ∶= Φn/φ0, where φ0 = h̵/(2e) is the reduced super-
conducting magnetic flux quantum. The node fluxes are normalised with φ0
for reasons that will become clear later. For now, let us simply consider it to
be a normalisation factor.

The currents, which are time-dependent but we will skip writing the time-
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dependence explicitly, can be expressed as

I0,n = C0
d
dt
(Un − 0) = C0φ0

d2

dt2
ϕn, (2.4a)

IC,n = C d
dt
(Un −Un+1) = −Cφ0

d2

dt2
(ϕn+1 − ϕn), (2.4b)

L0
dIL,n

dt
= Un −Un+1 Ô⇒ IL,n = −φ0

L0
(ϕn+1 − ϕn) . (2.4c)

Substituting the currents from Equations (2.4a) to (2.4c) into Equations (2.2a)
and (2.2b) we get

I0,n³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
C0φ0

d2

dt2
ϕn =

IC,n−1−IC,n³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
−Cφ0

d2

dt2
(2ϕn − ϕn+1 − ϕn−1)−

IL,n−1−IL,n³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
φ0
L0
(2ϕn − ϕn+1 − ϕn−1)

Ô⇒ C0φ0
d2

dt2
ϕn − [Cφ0

d2

dt2
+ φ0
L0
] (ϕn+1 − 2ϕn + ϕn−1) = 0.

(2.5)

This equation has the unit of current. By dividing it by φ0/L0 it becomes
unitless and we get

L0C0
d2

dt2
ϕn − [L0C

d2

dt2
+ 1] (ϕn+1 − 2ϕn + ϕn−1) = 0. (2.6)

Finally, let us define the resonance frequency ω0 and the plasma frequency
ωpl as

ω0 = 1√
L0C0

, ωpl = 1√
L0C

. (2.7)

Then Equation (2.6) becomes

1
ω2

0

d2

dt2
ϕn − ⎡⎢⎢⎢⎣

1
ω2

pl

d2

dt2
+ 1
⎤⎥⎥⎥⎦ (ϕn+1 − 2ϕn + ϕn−1) = 0. (2.8)

We call this equation the linear, discrete wave equation.
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2.3 The dispersion relation

2.3 The dispersion relation

In this section we will derive the dispersion relation for the discrete transmis-
sion line using Equation (2.8). We begin with the plane wave ansatz that the
phase at each node n in Figure 2.2 is given by ϕn = Aei(k̃n−ωt), where k̃ = ka is
the product of the wave number k and the length of the unitcell a. Inserting
this ansatz into Equation (2.8) we get

0 = 1
ω2

0
(−iω)2ϕn − ⎛⎝ 1

ω2
pl
(−iω)2 + 1

⎞⎠(ϕn+1 − 2ϕn + ϕn−1)
= −ω2

ω2
0
ϕn + ⎛⎝ ω

2

ω2
pl
− 1
⎞⎠(eik̃ϕn − 2ϕn + e−ik̃ϕn)

(2.9)

By dividing by ϕn this simplifies to

0 = −ω2

ω2
0
+ ⎛⎝ ω

2

ω2
pl
− 1
⎞⎠(eik̃ − 2 + e−ik̃)

= −ω2

ω2
0
+ 2
⎛⎝ ω

2

ω2
pl
− 1
⎞⎠(cos(k̃) − 1)

= −ω2

ω2
0
− 4
⎛⎝ ω

2

ω2
pl
− 1
⎞⎠ sin2( k̃

2
)

(2.10)

which can be written as

ω2 = 4ω2
0
⎛⎝1 − ω

2

ω2
pl

⎞⎠ sin2( k̃
2
) . (2.11)

For C → 0 Ô⇒ ωpl → ∞ we get the well-known dispersion for a discrete
LC-chain, namely

ω2 = 4ω2
0 sin2( k̃

2
) (2.12)

where the maximum frequency ω = 2ω0 is trivially found for k̃ = π. However,
C ≠ 0 gives rise to an additional term. Defining the dimensionless parameter
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C̃ = C
C0
= ω2

0
ω2

pl
, we solve for this term and get

ω2 + 4C̃ω2 sin2( k̃
2
) = 4ω2

0 sin2( k̃
2
) ,

Ô⇒ ω2 = 4ω2
0 sin2( k̃

2)
1 + 4C̃ sin2( k̃

2) .
(2.13)

2.3.1 Unitless solution and cutoff frequency
Let us now normalise the frequency ω with ω0. Then we can express Equa-
tion (2.13) with the unitless measure ω̃,

ω̃2 ∶= ω2

ω2
0
= 4 sin2( k̃

2)
1 + 4C̃ sin2( k̃

2) (2.14)

We see in Equation (2.14) that ω̃ can take values from 0 for k̃ = 0 up to a
maximum value ω̃c, known as the cutoff frequency, for k̃ = π. Letting k̃ = π
we find the cutoff frequency to be

ω̃2
c ∶= ω2

c
ω2

0
= 4

1 + 4C̃
Ô⇒ ω̃c = 2√

1 + 4C̃
. (2.15)

The cutoff frequency has the largest possible value ω̃c = 2 when C̃ = 0, but is
reduced for larger values of C̃. For example, if C̃ = 3

4 then ω̃c = 1, or if C̃ = 2
then ω̃c = 2

3 . If we let C̃ →∞ then ω̃c → 0.

2.3.2 The dispersion relation as a function of frequency
To find the dispersion relation as a function of frequency, we solve Equa-
tion (2.14) for k̃. We have

ω̃2 (1 + 4C̃ sin2( k̃
2
)) = 4 sin2( k̃

2
) ,

Ô⇒ sin( k̃
2
) = 1

2
⋅ ω̃√

1 − C̃ω̃2
.

(2.16)
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Figure 2.3: The dispersion relation of the discrete transmission line for different
values of C̃. For small frequencies, ω ≪ ωc, the dispersion relation is
linear regardless of C̃. For frequencies approaching the cutoff, ω → ωc,
the wave number quickly increases to its maximum value π. The larger
C̃ is, the more nonlinear the dispersion relation becomes.

The dispersion relation is hence

k̃ = 2 ⋅ arcsin(1
2
⋅ ω̃√

1 − C̃ω̃2
) . (2.17)

The dispersion relation is plotted for multiple values of C̃ in Figure 2.3. In this
figure, the linear dispersion k̃ = ω̃, is the dispersion relation of the continuous
transmission line.

2.3.3 Dispersion approximations
In the continuous limit, a≪ λ⇔ k̃ ≪ π, we can simplify the dispersion rela-
tion with a first order Taylor expansion of the arcsin-function, see Table 2.1.
If C̃ is small, i.e. if the frequency is much smaller than the plasma frequency,
we can neglect the effects of the plasma frequency, which is also presented in
Table 2.1. For very small frequencies ω̃ ≪ ω̃c we can approximate the disper-
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sion relation with k̃ ≈ ω̃, as shown in Table 2.1. This last approximation will
be important in Chapter 5.

For frequencies that are not small enough to have the linear approximation,
or in expressions where the first order terms cancel, we can add the next order
term from the Taylor expansion. The dispersion relation then takes the form

k̃ (ω̃) ≈ ω̃ + 1 + 12C̃
24

ω̃3 ∶= ω̃ + bω̃3. (2.18)

Here b is the cubic order coefficient. Its smallest value is 1/24 when C̃ = 0,
but increases as C̃ increases.

Table 2.1: The dispersion relation with different simplifications.

k̃(ω̃) ∀ωpl⇔ ∀C̃ ω ≪ ωpl⇔ C̃ω̃2 ≪ 1

Discrete 2 ⋅ arcsin(1
2
⋅ ω̃√

1 − C̃ω̃2
) 2 ⋅ arcsin( ω̃

2
)

Continuous
(a≪ λ⇔ k̃ ≪ π)

ω̃√
1 − C̃ω̃2

ω̃

2.3.4 Phase velocity
Using the definitions of k̃ and ω̃, we can write the phase velocity as

v = ω
k
= ω0a ⋅ ω/ω0

ka
= ω0a ⋅ ω̃

k̃
. (2.19)

For small frequencies, where we can use the k̃ ≈ ω̃ approximation, the phase
velocity is ω0a. With L′ = L0/a and C ′ = C0/a, we see that this is equivalent to
the phase velocity of the continuous transmission line, recall Equation (2.1b).
On the other hand, as the frequency increases and approaches the cutoff fre-
quency, the phase velocity starts to decrease. This is a feature not observed
in continuous transmission lines. Inserting the cutoff frequency into the dis-
persion relation we find the minimum phase velocity at the cutoff frequency
to be

vmin = ω0a ⋅ 2
π

1√
1 + 4C̃

. (2.20)

20



2.4 Scattering parameters and impedance

2.4 Scattering parameters and impedance
In this section we will have a closer look at the scattering parameters of the
discrete transmission line. This will in turn give a better understanding of
the impedance of the line and its resonance frequencies. As we will see, the
discrete transmission line is only fully impedance matched at its resonance
frequencies. The discrete transmission line has, due to the asymmetry of the
unitcell, an inductive side and a capacitive side, see Figure 2.4a. To improve
impedance matching off-resonance, half of the capacitance from the capacitive
side can be moved to the inductive side to form a symmetric π-structure, see
Figure 2.4b, or half of the inductance from the inductive side can be moved
to the capacitive side to form a symmetric T -structure, see Figure 2.4c.

Z0 Z0⋯
⋯

L0
C0

L0
C0

N

Inductive side → ← Capacitive side

(a)

Z0 Z0⋯
⋯

C0/2L0
C0/2 C0/2L0

C0/2
N

(b)

Z0 Z0⋯
⋯

L0/2
C0

L0/2 L0/2
C0

L0/2

N

(c)

Figure 2.4: Different structures of the discrete transmission line, ignoring the series
capacitance C. (a) The asymmetric structure. Note that it has both
an inductive side and a capacitive side. (b) The π-symmetric structure.
(c) The T -symmetric structure.
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2.4.1 The transmission matrix

To find the reflection and transmission coefficients of the discrete transmission
line, we can use the transmission (ABCD) matrix [52]. We begin by finding
the transmission matrix of the unitcell. The transmission matrix depends on
the unitcell structure. For the series impedance Z and the shunt admittance
Y , given by

Z = iωL0
1 − ω2L0C

,

Y = iωC0,

(2.21)

the transmission matrix is either of

MZY = [1 +ZY Z

Y 1] , Mπ = [ 1 + 1
2ZY Z

Y + 1
4ZY

2 1 + 1
2ZY

] ,
MY Z = [ 1 Z

Y 1 +ZY ] , MT = [1 + 1
2ZY Z + 1

4Z
2Y

Y 1 + 1
2ZY

] (2.22)

where MZY is the transmission matrix of the unitcell seen from the inductive
side, MY Z from the capacitive side, Mπ for the π-symmetric unitcell and
MT for the T -symmetric unitcell. Inspired by the continuous transmission line
impedance, recall Equation (2.1a), we initially set L0 = Z0/ω0 and C0 = Y0/ω0,
where Y0 = Z−1

0 .
The transmission matrix of the full chain is given by MN , where N is the

number of unitcells. Defining the elements of MN as

MN = [A B

C D
] , (2.23)

the scattering parameters S11 and S21 in a Z0-environment are given [52] by

S11 = (A + B

Z0
−CZ0 −D)(A + B

Z0
+CZ0 +D)−1

, (2.24a)

S21 = 2(A + B

Z0
+CZ0 +D)−1

. (2.24b)
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2.4.2 Discrete resonances

Using the appropriate transmission matrix from Equation (2.22), we can now
find the transmission and the reflection of the different discrete transmission
line structures, see the transmission for C̃ = 0 and N = 6 in Figure 2.5.

It is clear that for small frequencies we have close to perfect transmission,
but when we approach the cutoff frequency 2ω0 we get large transmission
ripples and only perfect transmission at certain resonance frequencies. The
resonances happen at zero frequency and then for every frequency where the
number of wavelengths over all the unitcells add up to a multiple of half of a
wavelength, except for the cutoff frequency where k̃ = π.

0 0.2 0.4 0.6 0.8 1 1.2 √
2 1.6 √3 2−10

−8

−6

−4

−2

0

Frequency (ω̃ = ω/ω0)
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Inductive
Capacitive
π-symmetric
T -symmetric

Figure 2.5: The transmission ∣S21∣ in dB for the discrete transmission line with
inductance L0 and capacitance C0 in a Z0 = √L0/C0 environment,
with C̃ = 0 and N = 6, for the asymmetric and symmetric structures.

In other words, the n:th resonance happens when

Nk̃r,n = (n − 1)π Ô⇒ k̃r,n = (n − 1) π
N

(2.25)

for n ∈ [1,N]∩N. Inserting these values of k̃ into Equation (2.13), we find the
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resonance frequencies. Setting C̃ = 0, the resonances simplify to

ω̃r,n = 2 sin((n − 1) π
2N
) . (2.26)

In Figure 2.5, where C̃ = 0 and N = 6, the 3rd, 4th and 5th resonances are
found at 1,

√
2 and

√
3.

We can study the reflection coefficient and the input impedance of the line
simultaneously in a Smith chart [53], see Figure 2.6. The chain is initially
impedance matched, but is impedance mismatched for frequencies that are
not equal to any of the resonance frequencies ωr,n. While the transmission in
dB for the chain from the inductive and the capacitive sides were identical, we
see in the Smith chart that the impedance off-resonance is always inductive
for the inductive chain, and always capacitive for the capacitive chain.

0.2 0.5 2 5
0

0.2
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−0.2

−0.5
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−5

Inductive
Capacitive
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Figure 2.6: The reflection coefficient plotted in a Smith chart for the discrete trans-
mission line with C̃ = 0 and N = 6 in the frequency range 0 to 2ω0 for
the asymmetric and symmetric structures.
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2.4 Scattering parameters and impedance

2.4.3 Adding an additional resonance
For the symmetric structures, we can add an additional resonance ωr′ to im-
prove the transmission in a predetermined frequency band. This is achieved
by ensuring that the unitcell itself is impedance matched at ωr′ . In other
words, we will modify L0 and C0 of the unitcell to introduce an additional
resonance. Consider the T -symmetric unitcell, see Figure 2.7.

Z0 Z0
L0/2

C0
L0/2

↱
Z1

↱
Z2

↱
Z3

Figure 2.7: A single T -symmetric unitcell.

The impedance Z1 at the resonance frequency ωr′ is given by

Z1 = Z0 + iωr′L0/2. (2.27)

Taking the reciprocal gives us the admittance,

Y1 = Z−1
1 = 1

Z0 + iωr′L0/2 = Z0 − iωr′L0/2
Z2

0 + ω2
r′L2

0/4 (2.28)

To ensure impedance matching at the resonance frequency for the full unitcell,
the admittance added by the capacitor must change the impedance Z2 to a
value such that the impedance of the last inductor Z3 = Z2 + iωr′L0/2 makes
Z3 = Z0. Due to symmetry, this happens if the admittance Y2 = Z−1

2 is equal
to Y1 but with opposite sign of the imaginary part, i.e. when I(Y2) = −I(Y1).
In other words, we have that

iωr′C0 = 2 ⋅ iωr′L0/2
Z2

0 + ω2
r′L2

0/4 Ô⇒ C0 = L0
Z2

0 + ω2
r′L2

0/4 . (2.29)

Now using L0C0 = ω−2
0 , we get that

L2
0

Z2
0 + ω2

r′L2
0/4 =

1
ω2

0
Ô⇒ L2

0ω
2
0 = Z2

0 + ω2
r′L2

0/4. (2.30)
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Chapter 2 Transmission lines

We can solve this for L0, and in turn for C0, and we get

L0 = Z0
ω0
⋅ 1√

1 − ω̃2
r′/4 , (2.31a)

C0 = Y0
ω0
⋅√1 − ω̃2

r′/4. (2.31b)

Similarly we can solve the equations for the π-symmetric unitcell and find
that

L0 = Z0
ω0
⋅√1 − ω̃2

r′/4, (2.32a)

C0 = Y0
ω0
⋅ 1√

1 − ω̃2
r′/4 . (2.32b)

Note that setting ω̃r′ = 0 retrieves the previous values of L0 and C0. Also
note that these equations tell us that, to introduce this additional resonance
frequency, the T -symmetric chain should be slightly more inductive than pre-
viously, while the π-symmetric chain should be slightly more capacitive.
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Figure 2.8: A comparison between the transmission for the asymmetric discrete
chain, the symmetric chain and the symmetric chain with the addi-
tional resonance at ω̃r′ = 1.2. The chain has N = 6 unitcells and C̃ = 0.
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2.5 Summary

Let us use the transmission matrix to calculate the transmission using these
values of L0 and C0 to introduce this additional resonance, and compare the
transmission for the different structures, see Figure 2.8. As we can see, the
previous resonances are all there, but now there is an additional resonance at
ω̃r′ = 1.2, which improves the transmission and impedance matching for other
frequencies close to this resonance as well. Simultaneously, the transmission
and impedance matching for smaller frequencies is now worse.

2.5 Summary
In this chapter we have studied and compared the regular continuous trans-
mission line and the discrete transmission line. There are some key differences.
The lossless continuous transmission line has an inductance L′ per unit length
and a capacitance C ′ per unit length. The discrete transmission line has a
unitcell length a and an inductance L0 per unitcell and capacitance C0 per
unitcell. By letting L′ = L0/a and C ′ = C0/a, we can compare the two lines.

One difference is that, for the discrete transmission line, there is a parasitic
capacitance C, giving rise to the plasma frequency ωpl. However, the plasma
frequency of our inductive elements is on the order of 100 GHz, while this work
will mostly focus on frequencies below or around 10 GHz. Thus, the effects
of the plasma frequency are of less importance and will mostly be neglected
throughout this work.

Another difference is that of impedance and phase velocity. The lossless con-
tinuous line has a characteristic impedance Z0 =√L′/C ′ and a phase velocity
v = 1/√L′C ′ that both are independent of frequency. It supports propagating
waves of any frequency. On the other hand, the discrete transmission line has
a distinct cutoff frequency above which no waves can propagate indefinitely.
It has the same impedance and phase velocity as the continuous transmis-
sion line for frequencies well below the cutoff frequency. However, when the
frequencies approach the cutoff frequency, there are two key differences.

Firstly, the phase velocity goes down, which will give rise to a phase mis-
match between propagating modes at different frequencies. We will discuss
this phase mismatch more in the upcoming chapters.

Secondly, the impedance becomes complex-valued and varies with frequency,
and is only impedance matched at certain resonance frequencies. Seen from
the side beginning with a series inductor, ‘the inductive side’, the chain will
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Chapter 2 Transmission lines

always have an inductive impedance off-resonance. Seen from the side be-
ginning with a shunt capacitor, ‘the capacitive side’, it will always have a
capacitive impedance off-resonance.

A way to understand why this change of impedance and phase velocity only
occurs for the discrete transmission line and not for the continuous trans-
mission line is to compare the wavelength with the unitcell length. For the
discrete transmission line, the change of the phase velocity and the impedance
happens when the wavelength λ = 2π/k becomes comparable with the unitcell
length a. For the continuous transmission line this never happens, since the
unitcell has the infinitesimal length dx.

Impedance matching for the discrete transmission line can be somewhat im-
proved by creating a symmetric unitcell structure. It can be further improved
by adding an additional resonance in the centre of the frequency band of inter-
est. It cannot, however, be impedance matched in the full range from 0 to the
cutoff frequency. To achieve that, we will need to implement more complicated
impedance matching techniques, which we will discuss in Chapter 9.
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CHAPTER 3

Travelling-wave parametric amplifiers

3

In this chapter we will study the travelling-wave parametric amplifier (TWPA).
The TWPA is almost identical to the discrete transmission line presented in
Chapter 2, but with one key difference: the inductance has a dependency on
the phase difference between the nodes, see Figure 3.1. This gives the TWPA
the possibility for wave mixing, which is required for the amplification pro-
cess. We will study the inductors more closely in Chapter 4. For now, we
will simply treat the inductors as general circuit elements with a nonlinear
inductance.

. . . . . .

. . . . . .

C

L(∆n−1)
Un

C0 C

L(∆n)
Un+1

C0 C

L(∆n+1)
Un+2

C0

Figure 3.1: General schematic of a TWPA: a discrete transmission line with in-
ductances that depend on the phase differences between the nodes.
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Chapter 3 Travelling-wave parametric amplifiers

3.1 TWPA discrete wave equation

In this section we will derive the wave equation for the TWPA, i.e. the equiv-
alent version of Equation (2.8) with adjustments for the nonlinear inductors.

The only differences between Figures 2.2 and 3.1 are the inductive elements.
Thus, Equation (2.5) is almost unchanged. The only difference is the expres-
sion for IL,n, where there are now additional terms that reflect the nonlinearity
of the inductance. Let us define the phase difference ∆n = ϕn+1−ϕn, where ϕn

are the node phases defined in Section 2.2, and the static phase-bias ∆0 such
that ∆n = ∆0 + δn. Using a Taylor expansion around ∆0, we can in general
describe the current as

IL,n = φ0
L0
f(∆n) = I0

∞∑
j=0

f (j)(∆0)
j!

δj
n. (3.1)

The current I0 = φ0/L0 is set by the static inductance L0 of the inductive
element, the function f is a general function describing the current phase
relation of the inductive element, and the sum in the right hand side of the
equation is the Taylor expansion of f around ∆0.

Let us define the coefficients

bj ∶= f (j)(∆0)
j!

. (3.2)

Note that the static inductance per definition is such that b1 = 1. In the
absence of a bias current we also know that b0 = 0. However, a more gen-
eral relation is taking a bias current Ib into consideration, which gives the
constraint Ib = I0b0. The inductance current difference thus becomes

IL,n−1 − IL,n = I0
∞∑

j=0
bj (δj

n−1 − δj
n) . (3.3)

The first term in the sum is trivially zero and, since b1 = 1, the second term
equals the same difference as in Equation (2.4c). The discrete wave equation
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3.2 TWPA continuous wave equation

with a nonlinear inductance can be written as

1
ω2

0

d2

dt2
ϕn − ⎡⎢⎢⎢⎣

1
ω2

pl

d2

dt2
+ 1
⎤⎥⎥⎥⎦ (ϕn+1 − 2ϕn + ϕn−1)

= ∞∑
j=2

bj ((ϕn+1 − ϕn)j − (ϕn − ϕn−1)j) .
(3.4)

Compared with the linear discrete wave equation, Equation (2.8), the only dif-
ference is the right-hand side of the equation, which arises from the nonlinear
inductance. It is the right-hand side that allows different frequency mixing
processes, as we will see in Section 3.3.

Finally we will assume small phase variations δn ≪ 1, which allows us to
drop higher order terms. Due to conventions we define

c3 = −2b2, c4 = −3b3. (3.5)

In this work, c3 and c4 are called the 3-wave mixing (3WM) and 4-wave
mixing (4WM) coefficients respectively 1 2. With these coefficients, we modify
Equation (3.4) to reach the final form of the discrete wave equation,

1
ω2

0

d2

dt2
ϕn − ⎡⎢⎢⎢⎣

1
ω2

pl

d2

dt2
+ 1
⎤⎥⎥⎥⎦ (ϕn+1 − 2ϕn + ϕn−1)

= − c3
2
((ϕn+1 − ϕn)2 − (ϕn − ϕn−1)2)

− c4
3
((ϕn+1 − ϕn)3 − (ϕn − ϕn−1)3) .

(3.6)

3.2 TWPA continuous wave equation

A common simplification of Equation (3.6) is the continuous wave approxi-
mation, where we assume that wavelengths are much longer than the unitcell
length, λ≫ a. This is equivalent to have a small wave number, k̃ ≪ π. Then
the node phase ϕn(t) can be replaced by a continuous phase variable ϕ(x, t)

1Note: The c3, c4 here are not the same coefficients as c3 and c4 in Ref. [54].
2Note: In some literature [24], [26], [55], the mixing coefficients are expressed with β = −b2

and γ = −b3.
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and the differences can be expressed with derivatives,

ϕn+1 − ϕn = ∞∑
j=1

(a∂x)j
j!

ϕ(x, t) = [ea∂x − 1]ϕ(x, t), (3.7a)

ϕn − ϕn−1 = ∞∑
j=1
−(−a∂x)j

j!
ϕ(x, t) = [1 − e−a∂x]ϕ(x, t) (3.7b)

where a is the physical length of the unitcell. For the linear part of the wave
equation we can simplify the differential operator as

(ea∂x − 1) − (1 − e−a∂x) = 2(ea∂x + e−a∂x

2
− 1) = −4 sin2(1

2
ia∂x) . (3.8)

The continuous wave equation hence becomes

1
ω2

0

∂2ϕ

∂t2
+ 4
⎡⎢⎢⎢⎣

1
ω2

pl

∂2

∂t2
+ 1
⎤⎥⎥⎥⎦ sin2(1

2
ia∂x)ϕ

= − c3
2
(([ea∂x − 1]ϕ)2 − ([1 − e−a∂x]ϕ)2)

− c4
3
(([ea∂x − 1]ϕ)3 − ([1 − e−a∂x]ϕ)3) .

(3.9)

We simplify Equation (3.9) by keeping only the lowest order terms with respect
to the unitcell length a. For the linear part of the equation we get

4 sin2(1
2

ia∂x)ϕ ≈ 4(1
2

ia∂x)2
ϕ = −a2 ∂

2ϕ

∂x2 , (3.10a)

for the quadratic part we get

([ea∂x − 1]ϕ)2 ≈ (a∂ϕ
∂x
)2 + a3 ∂ϕ

∂x

∂2ϕ

∂x2 + (a2

2
∂2ϕ

∂x2 )
2

,

([1 − e−a∂x]ϕ)2 ≈ (a∂ϕ
∂x
)2 − a3 ∂ϕ

∂x

∂2ϕ

∂x2 + (a2

2
∂2ϕ

∂x2 )
2

,

([ea∂x − 1]ϕ)2 − ([1 − e−a∂x]ϕ)2 ≈ 2a3 ∂ϕ

∂x

∂2ϕ

∂x2 ,

(3.10b)
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3.2 TWPA continuous wave equation

and for the cubic part we get

([ea∂x − 1]ϕ)3 ≈ (a∂ϕ
∂x
)3 + 3

2
a4 (∂ϕ

∂x
)2 ∂2ϕ

∂x2 + 3
2
a4 ∂ϕ

∂x
(∂2ϕ

∂x2 )
2 + (a2 ∂

2ϕ

∂x2 )
3

,

([1 − e−a∂x]ϕ)3 ≈ (a∂ϕ
∂x
)3 − 3

2
a4 (∂ϕ

∂x
)2 ∂2ϕ

∂x2 + 3
2
a4 ∂ϕ

∂x
(∂2ϕ

∂x2 )
2 − (a2 ∂

2ϕ

∂x2 )
3

,

([ea∂x − 1]ϕ)3 − ([1 − e−a∂x]ϕ)3 ≈ 3a4 (∂ϕ
∂x
)2 ∂2ϕ

∂x2 .

(3.10c)
Now Equation (3.9) can be simplified to

⎡⎢⎢⎢⎣
1
ω2

0

∂2

∂t2
− a2

ω2
pl

∂2

∂t2
∂2

∂x2 − a2 ∂
2

∂x2

⎤⎥⎥⎥⎦ϕ
= −c3a

3 ∂ϕ

∂x

∂2ϕ

∂x2 − c4a
4 (∂ϕ
∂x
)2 ∂2ϕ

∂x2 .

(3.11)

As a final step of simplification, let us introduce the normalised TWPA units
t̃ = tω0 and x̃ = x/a. These can either be thought of as unitless variables
for time and space, normalised with ω0 and a, or simply as time and space
measured in units of ω−1

0 and a. With these, and the previously defined
relation C̃ = C/C0, we reach the most simplified form of the continuous wave
equation,

[ ∂2

∂t̃2
− C̃ ∂2

∂t̃2
∂2

∂x̃2 − ∂2

∂x̃2 ]ϕ = −c3
∂ϕ

∂x̃

∂2ϕ

∂x̃2 − c4 (∂ϕ
∂x̃
)2 ∂2ϕ

∂x̃2 . (3.12)

This is the wave equation we will use for most of the analysis of mixing
processes within the TWPA. It is worth remembering that this equation is an
approximation of the exact discrete wave equation, Equation (3.6). It only
holds as long as the wavelengths are much longer than the unitcell, which is
equivalent to k̃ ≪ π, recall Section 2.3. If wavelengths are not much longer
than a unitcell, one should use the discrete wave equation instead, which we
will do in Chapter 6.

In the regime where the continuous wave equation can be used, the linear
approximation of the dispersion relation holds most of the time. However,
as we will show later, for the phase mismatches we will need to use the cu-
bic approximation, recall Equation (2.18). Therefore we call this regime the
quasilinear regime.
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3.3 General three-wave mixing equations

In this section we will derive general expressions for the differential equations
describing the 3WM processes in the quasilinear regime, which we will later
use to predict gain and other 3WM characteristics. These equations are known
as the propagation equations [14], or the coupled mode equations [46]. Four-
wave mixing will be treated separately in Chapter 7. For now, we will assume
that there is no four-wave mixing and set c4 = 0. By doing so, the continuous
wave equation (Equation (3.12)) now reads

[ ∂2

∂t̃2
− C̃ ∂2

∂t̃2
∂2

∂x̃2 − ∂2

∂x̃2 ]ϕ = −c3
∂ϕ

∂x̃

∂2ϕ

∂x̃2 . (3.13)

Furthermore, to solve the wave equation, we begin with the ansatz that the
solutions are travelling waves given by the form

ϕ =∑
m

ϕm = 1
2∑m Am(x̃)ei(k̃mx̃−ω̃m t̃) + Ām(x̃)e−i(k̃mx̃−ω̃m t̃) (3.14)

where m is the index of each wave, the tilde-notation means units normalised
as defined in the end of Section 3.2 and Ām is the complex conjugate of the
amplitude Am.

3.3.1 Simplifying the left-hand side

The left-hand side of Equation (3.13) comes from propagation of free waves in a
linear medium, i.e. the discrete transmission line, as we know from Section 2.2.
However, now that the right-hand side of the equation is not equal to zero,
the derivatives of the amplitudes are not necessarily equal to zero either.
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We begin by calculating each derivative of ϕm,

∂2ϕm

∂t̃2
= −ω̃2

mϕm, (3.15a)

∂ϕm

∂x̃
= 1

2
[(A′m + ik̃mAm) ei(k̃mx̃−ω̃m t̃) + c.c.] , (3.15b)

∂2ϕm

∂x̃2 = 1
2
[(A′′m + 2ik̃mA

′
m − k̃2

mAm) ei(k̃mx̃−ω̃m t̃) + c.c.] , (3.15c)

C̃
∂2

∂t̃2
∂2ϕm

∂x̃2 = −C̃ω̃2
m

∂2ϕm

∂x̃2 , (3.15d)

where “+c.c.” refers to adding the complex conjugate of what was just written,
and A′m and A′′m are the first and second derivatives with respect to x̃. Then
we apply the slowly varying envelope approximation

∣∂2Am

∂x̃2 ∣ ≪ ∣k̃m
∂Am

∂x̃
∣ (3.16)

to neglect the second derivative, and we can hence write the left-hand side of
the equation for each wave m as

LHS(3.13)
m ≈ −ω̃2

mϕm − 1 − C̃ω̃2
m

2
[(2ik̃mA

′
m − k̃2

mAm) ei(k̃mx̃−ω̃m t̃) + c.c.]
= (−ω̃2

m − C̃ω̃2
mk̃

2
m + k̃2

m)ϕm

+ [ik̃m (C̃ω̃2
m − 1)A′mei(k̃mx̃−ω̃m t̃) + c.c.] .

(3.17)

Applying the continuous dispersion relation, recall Table 2.1, the first term
equals zero. The second term can also be simplified using the continuous
dispersion relation,

ik̃m (C̃ω̃2
m − 1) = −i ω̃

2
m

k̃m

k̃2
m

ω̃2
m

(1 − C̃ω̃2
m) = −i ω̃

2
m

k̃m

(3.18)

To summarise, the left-hand side of the wave equation can be simplified to

LHS(3.13) =∑
m

−i ω̃
2
m

k̃m

(A′mei(k̃mx̃−ω̃m t̃) − Ā′me−i(k̃mx̃−ω̃m t̃)) . (3.19)
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3.3.2 Simplifying the right-hand side

The right-hand side of Equation (3.13) is the part giving rise to the mixing
between different waves and, potentially, gain. We have already calculated
the derivatives that are on this side of the equation, recall Equations (3.15b)
and (3.15c). However, on this side, the amplitudes without derivatives do not
cancel and we can apply yet another approximation,

∣∂Am

∂x̃
∣ ≪ ∣k̃mAm∣. (3.20)

This allows us to approximate the derivatives as

∂ϕm

∂x̃
≈ i

2
k̃m (Amei(k̃mx̃−ω̃m t̃) − Āme−i(k̃mx̃−ω̃m t̃)) , (3.21a)

∂2ϕm

∂x̃2 ≈ −1
2
k̃2

m (Amei(k̃mx̃−ω̃m t̃) + Āme−i(k̃mx̃−ω̃m t̃)) . (3.21b)

The full expression of the right-hand side of the wave equation is

RHS(3.13) = −c3 (∑
m

∂ϕm

∂x̃
)(∑

m

∂2ϕm

∂x̃2 ) , (3.22)

which, given that the total number of waves is M , is an expression with
4M2 terms and will be hard to fit on this page, and even harder to analyse
completely.

However, not all terms are equally important. Given that we study wave
m, only some of the terms will be resonant with this wave. In other words, we
only care about the terms that have the frequency ω̃m in the exponent, and
neglect the rest.

Assume we have the three waves m,n, q, and that the frequencies have the
relationship ω̃m = ω̃n − ω̃q, i.e. a down-conversion process. Then there are two
terms in the right-hand side that will be resonant with m: one from ϕ′n ⋅ ϕ′′q ,
and the one from ϕ′q ⋅ ϕ′′n. The resulting terms are hence

i
2
k̃nAnei(k̃nx̃−ω̃n t̃) ⋅ (−1

2
k̃2

q) Āqe−i(k̃qx̃−ω̃q t̃) = − i
4
k̃nk̃

2
qAnĀqei[(k̃n−k̃q)x̃−ω̃m t̃]
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and

− i
2
k̃qĀqe−i(k̃qx̃−ω̃q t̃) ⋅ (−1

2
k̃2

n)Anei(k̃nx̃−ω̃n t̃) = i
4
k̃2

nk̃qAnĀqei[(k̃n−k̃q)x̃−ω̃m t̃].
Note the difference of the sign for the latter. If the relationship is instead
ω̃m = ω̃n + ω̃q, i.e. an up-conversion process, the terms become

i
2
k̃nAnei(k̃nx̃−ω̃n t̃) ⋅ (−1

2
k̃2

q)Aqei(k̃qx̃−ω̃q t̃) = − i
4
k̃nk̃

2
qAnAqei[(k̃n+k̃q)x̃−ω̃m t̃]

and

i
2
k̃qAqei(k̃qx̃−ω̃q t̃) ⋅ (−1

2
k̃2

n)Anei(k̃nx̃−ω̃n t̃) = − i
4
k̃2

nk̃qAnAqei[(k̃n+k̃q)x̃−ω̃m t̃].
The last case is for addition with degeneracy, i.e. when ω̃m = 2ω̃n. Then there
will only be one term, given by

i
2
k̃nAnei(k̃nx̃−ω̃n t̃) ⋅ (−1

2
k̃2

n)Anei(k̃nx̃−ω̃n t̃) = − i
4
k̃3

nA
2
nei(2k̃nx̃−ω̃m t̃). (3.23)

3.3.3 Constructing the propagation equations

Now that we have simplified both sides of Equation (3.13), we can construct
the differential equations describing wave propagation, i.e. the propagation
equations. On the left-hand side of the wave equation, each amplitude deriva-
tive A′m has the prefactor −i ω̃2

m

k̃m
and on the right hand-side each term has the

prefactor ∓c3
i
4 . Solving for A′m, the prefactors on the right-hand side become± c3

4
k̃m

ω̃2
m

. When solving for A′m the time dependence will disappear, since we
have only kept the resonant terms. The propagation equation for each wave
m hence becomes

A′m = ∑
n,q∶ ω̃m=ω̃n−ω̃q

c3
4
C−(m,n, q)AnĀqei(k̃n−k̃q−k̃m)x̃

−1
2 ∑

n,q∶ ω̃m=ω̃n+ω̃q

c3
4
C+(m,n, q)AnAqe−i(k̃m−k̃n−k̃q)x̃.

(3.24)
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where

C−(m,n, q) = k̃mk̃nk̃q (k̃n − k̃q)
ω̃2

m

≈ ω̃nω̃q, (3.25a)

C+(m,n, q) = k̃mk̃nk̃q (k̃n + k̃q)
ω̃2

m

≈ ω̃nω̃q (3.25b)

are the coupling factors. The factor 1
2 adjusts for the degeneracy problem

raised in Equation (3.23), since for every a ≠ b there will be two terms in
the sum for (n, q) = (a, b) and (n, q) = (b, a), while for every a = b, only the
term(n, q) = (a, a) will exist. The approximation of the coupling coefficient is
based on the fact that we are working with the continuous limit. We can hence
approximate the wave numbers with linear dispersion, i.e. k̃ ≈ ω̃. However, we
do not use this approximation for the phase mismatches, as they would then
be equal to zero. If all the phase mismatches are neglected, the propagation
equations will not converge for any number of modes [47].

3.4 The three-wave mixing single idler model

In this section we will go through how to solve the propagation equations for
three waves: the pump, which serves as the energy source, the signal, which
is what we want to amplify, and the idler, a necessary third wave that is
generated by the mixing process.

We will later show that this case is a highly idealised scenario which is not
particularly accurate. However, it still serves as a benchmark showing what
3WM is capable of, if the necessary requirements are fulfilled.

3.4.1 The propagation equations

To begin let us assume we have three waves, the pump ‘p’, the signal ‘s’
fulfilling ω̃s < ω̃p and the idler ‘i’ given by ω̃i = ω̃p − ω̃s. The full propagation
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3.4 The three-wave mixing single idler model

equations, using the form in Equation (3.24), for these three waves are

A′p = −c3
4
C+(p,s,i)AsAie−i(k̃p−k̃s−k̃i)x̃ ≈ −c3

4
ω̃sω̃iAsAie−i(k̃p−k̃s−k̃i)x̃, (3.26a)

A′s = c3
4
C−(s,p,i)ApĀiei(k̃p−k̃s−k̃i)x̃ ≈ c3

4
ω̃pω̃iApĀiei(k̃p−k̃s−k̃i)x̃, (3.26b)

A′i = c3
4
C−(i,p,s)ApĀsei(k̃p−k̃s−k̃i)x̃ ≈ c3

4
ω̃pω̃sApĀsei(k̃p−k̃s−k̃i)x̃. (3.26c)

Now let us define the phase mismatch ∆k̃ = k̃p − k̃s − k̃i and the pumping
strength χ = 1

4c3ω̃pAp. Let us also assume that the signal and idler amplitudes
are much smaller than the pump amplitude, As,Ai ≪ Ap, which makes the
pump equation A′p = 0, i.e. a constant pump, throughout the TWPA, which is
also known as the stiff pump approximation [56]. Then we get the equations

A′s = χω̃iĀiei∆k̃x̃, (3.27a)

A′i = χω̃sĀsei∆k̃x̃. (3.27b)

3.4.2 Solving the propagation equations

To solve these differential equations, we first do a transformation to remove the
exponential dependency. Then we get a matrix equation which can be solved
by finding the eigenvalues and eigenvectors of the matrix of that equation.
These steps are all outlined in Ref. [47]. Here we will only present the solution.
Assuming that the initial amplitudes are As0 = As(0) and Ai0 = Ai(0), the
solution is given by

As(x̃) = [As0 (cosh(gx̃) − i∆k̃
2g

sinh(gx̃)) + ω̃iχ

g
Āi0 sinh(gx̃)] ei∆k̃x̃/2, (3.28a)

Ai(x̃) = [Ai0 (cosh(gx̃) − i∆k̃
2g

sinh(gx̃)) + ω̃sχ

g
Ās0 sinh(gx̃)] ei∆k̃x̃/2. (3.28b)

where g is the gain coefficient, given by

g =
¿ÁÁÀω̃sω̃i ∣χ∣2 − (∆k̃

2
)2

. (3.29)
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Chapter 3 Travelling-wave parametric amplifiers

To obtain the gain we assume a zero initial idler, i.e. Ai0 = 0 in Equa-
tion (3.28a), and we get that the power gain G is given by

G ∶= ∣As(x̃)
As0

∣2 = cosh2(gx̃) + ∆k̃2

4g2 sinh2(gx̃) . (3.30)

3.4.3 Analysis in the purely linear dispersion regime
The purely linear regime is the regime where the dispersion relation is fully
linear. In this regime the phase mismatch is zero (∆k̃ ≈ 0), or more accurately,
negligibly small. Then we get

G = cosh2(gx̃) , and g = χ√ω̃sω̃i. (3.31)

In other words, we obtain exponential growth of the signal set by the gain
coefficient g. By expressing the frequencies as

ω̃s = 1 + δ
2

ω̃p, ω̃i = 1 − δ
2

ω̃p, δ = ω̃s − ω̃p/2
ω̃p/2 ∈ (−1,1), (3.32)

where δ is the signal detuning from half of the pump frequency, we can express
the gain coefficient as

g = χ
√

1 + δ
2

1 − δ
2

ω̃2
p = χω̃p

2
√

1 − δ2. (3.33)

The gain coefficient has the shape of a semicircle with radius 1
2χω̃p and its

maximum at δ = 0, i.e. when the signal frequency is equal to half of the pump
frequency.

3.4.4 Further analysis of the pump
It is clear from Equation (3.33) that the larger the pump frequency is, the
larger the gain coefficient becomes. However, if we increase the pump fre-
quency enough, we will no longer be in the purely linear regime and the phase
mismatch can no longer be neglected. If we keep increasing the pump fre-
quency, at some point the phase mismatch becomes too large and the gain
coefficient becomes imaginary. Then the exponential gain is replaced by os-
cillations as a function of the length of the TWPA. The pump frequency at
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the threshold where this happens is known as the critical pump frequency.
If we instead fix the pump frequency and assume a pump amplitude large

enough for exponential gain, and then decrease the pump amplitude, the same
problem will arise. At some point, the phase mismatch will become too large
and the gain coefficient becomes imaginary. This is known as the critical
pumping strength.

Finally, given a certain pumping strength, there is a certain pump frequency
where the gain coefficient has reached its largest value before the phase mis-
match becomes too large. This is known as the optimal pump frequency.

The critical pump frequency, the critical pumping strength and the optimal
pump frequency are all analysed and determined in Ref. [47].

3.5 Summary
In this chapter we have looked at what happens when the inductance in the
discrete transmission line is nonlinear. We showed that it gives rise to fre-
quency mixing, especially three-wave mixing and four-wave mixing. We de-
rived the discrete wave equation and showed how it, under an assumption of
long wavelengths, can be approximated by the continuous wave equation. We
determined the general mixing equations for pure three-wave mixing. Then we
solved the mixing equations for pure three-wave mixing between three modes:
the pump, the signal and the idler. Finally we showed that under these as-
sumptions, three modes in the continuous dispersion regime, one should expect
an exponential spatial growth of the signal.
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CHAPTER 4

Superconducting nonlinear inductive elements

4

In this chapter we will explore the different nonlinear elements we will use
to build our TWPAs. While a TWPA can be built with nonlinear capacitors
[35], this work is entirely focused on nonlinear inductors. To avoid losses, all
the nonlinear inductors in this chapter are superconducting.

4.1 The Josephson junction
The simplest inductive element is the Josephson junction, which is also the
basic building block for other inductive elements. The Josephson junction
consists of two superconductors separated by a thin insulating barrier, see
Figure 4.1.

For an ideal Josephson junction the Josephson relations [57] are

IJ = Ic sin ∆ “Josephson I”, (4.1a)
UJ = φ0 ∆̇ “Josephson II”, (4.1b)

where UJ is the voltage over the junction, IJ is the current passing through
the junction, Ic is the junction critical current, φ0 = h̵/(2e) is the reduced
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Chapter 4 Superconducting nonlinear inductive elements

superconducting magnetic flux quantum and ∆ is the phase difference across
the junction.

. . . . . .

. . . . . .

Superconductor
Thin barrier

Superconductor

ψ1 =√n1eiϕ1 ψ2 =√n2eiϕ2

(a)

ϕ1 ϕ2

ϕ1 ϕ2

Ic, CJ⇕
CJ

Ic

(b)

Figure 4.1: Illustrations of a Josephson junction. (a) Sketch of the superconductors
with the wave functions ψi with the densities ni and the phases ϕi,
and the thin barrier that make the junction with the phase difference
∆ ∶= ϕ2 − ϕ1. (b) Pictogram for a real Josephson junction (top) and
pictogram for an ideal junction in parallel with a capacitance equal to
the junction intrinsic capacitance (bottom).

Using the Josephson junction as the inductor in Figure 3.1 and utilising
Equation (3.1), we can approximate the current through the junction at each
node n of the TWPA as

IJ,n = Ic sin(∆n) = Ic sin(∆0 + δn)= Ic sin ∆0 cos δn + Ic sin δn cos ∆0

≈ Ic sin ∆0 (1 − 1
2
δ2

n) + Ic cos ∆0 (δn − 1
6
δ3

n)
= Ic cos ∆0 [tan ∆0 (1 − 1

2
δ2

n) + (δn − 1
6
δ3

n)] .
(4.2)

Let us define normalised currents as i = I/Ic. Then the phase-bias ∆0 is
determined by the normalised bias current ib = Ib/Ic as

ib = sin ∆0 Ô⇒ ∆0 = arcsin(ib) . (4.3)

The reference current is I0 = Ic cos ∆0, therefore the static inductance is given
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4.2 Radio-frequency SQUID

by
LJ = φ0

I0
= φ0
Ic cos ∆0

= LJ0√
1 − i2b (4.4)

where LJ0 = φ0/Ic is the junction inductance at zero bias. The line capacitance
is equal to the junction intrinsic capacitance, C = CJ.

The quadratic and cubic coefficients, as defined in Equation (3.2), are b2 =− 1
2 tan ∆0 and b3 = − 1

6 . The mixing coefficients, as defined in Equation (3.5),
are hence

c3 = tan ∆0, c4 = 1
2
. (4.5)

The 4WM coefficient c4 is fixed, i.e. 4WM is unaffected by the bias current.
The 3WM coefficient on the other hand is

c3 = tan ∆0 = sin ∆0
cos ∆0

= ib√
1 − i2b . (4.6)

In words, without a bias current there is 4WM but no 3WM. When increasing
the bias current, the 3WM increases while 4WM is fixed. For a bias current
close to the critical current, the 3WM coefficient diverges towards infinity.
However, this does not mean that we can get an arbitrarily strong 3WM pro-
cess, since the pumping strength χ is a function of both the mixing coefficient
and the pump amplitude. Since the total current through the junction should
not exceed the critical current, we get the constraint Ib+Ip < Ic, which ensures
that χ < 1/8. See Ref. [47] for details.

4.2 Radio-frequency SQUID
Another superconducting nonlinear inductive element is the rf-SQUID [24]. It
consists of a superconducting loop where one arm has an inductor with linear
inductance L and another arm has a Josephson junction with critical current
Ic. The linear inductance should be smaller than the junction inductance at
zero bias, i.e. L ≤ LJ0, to avoid a hysteretic behaviour of the SQUID. There
may also be a static external magnetic field applying a magnetic flux bias Φb,
and/or a bias current Ib. The rf-SQUID is depicted in Figure 4.2.

The phase drop over the upper arm is ∆L,n and the phase drop over the
lower arm is ∆n. To relate the magnetic flux bias Φb to the phase, let us
define F ∶= 2πΦb/Φ0. This gives the constraint that ∆n −∆L,n = F .
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ϕn ϕn+1

L

Ic

À
∆n

À
∆L,n

→
Irf,n

↱I1,n

↰

I2,n

⊙Φb

Figure 4.2: The rf-SQUID.

The rf-SQUID current is given by

Irf,n(F,∆n) = I1,n + I2,n = φ0
L
(F +∆n) + Ic sin(∆n)

Ô⇒ irf,n = LJ0
L
(∆n − F ) + sin(∆n) . (4.7a)

where irf,n = Irf,n/Ic is the normalised rf-SQUID current and LJ0 = φ0/Ic is the
unbiased junction inductance. Let us define the inductance ratio L̄ = L/LJ0.
Since L ≤ LJ0, we know that L̄ ∈ [0,1]. By inserting the small phase variation,
∆n =∆0 + δn, the current becomes

irf,n = ∆0 + δn − F
L̄

+ sin(∆0 + δn)
= ∆0 + δn − F

L̄
+ sin(∆0) cos(δn) + sin(δn) cos(∆0)

≈ ∆0 + δn − F
L̄

+ sin(∆0) (1 − 1
2
δ2

n) + (δn − 1
6
δ3

n) cos(∆0) .
(4.7b)

Rearranging the equation so that the different orders of small phase variation
are gathered we get

irf,n = 1 ⋅ [∆0 − F
L̄

+ sin(∆0)]
+ δn ⋅ [ 1

L̄
+ cos(∆0)]

− 1
2
δ2

n ⋅ sin(∆0) − 1
6
δ3

n ⋅ cos(∆0) .
(4.7c)
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We factor out the 1/L̄ + cos(∆0) factor to ensure that b1 = 1, following the
definition of the bj-coefficients. The first term in Equation (4.7c) is the nor-
malised bias current ib and gives the constraint

ib = ∆0 − F
L̄

+ sin(∆0) , (4.8)

which, given a value of the flux bias F and of the bias current ib, lets us find
the value of ∆0 numerically. Typically we use ib = 0, although an rf-SQUID
could be biased with a bias current instead of a magnetic flux bias [24]. From
Equation (4.7c) we extract the inductance of the rf-SQUID to be

L0 = Lrf = LJ0

L̄−1 + cos(∆0) =
L

1 + L̄ cos(∆0) . (4.9)

The capacitance of the rf-SQUID is simply given by the capacitance of the
junction, i.e. C = CJ. We can also extract the mixing coefficients, as defined
in Equation (3.5), as

c3 = sin(∆0)
L̄−1 + cos(∆0) =

L̄ sin(∆0)
1 + L̄ cos(∆0) , (4.10a)

c4 = 1
2
⋅ cos(∆0)
L̄−1 + cos(∆0) =

1
2
⋅ L̄ cos(∆0)
1 + L̄ cos(∆0) . (4.10b)

Now let us analyse the inductance and the mixing coefficients. Note that
there exists a bias point where c3 ≠ 0, c4 = 0. There are hence three fluxes of
interest in particular: zero flux Φb = 0, half of a flux quantum Φb/Φ0 = 0.5 and
the flux of pure three-wave mixing Φb/Φ0 = ϕ3, also known as the Kerr-free
point.

At the Kerr-free point we have that c4 = 0 and thus cos(∆0) = 0. The first
positive value of ∆0 to fulfill this is ∆0 = π/2. By solving Equation (4.8) for F
using ∆0 = π/2, we can show that

ϕ3 = 1
4
+ L̄

2π
(1 − ib) . (4.11a)

47



Chapter 4 Superconducting nonlinear inductive elements

For zero bias current, the Kerr-free point is thus somewhere in the interval

ϕ3 ∈ [14 , 1
4
+ 1

2π
] ≈ [0.25,0.41]. (4.11b)

since L̄ ∈ [0,1]. If instead we want to apply a bias current and no flux bias,
we set ϕ3 = 0 in Equation (4.11a) and solve for ib. We get

ib = 1 + π

2L̄
, (4.11c)

i.e. the bias current needs to be at least 1 + π/2 ≈ 2.57 times larger than the
junction critical current, which is possible because most of the bias current
goes through the linear inductor L.

The inductance and mixing coefficients at these points can be found ana-
lytically and are presented in Table 4.1. Plots for the inductance and mixing
coefficients for all fluxes are presented in Figures 4.3 and 4.4.

Table 4.1: The inductance L0 in terms of L and the mixing coefficients c3, c4 for
different flux biases Φb of an rf-SQUID at zero bias current.

Φb/Φ0 0 ϕ3 0.5

L0/L 1
1 + L̄ 1 1

1 − L̄
c3 0 L̄ 0

c4
1
2
⋅ L̄

1 + L̄ 0 −1
2
⋅ L̄

1 − L̄
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0 ϕ3 0.5 1 − ϕ3 10

1
1 + L̄

1

1
1 − L̄

Flux bias Φb/Φ0

rf-
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U
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du

ct
an

ce
(L

0/L)

Figure 4.3: The inductance of an rf-SQUID at zero bias current in terms of the
linear inductor L as a function of magnetic flux bias.
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Figure 4.4: The mixing coefficients c3, c4 of an rf-SQUID at zero bias current as a
function of magnetic flux bias.
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4.3 The SNAIL

Another nonlinear inductive element is the SNAIL, which is an acronym for the
Superconducting Nonlinear Asymmetric Inductive eLement [16]. It consists
of a loop, where one arm has N identical Josephson junctions with critical
current Ic, while the other arm has a single Josephson junction with critical
current αIc where α < 1. There may also be a static external magnetic field
applying a magnetic flux bias Φb. The SNAIL is depicted in Figure 4.5.

Further limitations to α can be made. We want α ≤ 1/N to be free of
hysteresis, similar to the rf-SQUID where L̄ had to be smaller than 1 for the
same reason. We also want α > 1/N 3 to ensure that there exists a flux ϕ3
with pure three-wave mixing.

ϕn ϕn+1

α, Ic,N
→
I ,n

⊙Φb

⇔ ϕn ϕn+1

. . . →In,1

→
In,2

→
I ,n

N

À
∆n,0

À
∆n,1

À
∆n,N

αIc

Ic

Figure 4.5: The Superconducting Nonlinear Asymmetric Inductive eLement.

In Figure 4.5, let us call the lone junction “junction 0”, and those on the
top arm “junction 1”, ..., “junction N ”. Since the same current that flows
through junction 1 will also flow through junction 2 to junction N , and they
have the same critical currents, the phase differences over these junctions are
identical. If we call the total phase drop over these junctions ∆n, the phase
drop over one of them is hence ∆n/N .

The phase difference over the upper arm is ∆n and the phase difference over
the lower arm is ∆n,0. To relate the magnetic flux Φb to the phase difference,
let us use the same definition as in Section 4.2, F ∶= 2πΦb/Φ0. This gives us
the constraint ∆n,0−∆n = F , or in other words, that the phase difference over
junction 0 is ∆n,0 = F +∆n.
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The SNAIL current is given by

I ,n = In,1 + In,2 = αIc sin(∆n,0) + Ic sin(∆n,1)
= Ic [α sin(F +∆n) + sin(∆nN )] .

(4.12a)

To make the equations cleaner, let us define the normalised SNAIL current
i ,n = I ,n/Ic. Let us also insert the small phase variation ∆n =∆0 + δn. The
current becomes

i ,n = α sin(F +∆0 + δn) + sin(∆0 + δnN )
= α[ sin(F +∆0) cos(δn) + sin(δn) cos(F +∆0) ]
+ sin(∆0N ) cos(δnN ) + sin(δnN ) cos(∆0N ) .

(4.12b)

Then, using Taylor expansion, we can approximate the current as

i ,n ≈ α [sin(F +∆0) (1 − 1
2
δ2

n) + (δn − 1
6
δ3

n) cos(F +∆0)]
+ sin(∆0N )(1 − 1

2
(δnN )

2) + (δnN − 1
6
(δnN )

3) cos(∆0N ) .
(4.12c)

Rearranging the equation so that the different orders of small phase variation
are gathered we get

i ,n ≈ 1 ⋅ [α sin(F +∆0) + sin(∆0N )]
+ δn ⋅ [α cos(F +∆0) + 1N cos(∆0N )]
− 1

2
δ2

n ⋅ [α sin(F +∆0) + 1N 2 sin(∆0N )]
− 1

6
δ3

n ⋅ [α cos(F +∆0) + 1N 3 cos(∆0N )] .

(4.12d)

We factor out the factor multiplied with δn, to ensure that b1 = 1 as we have
previously mentioned follows from the definition of the bj-coefficients. The
first term in Equation (4.12d) is the normalised bias current ib which gives
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the constraint
ib = α sin(F +∆0) + sin(∆0N ) , (4.13)

which in turn lets us find the value of ∆0 numerically, given the value of the
flux bias F and the bias current ib. Typically we use ib = 0, although a SNAIL,
just like the rf-SQUID, can be biased with a bias current instead of magnetic
flux bias. We extract the inductance of the SNAIL from Equation (4.12d) as

L0 = L = LJ0

α cos(F +∆0) + 1N cos(∆0N ) (4.14)

The capacitance of the SNAIL is given by

C = C = CJ,1N +CJ,2
!= CJ,1N + αCJ,1 = CJ,1 ( 1N + α) . (4.15)

where CJ,1 is the capacitance of each junction in the upper arm in Figure 4.5
and CJ,2 is the capacitance of the single junction. In the middle equality,
marked with an exclamation mark, we used the fact that junctions made with
the same process will have the same plasma frequency, regardless of their size.
In other words, both CJ and Ic scale equally with the junction area.

We can also extract the mixing coefficients, as defined in Equation (3.5), as

c3 = α sin(F +∆0) + 1N 2 sin(∆0N )
α cos(F +∆0) + 1N cos(∆0N ) , (4.16a)

c4 = 1
2
⋅ α cos(F +∆0) + 1N 3 cos(∆0N )
α cos(F +∆0) + 1N cos(∆0N ) . (4.16b)

Now let us analyse the inductance and the mixing coefficients. Note that,
similarly to the rf-SQUID, there exists a bias point where c3 ≠ 0, c4 = 0. There
are hence three fluxes of interest in particular: zero flux Φb = 0, half of a flux
quantum Φb/Φ0 = 0.5 and the flux of pure three-wave mixing Φb/Φ0 = ϕ3. The
inductance and mixing coefficients at these points are presented in Table 4.2.
Plots for the inductance and mixing coefficients for all fluxes are presented in
Figures 4.6 and 4.7.

Let us begin with analysing the inductance, see Figure 4.6. If the junctions
1 to N were linear inductors, the SNAIL would be identical to an rf-SQUID
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and the inductance at ϕ3 would be NLJ0. However, the nonlinearity of the
junctions increases the four-wave mixing coefficient, which in turn shifts the
Kerr-free point from ϕ′3 = 1/4 + αN /(2π) where it would have been if the
junctions were linear (recall and cf. with Equation (4.11a)), to ϕ3 > ϕ′3. Since
ϕ3 is closer to half of a flux quantum than ϕ′3, the inductance is increased.

By solving Equation (4.14) for ib = 0 and c4 = 0, the inductance at ϕ3 for
the SNAIL can be shown to be

L (ϕ3) = NLJ0

1 −N −2 ⋅
√

1 −N −6

1 − α2 ≈ NLJ0

1 −N −2 . (4.17)

As we can see, for N = 2 the inductance of the SNAIL at the Kerr-free point
is clearly larger than the inductance of the rf-SQUID at the Kerr-free point.
For N > 2 the denominator quickly becomes negligible and the SNAIL has
a comparable inductance to the rf-SQUID. Furthermore, at the flux bias ϕ′3,
the SNAIL has approximately the same inductance as the rf-SQUID, see the
inductance at ϕ′3 in Figure 4.6. By solving Equation (4.16a) for ib = 0 and
c4 = 0, the three-wave mixing coefficient at ϕ3 can be shown to be

c3(ϕ3) = αN
√

1 − α−2N −6

1 − α2 ≈ αN . (4.18)

Note that the approximation αN will underestimate the coefficient for α >
1/N 3/2, and overestimate it for α < 1/N 3/2, especially when α → 1/N 3.

Table 4.2: The inductance L0 in terms of NLJ0 and the mixing coefficients c3, c4
for different flux biases Φb of a SNAIL at zero bias current.
Φb/Φ0 0 ϕ3 0.5

L0/(NLJ0) 1
1 + αN ≈ 1

1 −N −2
1

1 − αN
c3 0 ≈ αN 0

c4
1
2
⋅ αN +N −2

1 + αN 0 −1
2
⋅ αN −N −2

1 − αN
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Figure 4.6: The inductance L0 of a SNAIL at zero bias current, in terms of NLJ0,
as a function of magnetic flux bias.
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Figure 4.7: The mixing coefficients c3, c4 of a SNAIL at zero bias current as a
function of magnetic flux bias.
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Figure 4.8: The mixing coefficients for the rf-SQUID and the SNAIL as a function
of flux bias for α < 1/N 3/2. The symbols are explained in Section 4.3.1.
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Figure 4.9: The mixing coefficients for the rf-SQUID and the SNAIL as a function
of flux bias for α > 1/N 3/2. The symbols are explained in Section 4.3.1.
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4.3.1 Comparison between the SNAIL and the rf-SQUID
Due to the similarities between the rf-SQUID and the SNAIL, it is instructive
to compare the two. To be able to compare the two, one needs to find relevant
measures for comparing.

As we discussed previously, for the inductance the relevant comparison is
found by setting L = NLJ0. The inductance at a given flux is essentially
the same between the two, but due to the shift of the Kerr-free point, the
SNAIL has a larger inductance than the rf-SQUID at the Kerr-free point,
recall Equation (4.17). The mixing coefficients can be compared by letting
L̄ = αN .

Study Figures 4.8 and 4.9. Here ‘⋆’ denotes the three-wave mixing coeffi-
cient at the Kerr-free point for the SNAIL, ‘∼’ the three-wave mixing coefficient
at the Kerr-free point for the rf-SQUID, ‘●’ the four-wave mixing coefficient
at zero flux for the SNAIL, ‘⌢’ the four-wave mixing coefficient at zero flux for
the rf-SQUID, ‘○’ the four-wave mixing coefficient at half a flux quantum for
the SNAIL, and ‘⌣’ the four-wave mixing coefficient at half a flux quantum
for the rf-SQUID. Recall Figures 4.3, 4.4, 4.6 and 4.7 for the exact values.

As can be seen in Figures 4.8 and 4.9, the four-wave mixing coefficient is
always larger for the SNAIL than for the rf-SQUID, but this increase becomes
negligible for large N . Furthermore, for each flux bias, the absolute value
of the three-wave mixing coefficient is always smaller for the SNAIL than
for the rf-SQUID. However, this does not mean that the three-wave mixing
coefficient at the Kerr-free point is smaller for the SNAIL. Due to the shape
of the curve, and the fact that ϕ3 > ϕ′3, the three-wave mixing coefficient at
the Kerr-free point will be larger for the SNAIL than the one of the rf-SQUID
when α > 1/N 3/2, and smaller when α < 1/N 3/2, recall Equation (4.18) and
compare Figures 4.8 and 4.9.

4.4 Kinetic inductance
Similarly to a Josephson junction, a thin superconducting wire also behaves
like a nonlinear inductor with an inductance modulated by the current. The
inductance can be approximated as L(I) ≈ L(0) (1 + I2/I2∗) [27] for currents
I ≪ I∗, where I∗ plays a similar role as the critical current Ic of a Josephson
junction. There are two main differences between the Josephson junction and
the kinetic inductor:
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4.5 Arrays of inductive elements

Firstly, the kinetic inductor is a distributed element, while the junction is
a discrete element. It is hence possible to make an actual continuous trans-
mission line, instead of a lumped-element one which we use in the discrete
transmission line. This has both advantages and disadvantages, as we will
see in later chapters. One can still make the kinetic inductor appearing like
a lumped-element by ensuring that the wavelengths of all propagating modes
are much longer than the kinetic inductor.

Secondly, the current I∗ is typically orders of magnitude larger than the
critical current Ic of a junction. This makes no difference except that the
pump, and the potential bias current, must be increased with the factor I∗/Ic
in order to get the same gain characteristics. This has one clear advantage
and one clear disadvantage. The advantage is that the kinetic inductance
TWPA thus typically has a much larger saturation power, since the pump
has a much larger amplitude. The disadvantage is that, since the pump has a
much larger amplitude, the kinetic inductance TWPA also has a much worse
pump leakage.

A material with a kinetic inductance is aluminium, but it has a fairly weak
kinetic inductance. A way of increasing the kinetic inductance of aluminium
is by making granular aluminium (grAl). Granular aluminium consists of
pure aluminium grains separated by thin aluminium oxide barriers [58]. This
essentially builds a network of Josephson junctions inside the material, which
increases the kinetic inductance significantly.

4.5 Arrays of inductive elements
An alternative approach to increase the saturation power without having to
use a kinetic inductor is to use an array of inductive elements. This means
that, instead of using a single Josephson junction, a single rf-SQUID or a
single SNAIL, one uses several in series. To get the appropriate inductance,
one simply increases the critical currents with the same factor as the number
of elements in the chain.

As an example, if a TWPA design has a single junction with critical current
Ic, one replaces with single junction with N junctions with the critical current
NIc. The required pump current to get the same gain as the original TWPA
scales with the same factor, Ip ↦ NIp, and the saturation power is thus
increased with a factor N2. Simultaneously, the pump leakage is also increased
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Chapter 4 Superconducting nonlinear inductive elements

with a factor N2. It is thus a tradeoff, where the user needs to decide what is
more important, a higher saturation power or a lower pump leakage.

4.6 Summary
In conclusion, there are several different nonlinear inductive elements that we
can use to build a TWPA, each with their own pros and cons. The Joseph-
son junction has the advantage that it is the simplest one, but it can never
fully eliminate four-wave mixing. The rf-SQUID can fully eliminate four-wave
mixing if biased properly and it is more resilient to electrostatic discharges
(ESDs) than a single junction, but it requires two different kinds of induc-
tors. The SNAIL only requires one kind of inductor, the Josephson junction,
but it lacks the resilience against ESDs that the rf-SQUID has. The kinetic
inductors, including granular aluminium, can give a higher saturation power,
but they also increase the pump leakage. A summary of the equations for the
Josephson junction, the rf-SQUID and the SNAIL is presented in Table 4.3.

Table 4.3: The capacitance, phase-bias equation, inductance and the mixing coef-
ficients for the Josephson junction, the rf-SQUID and the SNAIL.

JJ rf-SQUID SNAIL

C CJ CJ CJ,1 ( 1N + α)
ib sin(∆0) ∆0 − F

L̄
+ sin(∆0) α sin(F +∆0) + sin(∆0N )

L0
LJ0

cos(∆0) L

1 + L̄ cos(∆0)
LJ0

α cos(F +∆0) + 1N cos(∆0N )
c3 tan(∆0) L̄ sin(∆0)

1 + L̄ cos(∆0)
α sin(F +∆0) + 1N 2 sin(∆0N )
α cos(F +∆0) + 1N cos(∆0N )

c4
1
2

1
2
⋅ L̄ cos(∆0)
1 + L̄ cos(∆0)

1
2
⋅ α cos(F +∆0) + 1N 3 cos(∆0N )
α cos(F +∆0) + 1N cos(∆0N )
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CHAPTER 5

Three-wave mixing in the quasilinear dispersion regime 5

In this chapter we will study multimode theory for three-wave mixing in the
quasilinear dispersion regime. One could study three-wave mixing in the
purely linear dispersion regime, where all phase mismatches are zero, ∆k = 0.
However, as outlined in Section 4.3 of Ref. [47], in the purely linear dispersion
regime there is an infinite number of up-converted modes generated, and the
transmission never converges. Therefore we will study the quasilinear regime,
which more accurately describes reality.

5.1 Single input multimode study

In Section 3.3 we outlined the general mixing equations for three-wave mixing
for any number of waves and mixing processes, recall Equation (3.24). In this
section we will assume that there is only one input. Thus, the only waves
present inside the TWPA are the input and its harmonics. Then we will use
certain transformations on the propagation equations such that there is only
one parameter left in the equations.
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Chapter 5 Three-wave mixing in the quasilinear dispersion regime

5.1.1 The propagation equations

If we assume the frequency of the input is ω̃1, the mixing products are thus
at the frequencies ω̃m = mω̃1 for m ∈ Z+. Let us assume that the number of
harmonics is M . For each wave m ∈ [1,M]∩N, it can up-convert to any of the
higher frequencies n ∈ [m + 1,M] ∩ N, or down-convert into any of the lower
frequencies n ∈ [1,m − 1] ∩N. The propagation equations for this case, recall
Equation (3.24), are hence

A′m = M∑
n=m+1

c3
4
ω̃nω̃n−mAnĀn−mei(k̃n−k̃m−k̃n−m)x̃

−1
2

m−1∑
n=1

c3
4
ω̃nω̃m−nAnAm−ne−i(k̃m−k̃n−k̃m−n)x̃.

(5.1)

Since all frequencies are harmonics of the first one, we can write the frequency
product as a number times ω̃2

1 . Furthermore, we can approximate the phase
mismatches within the cubic approximation of the dispersion relation,

k̃n − k̃m − k̃n−m ≈ bω̃3
n − bω̃3

m − bω̃3
n−m

= b (nω̃1)3 − b (mω̃1)3 − b((n −m)ω̃1)3= bω̃3
1 (n3 −m3 − (n −m)3)

= 3bω̃3
1mn(n −m)

(5.2)

where b is the cubic coefficient in Equation (2.18). For the first phase mismatch
this is hence

k̃2 − 2k̃1 ≈ 3bω̃3
1 ⋅ 2 ⋅ 1 ⋅ (2 − 1) = 6bω̃3

1 . (5.3)

We can find the fraction of the general phase mismatch and the first one as

k̃n − k̃m − k̃n−m

k̃2 − 2k̃1
= 3bω̃3

1mn(n −m)
6bω̃3

1
= 1

2
mn(n −m) ∶= dn,m. (5.4)
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5.1 Single input multimode study

We can hence write the propagation equations as

A′m = M∑
n=m+1

c3ω̃
2
1

4
n(n −m)AnĀn−mei(k̃2−2k̃1)x̃dn,m

−1
2

m−1∑
n=1

c3ω̃
2
1

4
n(m − n)AnAm−ne−i(k̃2−2k̃1)x̃dm,n .

(5.5)

5.1.2 Rescaling the propagation equations

Now we will rescale the propagation equations for reasons that will soon be-
come apparent. First let us note that, since energy is conserved and all initial
energy is in the first harmonic, if we rescale each amplitude according to

bm(x̃) =mAm(x̃)
A1(0) (5.6)

the sum of the absolute value of all amplitudes squared must always be 1,
which is convenient. Then the propagation equations become

A1(0)
m

b′m = M∑
n=m+1

c3ω̃
2
1

4
A2

1(0)bnb̄n−mei(k̃2−2k̃1)x̃dn,m

−1
2

m−1∑
n=1

c3ω̃
2
1

4
A2

1(0)bnbm−ne−i(k̃2−2k̃1)x̃dm,n .

(5.7)

If we now introduce the rescaled length ξ and the transformed amplitude am

as
ξ(x̃) = c3ω̃

2
1

4
A1(0) ⋅ x̃, am(ξ(x̃)) = bm(x̃) (5.8)

we get that

d
dx̃
bm(x̃) = d

dξ
am(ξ(x̃)) ⋅ d

dx̃
ξ(x̃) Ô⇒ d

dξ
am = d

dx̃
bm ⋅ 4

A1(0)c3ω̃2
1
. (5.9)

Finally, by defining the dimensionless parameter

µ = 4 k̃2 − 2k̃1
c3ω̃2

1A1(0) (5.10)
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Chapter 5 Three-wave mixing in the quasilinear dispersion regime

we can write the propagation equations as a function of only this one param-
eter µ and the rescaled length ξ,

a′m(ξ) =m( M∑
n=m+1

anān−meiµξdn,m − 1
2

m−1∑
n=1

anam−ne−iµξdm,n) . (5.11)

This is a set of M equations, one for each harmonic m ∈ [1,M] ∩ N. Here
we have reduced all values of c3,A1(0), ω̃1, C̃ in the quasilinear regime into
a set of equations dependent on the single scaling parameter µ. Regardless
of actual initial amplitudes, the rescaled initial amplitudes are 1 for the first
harmonic and 0 for the others. Furthermore, we can simplify the expression
of the scaling parameter as

µ ≈ 4 bω̃
3
2 − bω̃3

1
c3ω̃2

1A1(0) = 24bω̃3
1

c3ω̃2
1A1(0) = 24bω̃1

c3A1(0) = 24bω̃2
1

c3∆̇1(0) != ω̃2
1

c3∆̇1(0) (5.12)

where ∆̇1(0) = ω̃1A1(0) is the rate of change of the superconducting phase
difference induced by the first harmonic. The last equality, marked with the
exclamation mark, is only valid for C̃ = 0, recall the definition of the cubic
coefficient b in Equation (2.18). Now that we have a generalised description
dependent only on the parameter µ, we can solve the propagation equations
for different number of harmonics M and study the results.

An important question is: what do the rescaled amplitudes am, the param-
eter µ and the rescaled length ξ represent?

• Normalised amplitudes: The rescaled amplitudes are simply the am-
plitudes normalised with respect to energy and initial amplitude such
that 1 represents the total injected energy. Expressing the amplitudes
this way ensures that the absolute value of each amplitude will always
be a number between 0 and 1, and that the sum of the absolute values
squared will always be 1.

• Effective phase mismatch: The dimensionless parameter µ describes
the relation between phase mismatch and the pump strength, i.e. the
“effective phase mismatch”. As we know from Section 3.4, and espe-
cially Equation (3.29), it is not the value of the phase mismatch on
its own that determines the behaviour of the propagating waves, but
the relation between the phase mismatch and the pump strength. The
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5.1 Single input multimode study

parameter µ captures this relation and puts a number to it. A large
number (µ ≳ 10) represents a large phase mismatch compared with the
pump strength, while a small number (µ ≲ 1) represents a small phase
mismatch compared with the pump strength.

• Effective length: The rescaled length ξ describes the “effective length”
of the TWPA. It is not the specific number of unitcells x̃ = N on its own
that determines whether the TWPA is long enough to reach a certain
gain, but rather the physical length combined with the pump strength,
which is what ξ captures.

5.1.3 Single input analysis
We can solve the explicit expressions of Equation (5.11) for different number
of M . For example, for M = 2 we have

a′1 = a2ā1eiµξ, (5.13a)
a′2 = −a2

1e−iµξ. (5.13b)

which can be solved numerically for any value of µ. In fact, the equations for
two harmonics have been solved analytically [41]. For M = 3 we have

a′1 = a2ā1eiµξ + a3ā2e3iµξ, (5.14a)
a′2 = 2a3ā1e3iµξ − a2

1e−iµξ, (5.14b)
a′3 = −3a2a1e−3iµξ. (5.14c)

which can also be solved numerically for any value of µ, and so on.
However, a more important question is: How many harmonics M should

be included to get a convergent result? In other words, at what number of
harmonics Mc will adding another harmonic not make a difference for the
transmission of the first harmonic?

As we showed in Ref. [47] and in paper [A], it depends on the value of µ.
For large values of µ ≳ 10, corresponding to a large phase mismatch and/or a
weak coupling between the harmonics, very few harmonics are needed, while
for small values of µ ≲ 2, corresponding to a strong coupling between the
harmonics and/or small phase mismatches, many harmonics are needed. The
exact number of harmonics for each value of µ is harder to predict, as it
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Chapter 5 Three-wave mixing in the quasilinear dispersion regime

depends on the required accuracy of the solution. As µ → 0, Mc →∞, which
is why the transmission never converges in the purely linear dispersion regime,
as already mentioned.

Since the more interesting scenario is the one with two inputs, where am-
plification can occur, we will move onto that for now. For those who are
interested in the details of the single input analysis, we recommend to read
Ref. [47] and paper [A].

5.2 Multimode study of two inputs
In this section we will develop a generalised model to capture all up- and
down-conversion processes when inserting both a pump and a signal into a
TWPA. The generalisation steps will very closely follow the steps taken in
Section 5.1, so it is recommended to read that section first.

The ansatz of tones we will develop this model with is the pump-mediated
tones ansatz [46], where the waves have frequencies

ω̃mp =mω̃p, m ∈ [1,M] ∩N
ω̃s+mp = ω̃s +mω̃p, m ∈ [0,M − 1] ∩N,
ω̃i+mp = ω̃i +mω̃p, m ∈ [0,M − 1] ∩N,

(5.15)

where M is the number of modes for the pump, the signal and the idler.

5.2.1 Possible mixing processes
First we must identify what mixing processes can take place, as this is the
foundation when deriving the propagation equations. We know from the defi-
nition of the idler that ω̃s + ω̃i = ω̃p. However, we can also go to higher modes
of both signal and idler, and their sum will still be a pump harmonic. All the
possible mixing processes of these transitions can be summarised as

{m,n ∈ [0,M − 1] ∩N ∶m + n <M} ∶ ω̃s+mp + ω̃i+np = ω̃(m+n+1)p. (5.16)

We also know that the signal and its up-converted modes can be up-converted
by the pump, ω̃s+mp+ω̃p = ω̃s+(m+1)p. However, now that we include harmonics
of the pump, every pump harmonic can induce similar processes. All these
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possible mixing processes can be summarised as

{m ∈ [0,M − 1] ∩N, n ∈ [1,M] ∩N ∶m + n <M} ∶
ω̃s+mp + ω̃np = ω̃s+(m+n)p. (5.17)

The same is valid for the idler, simply replace s→i in the equation above.

5.2.2 The propagation equations
Now that we have identified the possible mixing processes, let us determine
what the propagation equations are. The equation for the pump is

A
′
mp = M∑

n=m+1

c3

4
ω̃npω̃(n−m)pAnpĀ(n−m)pei(k̃np−k̃mp−k̃(n−m)p)x̃

− 1
2

m−1∑
n=1

c3

4
ω̃npω̃(m−n)pAnpA(m−n)pe−i(k̃mp−k̃np−k̃(m−n)p)x̃

+M−1∑
n=m

c3

4
ω̃s+npω̃s+(n−m)pAs+npĀs+(n−m)pei(k̃s+np−k̃np−k̃s+(n−m)p)x̃

+M−1∑
n=m

c3

4
ω̃i+npω̃i+(n−m)pAi+npĀi+(n−m)pei(k̃i+np−k̃np−k̃i+(n−m)p)x̃

−m−1∑
n=0

c3

4
ω̃s+npω̃i+(m−n−1)pAs+npAi+(m−n−1)pe−i(k̃mp−k̃s+np−k̃i+(m−n−1)p)x̃

.

(5.18a)

If we assume that the amplitudes of the signal and idler modes are much
smaller than the pump amplitude, we can neglect the three latter sums where
we have products of amplitudes of signal and idler modes. We call this the
back-action as it describes the action the signal and idler modes exert back on
the pump harmonics when being amplified. Neglecting back-action when there
are no pump harmonics other than the first is usually called the stiff pump
approximation. Then we get the same equations for the pump harmonics as
in the single input study, Section 5.1, and we can use the results from that
section to describe the propagation of the pump harmonics.

For the signal modes we get the equation

A
′
s+mp = M∑

n=m+1

c3

4
ω̃npω̃s+(n−m−1)pAnpĀi+(n−m−1)pei(k̃np−k̃s+mp−k̃i+(n−m−1)p)x̃

+ M−1∑
n=m+1

c3

4
ω̃s+npω̃(n−m)pAs+npĀ(n−m)pei(k̃s+np−k̃s+mp−k̃(n−m)p)x̃

− m∑
n=1

c3

4
ω̃npω̃s+(m−n)pAnpAs+(m−n)pe−i(k̃s+mp−k̃np−k̃s+(m−n)p)x̃

.

(5.18b)
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The equations for the idler modes are the same as in Equation (5.18b) with
replacement s↔i.

5.2.3 Rescaling the propagation equations

Now we will rescale the propagation equations above in the same way as we
did in Section 5.1.2, to get the generalised propagation equations. We express
the frequencies as

ω̃mp =mω̃p,

ω̃s+mp = ω̃s +mω̃p = (m + 1 + δ
2
) ω̃p,

ω̃i+mp = ω̃i +mω̃p = (m + 1 − δ
2
) ω̃p

(5.19)

where δ is the detuning (recall Equation (3.32)). The rescaled amplitudes are
hence

amp =m Ap

Ap0
,

as+mp = (m + 1 + δ
2
) As+mp

Ap0
,

ai+mp = (m + 1 − δ
2
) Ai+mp

Ap0

(5.20)

where Ap0 is the initial pump amplitude. We rescale length in the same way
as in Section 5.1. With the replacements ω̃1 → ω̃p, k̃1 → k̃p and A1 → Ap,
recall Equations (5.8) and (5.10), and ξ and µ become

ξ = c3ω̃
2
p

4
Ap0 ⋅ x̃ ≈ 1

4
c3ω̃p∆̇p0x̃ (5.21)

and
µ = 4 k̃2p − 2k̃p

c3ω̃2
pAp0

≈ ω̃2
p

c3∆̇p0
. (5.22)

All that remains is finding a way to approximate the phase mismatches with
numerical factors. We once again expand the dispersion relation to its cubic
order and divide each phase mismatch by k̃2p−2k̃p. Then we get the numerical
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factors

dp∶n,m = 1
6
(n3 − (m + 1 + δ

2
)3 − (n −m − 1 + 1 − δ

2
)3) , (5.23a)

ds∶n,m = 1
6
((n + 1 + δ

2
)3 − (m + 1 + δ

2
)3 − (n −m)3) , (5.23b)

di∶n,m = 1
6
((n + 1 − δ

2
)3 − (m + 1 − δ

2
)3 − (n −m)3) , (5.23c)

in addition to dn,m defined in Equation (5.4). The propagation equations,
recall Equation (5.18), neglecting back-action of signal and idler modes on
the pump harmonics (as discussed in Section 5.2.2), can then be written as

a′mp =m( M∑
n=m+1

anpā(n−m)peiµξdn,m − 1
2

m−1∑
n=1

anpa(m−n)pe−iµξdm,n) , (5.24a)

a′s+mp = (m + 1 + δ
2
) × ⎛⎝

M∑
n=m+1

anpāi+(n−m−1)peiµξdp∶n,m

+ M−1∑
n=m+1

as+npā(n−m)peiµξds∶n,m − m∑
n=1

anpas+(m−n)pe−iµξds∶m,m−n
⎞⎠,

(5.24b)

a′i+mp = (m + 1 − δ
2
) × ⎛⎝

M∑
n=m+1

anpās+(n−m−1)peiµξdp∶n,n−m−1

+ M−1∑
n=m+1

ai+npā(n−m)peiµξdi∶n,m − m∑
n=1

anpai+(m−n)pe−iµξdi∶m,m−n
⎞⎠.

(5.24c)

Due to the rescaling, the initial condition is ap0 = 1, as0 = As0/Ap0 ≪ 1
and 0 for all other amplitudes. However, if back-action is neglected, as done
in the equations above, the value of as0 makes no difference and can be set to
1 for convenience, which simplifies the gain to ∣as/as0∣2 = ∣as∣2. Another way to
phrase this: the value of the initial signal amplitude only makes a difference
for the back-action terms, so once the back-action terms are neglected, we can
freely set the value of the initial signal amplitude to whatever value we wish,
without it having any impact on the transmission of the signal, and 1 is a
convenient starting value.
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Figure 5.1: Transmission of the signal for µ = 5 at zero detuning for several values
of M up to Mc + 1.
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Figure 5.2: Transmission of the signal for µ = 0.5 at zero detuning for several values
of M up to Mc + 1.
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5.3 Summary

To investigate the transmission of a signal with a frequency larger than the
pump, we instead set the initial amplitude of the appropriate up-converted
mode of the signal to 1. For example, if ω̃s = 2.5ω̃p, we set as0 = 0 and
as+2p(0) = 1. At this frequency the gain is given by ∣as+2p∣2.

5.2.4 Analysis of the solution
Now that we have the generalised propagation equations, Equations (5.24a)
to (5.24c), we can numerically find the solution for a given value of µ. The
single idler model, M = 1, predicts exponential gain [35], [47] if

µ < 8
1 − δ2 . (5.25)

But just as in the single input case, the needed number of harmonics Mc
depends on the value of µ.

As we can see in Figure 5.1, plotted for µ = 5, the gain grows quickly for
M = 1. When we include the up-converted modes, the gain quickly goes down,
even though we only need M = 4 for convergence.

If we go to smaller values of µ, the gain grows even quicker according to the
single idler model, study Figure 5.2 where µ = 0.5. Now the gain still grows
quickly for M = 8. However, for this small value of µ, we need as much as
M = 15 for convergence. When all these up-converted modes are included, the
gain is severely reduced.

5.3 Summary
In this chapter we have looked at three-wave mixing for the standard TWPA
in the quasilinear dispersion regime. This is the regime where we assume
linear dispersion for the coupling coefficients, but we use a third-order ap-
proximation of the dispersion relation for the phase mismatches. By using
these approximations, we could transform the regular propagation equations,
which have several different parameters in them, into a new set of differential
equations with only one parameter µ. The parameter µ captures the relation
between the phase mismatches and the nonlinear interaction, also known as
the pumping strength. It turns out that for large values of µ, there is little
to no up-conversion. However, then there is no exponential gain due to a too
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Chapter 5 Three-wave mixing in the quasilinear dispersion regime

large phase mismatch. For small values of µ, there is a small phase mismatch.
However, then there is no exponential gain due to too much up-conversion
processes. In short, there is never exponential gain for the standard TWPA
in the quasilinear regime, due to either too much phase mismatch, too many
up-conversion processes, or both.
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CHAPTER 6

Three-wave mixing for arbitrary frequencies

6
Until now we have studied wave propagation via the propagation equations,
which were developed using the continuous wave approximation. Therefore,
this theory is only valid as long as all wavelengths are much longer than
the length of the unitcell, or equivalently, as long as all frequencies are well
below the cutoff frequency. This weak spot of the theory has two major
problems. Firstly, we saw in Chapter 5 that for large pump strengths in
the quasilinear dispersion regime, there is a lot of up-conversion. At some
point the highest pump harmonics and up-converted signal and idler modes
will reach the cutoff frequency, where the theory breaks down. Secondly, we
cannot study the propagation of a signal when the signal frequency is close to
the cutoff frequency to begin with.

In this chapter we will develop a theory that is built on the discrete propa-
gation equations which describe the propagation of waves with any frequency
within the spectrum. However, it is complicated to make an equivalent model
of the discrete propagation equations for multiple modes to the general small
frequency theory developed in Chapter 5. Therefore, we limit the study to
the simplest case of three modes, as a discrete equivalent to the continuous
three-mode model [35]. This allows us to investigate whether the pump and
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the signal can be placed close to the cutoff frequency in order to completely
eliminate up-conversion.

6.1 Eliminating up-conversion
In Chapter 5 we concluded that it is very challenging to achieve a high gain
for a 3WM TWPA in the small frequency limit, i.e. when the pump and the
signal are well below the cutoff frequency ωc, due to the large amount of
up-conversion processes. Before doing more complicated measures to hinder
up-conversion, such as dispersive engineering [20], we want to investigate if we
can use the natural cutoff frequency of the TWPA itself to stop up-conversion,
at least for some signal frequencies, and get exponential gain. To find the
required pump and signal frequencies to stop up-conversion, we simply assume
that the sum of the signal and pump frequencies equal the cutoff and find
ωp/ωc with respect to ωs/ωp, and likewise for the idler. We get

ωp + ωs = ωc Ô⇒ ωp

ωc
= 1

1 + ωs
ωp

, (6.1a)

ωp + ωi = ωc Ô⇒ ωp

ωc
= 1

2 − ωs
ωp

, (6.1b)

which is illustrated in Figure 6.1. Here we see that if the pump frequency is
smaller than half of the cutoff frequency, the pump, the signal and the idler
can all up-convert at least once. If the pump is larger than half of the cutoff,
the pump itself cannot up-convert, but the signal, the idler or both may still
up-convert. However, once the pump frequency becomes larger than 2/3 of
the cutoff frequency, there opens up a band around half of the pump frequency
where no up-conversion at all is possible, see the green area in Figure 6.1. To
find the width of this band, we solve Equations (6.1a) and (6.1b) for ωs/ωp
with respect to ωp/ωc, and find that the band is given by

ωc
ωp
− 1 < ωs

ωp
< 2 − ωc

ωp
. (6.2)

Expressed in terms of the detuning δ, recall Equation (3.32), we can write this
as ∣δ∣ < 3 − 2ωc

ωp
or ωp

ωc
> 2

3 − ∣δ∣ . (6.3)
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6.1 Eliminating up-conversion

To find the pump frequency to retrieve 1/3 or 2/3 of the full band, we set ∣δ∣
equal to 1/3 or 2/3 and solve Equation (6.3) for ωp. These bands are also
shown in Figure 6.1.

ωs/ωp

ωp/ωc

0 1
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2
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1
2

2
3

3
4

6
7

1

p, s, i

s is, i

No up-conversion

Figure 6.1: The regions of the presence/absence of up-conversion of pump, signal
and idler. In the light red region all three modes can be up-converted,
in the yellow region both signal and idler are up-converted but pump
is not, in the light yellow regions only up-conversion of either signal or
idler is possible, and in the green region no up-conversion takes place.

In short, the pump frequency must be larger than 2/3 of the cutoff frequency
in order to get a band without up-conversion, and specifically larger than 3/4
of the cutoff in order to get at least 1/3 of the full band without up-conversion.

If we try to use the continuous single idler model, described in Section 3.4,
to analyse what the gain would be for a pump at any of these large frequencies,
we encounter 2 problems. The first problem is that there is more and more
phase mismatch the closer to the cutoff we get. From Chapter 3 we know
that phase mismatch suppresses, and might prevent, exponential gain. The
second problem is that to work with the continuous wave equation, instead of
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the discrete wave equation, we assumed that all wavelengths are much larger
than the unitcell length, or equivalently all frequencies are well below the
cutoff frequency, recall Figure 2.3. Hence, we cannot use the continuous wave
equation to analyse the propagation and transmission in the up-conversion-
free regime; instead we must use the discrete wave equation.

6.2 General mixing equations
In this section we will derive general expressions for the mixing equations in
the discrete regime. We begin with the discrete wave equation, recall Equa-
tion (3.6), but we ignore the four-wave mixing term and implement the unitless
definitions used in Chapter 3. The discrete wave equation then reads

d2

dt̃2
ϕn − [C̃ d2

dt̃2
+ 1] (ϕn+1 − 2ϕn + ϕn−1)

= − c3
2
((ϕn+1 − ϕn)2 − (ϕn − ϕn−1)2) .

(6.4)

Now we use the ansatz that the node phases ϕn are given by

ϕn (t̃) =∑
m

ϕm,n (t̃) = 1
2∑m Am,nei(k̃mn−ω̃m t̃) + Ām,ne−i(k̃mn−ω̃m t̃) (6.5)

where ϕm,n is the node phase of mode m at node n.

6.2.1 Simplifying the left-hand side

First let us simplify the left-hand side of Equation (6.4). As we know from
the derivation of the dispersion relation, recall Section 2.3, Equation (6.4) de-
scribes the propagation of the free waves if the right-hand side of the equation
is equal to zero. However, since the right-hand side is not equal to zero we can
no longer assume constant amplitudes, just as in Chapter 3. Further analysis
is hence needed.

When applying the second time derivative to the node phases we get

d2ϕn

dt̃2
=∑

m

−ω̃2
mϕm,n, (6.6)
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and the left-hand side can hence be written as

LHS(6.4) =∑
m

−ω̃2
mϕm,n − (1 − C̃ω̃2

m) (ϕm,n+1 − 2ϕm,n + ϕm,n−1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶⋆
(6.7)

where the last parenthesis can be written as

⋆ = Am,nei(k̃mn−ω̃m t̃) (Am,n+1

Am,n
eik̃m − 2 + Am,n−1

Am,n
e−ik̃m) + c.c., (6.8)

where the amplitude fractions would be unity in a linear medium, but will
differ when there is frequency mixing.

6.2.2 Simplifying the right-hand side

Now let us simplify the right-hand side of Equation (6.4). Just as for the
continuous analogue in Chapter 3, the full expression of the right-hand side
will contain multiple terms and will be hard to fit on this page, and hard to
fully analyse. However, we can apply the same technique as before, and only
study the mixing terms resonant with each wave while neglecting the rest,
recall Section 3.3.2.

Assume we have the three waves m,q, r, and that the frequencies have
the relationship ω̃m = ω̃q − ω̃r. There will be two terms from (ϕn+1 − ϕn)2
and another two terms from (ϕn − ϕn−1)2 that will resonate with m. The
contribution for this mixing process for (ϕn+1 − ϕn)2 is hence

1
2
(Aq,n+1ei(k̃q(n+1)−ω̃q t̃) −Aq,nei(k̃qn−ω̃q t̃))

×1
2
(Ār,n+1e−i(k̃r(n+1)−ω̃r t̃) − Ār,ne−i(k̃rn−ω̃r t̃))

+1
2
(Ār,n+1e−i(k̃r(n+1)−ω̃r t̃) − Ār,ne−i(k̃rn−ω̃r t̃))

×1
2
(Aq,n+1ei(k̃q(n+1)−ω̃q t̃) −Aq,nei(k̃qn−ω̃q t̃))

=1
2

ei((k̃q−k̃r)n−ω̃m t̃) (Aq,n+1eik̃q −Aq,n) (Ār,n+1e−ik̃r − Ār,n)

(6.9)

and analogously for (ϕn − ϕn−1)2. For the transition ω̃m = ω̃q + ω̃r we instead
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get

1
2
(Aq,n+1ei(k̃q(n+1)−ω̃q t̃) −Aq,nei(k̃qn−ω̃q t̃))

×1
2
(Ar,n+1ei(k̃r(n+1)−ω̃r t̃) −Ar,nei(k̃rn−ω̃r t̃))

+1
2
(Ar,n+1ei(k̃r(n+1)−ω̃r t̃) −Ar,nei(k̃rn−ω̃r t̃))

×1
2
(Aq,n+1ei(k̃q(n+1)−ω̃q t̃) −Aq,nei(k̃qn−ω̃q t̃))

=1
2

ei((k̃q+k̃r)n−ω̃m t̃) (Aq,n+1eik̃q −Aq,n) (Ar,n+1eik̃r −Ar,n)

(6.10)

but if it is degenerate, ω̃m = 2ω̃q, we only get

1
2
(Aq,n+1ei(k̃q(n+1)−ω̃q t̃) −Aq,nei(k̃qn−ω̃q t̃))

×1
2
(Aq,n+1ei(k̃q(n+1)−ω̃q t̃) −Aq,nei(k̃qn−ω̃q t̃))

=1
4

ei(2k̃qn−ω̃m t̃) (Aq,n+1eik̃q −Aq,n)2 .
(6.11)

6.2.3 Constructing the discrete propagation equations

Now that we have simplified both sides of Equation (6.4), we can retrieve the
discrete analogue of the continuous propagation equations, Equation (3.24) in
Chapter 3. In the continuous limit we got differential equations, but now tak-
ing the discreteness of the TWPA into consideration we instead get difference
equations.

For each wave, we begin by only retrieving the resonant terms and then
divide the left-hand side with its exponential factor. The propagation equation

76



6.3 The discrete single idler model

for the amplitude of each wave m becomes

Am,n [ω̃2
m + (1 − C̃ω̃

2
m)(Am,n+1

Am,n

eik̃m − 2 + Am,n−1

Am,n

e−ik̃m)]
= ∑

q,r∶ ω̃m=ω̃q−ω̃r

c3

2
ei(k̃q−k̃r−k̃m)n

Aq,nĀr,n

× [(Aq,n+1

Aq,n

eik̃q − 1)( Ār,n+1

Ār,n

e−ik̃r − 1) − (1 − Aq,n−1

Aq,n

e−ik̃q)(1 − Ār,n−1

Ār,n

eik̃r)]
+ 1

2 ∑
q,r∶ ω̃m=ω̃q+ω̃r

c3

2
e−i(k̃m−k̃q−k̃r)nAq,nAr,n

× [(Aq,n+1

Aq,n

eik̃q − 1)(Ar,n+1

Ar,n

eik̃r − 1) − (1 − Aq,n−1

Aq,n

e−ik̃q)(1 − Ar,n−1

Ar,n

e−ik̃r)] .

(6.12)

6.3 The discrete single idler model
In this section we will study the single idler model, just as in Section 3.4, but
now using the discrete propagation equations. In other words, we will assume
that there are only three waves present: the pump ‘p’, the signal ‘s’ fulfilling
ω̃s < ω̃p and the idler ‘i’ given by ω̃i = ω̃p−ω̃s. We know from Chapter 5 that the
assumption that these waves are the only waves present is a bad assumption if
the waves can up-convert. But since we now will use the discrete propagation
equations, as described in Equation (6.12), we are no longer limited to small
frequencies and may place the pump close to the cutoff frequency, which will
open up a band free of up-conversion as described in Section 6.1.

6.3.1 The propagation equations
We begin by reusing the assumption of small signal amplitude, As0 ≪ Ap0,
which combined with a large pump frequency, ωp > 1

2ωc, lets us assume a con-
stant pump amplitude throughout the TWPA. Let us also reuse the definition
for the phase mismatch, ∆k̃ = k̃p − k̃s − k̃i, then the propagation equations for
the signal and the idler become

As,n

⎛⎝ω̃2
s + (1 − C̃ω̃2

s )(As,n+1

As,n
eik̃s − 2 + As,n−1

As,n
e−ik̃s)⎞⎠

= c3
2

ei∆k̃nAp,nĀi,n

× [(eik̃p − 1)( Āi,n+1

Āi,n
e−ik̃i − 1) − (1 − e−ik̃p)(1 − Āi,n−1

Āi,n
eik̃i)] ,

(6.13a)
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Ai,n [ω̃2
i + (1 − C̃ω̃2

i )(Ai,n+1

Ai,n
eik̃i − 2 + Ai,n−1

Ai,n
e−ik̃i)]

= c3
2

ei∆k̃nAp,nĀs,n

× [(eik̃p − 1)( Ās,n+1

Ās,n

e−ik̃s − 1) − (1 − e−ik̃p)(1 − Ās,n−1

Ās,n

eik̃s)] .
(6.13b)

6.3.2 Solving the propagation equations

To solve Equations (6.13a) and (6.13b), we take inspiration from Section 3.4
and use similar transformations,

As,n = Bs ⋅ ei∆k̃n/2 ⋅ eiλn, (6.14a)

Ai,n = B̄i ⋅ ei∆k̃n/2 ⋅ eiλn. (6.14b)

Here λ is very similar to the gain coefficient, with the relation λ = −ig, i.e.
a negative imaginary component of λ gives rise to exponential gain. This
way of defining λ simplifies the calculations at a later point. With these
transformations, the amplitude fractions become

As,n+1

As,n
= Bs ⋅ ei∆k̃(n+1)/2 ⋅ eiλ(n+1)

Bs ⋅ ei∆k̃n/2 ⋅ eiλn
= ei(λ+∆k̃/2), (6.15a)

As,n−1

As,n
= Bs ⋅ ei∆k̃(n−1)/2 ⋅ eiλ(n−1)

Bs ⋅ ei∆k̃n/2 ⋅ eiλn
= e−i(λ+∆k̃/2), (6.15b)

Ai,n+1

Ai,n
= B̄i ⋅ ei∆k̃(n+1)/2 ⋅ e−iλ̄(n+1)

B̄i ⋅ ei∆k̃n/2 ⋅ e−iλ̄n
= ei(∆k̃/2−λ̄), (6.15c)

Ai,n−1

Ai,n
= B̄i ⋅ ei∆k̃(n−1)/2 ⋅ e−iλ̄(n−1)

B̄i ⋅ ei∆k̃n/2 ⋅ e−iλ̄n
= e−i(∆k̃/2−λ̄). (6.15d)

Inserting these values of the fractions into Equations (6.13a) and (6.13b), they
are simplified to

Bs [ω̃2
s − 4 (1 − C̃ω̃2

s ) sin2(λ +∆k̃/2 + k̃s
2

)] = c3
2
ApBi

× [(eik̃p − 1) (ei(λ−∆k̃/2−k̃i) − 1) − (1 − e−ik̃p) (1 − ei(∆k̃/2+k̃i−λ))] (6.16a)
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and

Bi [ω̃2
i − 4 (1 − C̃ω̃2

i ) sin2(λ −∆k̃/2 − k̃i
2

)] = c3
2
ApBs

× [(e−ik̃p − 1) (ei(λ+∆k̃/2+k̃s) − 1) − (1 − eik̃p) (1 − e−i(λ+∆k̃/2+k̃s))] . (6.16b)

Let us note that

∆k̃/2 + k̃s = 1
2
(k̃p − k̃s − k̃i) + k̃s = 1

2
(k̃p + k̃s − k̃i) ,

∆k̃/2 + k̃i = 1
2
(k̃p − k̃s − k̃i) + k̃i = 1

2
(k̃p − (k̃s − k̃i) ), (6.17)

so by defining
κ̃ = k̃s − k̃i − 2λ, (6.18)

we can write Equations (6.16a) and (6.16b) as

Bs [ω̃2
s − 4 (1 − C̃ω̃2

s ) sin2( k̃p + κ̃
4
)] = c3

2
ApBi

× [(eik̃p − 1) (ei(k̃p−κ̃)/2 − 1) − (1 − e−ik̃p) (1 − ei(k̃p−κ̃)/2)] (6.19a)

and

Bi [ω̃2
i − 4 (1 − C̃ω̃2

i ) sin2( k̃p − κ̃
4
)] = c3

2
ApBs

× [(e−ik̃p − 1) (ei(k̃p+κ̃)/2 − 1) − (1 − eik̃p) (1 − e−i(k̃p+κ̃)/2)] . (6.19b)

We can rewrite Equations (6.19a) and (6.19b) using the matrix format,

[M1,1 M1,2M2,1 M2,2
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶M
[Bs
Bi
] = [00] (6.20)
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where

M1,1 = ω̃2
s − 4 (1 − C̃ω̃2

s ) sin2( k̃p + κ̃
4
) , (6.21a)

M1,2 = −c3
2
Ap [(eik̃p − 1) (e−i(k̃p−κ̃)/2 − 1) − (1 − e−ik̃p) (1 − ei(k̃p−κ̃)/2)] ,

(6.21b)

M2,1 = −c3
2
Ap [(e−ik̃p − 1) (ei(k̃p+κ̃)/2 − 1) − (1 − eik̃p) (1 − e−i(k̃p+κ̃)/2)] ,

(6.21c)

M2,2 = ω̃2
i − 4 (1 − C̃ω̃2

i ) sin2( k̃p − κ̃
4
) . (6.21d)

Now, if det(M) ≠ 0, the only solution to Equation (6.20) is Bs = Bi = 0, which
does not agree with Equation (6.14a) if the initial signal amplitude is nonzero.
Therefore we know that det(M) = 0, which gives us the equation

M1,1M2,2 −M1,2M2,1 = 0, (6.22)

which we numerically solve for λ.

6.3.3 Comparison with the continuous model
In Figure 6.2 we compare the numerical solution of Equation (6.22) derived
using the discrete theory for g = −Im(λ) with the solutions from the con-
tinuous equations, both for the nonlinear coupling coefficients as well as the
approximated coupling factors, recall Equations (3.25a) and (3.25b). We note
three key features in this figure:

1. In the small frequency limit, all solutions match. This is expected since
the continuous equations are the approximation of the discrete equations
in the small frequency limit, and the difference between linear coupling
and nonlinear coupling goes to zero when the frequencies become small.

2. More importantly, we can see that neither of the continuous equations
can predict the correct gain coefficient in the large frequency limit. More
specifically, the nonlinear coupling equations overestimate the gain co-
efficient, while the linear coupling equations underestimate the gain co-
efficient.
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6.4 Summary

3. Most importantly, it is theoretically possible to get exponential gain
for a pump at large frequencies, e.g. ωp = 3ωc/4 = 1.5ω0 where we get
1/3 of the full band free of up-conversion (recall Figure 6.1), as long as
the pump strength is large enough, χ ≈ 0.1. However, as we outline in
Ref. [47] and paper [A], it does not seem possible to achieve such a large
pump strength.
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Figure 6.2: The gain coefficient g = iλ from numerically solving Equation (6.22)
(solid) compared with the solution to Equation (3.24) with nonlinear
coupling factors (dotted) and with linear coupling coefficients (dashed)
for different pump strengths, χ = 0.05 (blue) and χ = 0.1 (orange). The
solutions are found for C̃ = 0, i.e. assuming that ωpl ≫ ω0, and δ = 0,
i.e. in the centre of the band.

6.4 Summary
In this chapter we noted that close to the cutoff frequency, there is a region
free of up-conversion, and we investigated whether this could be utilised to
retrieve the exponential gain originally predicted by Ref. [35]. A problem with
this region is that we have a strongly nonlinear dispersion relation, and the
wavelengths are on the order of the unitcell, so the continuous wave equation
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previously used cannot be used any longer. Instead, we studied three-wave
mixing in this region using the discrete equations. It turns out that it could
theoretically be possible to use the TWPA in this regime. However, the phase
mismatch is very large, and to overcome it, the pump strength also needs to
be very large. We estimate that it is not possible to achieve a large enough
pump strength to overcome the phase mismatch, although we do not prove
this.
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CHAPTER 7

Four-wave mixing

7Until now, this work has been focused on three-wave mixing. The other com-
monly used mixing process for TWPAs is four-wave mixing (4WM). There are
many similarities between three-wave mixing and four-wave mixing, but also
some fundamental differences. In this chapter we outline the basic theory for
four-wave mixing.

7.1 General four-wave mixing equations

For three-wave mixing, every mixing process is either an up-conversion pro-
cess, ω1+ω2 ↦ ω3, or a down-conversion process, ω3 ↦ ω1+ω2. There are also
degenerate processes which need to be treated slightly differently, ω2 ↔ 2ω1.
This allowed us to express all mixing processes for a mode m as two sums, one
corresponding to all down-conversion processes and one corresponding to all
up-conversion processes, recall Equation (3.24). In general, any 3WM mixing
process is captured by the frequency relation ωc = ωa ± ωb.

For four-wave mixing, it is more complicated. In 4WM, there are four
photons involved in every mixing process. Thus, the general frequency relation
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for four-wave mixing is
ωd = ωa ± ωb ± ωc. (7.1)

This gives us 3 distinct non-degenerate mixing transitions and 6 degenerate
ones, or 9 in total. Writing the general propagation equations for 4WM, like
an equivalent to Equation (3.24), would hence become very complicated. In-
stead, we will use a common simplification and limit the equations to the
degenerate transitions involving at least two pump photons. This simplifica-
tion is reasonable as long as we do not include up-conversion, since the signal
and idler amplitudes are assumed to be much smaller than the pump am-
plitude. If up-conversion is to be included, the story quickly becomes more
complicated, since we cannot assume that the pump harmonics are too small
to ignore, so we would need to include the equations for all the transitions
induced by pump harmonics as well.

7.2 The four-wave mixing single idler model

Let us study the single idler model for 4WM [15] where we only have 3 modes,
the pump, the signal and the idler, and we ignore all up-conversion processes.
With the 4WM idler defined as ωi = 2ωp−ωs, the transitions involving at least
two pump photons are

ωp = ωp + ωp − ωp, (7.2a)
ωs = ωs + ωp − ωp = ωp + ωp − ωi, (7.2b)
ωi = ωi + ωp − ωp = ωp + ωp − ωs. (7.2c)

Now solving Equation (3.12) for c3 = 0 and c4 ≠ 0, and using these transitions,
we get the propagation equations

A′p = i c4
8ω̃2

p
k̃5

pA
2
pĀp, (7.3a)

A′s = i c4
8ω̃2

s
(2ApĀpAsk̃

2
pk̃

3
s +A2

pĀik̃
2
pk̃sk̃i (2k̃p − k̃i) ei∆k̃dispx̃) , (7.3b)

A′i = i c4
8ω̃2

i
(2ApĀpAik̃

2
pk̃

3
i +A2

pĀsk̃
2
pk̃sk̃i (2k̃p − k̃s) ei∆k̃dispx̃) (7.3c)
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where ∆k̃disp = 2k̃p − k̃s − k̃i is the dispersion-induced phase mismatch. We
distinguish the dispersion-induced phase mismatch from the total phase mis-
match here because, as we will soon see, for four-wave mixing there is an
additional contribution to the total phase mismatch.

The solution to Equation (7.3a) is trivially found as

Ap = Ap0eiαpx̃ where αp = c4k̃
5
pAp0Āp0

8ω̃2
p

. (7.4a)

Now, by defining

κ = c4
8
k̃2

p ∣Ap0∣2 , αs = 2k̃3
s

ω̃2
s
κ, αi = 2k̃3

i
ω̃2

i
κ,

κs = k̃sk̃i (2k̃p − k̃i)
ω̃2

s
κ, κi = k̃sk̃i (2k̃p − k̃s)

ω̃2
i

κ

(7.4b)

the propagation equations can be reduced to the form

A′s = iαsAs + iκsĀiei(∆k̃disp+2αp)x̃, (7.5a)

A′i = iαiAi + iκiĀsei(∆k̃disp+2αp)x̃. (7.5b)

7.2.1 Solving the propagation equations
To solve Equations (7.5a) and (7.5b), we begin by making the transformation

As = Bseiαsx̃, (7.6a)
Ai = Bieiαix̃ (7.6b)

and introduce the four-wave mixing phase mismatch

∆k̃ =∆k̃disp + 2αp − αs − αi. (7.7)

Then we can transform Equations (7.5a) and (7.5b) into

B′s = iκsB̄iei∆k̃x̃, (7.8a)

B′i = iκiB̄sei∆k̃x̃. (7.8b)
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These equations have the same shape as Equations (3.27a) and (3.27b). We
can hence use the same solution as in Section 3.4.2. After solving Equa-
tions (3.27a) and (3.27b) we can transform them back to the original ampli-
tudes, and the solution is

As(x̃) = [As0 (cosh(gx̃) − i∆k̃
2g

sinh(gx̃)) + iκs

g
Āi0 sinh(gx̃)] ei(αs+∆k̃/2)x̃, (7.9a)

Ai(x̃) = [Ai0 (cosh(gx̃) − i∆k̃
2g

sinh(gx̃)) + iκi

g
Ās0 sinh(gx̃)] ei(αi+∆k̃/2)x̃, (7.9b)

where

g =
¿ÁÁÀκsκ̄i − (∆k̃

2
)2

. (7.10)

7.2.2 Phase mismatch for purely linear dispersion

The propagation equations and the solution for four-wave mixing are very
similar to the equations and the solution for three-wave mixing. There are
however some key differences. One difference is that the gain band stretches
from 0 to 2ωp. But another difference, of greater significance, is that of
the phase mismatch. For three-wave mixing, there was only the dispersion-
induced phase mismatch. For four-wave mixing, there are two contributions
to the phase mismatch, recall Equation (7.7): the dispersion-induced one, and
the Kerr-induced one,

∆k̃ = 2k̃p − k̃s − k̃i´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Dispersion-induced

+2αp − αs − αi´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Kerr-induced

. (7.11)

While the dispersion-induced phase mismatch can be made arbitrarily small,
the Kerr-induced cannot. This becomes clear when we study the solution for
purely linear dispersion, where k̃j = ω̃j . Then the dispersion-induced phase
mismatch disappears, ∆k̃disp = 0, and the total phase mismatch becomes

∆k̃ = 2αp − αs − αi = 2κ (ω̃p − ω̃s − ω̃i) = −2ω̃pκ. (7.12)
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7.2.3 Gain in the purely linear dispersion regime
If we express the frequencies in terms of the four-wave mixing detuning

ω̃s = (1 + δ)ω̃p, ω̃i = (1 − δ)ω̃p, δ = ω̃s − ω̃p

ω̃p
∈ [−1,1], (7.13)

the gain coefficient becomes

g =√ω̃sω̃iκ2 − ω̃2
pκ

2 = κω̃p
√−δ2 = iκω̃pδ. (7.14)

Now if we insert these simplified values of g and ∆k̃ into Equation (7.9a), and
use Ai0 = 0, we obtain the gain

G = ∣As(x̃)
As0

∣2 = cos2(κω̃px̃δ) + 1
δ2 sin2(κω̃px̃δ) . (7.15)

As we can see, the gain oscillates between 1 and 1/δ2, depending on the value
of the effective length κω̃px̃δ. In other words, not even when the dispersion-
induced phase mismatch is completely neglected do we get exponential gain.
This is because of the Kerr-induced phase mismatch, a phenomenon that does
not exist for three-wave mixing, which ensures that there is always too much
phase mismatch to get exponential gain.

7.2.4 Analysis of gain peaks and gain valleys
Since there is a detuning-dependency inside the parentheses of the gain for-
mula, Equation (7.15), the maximum gain 1/δ2 is not achieved for all frequen-
cies simultaneously. Thus, for large values of κω̃px̃, there will be gain peaks
and valleys at different frequencies, see Figure 7.1.

If one wants to avoid gain valleys, one can ensure that κω̃px̃ ≤ π. However,
then the maximum gain is limited to 1+π2 ≲ 10.87 ≈ 10.36 dB. More generally,
the maximum gain is 1 + κ2ω̃2

px̃
2, and the width of the central gain peak is

given by ∣δ∣ ≤ π
κω̃px̃

. Thus, if we can accept a smaller bandwidth of the central
gain peak, we can get a larger maximum gain. If κω̃px̃ = nπ, the maximum
gain is 1 + n2π2 and the bandwidth 2δ is limited as ∣δ∣ ≤ 1

n
.

For ∣δ∣ ≤ 1
2 , the maximum gain is 1 + 4π2 ≈ 40 ≈ 16 dB. For ∣δ∣ ≤ 1

3 , the
maximum gain is 1 + 9π2 ≈ 90 ≈ 19 dB. As we can see, we have to heavily
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reduce the bandwidth to increase the maximum gain with only a few decibel,
see Figure 7.1.
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Figure 7.1: The gain for four-wave mixing in the linear dispersion regime.

7.3 A four-wave mixing single input study
In Section 7.2 we studied the single idler model for 4WM, and saw that 4WM
has an additional component to the phase mismatch, compared to 3WM, due
to Kerr effect. In the purely linear regime, the dispersion-induced phase mis-
match was completely neglected, we saw that this additional phase mismatch
prevents exponential gain.

A question one might now ask is: What happens when we include up-
converted modes and the dispersion-induced phase mismatch? For 3WM, the
up-converted modes made a fundamental difference. To try to answer this
question, we turn to the case of a single input in the quasilinear regime. Here
we present a shorter version of the work analysis done in Section 5.1, but now
for 4WM. This work is also presented in paper [A].

As we discussed in Section 7.1, it is hard to cover all mixing processes for
4WM, even in the case of a single input. For only two harmonics of the pump,
which for 4WM is the first harmonic and the third harmonic, the propagation
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equations are

A′p = i c4
8ω̃2

p
(k̃5

pA
2
pĀp − k̃3pk̃

4
pA3pĀ

2
pei(k̃3p−3k̃p)x̃) , (7.16a)

A′3p = i c4
8ω̃2

3p
(2k̃3

3pk̃
2
pA3pApĀp − 1

3
k̃2

3pk̃
3
pA

3
pe−i(k̃3p−3k̃p)x̃) . (7.16b)

Now, assuming that we are in the quasilinear regime, where k̃j ≈ ω̃j except for
the phase mismatches where we use the next order approximation, and with
similar transformations as the ones made in Section 5.1,

ξ(x̃) = c4ω̃
3
p

8
A2

p0x̃, (7.17a)

amp(ξ(x̃)) =mAmp(x̃)
Ap0

, (7.17b)

µ = 8 k̃3p − 3k̃p

c4ω̃3
pA

2
p0
, (7.17c)

we can transform Equations (7.16a) and (7.16b) into

a′p = i (a2
pāp − 3a3pā

2
peiµξ) , (7.18a)

a′3p = 3i(2a3papāp − 1
3
a3

pe−iµξ) . (7.18b)

Here we have only one parameter, µ, which corresponds to the effective
dispersion-induced phase mismatch. As we can see in Figure 7.2, there is
a fundamental difference between 3WM and 4WM for up-conversion into the
next harmonic. For 3WM, when µ gets very small, more and more of the first
harmonic gets up-converted, until it is completely up-converted.

However, for 4WM, the up-conversion is limited. Even for µ = 0, which
corresponds to the purely linear dispersion regime, only about 25 % of the
pump is up-converted. By comparing it with the single input study for 3WM,
we see that µ = 0 for 4WM is very similar to µ = 3 for 3WM. But if the
Kerr-related terms are neglected from Equations (7.18a) and (7.18b), we get
a similar behaviour as the one of 3WM. Thus we conclude, although not all
of the pump harmonics are included in the equations, that up-conversion is
much less of a problem for 4WM due to Kerr effect.
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Figure 7.2: Comparison of the solutions for two harmonics for 3WM and 4WM.

7.4 Reversed Kerr
As we saw in Section 7.2, even for purely linear dispersion, the phase mismatch
is too large to give exponential gain for 4WM. One way to solve this problem
is with dispersion engineering, which we will discuss in Chapter 8. However,
there is another solution that does not require any dispersion engineering,
which is called ‘reversed Kerr’ [25].

The problem with the phase mismatch is that both contributions are neg-
ative. Now recall the definitions of αp, αs, αi, Equations (7.4a) and (7.4b).
Note that all α:s include the factor κ, which in turn contains the mixing co-
efficient c4. In other words, if we managed to change the sign of the 4WM
coefficient, the Kerr-induced phase mismatch would change its sign, and we
could make the two contributions to the phase mismatch cancel each other
out:

Regular Kerr: ∆k̃ =∆k̃disp´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶≤0

+∆k̃Kerr´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶≤0

≤ 0, (7.19a)

reversed Kerr: ∆k̃ =∆k̃disp´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶≤0

+∆k̃Kerr´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶≥0

≈ 0. (7.19b)
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Now recall Figures 4.4 and 4.7. As we can see, both the rf-SQUID and
the SNAIL have the ability to provide a negative four-wave mixing coefficient
within a range of fluxes. Especially, at half a flux quantum, the three-wave
mixing coefficient is zero and we get pure 4WM with a negative mixing coef-
ficient.

However, we do not want the Kerr-induced phase mismatch to be too large,
we only want it to cancel the dispersion-induced phase mismatch. Further-
more, the Kerr-induced phase mismatch changes with pump power. In order
to design a reversed Kerr amplifier, one hence needs to ensure that the Kerr-
induced phase mismatch minimises the total phase mismatch for the desired
frequencies at the pump power giving the desired gain.

7.5 Summary
In this chapter we have studied four-wave mixing (4WM). We first discussed
how the general propagation equations are significantly more complicated for
4WM due to the 9 different kinds of conversion processes that can happen,
compared with the 3 conversions that can happen for 3WM. Then we solved
the propagation equations for the single idler model, and showed that even for
purely linear dispersion, the phase mismatch is too large for 4WM to deliver
an exponential gain due to Kerr effect. Next we looked at a single input for
two harmonics, the first and the third, and showed that even for purely linear
dispersion, the up-conversion is still limited due to Kerr effect. Kerr effect
hence has both a positive and a negative effect. On the one hand, it prevents
exponential gain. But on the other hand, it also suppresses up-conversion. If
one can solve phase matching for the pump, the signal and the idler, without
enabling up-conversion, one should hence get an exponential gain with small
to no up-conversion. Finally we had a quick look at reversed Kerr, and noted
that if the sign of the 4WM coefficient was changed, Kerr effect could start
helping with phase matching.
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CHAPTER 8

Dispersion engineering

8

Until now, we have looked at pure three-wave mixing and pure four-wave mix-
ing for the standard TWPA structure, recall Figure 3.1. We have showed that
neither 3WM nor 4WM can deliver an exponential gain using the standard
TWPA structure, although for different reasons. In this chapter, we are going
to look at how we can use dispersion engineering to get an exponential gain,
both for 3WM and 4WM.

8.1 The phase mismatches
First let us outline what the phase mismatch is, so that we know what change
is necessary. In Figure 8.1 we have plotted the phase mismatch as a function
of detuning. Remember that the detuning is defined differently for the two
processes, recall Equations (3.32) and (7.13). As can be seen, for 3WM the
phase mismatch is always positive, while for 4WM it is always negative. For
3WM the phase mismatch is the largest at zero detuning, while for 4WM it
is the largest at maximal detuning. For 4WM there is also the issue that
Kerr effect increases the phase mismatch with the pump power. For small fre-
quencies, the Kerr-induced phase mismatch shifts the whole phase mismatch
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curve down, while for reversed Kerr the whole curve shifts up. The needed
correction to the phase mismatch for 4WM is thus dependent on the pump
power. To improve phase matching for 3WM we would need to add a negative
number to the phase mismatch, while for 4WM with regular Kerr we would
need to add a positive number.
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Figure 8.1: The phase mismatches in arbitrary units for 3WM and 4WM as a
function of detuning δ at zero pump power. When the pump power is
non-zero, Kerr effect will decrease the value of the 4WM phase mis-
match, while reversed Kerr will increase it.

8.2 Resonant phase matching

One technique to give the needed correction to the phase mismatch is resonant
phase matching (RPM) [19]. To implement RPM, we exchange the single
shunt capacitor C0 for a capacitor C1 in parallel with a weakly coupled LC-
oscillator, see Figure 8.2. Here the sum of the two capacitances is equal to
the single capacitance in the standard unitcell, i.e. C0 = C1 +Cc, to ensure a
similar unitcell impedance. By making this change, we open up a stopband
around the resonance which we can use for phase matching.
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L0
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↦
L0

C C1

(b)

Cc

Cosc Losc

Figure 8.2: (a) The regular unitcell. (b) The RPM unitcell.

8.2.1 The dispersion relation

To find the dispersion relation of the RPM unitcell, we use cos(k̃) = A+D
2 [52],

where A and D are the elements (1,1) and (2,2) of the transmission matrix
and k̃ = ka is the wave number normalised to the RPM unitcell. Then the
dispersion relation for a TWPA with the RPM unitcell, Figure 8.2b, is given
by

cos(k̃) = 1 − 1
2
⋅ iωL0
1 − ω2L0C

⋅ ⎛⎝iωC1 + iωCc (1 − ω2LoscCosc)
1 − ω2Losc (Cc +Cosc)

⎞⎠
= 1 − 1

2
⋅ ω2/ω2

0
1 − ω2/ω2

pl
⋅ 1 − νω2/ω2

r
1 − ω2/ω2

r

(8.1)

where
ω2

0 = 1
L0C0

, ω2
pl = 1

L0C
, ω2

r = 1
Losc (Cc +Cosc) , (8.2)

where ωr is the resonance frequency of the RPM feature, and

ν = 1 − C2
c(C1 +Cc) (Cc +Cosc) = 1 − Cc

C0

Cc
Cc +Cosc

. (8.3)

Further simplification yields

4 sin2( k̃
2
) = ω2/ω2

0
1 − ω2/ω2

pl
⋅ 1 − νω2/ω2

r
1 − ω2/ω2

r
. (8.4)
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Rearranging this equation in terms of ω yields a second degree polynomial
with respect to ω2,

ω4 ⋅
⎡⎢⎢⎢⎢⎢⎣

4 sin2( k̃
2)

ω2
plω

2
r
+ ν

ω2
0ω

2
r

⎤⎥⎥⎥⎥⎥⎦
−ω2 ⋅⎡⎢⎢⎢⎣4 sin2( k̃

2
) ω2

r + ω2
pl

ω2
rω

2
pl
+ 1
ω2

0

⎤⎥⎥⎥⎦+4 sin2( k̃
2
) = 0. (8.5)

One can solve Equation (8.5) as it is, but we will simplify it first. The effect
of the plasma frequency ωpl is, similar to before (recall Figure 2.3), that it
only pushes the bands to lower frequencies. We ignore this effect for now by
letting ωpl → ∞, which is equivalent with setting C̃ = 0. We also express
Equation (8.5) in terms of normalised frequencies ω̃ = ω/ω0 and multiply the
equation with ω̃2

r . Then it simplifies to

νω̃4 − ω̃2 ⋅ [ω̃2
r + 4 sin2( k̃

2
)] + 4ω̃2

r sin2( k̃
2
) = 0 (8.6)

which has two solutions,

ω̃2± = 1
2ν

⎡⎢⎢⎢⎢⎢⎣
ω̃2

r + 4 sin2( k̃
2
) ±
¿ÁÁÀ(ω̃2

r + 4 sin2( k̃
2
))2 − 16νω̃2

r sin2( k̃
2
)
⎤⎥⎥⎥⎥⎥⎦
. (8.7)

8.2.2 RPM phase corrections

Let us study the solutions of Equation (8.7) for different values of ν. For
ν = 1, corresponding to no coupling to the resonators, we retrieve the standard
dispersion relation derived in Section 2.3. However, for ν < 1 each resonator
is coupled to each unitcell and a stopband opens up around the resonance
frequency ω̃r, see Figure 8.3. The ω̃− solutions correspond to the lower band
and the ω̃+ solutions correspond to the upper band. To get the frequency
bands, we solve Equation (8.7) for the full range of wave numbers k̃ ∈ [0, π].
While ω̃±(π) gets a fairly long expression which we will not write down here,
and ω̃−(0) is trivially equal to 0, it is worth pointing out that ω̃+(0) = ω̃r/√ν.
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Figure 8.3: The dispersion relation, as given by Equation (8.7), for ω̃r = 1.5, ωpl =∞ and different values of ν.
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Figure 8.4: The RPM dispersion relation versus the standard dispersion relation.
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with the standard dispersion relation.
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Now, assume a weakly coupled resonator, e.g. ν = 0.99. Then the disper-
sion relation is unaffected for most frequencies, except the ones close to the
resonance. By placing the pump below the resonance, one can hence get an
increase in its wave number, and in turn the phase mismatch, see the yellow
circle in Figure 8.4. This is what is needed for 4WM, and was demonstrated
in Ref. [20]. But by placing the pump above the resonance, one can instead
get a decrease in its wave number, and in turn the phase mismatch, see the
purple circle in Figure 8.4. This is what is needed for 3WM.

8.2.3 Resonant phase matching for three-wave mixing
To use RPM for 4WM, one puts the pump slightly below the resonance, which
gives an increase of the pump wave number, which can in turn both compen-
sate for the Kerr effect and move the points of perfect phase matching away
from zero detuning. This gives an exponential gain over a large band [19],
[20].

For 3WM the picture is different. While minimising the phase mismatch is
advantageous, the larger issue for 3WM is that of up-conversion, as shown in
Chapter 5. Since the wave numbers, and in turn the propagation equations,
are mostly unaffected by the resonance of the RPM, this issue still persists
when using RPM. An approach to get around this is to place the pump, and
in turn the resonance, close to the cutoff, as illustrated in Figure 6.1. Then
the cutoff suppresses the up-conversion processes and the RPM minimises the
phase mismatch in this regime. However, to verify that this would indeed
work, one has to solve the discrete wave equation including the RPM feature,
which is presented in paper [A].

8.2.4 Resonant phase matching with distributed resonators
An alternative approach to adding weakly coupled LC-oscillators, as proposed
above, is to add distributed resonators instead [21]. The resonators have a
similar impact on the dispersion relation, and can hence be used for the same
purpose. The problem with distributed resonators, and the reason to why
we have not taken this approach, is that they are physically much larger than
lumped-element LC-oscillators, and they are needed in several of the unitcells.
Therefore they are much harder to fit on the chip, making them impractical
to use in an actual device.
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8.3 Periodic modulation
An alternative approach to RPM is that of periodic modulation. In periodic
modulation, we replace the regular unitcell with a supercell containing n sub-
cells which are not all identical, see Figure 8.5. This will in turn create n bands
in the dispersion relation, and n−1 stopbands, and the dispersion around the
stopbands is similar to that of the RPM. This is shown experimentally for
n = 3 subcells in paper [B].

L0

C C0

(a)

↦

(b)

L1

C1 C0,1

L2

C2 C0,2

Figure 8.5: (a) The regular unitcell. (b) A supercell with 2 subcells.

8.3.1 The dispersion relation
To derive the dispersion relation for the modulated chain, let us make some
simplifications. Let us assume n = 2 subcells, neglect the plasma frequencies
C1 = C2 = 0 and identical shunt capacitances C0,1 = C0,2 = C0. The only
difference between the subcells is thus the inductances, L1 and L2. To find
the dispersion relation, we first find the transmission matrix. The transmission
matrix of the supercell is given by

[A B

C D
] = [1 − ω2L1C0 iωL1

iωC0 1 ] [1 − ω
2L2C0 iωL2

iωC0 1 ]
= [1 − ω2C0 (2L1 +L2) + ω4L1L2C

2
0 iωL1 + iωL2 (1 − ω2L1C0)

iωC0 (2 − ω2L2C0) 1 − ω2L2C0
] . (8.8)

Using cos(2k̃) = A+D
2 [52], where k̃ = ka is the normalised wave number over

a subcell, a is the length of a subcell and the factor 2 comes from having 2
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subcells, we hence get

cos(2k̃) = 1 − ω2C0 (L1 +L2) + 1
2
ω4L1L2C

2
0 . (8.9)

Let us define
ω2

1 = 1
L1C0

, ω2
2 = 1

L2C0
. (8.10)

Then Equation (8.9) can be written as

4 sin2(k̃) = 2ω2 ( 1
ω2

1
+ 1
ω2

2
) − ω4

ω2
1ω

2
2
. (8.11)

Rearranging this equation in terms of ω yields a second degree polynomial
with respect to ω2,

ω4 − ω2 ⋅ 2 (ω2
1 + ω2

2) + 4ω2
1ω

2
2 sin2(k̃) = 0. (8.12)
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Figure 8.6: The dispersion relation for different values of ω̃2 = ω2/ω1. The stopband
is in the frequency range ω̃ ∈ (√2, ω̃2

√
2) and the cutoff frequency is

at ω̃ =√2 + 2ω̃2
2 .
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8.3 Periodic modulation

The solutions are given by

ω2± = ω2
1 + ω2

2 ±
√(ω2

1 + ω2
2)2 − 4ω2

1ω
2
2 sin2(k̃), (8.13)

which are shown in Figure 8.6 for multiple values of ω̃2 = ω2/ω1. Note that
we have plotted k̃, which is the wave number of one subcell, as a function
of ω̃ = ω/ω1. Solving Equation (8.13) for k̃ ∈ {0, π

2 , π}, and assuming that
ω2 > ω1, we get that the frequency bands in terms of ω̃ = ω/ω1 are

ω̃− ∈ [0,√2] , ω̃+ ∈ [ω̃2
√

2,
√

2 + 2ω̃2
2] . (8.14)

8.3.2 Periodic modulation for three-wave mixing
Periodic modulation for three-wave mixing is a technique used in several dif-
ferent TWPA designs [28], [29], [33], [59], although for different reasons, and
it is more common to modulate the shunt capacitances. Since periodic modu-
lation has the possibility to create as many stopbands as desired, one can use
it to create several stopbands with different purposes. The first stopband can
be used to get the phase mismatch correction. The second stopband can be
used to suppress up-conversion. If the second stopband is not wide enough,
more stopbands at higher frequencies can further suppress the up-conversion
processes.

What we did theoretically in paper [A] was instead to use only 2 subcells,
and place the stopband close to the cutoff, similar to what we did with resonant
phase matching. This way, the cutoff suppresses the up-conversion processes
while the stopband is used to give the phase mismatch correction.

Since the phase mismatch for three-wave mixing is inherently small for small
frequencies and the limiting factor for 3WM is the up-conversion processes,
one can skip using a stopband to give the phase mismatch correction, and
instead use the first stopband to suppress up-conversion. This is what we
studied in paper [B].

8.3.3 Comparison with resonant phase matching
Periodic modulation and resonant phase matching have similarities and differ-
ences. The similarity is that they both can open up a stopband which gives a
perturbation to the dispersion relation, which can be used for phase matching.

101



Chapter 8 Dispersion engineering

An advantage with periodic modulation is that it is easy to integrate it to the
regular design: one simply adds a small change periodically to the unitcells.
Another advantage is that it can easily be used to create many stopbands
with more functions than the stopband of resonant phase matching. A dis-
advantage with periodic modulation is that the phase mismatch corrections
are fairly small, while for resonant phase matching the wave number of the
pump can in theory be any value between 0 and π. Thus, periodic modulation
can only give phase mismatch corrections to an extent, while resonant phase
matching can give a much larger range of corrections.

8.4 Summary
In this chapter we first looked at the phase mismatches for three-wave mixing
as well as four-wave mixing. We noted that for four-wave mixing, an increase
of the pump wave number is necessary to minimise the phase mismatch, while
for three-wave mixing a decrease of the pump wave number is necessary. Then
we presented two ways of achieving this: Either by adding weakly coupled
oscillators/resonators, or by periodically modulating the chain. Both of these
have the possibility to give corrections to the pump wave number, and in turn
the phase mismatch, in order to enable exponential gain.
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CHAPTER 9

Impedance matching, filters and frequency multiplexing

9

In this chapter we will look at the necessity of impedance matching and mi-
crowave filter theory. The filter theory will help us both with designing the
necessary impedance matching networks that our TWPAs operating with fre-
quencies close to the cutoff frequency will require, as well as designing fre-
quency multiplexers which we will use in Chapter 10.

9.1 Impedance matching
When an electromagnetic field passes from one medium to another, there may
occur reflections [52]. The reflection coefficient for a field going from medium 1
to medium 2 is given by

Γ = Z2 −Z1
Z2 +Z1

(9.1)

where Z1 and Z2 are the characteristic impedances of the two media, and Γ
is equivalent to the scattering parameter S11, recall Equation (2.24a). When
the two media have the same impedances, there are no reflections. Then the
two media are impedance matched.

Impedance matching is of high importance when designing amplifiers, since
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if the amplifier is not impedance matched to its environment, reflections occur
at the output and/or the input, which can make the amplifier unstable [52].
For the TWPA suggested in Chapter 8 and paper [A], using frequencies close
to the cutoff frequency, three-wave mixing and resonant phase matching, we
need impedance matching both in the signal range (∼ ωc/4 to ∼ 2ωc/4) and at
the pump frequency (∼ 3ωc/4).

We saw in Chapter 2 that it is easy to impedance match a discrete transmis-
sion line for frequencies well below the cutoff frequency. It is also possible to
impedance match the discrete chain close to the cutoff frequency, but at the
cost of an impedance mismatch at smaller frequencies, recall Section 2.4.3.
Ensuring impedance matching in the full frequency range ωc/4 to 3ωc/4 is
hence going to be problematic.

9.2 Microwave filter theory

To be able to impedance match our TWPA prototype, it is instructive to look
at microwave filter theory.

. . .

. . .

g0 gn+1g1 g3 gn

g2 g4

(a)

. . .

. . .

g0 gn+1g2 g4

g1 g3 gn

(b)

Figure 9.1: Definition of the prototype filter parameters for odd order filters. (a) A
prototype with a π-structure. (b) A prototype with a T -structure.
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9.2 Microwave filter theory

Microwave filters are often synthesised using lumped-element low-pass filter
prototypes, which are later transformed into the desired filter [60]. An n:th
order prototype is described by its coefficients gk for k = {0,1, ..., n + 1}, see
Figure 9.1.

Here g0 and gn+1 are the characteristic impedances of the source and the
load, while gk for k = {1,2, ..., n} are the values of the inductances and the
capacitances of the filter. The filter prototype is defined this way because then
the two prototypes in Figure 9.1a and Figure 9.1b have identical responses.

9.2.1 The Butterworth and Chebyshev filters

What the values of gk should be depends on the filter design. Here we will not
go through filter synthesising techniques as it is out of the scope of this thesis,
but give concrete examples of two common filters, the Butterworth filter and
the Chebyshev filter [60].

For a Butterworth filter of order n, the filter coefficients are

g0 = gn+1 = 1, gk = 2 sin(π 2k − 1
2n
) for k ∈ [1, n] ∩N. (9.2)

This is also known as a maximally flat filter, because its frequency response
is as flat as possible.

A Chebyshev filter is not maximally flat, but has a transmission that stays
within a desired ripple level, and instead a higher attenuation in the stopband.
To design a Chebyshev filter, we hence need to decide a desired ripple level.
For a ripple level ε in dB, one first computes

β = ln(coth ε ln(10)
40

) , γ = sinh( β
2n
) ,

ak = 2 sin(π 2k − 1
2n
) , bk = γ2 + sin2(kπ

n
) . (9.3a)
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Then the filter coefficients can be computed as

g0 = 1, g1 = 2a1
γ
,

gk = 4ak−1ak

bk−1gk−1
for k ∈ [2, n] ∩N,

gn+1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if n odd,

coth2(β
4
) , if n even.

(9.3b)

See examples of the filter coefficients in Figure 9.2a, and the corresponding
transmission of these filters in Figure 9.2b.
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Chebyshev ε = 0.001
Butterworth

(a)
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S
21

(d
B)

Chebyshev ε = 0.1
Chebyshev ε = 0.001
Butterworth

(b)

Figure 9.2: Examples of filters. (a) The gk coefficients for filters with order n = 49.
(b) The transmission of the filters.

9.2.2 Filter transformations
Once the filter prototype is determined, one transforms it into either a lowpass,
bandpass, highpass or bandstop filter [61]. To make a lowpass filter with the
cutoff frequency ωc, one sets the inductances and capacitances according to

Lk = gk
Z0
ωc
, Ck = gk

Y0
ωc

(9.4a)
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where ωc is the cutoff frequency, Z0 the characteristic impedance of the filter
and Y0 = Z−1

0 is the characteristic admittance.
To make a highpass filter, one changes the order of the inductances and

capacitances such that the filter has series capacitors and shunt inductors,
with the values

Lk = 1
gk

Z0
ωc
, Ck = 1

gk

Y0
ωc
. (9.4b)

To make a bandpass filter, one first determines the desired band ω1 and ω2.
Then one calculates

ω12 =√ω1ω2, α = ω12
ω2 − ω1

. (9.4c)

Finally, each series inductor is replaced by a series LC-oscillator with the
inductance Lk1 and the capacitance Ck1, and each shunt capacitor is replaced
by a parallel LC-oscillator with the inductance Lk2 and the capacitance Ck2,
where the inductances and capacitances are given by

Lk1 = αgk
Z0
ω12

, Ck1 = 1
αgk

Y0
ω12

, Lk2 = 1
αgk

Z0
ω12

, Ck2 = αgk
Y0
ω12

. (9.4d)

To make a bandstop filter, one calculates the same α and ω12 as for the
bandpass filter, see Equation (9.4c). Then each series inductor is replaced by
a parallel LC-oscillator with the inductance Lk1 and the capacitance Ck1, and
each shunt capacitor is replaced by a series LC-oscillator with the inductance
Lk2 and the capacitance Ck2, where the inductances and capacitances are
given by

Lk1 = gk

α

Z0
ω12

, Ck1 = α

gk

Y0
ω12

, Lk2 = α

gk

Z0
ω12

, Ck2 = gk

α

Y0
ω12

. (9.4e)

9.3 Impedance matching networks
As mentioned in Section 9.1, we need to solve the issue of impedance matching
to prevent our TWPA prototype from being unstable. The aim is to amplify
the frequency band ωc/4 to 2ωc/4, which would be free of up-conversion using
a pump at 3ωc/4. Therefore we need to impedance match the full ωc/4 to
3ωc/4 band.

The TWPA has the structure of the discrete transmission line, recall Chap-
ter 2. The asymmetric discrete transmission line has the structure of an even
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order low-pass filter with n = 2N where gk = 2 for all k ∈ [1,2N] ∩N, and N

is the number of unitcells. The symmetric discrete transmission line has the
structure of an odd order low-pass filter with n = 2N + 1 where g1 = g2N+1 = 1
and gk = 2 for all k ∈ [2,2N] ∩N.

We see in Figure 9.2a that appropriately designed filters in general have
smaller gk-values at the edges compared to the middle. Especially a Cheby-
shev filter with a small ε has approximately constant gk-values in the middle
of the filter, and only different and smaller gk-values at the edges. Thus,
taking inspiration from the Chebyshev filter using n = 1000 and ε = 10−5, we
determine the gk-values of the impedance matching networks as

g1 = 0.44, g2 = 1.10, g3 = 1.48, g4 = 1.67,
g5 = 1.78, g6 = 1.84, g7 = 1.89.

(9.5)

Then we build the TWPA by using 3, 5 or all 7 of these values, followed by
the TWPA itself using gk = 2 for both the inductances and the capacitances,
followed by the same gk-values as at the input, but in reverse order. The full
structure of a TWPA with N unitcells and 3 additional impedance matching
components would hence have the gk-values

g1 = 0.44, g2 = 1.10, g3 = 1.48, gj = 2.00,
g2N+3 = 1.48, g2N+4 = 1.10, g2N+5 = 0.44.

(9.6)

for j ∈ [4,2N + 2] ∩ N. When adding these additional impedance matching
components the transmission, and in turn the impedance matching, quickly
becomes better, see the transmission curves in Figure 9.3.

However, this is only the impedance without the pump and the gain. Once
we start pumping the TWPA, there is an additional impedance mismatch
arising. To understand this impedance mismatch, it is instructive to study
the pumpistor model [42], [62]. When we pump the TWPA, the nonlinear
inductive elements no longer act as regular linear inductors, but can be mod-
elled as a linear inductor in parallel with a complex-valued impedance, the
‘pumpistor’, see Figure 9.4. It is the impedance of the pumpistor that ex-
plains the gain-induced impedance mismatch. The real part of the pumpistor
impedance is negative, i.e. it behaves as a resistor with a negative resistance,
which explains the gain.
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Figure 9.3: The transmission of the symmetric discrete transmission line with 49
unitcells and the discrete transmission line with different number of
impedance matching components added.

L0

Not pumped

Pumped

L0

−R
L′

L0

The pumpistor

The linear inductance

Figure 9.4: An illustration of the pumpistor model. When the nonlinear inductor
is not pumped, it acts as a regular inductor. When the nonlinear
inductor is pumped, it acts a the same inductor in parallel with a
complex-valued impedance.

We can see in Figure 9.5 that the impedance mismatch arising from the
pumpistor is symmetric around the origin in a Smith chart. This means that
the impedance is highly frequency-dependent, and shows both a capacitive
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and an inductive behaviour. Therefore we cannot simply solve this impedance
mismatch by adjusting the inductances or capacitances of the TWPA. Nor can
it be solved by adding more units to the impedance matching networks, since
adding a component to adjust the impedance at one particular frequency will
make it worse for a frequency at the opposite side of the Smith chart. To solve
the issue of this impedance mismatch, we must implement more complicated
techniques, which we discuss in Chapter 10 and paper [C].

0.2 0.5 1 2 5
0

0.2

0.5
1

2

5

−0.2

−0.5 −1
−2

−5

Ip = 50 nA
Ip = 80 nA
Ip = 110 nA

Figure 9.5: A Smith chart of the simulated reflection and impedance of a pumped
TWPA, with 100 unitcells and a pump at 12 GHz, for signal frequencies
in the range 4 to 8 GHz. For small pump currents, corresponding to a
small gain, the TWPA is approximately impedance matched. For large
pump currents, corresponding to a large gain, the impedance mismatch
becomes large and the TWPA becomes unstable.

9.4 Frequency multiplexing
Another useful concept from microwave filter theory is frequency multiplexing.
A frequency multiplexer [60] is an n + 1 port device that combines several
filters into one, see Figure 9.6, n ≥ 2 is the number of frequency bands. The
multiplexer has one ‘common’ port and n ports associated with each filter.
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9.4 Frequency multiplexing

Ideally, when a signal enters at the common port, it is fully transmitted to the
port associated with its frequency. When a signal enters at one of the filter
ports, it should ideally get transmitted to the common port only if it is within
the appropriate frequency range of the filter, and otherwise get reflected.

COMMON

≁∼ f < f1

∼≁≁ f1 < f < f2

∼≁≁ f2 < f < f3

⋮∼≁ fn−1 < f

Figure 9.6: A generic frequency multiplexer with n frequency bands. A microwave
with frequency f that enters at the common port is transmitted to the
appropriate filter port associated with its frequency. A microwave with
frequency f that enters at one of the filter ports is transmitted to the
common port if it is within the band associated with the filter port,
otherwise it is reflected.

If n = 2 we get what is called a diplexer. The diplexer has three ports: (1) the
common port, (2) a low-pass port and (3) a high-pass port, see Figure 9.7.

LP

gLP,1 gLP,3

gLP,2 gLP,4

HP

gHP,1 gHP,3

gHP,2 gHP,4

COMMON

Figure 9.7: A generic 4th order diplexer schematic.
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The scattering matrix of the ideal diplexer is

S =
⎡⎢⎢⎢⎢⎢⎣

0 F 1 − F
F 1 − F 0

1 − F 0 F

⎤⎥⎥⎥⎥⎥⎦
(9.7)

where F is equal to 1 when f < f1 and 0 when f > f1. If n = 3 we instead get
what is called a triplexer, which has a second transition frequency f2 and a
bandpass port.

A naive approach to make a frequency multiplexer is to simply connect
several regular filters to each other in parallel. This is not a good approach,
however, since the filters will interact with each other giving a very poor
performance [60]. We need to modify the equations for the gk coefficients to
generate gn+1 =∞, and then we connect the side associated with gn+1 to the
common port1. For a Butterworth filter, one first computes

ak = sin(π 2k − 1
2n
) , ck = cos2(πk

2n
) . (9.8)

Then the filter coefficients are

g1 = a1, gn+1 =∞, gk = akak−1
ck−1gk−1

. (9.9)

For a Chebyshev filter with ripple level ε in dB, one first computes the same
β and γ as in Equation (9.3a), but now also

ak = sin(π 2k − 1
2n
) , dk = [γ2 + sin2(πk

2n
)] cos2(πk

2n
) . (9.10)

Then the filter coefficients are

g1 = a1
γ
, gn+1 =∞, gk = akak−1

dk−1gk−1
. (9.11)

9.5 Summary
In this chapter we briefly touched on the necessity of impedance matching for
an amplifier, we summarised some main points from microwave filter theory,

1The n in gn+1 refers to the filter order n, and not to the number of frequency bands.
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and showed two important applications.
Firstly, we can take inspiration from microwave filters to design impedance

matching networks for our TWPAs. By adding a few additional cells to the
TWPA input and the TWPA output, with smaller values of the inductances
and capacitances than those of the TWPA itself, we can make the TWPA
impedance matched both in the frequency band 0.25ωc to 0.5ωc and at the
pump frequency 0.75ωc simultaneously. The exact number of required ad-
ditional cells depends on the tolerance of the impedance mismatch, but in
general only a few, approximately 5, additional cells are needed.

Secondly, we can use microwave filter theory to build frequency multiplexers.
These are components that we will use a lot in Chapter 10.
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Peripheral circuits for ideal performance

10

The TWPA prototype we have outlined in the previous chapters uses mag-
netically flux-biased SNAILs as inductive elements, a small cutoff frequency
to prevent up-conversion, resonant phase matching to get phase matching
and impedance matching networks to get impedance matching. This makes
an amplifier with several good properties: wideband amplification, ideally
quantum-limited noise performance and a high gain per unitcell which limits
the impact of signal loss.

However, it does not fulfill all the desired properties of the ideal low-noise
amplifier, as outlined in Chapter 1. It has gain ripples, due to the impedance
mismatch that occurs when there is gain, as mentioned in Chapter 9. But
more importantly, it has leakage of all unwanted modes: reflections of the
pump, the signal and the idler, and it transmits more than one mode per
signal. Furthermore, it does not isolate either.

In this chapter we will look at different peripheral circuitry that can be
added to the TWPA that can, in theory, make it the ideal low-noise amplifier.
We also discuss peripheral circuits for ideal performance in paper [C].
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10.1 Frequency-multiplexed TWPAs
In this section we will look at how frequency multiplexers can be used with
TWPAs, recall Section 9.4. First we will look at how the pump leakage can
be removed using diplexers. Then we will look at a technique we call halfband
idler filtering can be achieved using triplexers.

10.1.1 The diplexed TWPA
As outlined in Section 9.4, a diplexer separates frequencies below a certain
transition frequency f1 from frequencies above it. For three-wave mixing, the
pump frequency is typically well detuned from the signal. It is thus suitable
to use diplexers before and after the TWPA to remove the pump leakage,
see Figure 10.1. Since no diplexer is ideal, there will be some leakage from
the lowpass to the highpass port of the diplexer, and thus some leakage of
the pump. The leakage between the ports is typically the largest when we are
close to the diplexer transition frequency. For that reason, we put the diplexer
transition frequency as close as possible to the signal band.

Signal in

Pump in ≁∼
∼≁ ≁∼

∼≁
Signal & idler out

Pump out

Ap →← ΓpAp

As →← ΓsAs← ΓiAi

Ap →
As →

← ΓpAp← ΓsAs← ΓiAi

Ap →√
G + 1As →√

GAi → Ap →

√
G + 1As →√

GAi →
Figure 10.1: The schematic of a diplexed 3WM TWPA: The incoming waves

(blue), the reflected waves (red) and the transmitted waves (purple).

For four-wave mixing the pump is in the middle of the gain band. There-
fore one cannot use the regular lowpass-highpass-diplexer. However, if one
constructs a bandpass-bandstop-diplexer, diplexers can be used for four-wave
mixing as well. This was not discussed in Section 9.4, but one can use the
filter equations, together with the bandpass and bandstop transformations
outlined in Section 9.2.2. The hard part for four-wave mixing is to build a
diplexer with high enough attenuation of the pump, without losing too much
of the gain band.

116



10.1 Frequency-multiplexed TWPAs

10.1.2 The triplexed TWPA
As outlined in Section 9.4, a triplexer is similar to a diplexer, but it has three
frequency bands, and thus one more port than the diplexer. This can be used
to not only separate the signal and idler from the pump, but also to separate
the signal and idler from each other, which is useful for creating isolation as
discussed in Section 1.6.3.

If we add triplexers to each side of a TWPA, we get a 6-port device, see
Figure 10.2. Let us assume that the first triplexer transition frequency matches
the middle of the gain band, i.e. that f1 = fp/2, and that the second one is
right above the gain band, e.g. f2 = 3fp/4. If we terminate the bandpass input
port, the lowpass output port and the highpass output port, and read out at
the idler frequency, we get an amplifier that is mostly free of leakage while it
also isolates, see Figure 10.3a. This works since the idler contains the same
information as the signal. The reflected and transmitted pump is filtered out
at the highpass ports, the reflected idler is terminated at the bandpass input
port, and the transmitted signal is terminated at the lowpass output port.
Furthermore, if any unwanted wave enters at the bandpass output port, it
gets terminated at the bandpass input port.

≁∼

∼≁∼≁≁
HP in

BP in

LP in ≁∼

∼≁∼≁≁
HP out

BP out

LP out

=
HP

BP

LP

HP

BP

LP

Figure 10.2: The schematic of a triplexed TWPA and its symbol.
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LP

Pump in

Signal in
Idler out

(a)

HP

BP

LP

HP

BP

LP

Pump in
Signal in

Idler out

(b)

Figure 10.3: Setups for halfband idler filtering using the triplexed TWPA. (a) The
signal is in the lower half of the gain band and the outputted idler
is in the upper half of the gain band. (b) The signal is in the upper
half of the gain band and the outputted idler is in the lower half of
the gain band.
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To be able to use the upper half of the gain band, we simply swap the con-
nections between the lowpass and the bandpass ports, compare Figures 10.3a
and 10.3b.

The triplexed TWPA has some clear advantages. However, we are still not
free of signal reflection and gain ripples, and we have to sacrifice half of the
gain band. It is hence not the ideal low-noise amplifier.

10.2 The balanced TWPA
Another important setup is the balanced amplifier setup [63]. A necessary
building block for a balanced amplifier is the 90○ hybrid coupler. The 90○
hybrid coupler is a 4 port device which splits an input into two outputs of
equal amplitude, but with a 90○ phase shift, see Figure 10.4.

901

4

2

3

A1 →← iA3√
2 A1√

2
→

iA1√
2
→← A3

← A3√
2

Figure 10.4: A 90○ hybrid coupler. An input at port 1 (blue) exits at port 2 and
port 3. An input at port 3 (red) exits at port 1 and port 4.

The scattering matrix of the hybrid coupler is hence

S = 1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 i 0
1 0 0 i
i 0 0 1
0 i 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (10.1)

In a balanced amplifier setup, we use two identical amplifiers connected to
each other via two 90○ hybrid couplers, where one port of each hybrid coupler
is terminated with a matched load, see Figure 10.5. Since the amplifiers are
identical, they have the same transmission coefficient T and the same reflec-
tion coefficient Γ. In reality a hybrid coupler may have some amplitude and
phase imbalances, meaning that the outputs do not have the same amplitudes
or exactly 90○ phase difference, and the amplifiers may not be completely
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identical. But for now, let us assume ideal components, i.e. that the hy-
brid couplers have zero amplitude and phase imbalance in the full band and
that the amplifiers are fully identical. Then the reflections towards the input
port will destructively interfere, while the reflections towards the left load in
Figure 10.5 constructively interfere,

1√
2
⋅ ΓA0√

2
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2
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2
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Simultaneously, the transmitted modes will constructively interfere towards
the output port, while they destructively interfere towards the right load,
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Therefore, the balanced amplifier completely eliminates reflections without
losing any gain.
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Figure 10.5: The schematic of a balanced amplifier: any incoming wave (blue) gets
split in two, the reflections (red) constructively interfere towards the
left load, while the transmitted waves (purple) constructively interfere
towards the output.

If we now add diplexers to both couple the pump and to filter out any
leakage from nonideal couplers, we get what we call the diplexed & balanced
TWPA, see Figure 10.6. One might think we are now free of leakage. However,
the idler phase is given by φi = φp−φs. Therefore, the phase of the idler in the
upper arm is 0○ − 0○ = 0○ and the phase in the lower arm is also 90○ − 90○ = 0○,
or in other words: the idlers in the two arms are in phase with each other.
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Calculating the reflected idler travelling towards the input we get
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2
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or in other words: half of the reflected idler leaks back towards the input. The
same applies for the transmitted idler. In summary, the diplexed & balanced
TWPA solves the issues of pump leakage and signal reflection, but not the
issues of idler leakage or isolation.
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Figure 10.6: The schematic of a balanced TWPA with diplexers: the incoming
waves (blue), the reflected waves (red) and the transmitted (purple).

10.3 The single layered WIF-TWPA
A slightly more complicated setup than the diplexed & balanced TWPA is the
single layered wideband idler filtering (WIF) TWPA, where we instead add
the hybrid couplers to two diplexed TWPAs, see Figure 10.7. Now we have
two pumps but also two degrees of freedom: the phases of the two pumps.

Without loss of generality we can assume that the signal phase and the
phase of the first pump are all zero, and that the phase difference between the
pumps is in the phase of the second pump, ∆θp. By studying the reflected and
the transmitted idler, we get two equations for the idler leakage. To eliminate
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the idler leakage, we must fulfill

no reflected idler: 1 + ei∆θp = 0, (10.4a)
no transmitted idler: i + ei(∆θp−π/2) = 0. (10.4b)

Unfortunately, these two equations cannot be fulfilled simultaneously. The
first one yields the solution ∆θp = π, while the second one yields ∆θp = 0. We
thus conclude that the single layered WIF-TWPA can only filter out one of
the idler leakages, but not both simultaneously.

≁∼
∼≁ ≁∼

∼≁

≁∼∼≁
≁∼∼≁

Signal in 90

Signal out

90

Pump 1 in

Pump 2 in

Pump 1 out

Pump 2 out

As →

Ap →

Apei∆θp →

← ΓiAi/√2

← ΓiAiei(∆θp−π/2)/√2

← Γi
2 Ai (1 + ei∆θp)

√
GAi/√2→

√
GAiei(∆θp−π/2)/√2→

√
G

2 Ai (i + ei(∆θp−π/2))→

Figure 10.7: The single layered wideband idler filtering TWPA: The incoming sig-
nal and pump (blue), the reflected idler (red) and the transmitted
idler (purple).

10.4 The double layered WIF-TWPA
To be able to fully filter out both the reflected and the transmitted idler, we
turn to the double layered WIF-TWPA. In the double layered WIF-TWPA,
we connect two single layered WIF-TWPAs in parallel to each other via yet
another layer of couplers, see Figure 10.8. Now the expressions for the idlers
become a bit complicated, but one can show that if one uses the pump phases
0, π,0, π, the reflected idler is terminated at node 2 in Figure 10.8, while the
transmitted idler is separated from the signal and exits at ‘idler out’.

If one now terminates the ‘idler out’ port, we hence have an amplifier fully
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free of leakage. We call this setup the ‘transhybrid’, as the signal path resem-
bles that of a transisomer of a molecule. However, this setup does not isolate.
If we instead terminate the ‘signal out’, and read out the idler at the idler
port, any unwanted mode entering at the output port will become terminated
at node 1. We have thus both eliminated the leakage and we get isolation. We
call this setup the ‘cishybrid’, as the signal path resembles that of a cisisomer
of a molecule.

We study the limiting factors of the isolation, how to generate the correct
pumps, effects of nonidealities, etc, in paper [C].
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Figure 10.8: The double layered wideband idler filtering TWPA. ‘P2’ and ‘P3’ are
abbreviations for ‘pump 2’ and ‘pump 3’.

10.5 Summary
In this chapter we have looked at different peripheral circuits, see Table 10.1,
and how to achieve what we call ‘ideal performance’, especially how to get
rid of leakage and get isolation. Adding diplexers to a TWPA can solve the
issue of pump leakage. Adding triplexers to a TWPA can solve the issue of
pump leakage, idler leakage and get isolation, but not that of signal reflection.
Making a diplexed & balanced TWPA solves both the issue of pump leakage
and signal leakage, but not that of idler leakage. The single layered WIF-
TWPA can achieve that of the diplexed & balanced TWPA, and also eliminate
either the reflected idler or the transmitted one, but not both. Only the
double layered WIF-TWPA can solve all issues simultaneously.

122



10.5 Summary

Table 10.1: A summary of the TWPA performance using the different peripheral
circuits. The presented isolation numbers are for the approximately
lowest simulated isolation when our TWPA model delivers at least
20 dB gain in the full 4-8 GHz band. For the triplexed TWPA, the
isolation depends on the triplexer.

Signal
reflection

Pump
leakage

Idler
leakage Isolation Readout

frequency

No peripheral
circuits Yes Yes Yes - fs

Balanced No Yes Yes - fs

Diplexed Yes No Yes - fs

Triplexed Yes No No Yes fi

Diplexed & balanced No No Yes - fs

Single layered WIF
(∆ϕp = 0) No No Backwards 10 dB fi

Single layered WIF
(∆ϕp = π) No No Forwards - fs

Double layered WIF
(transhybrid) No No No - fs

Double layered WIF
(cishybrid) No No No 10 dB fi

Two cascaded
cishybrids No No No 30 dB fs

The ideal case No No No ∞ fs

123





CHAPTER 11
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11

In this chapter we will outline the last part of this work: How we simulate our
devices, how we fabricate them and how we measure them.

11.1 Harmonic balance simulations
Previously, we have investigated how the TWPA works with the help of the
wave equations, recall Equations (3.6) and (3.12), the propagation equations,
recall Equation (3.24) and the discrete matrix equation, recall Equation (6.22).
However, to reach these equations, many assumptions and approximations
were made. For example, we neglected higher order mixing when going from
Equation (3.4) to Equation (3.6). We assumed continuous waves and we
neglected higher order derivatives in Section 3.2. We neglected non-resonant
contributions when dropping the time dependence in Sections 3.3.2 and 6.2.2,
etc.

Thus, before concluding too much from the solutions found in the previous
chapters, we also took a numerical approach to simulate the full system and
compare the results with the analytically found solutions. We built nonlin-
ear black box models for the Josephson junction and elements based on it,
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e.g. the SQUID and the SNAIL, using “Symbolically Defined Devices” (SDD)
in Keysight PathWave Advanced Design System (ADS). These models were
used in simulation of the TWPAs in time domain, S-parameters and harmonic
balance analysis. The harmonic balance method captures the nonlinear large
signal effects related to wave propagation in the TWPA and does not need
incurring any approximation like Taylor expansion of the Josephson junction
or the SNAIL nonlinearity. It faithfully recreates what the propagation equa-
tions and experiments predict about the effect of pump harmonics on the gain
of the TWPA, but it also captures other effects, e.g. signal reflection and
gain ripples. Details about the nonlinear modelling, simulation of TWPAs,
harmonic balance analysis, etc, are presented in paper [D].

11.2 Nanofabrication
Once we have decided on a design, we need to fabricate it. This is done at
the Nanofabrication Laboratory (NFL) at Chalmers University of Technology.
To amplify signals in the 4 to 8 GHz band, we design the unitcell parameters
to have the cutoff frequency of the TWPA at 16 GHz. This requires the
inductance and the capacitance of each unitcell to be on the order of ∼ 1 nH
and ∼ 400 fF, respectively. Simultaneously, we want each unitcell to be very
small, so that the full footprint of the TWPA does not become too large.

wJ
x2

√
x

A

∝ Ic

∝ CJ

∝ ∝ 1
x

RN

LJ0

∝

Figure 11.1: The relations between the junction width wJ (assuming square junc-
tions), the junction area A, the critical current Ic, the intrinsic ca-
pacitance CJ, the normal resistance RN and the junction zero-bias
inductance LJ0. The expressions with x explain the mathematical
relations when following certain arrows.

To get large inductances with a small footprint, we use small Josephson
junctions, since the junction inductance scales with the reciprocal of the junc-
tion area, see Figure 11.1, or arrays of inductive elements connected in series,
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recall Section 4.5. The junctions are fabricated using shadow evaporation
and the Manhattan technique to ensure that the resist thickness has a small
impact on the junction size [64].

To make large capacitances with a small footprint, we use the parallel-plate
geometry capacitors with a very thin aluminium nitride film of 40 nm as the
dielectric, see Figure 11.2. Aluminium nitride has a relative permittivity of
εr ∼ 7 [65]. Using the capacitance formula

C = εrε0
lw

d
Ô⇒ l = Cd

εrε0w
, (11.1)

with the capacitance C = 400 fF, the thickness d = 40 nm and the width w =
5 µm, we get that the length l of the capacitor does not need to exceed 52 µm.

AlN 40 nm

Al 100 nm
Al 160 nm

Side view Top view

Figure 11.2: Our parallel plate capacitors from the side and from above. The
capacitor plates are made with aluminium, while the dielectric is made
of a thin film of aluminium nitride.

11.3 Experiments
Experiments on our fabricated devices were performed in our dilution refriger-
ators from BlueFors. We have used two different setups, depending on whether
the TWPA is placed in the old sample box or the new one.

In the first setup, see Figure 11.3, we put our TWPAs on a cryogenic switch
in parallel with a regular 50Ω coaxial cable to use as a reference. We place
a large coil next to the TWPAs to provide the magnetic flux-bias. We also
have some device under test (DUT) which typically is a qubit chip. We do
not want the pump to interact with the DUT, therefore we have a directional
coupler in the fridge, so that only the signal inserted at ‘Signal in 1’ interacts
with the DUT.
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Figure 11.3: The first experimental setup. The magnetic flux-bias is applied via a
large coil. The pump is coupled to the signal via a directional coupler.
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Figure 11.4: The second experimental setup using the new box. The magnetic
flux-bias is applied via an integrated coil inside the box. The pump
is coupled to the signal via integrated diplexers.
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Sometimes we wish that the signal does not interact with the DUT either,
therefore we also have a directional coupler at room temperature and then we
insert the signal at ‘Signal in 2’.

The second setup, see Figure 11.4, is very similar to the original setup, but
with two key differences. Firstly, the box has a coil integrated into it, with
its own DC-connectors. Thus, the DC-connectors now go directly to the box
instead of the large coil. When using several TWPAs in one cooldown, we
connect the boxes in series. Secondly, it has diplexers integrated. The pump
input cable is thus connected directly to the box. The pump output from the
box is terminated with a 50Ω cryogenic load.

To measure the gain profile, we connect a vector network analyser (VNA) to
‘Signal 2 in’ and ‘Signal out’. Then we measure S21 while we sweep different
values of flux bias, pump power and pump frequency. By comparing the
transmission of the TWPA with the pump on versus with the pump off, we
get what we call the parametric gain. This is the gain that the theory we have
done may predict. However, when we do theory we assume zero losses, but in
reality the TWPA has losses. A more important metric is thus the effective
gain, which is the gain we get when the losses are included. To measure
the effective gain, we measure the transmission of the pumped TWPA and
compare it to the transmission of the cable.

To measure the signal-to-noise ratio (SNR), we instead use a signal gener-
ator and a spectrum analyser. We insert a signal with the signal generator
at some frequency fs, and sweep frequencies within a 1 MHz range around fs.
The SNR is determined by comparing the signal power to that of the noise
floor, see Figure 11.5. The signal-to-noise ratio improvement (∆SNR) is de-
termined by comparing the SNR of the TWPA with the SNR of the reference.

The gain and the ∆SNR for one of our devices in presented in Figure 11.6.
This is a SNAIL-based device with 200 unitcells, resonant phase matching and
a low cutoff. There were several fabrication issues with this device. Firstly,
there was an impedance matching problem. Secondly, there was a flux-biasing
issue. Thirdly, as a result of the previous two points, all frequencies were
shifted down, so instead of having a pump with fp = 12 GHz, the sweet spot
ended up at fp = 11.27 GHz. Our HEMT bandwidth is 4-12 GHz, therefore we
cannot measure the gain below 4 GHz properly. Yet, the device has a good
performance, with an average effective gain around 15 dB over a 3 GHz band-
width, and an average effective ∆SNR of 10 dB. More data and information
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about the device in Figure 11.6 is presented in paper [E].
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Figure 11.5: The spectrum in 1 MHz around a signal for a pumped TWPA and
the reference. The noise floor (dashed) is determined as the average
value of the points at non-zero detuning. The SNR is determined as
the difference between the signal peak and the noise floor.
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Figure 11.6: The effective gain and the effective signal-to-noise ratio improvement
(∆SNR) for one of our devices. The gain is measured with a VNA
and the ∆SNR is measured with a spectrum analyser.
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12

In this chapter we revisit all the main conclusions from this work. Firstly we
will go through the conclusions about how to make a travelling-wave para-
metric amplifier based on three-wave mixing. Secondly we will comment on
the difference when designing a travelling-wave parametric amplifier based
on four-wave mixing. Then we will go through how we can make the ideal
low-noise amplifier by adding peripheral circuitry to several identical TWPAs.
Finally we will summarise all of this work and briefly discuss future work to
be done.

12.1 Building a three-wave mixing travelling-wave
parametric amplifier

To build a travelling-wave parametric amplifier based on three-wave mixing,
several criteria need to be fulfilled, see Figure 12.1. We need impedance
matching to the amplifier’s environment to prevent the amplifier from be-
coming unstable. We need phase matching for the down-conversion process
to get any gain. But we also need phase mismatching for the up-conversion
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processes, otherwise they will deteriorate the gain, as shown in Chapter 5 and
paper [A].

Down-conversion
phase matching

Up-conversion
phase mismatching

Impedance
matching

A B

C

⋆

Figure 12.1: A Venn diagram over the different requirements and regions for a
travelling-wave parametric amplifier.

In Figure 12.1 we see several different regions: A, B, C and ⋆. The only re-
gion with the possibility for a stable exponential gain is the ⋆ region. However,
when designing a TWPA, one typically ends up in one of the other regions.

When using small frequencies in the standard dispersion, i.e. a large cut-
off frequency in comparison to the signal and the pump, the TWPA is ap-
proximately impedance matched for all relevant frequencies and the phase
mismatches become negligible. In other words, we get impedance matching
and down-conversion phase matching. However, we also get phase matching
for the up-conversion processes, and we thus end up in region A. By using

132



12.2 Building a four-wave mixing travelling-wave parametric amplifier

periodic modulation, we can create a phase mismatch for the up-conversion
processes, and thus reach the ⋆-region. We use this approach in paper [B].

When using large frequencies in the standard dispersion, i.e. a small cut-
off frequency in comparison to the signal and the pump, the TWPA is no
longer impedance matched and the phase mismatches are large. By using res-
onant phase matching, we get down-conversion phase matching and end up in
region C. We discuss this in paper [A]. Then, by adding the impedance match-
ing networks outlined in Chapter 9, we can also ensure impedance matching,
and thus reach the ⋆-region. We discuss in paper [C], based on the simula-
tion models from paper [D], and experimentally demonstrate the device in
paper [E].

In conclusion, to build a travelling-wave parametric amplifier based on
three-wave mixing, one has to either: (1) work with small frequencies and
dispersively engineer a phase mismatch for the up-conversion processes, or (2)
work with large frequencies and dispersively engineer phase matching for the
down-conversion process. In the latter, gain per unitcell becomes larger, but
one also has to add impedance matching networks to get impedance match-
ing.

12.2 Building a four-wave mixing travelling-wave
parametric amplifier

When designing a travelling-wave parametric amplifier based on four-wave
mixing, Figure 12.1 and its regions are still valid, but the premise is dif-
ferent: By using small frequencies with the standard dispersion, one has
impedance matching and, due to Kerr effect, a phase mismatch for both the
down-conversion process as well as the up-conversion processes. We are thus
in region B. The only problem to solve is hence phase matching for the
down-conversion. This can be done either with reversed Kerr, as described in
Section 7.4, or with dispersion engineering, e.g. resonant phase matching as
described in Section 8.2.

133



Chapter 12 Conclusions and future work

12.3 Peripheral circuits for ideal performance
The travelling-wave parametric amplifier fulfills many of the criteria of the
ideal low-noise amplifier. It has a potential for quantum-limited amplification
in a wide band, potentially with a large saturation power and low signal
distortion.

However, it has leakage of more modes than just the amplified signal, both
in the forward and the backward directions, and it does not isolate. The
leakage can interfere with the signal sources as well as what may come after
the amplifier, and the lack of isolation lets the noise entering at the output
reach the signal sources as well.

We showed in Chapter 10, and in paper [C], that all of these issues can be
solved by adding peripheral circuitry to four identical TWPAs. The peripheral
circuitry is based on a combination of superconducting diplexers and hybrid
couplers. Then the interference between the TWPAs ensures that all reflec-
tions constructively interfere towards cryogenic loads, while the signal gets
separated from the idler. One can either read out at the idler frequency or
cascade two of these amplifier setups, which then retrieves the signal frequency
and improves the isolation.

12.4 Summary
In Chapter 1 we outlined properties of the ideal low-noise amplifier. It should
have quantum-limited noise performance and a high enough gain to suppress
the noise of the subsequent amplifiers. Its transfer function should be insensi-
tive to the signal properties: its frequency, amplitude, phase and shape (signal
envelope). It should have no leakage of any other mode than the desired one,
it should provide isolation and be physically small. Throughout this work, we
have addressed how to achieve most of these properties.

By building a travelling-wave parametric amplifier, as outlined in both Sec-
tions 12.1 and 12.2, we get a wideband phase-insensitive quantum-limited
amplifier with a high gain. In other words, we get a high-gain amplifier with
quantum-limited noise performance that is relatively insensitive to the signal
frequency and signal phase. By using a TWPA design using three-wave mix-
ing and small cutoff frequency, the TWPA is also physically very small. By
adding peripheral circuitry as discussed in Section 12.3, we can additionally
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solve the issues of leakage and isolation.
What remains to be studied and solved is insensitivity to signal amplitude,

i.e. how to get a large saturation power without getting a large pump leakage,
and signal shape, i.e. the transient response. We will discuss this briefly in
Section 12.5.

12.5 Future work
In this section we will discuss what can be done to build on this work.

Firstly, we suggest to try building the proposed setup in Section 10.4, the
double layered WIF-TWPA, since it is just a theoretical proposal at the mo-
ment. While the setup could in theory create the ideal low-noise amplifier,
there are many practical things that could go wrong, such as having nonideal-
ities in the peripheral circuitry or nonidentical TWPAs. Therefore it is a big
project on its own to realise this circuit.

Secondly, once the double layered WIF-TWPA has been realised, we pro-
pose to try building two cascaded double layered WIF-TWPAs. This would
not only retrieve the original signal frequency while also having isolation, but
by using different TWPAs in the second WIF-TWPA setup, we could also
solve the issue of insensitivity to signal amplitude, i.e. we could increase the
saturation power. We discussed how to increase the saturation power briefly
in Sections 4.4 and 4.5, by using either kinetic inductors or arrays of inductive
elements, but there is a tradeoff. These inductive elements have weaker non-
linearities, so the pump power would need to be increased to compensate for
the weaker nonlinearity. When the pump power is increased, so is the pump
leakage. By using high saturation power TWPAs in the second WIF-TWPA
setup, one can get both a high saturation power and a small pump leakage
simultaneously. The pump leakage from the first WIF-TWPA setup would
be small since it uses Josephson junctions, and thus a small pump, and the
pump leakage from the second WIF-TWPA setup would be small since it gets
filtered by the first WIF-TWPA. Simultaneously the saturation power would
be high.

Thirdly, we propose to study the sensitivity to the signal shape, i.e. how
the different TWPA designs may distort pulse shapes. The distortion could
be done by the TWPA itself, but also by the impedance matching networks.
To study these effects, simulations of transients for different kinds of pulses
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and TWPA designs would be advantageous.
Another project could be an investigation into pulsed pumping. When the

pump is on, there is both pump leakage and heating of the cryostat. A way to
reduce this problem could be to only pump when there is a signal to amplify,
and keep the pump off at all other times. However, to implement this, it
would be important to characterise the time it takes from that the pump is
turned on until the gain has stabilised. It could also be worth investigating
what effect different shapes of the pump pulses has.

Another project that could be done would be making the TWPAs smaller.
The biggest components in the TWPAs today are the capacitors, measuring
around ∼ 500 µm2, compared to the SNAILs measuring around ∼ 100 µm2. In
theory the capacitors can easily be made smaller simply by making a thinner
dielectric. However, when the dielectric gets thinner, variations in thickness
have a bigger impact. An interesting study would hence be to see how thin
the dielectric can be made, without facing problems from the variations in
dielectric thickness.
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