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Background
Insulin resistance (IR) is a clinical condition character-
ized by impaired response of target tissues to insulin. 
This disorder causes disruptions in carbohydrate dis-
posal and, hence, results in compensatory upregulation 
of pancreatic β-cell function to maintain a tight control 
of blood glucose levels, ultimately leading to chronic 
hyperinsulinemia [1]. Although its etiology is multifac-
torial, involving genetic determinants (e.g., mutations in 
insulin receptors and signaling proteins), lifestyle (e.g., 
nutritional imbalances, sedentarism, medication use), 
and other susceptibility factors (e.g., puberty, ethnicity), 
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Abstract
Background  Insulin resistance is a frequent precursor of typical obesity and metabolic syndrome complications. 
However, accurate diagnosis remains elusive because of its pathophysiological complexity and heterogeneity. Herein, 
we have explored the utility of insulin secretion dynamics in response to an oral glucose tolerance test as a surrogate 
marker to identify distinct metabotypes of disease severity.

Methods  The study population consisted of children with obesity and insulin resistance, stratified according to the 
post-challenge insulin peak timing (i.e., early, middle, and late peak), from whom fasting and postprandial plasma and 
erythrocytes were collected for metabolomics analysis.

Results  Children with late insulin peak manifested worse cardiometabolic health (i.e., higher blood pressure, 
glycemia, and HOMA-IR scores) than early responders. These subjects also showed more pronounced changes in 
metabolites mirroring failures in energy homeostasis, oxidative stress, metabolism of cholesterol and phospholipids, 
and adherence to unhealthy dietary habits. Furthermore, delayed insulin peak was associated with impaired 
metabolic flexibility, as reflected in compromised capacity to regulate mitochondrial energy pathways and the 
antioxidant defense in response to glucose overload.

Conclusions  Altogether, these findings suggest that insulin resistance could encompass several phenotypic 
subtypes characterized by graded disturbances in distinctive metabolic derangements occurring in childhood 
obesity, which serve as severity predictive markers.

Keywords  Insulin resistance, Childhood obesity, Metabolomics, Metabolic flexibility
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excess body fat and related pathogenic events (e.g., 
inflammation, lipotoxicity) have been identified as the 
primary triggers of this disorder. In this respect, it is well-
recognized that IR is the most prevalent comorbidity of 
childhood obesity, frequently participating in the onset 
of other complications [2]. Thus, IR stands out as a cor-
nerstone in the development of a constellation of cardio-
metabolic disturbances (e.g., dyslipidemia, hypertension) 
that constitute the so-called metabolic syndrome, which 
is in turn associated with increased risk for type 2 dia-
betes mellitus and cardiovascular diseases during adult-
hood. However, despite its clinical significance, accurate 
IR assessment in children remains elusive [1]. The hyper-
insulinemic euglycemic clamp is the gold standard for 
diagnosing IR, but this is a time-consuming, labor-inten-
sive, invasive, and expensive technique, so it is rarely 
applied in clinical practice. As an alternative, other indi-
rect methods have been proposed based on fasting blood 
determinations (e.g., the homeostatic model assessment 
of IR, HOMA-IR; the quantitative insulin sensitivity 
check index; QUICKI), as well as by means of evaluating 
changes in carbohydrate metabolism in response to an 
oral glucose tolerance test (OGTT). Nonetheless, these 
surrogate markers have been reported to suffer from 
lower accuracy, higher interindividual variability, limited 
ability to predict the risk of future complications, and 
lack of international consensus on reference values, espe-
cially in children, which altogether has precluded their 
routine implementation [3]. Consequently, there is an 
urgent need to define novel markers to better understand 
IR pathophysiology and improve prediction of adverse 
outcomes.

The OGTT is a challenge test frequently employed to 
assess the individuals’ capacity to handle a glycemic load 
and, therefore, to diagnose disorders related to carbohy-
drate metabolism. Unlike fasting measurements, which 
are expected to be tightly regulated by homeostasis, the 
postprandial adaptation to transient nutritional stressors 
(i.e., metabolic flexibility) has been proposed as a more 
reliable indicator of metabolic health [4]. In this sense, 
the determination of blood glucose and insulin levels 
along the OGTT has long been used for evaluating IR 
through various indices (e.g., the whole-body insulin 
sensitivity index, WBISI), but growing evidence suggests 
that the shapes of these post-challenge curves could rep-
resent a more valuable measure to assess IR severity. In a 
pioneer work conducted in 2013, Hayashi et al. described 
that a late insulin peak during an OGTT is associ-
ated with exacerbated IR and higher risk of developing 
type 2 diabetes when compared to early responders [5]. 
Although scarce data is available in pediatric populations, 
recent findings pinpoint that delayed insulin response in 
children with obesity is mirrored in worsen metabolic 
profiles (e.g., higher HOMA-IR scores and triglyceride 

content, lower HDL cholesterol) [6], oxidative stress and 
inflammasome activation [7], as well as altered metal 
homeostasis [8]. In this context, further research is cru-
cial to decipher the molecular disturbances that altered 
patterns of insulin secretion imprint in children with IR, 
which may facilitate its diagnosis and severity stratifica-
tion. For this purpose, metabolomics has proven to be a 
powerful tool to unravel the influence of interindividual 
variability factors and, thus, to identify distinct pheno-
typic subtypes (i.e., metabotypes) behind complex disor-
ders [9].

Herein, we have applied state-of-the-art metabolomics 
to plasma and erythrocytes from a population encom-
passing children with obesity and IR, who were subjected 
to an OGTT and further stratified according to their 
insulin curve morphology: children showing an early 
insulin peak (t = 30 min), middle insulin peak (t = 60 min), 
and late insulin peak (t ≥ 90  min). Then, biological sam-
ples were collected at both fasting and along the OGTT 
to investigate the association between postprandial insu-
lin dynamics, IR-related metabolic impairments, and 
individuals’ metabolic flexibility.

Methods
Study design
The study population consisted of 76 children, aged 6 to 
16 years (48 male, 28 female), with obesity and IR who 
were recruited at “Hospital Universitario Puerta del Mar” 
(Cádiz, Spain). The inclusion criteria were having a body 
mass index (BMI) over two standard deviations above the 
age/sex-adjusted mean of the Spanish reference popula-
tion, and fulfilling at least one of the following IR hall-
marks: (i) HOMA-IR score above 3.5, (ii) fasting insulin 
levels above 15 µU/mL, (iii) insulin levels above 75 µU/
mL at 120  min of the OGTT, (iv) insulin levels above 
150 µU/mL at any time point of the OGTT [10]. Then, 
participants were stratified according to the OGTT-
induced insulin profile as reported elsewhere [6]: chil-
dren showing an early insulin peak (t = 30  min, N = 18), 
middle insulin peak (t = 60  min, N = 19), and late insu-
lin peak (t ≥ 90  min, N = 39). Subjects with other known 
chronic systemic diseases or suffering of acute infectious 
processes were not eligible for the study. Pediatric endo-
crinologists registered anthropometric characteristics 
of the study population (i.e., weight, height, BMI), and 
the updated version of the KIDMED questionnaire was 
employed to assess dietary habits [11]. Venous blood 
samples were collected in the morning after overnight 
fasting, as well as along the OGTT (i.e., 30, 60, 90, and 
120 min), using BD Vacutainer EDTA tubes. Then, blood 
tubes were centrifuged at 1500 g for 10 min at 4 °C to sep-
arate the plasma, and cell pellets were subjected to three 
cycles of washing with cold saline solution (9 g/L NaCl, 
4 °C) and subsequent centrifugation (1500 g, 5 min, 4 °C) 
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to recover erythrocytes. A plasma aliquot was employed 
to determine glucose and insulin concentrations using 
an Alinity automatic analyzer (Abbot, Madrid, Spain). 
The HOMA-IR score was calculated by applying the for-
mula: HOMA-IR = (Glc × Ins) × 0.055/22.5, where Glc 
and Ins refer to fasting glucose and insulin concentra-
tions, expressed as mg/dL and µU/mL, respectively. The 
rest of samples were stored at -80 °C until metabolomics 
analysis. The study was performed in accordance with 
the principles contained in the Declaration of Helsinki. 
The Ethical Committee of Hospital Universitario Puerta 
del Mar (Cádiz, Spain) approved the study protocol (Ref. 
PI22/01899), and all participants and/or legal guardians 
provided written informed consent.

Metabolomics workflow
Plasma and erythrocyte samples collected at fasting and 
along the OGTT (i.e., 60 and 120 min) were subjected to 
a metabolomics workflow comprising mass spectrom-
etry-based analysis [12], raw data preprocessing using 
MS-DIAL software [13], and quality control assessment 
according to the QComics recommendations [14], as 
detailed in previous publications. Then, metabolites of 
interest were annotated following the guidelines reported 
by the Metabolomics Standards Initiative (MSI), based 
on matching experimental data (i.e., accurate m/z and 
tandem spectra, maximum error mass: 10 ppm) against 
those available in databases (i.e., Human Metabolome 
Database, METLIN), and subsequent analysis of pure 
standards when available [15]. Complementarily, phos-
pholipids and phase II metabolites were identified thanks 
to their characteristic fragment spectra [16, 17].

Statistical analysis
Using a statistical pipeline well-established among the 
metabolomics community [18], data were subjected to 
multivariate and univariate tools to identify differen-
tial metabolites between the study groups (i.e., early vs. 
middle vs. late responders) and differential trajectories 
along the OGTT (i.e., 0 vs. 60 vs. 120 min). Preliminary 
data processing included the removal of variables con-
taining more than 20% missing values, kNN imputation 
of remaining missing data, removal of non-informative 
variables based on the interquartile range, logarithmic 
transformation, and Pareto scaling. Afterward, orthogo-
nal partial least squares discriminant analysis (OPLS-
DA) was applied to explore the discriminant power of 
metabolomics data in a multivariate manner (i.e., Vari-
able Importance for the Projection parameter greater 
than 1). To evaluate the significance of the associations 
observed in multivariate models, we then employed anal-
ysis of variance (ANOVA) with Fisher LSD post hoc tests. 
Complementarily, additional linear models with covariate 
adjustment were computed to control for the influence of 

BMI as a potential confounding factor. All the statistical 
analyses were conducted using the MetaboAnalyst 5.0 
web tool (https://www.metaboanalyst.ca/).

Results
The study population consisted of 76 children with obe-
sity and concomitant IR, whose demographic, anthropo-
metric, and biochemical characteristics are summarized 
in Table  1. The three study groups had similar age, sex, 
and BMI distributions. As defined by stratification crite-
ria, different post-challenge insulin levels were observed 
depending on the secretion pattern, with early, mid-
dle, and late peak groups being characterized by higher 
insulin levels at 30, 60, and 90  min along the OGTT, 
respectively. Children with delayed insulinemia also 
showed higher blood pressure, HOMA-IR scores, and 
glucose levels at the end of the OGTT curve (i.e., 90 and 
120 min). Although not reaching statistical significance, 
subjects with a late insulin peak tended to have lower 
KIDMED scores (p = 0.15).

After multivariate modeling (Figure S1), a total number 
of 20 plasmatic and 12 erythroid differential metabolites 
were identified between the three study groups at fast-
ing, as detailed in Tables S1-S2. The statistical signifi-
cance of most of these associations was maintained after 
adjusting for BMI as a confounding factor. Compared to 
early responders, many of these differential metabolites 
showed higher levels in both plasma and erythrocytes of 
children with late and, to a lesser extent, middle insulin 
peaks, including energy-related metabolites (e.g., Krebs 
intermediates, acyl-carnitines, free fatty acids), amino 
acids, markers of oxidative stress, bile acids, steroid hor-
mones, and phospholipids. In contrast, a lower content 
was detected in plasma cortisol and 3-(4-hydroxyphenyl)
propionic acid, as well as in erythroid 3-hydroxy-trimeth-
yllysine, aspartic acid, hypoxanthine, and 4-oxononenal 
glutathione. Notably, children with late and middle insu-
lin peaks had similar levels for most of these metabo-
lites. However, some metabolic changes were found to be 
exacerbated among children in the late peak group (e.g., 
alanine, cortisol), which could be regarded as sensitive 
markers of IR severity.

Complementary analysis of samples collected along 
the OGTT demonstrated a profound impact of this chal-
lenge test on individuals’ metabolism, at both systemic 
and erythroid levels (Tables S3-S4, Figures S2-S3). Acute 
carbohydrate overload primarily provoked an increase 
in glycolytic intermediates (glucose and derivatives, lac-
tic acid) and hippuric acid in the three study groups. 
This was in turn accompanied by lower levels of other 
metabolites related to mitochondrial energy homeosta-
sis, such as ketone bodies, acyl-carnitines, hydroxylated 
fatty acids, free fatty acids, and amino acids. The OGTT 
also induced a decrease of corticosteroids in plasma 

https://www.metaboanalyst.ca/
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and cysteinyl-glycine in erythrocytes, whereas circulat-
ing L-carnitine tended to increase. Moreover, it should 
be noted that distinct postprandial trajectories were 
observed between the study groups. Delayed insulin 
secretion in response to the OGTT was associated with 
a more pronounced increase in glycolytic metabolites, as 
well as in blunted decline of some fatty acids and amino 
acids. In contrast, the OGTT-induced decrease in ery-
throid cysteinyl-glycine was exclusively detected among 
children with middle and late insulin peaks.

Discussion
Although it is recognized that IR is one of the most 
prevalent and pathogenically relevant metabolic compli-
cations underlying childhood obesity and related comor-
bidities, there is international consensus on the need to 
delve deeper into its pathophysiology to identify better 
biomarkers for diagnosis and classification [3]. In this 
respect, recent studies suggest that the shape of insulin 
curves along an OGTT could be a surrogate indicator 
of IR severity, which would facilitate stratifying popula-
tions a priori considered to be homogeneous into distinct 
phenotypic subtypes. Concurring with existing evidence 
[6], we found children with delayed OGTT-induced insu-
linemia to exhibit aggravated cardiometabolic derange-
ments, as reflected in higher blood pressure, glycemia 
and HOMA-IR scores when compared to early respond-
ers (Table 1). Based on this rationale, fasting plasma and 
erythrocyte samples were subjected to metabolomics 
analysis to identify metabolite alterations associated 
with disease severity, as schematized in Fig.  1. Despite 
our three study groups were matched on BMI, as some 
studies have reported slight weight increments in the 
late insulin peak group [6], additional statistical models 
adjusted for BMI were computed to discard the potential 
influence of this confounding variable and, thus, to iden-
tify metabolites robustly associated with the distinct IR 
metabotypes.

Obesity and IR have primarily been associated with a 
shift toward hypoxic metabolism of carbohydrates to 
counteract dysfunctions in mitochondrial pathways [19]. 
Herein, we interestingly found that energy-related distur-
bances were exacerbated among children with late and, 
to a lesser extent, middle insulin peaks, thereby reinforc-
ing the hypothesis that the pattern of insulin secretion 
during an OGTT might serve as a reliable predictor of 
individuals’ metabolic health. Higher circulating levels 
of fumaric acid could indicate impairments in the Krebs 
cycle, whereas decreased erythroid 3-hydroxy-trimeth-
yllysine (a precursor in the biosynthesis of L-carnitine) 
and increased plasma stearoyl-L-carnitine suggest dis-
rupted β-oxidation of lipids, in line with other studies 
[19]. In this vein, elevated plasma free fatty acids have 
been described to be the result of various interrelated 

Table 1  Demographic, anthropometric, and biochemical 
characteristics of the study population

Early peak 
group

Middle 
peak group

Late peak 
group

p value

N 18 19 39
Sex (% male) 66.7 62.1 61.5 NS
Age (years) 10.9 ± 2.4 12.0 ± 1.6 11.7 ± 2.0 NS
Weight (kg) 70.8 ± 21.7 71.3 ± 19.2 72.0 ± 16.3 NS
Weight 
(Z-score)

5.0 ± 1.5 4.6 ± 1.1 4.7 ± 2.1 NS

Body mass 
index (kg/m2)

31.0 ± 5.9 28.5 ± 4.9 30.5 ± 5.3 NS

Body mass 
index (Z-score)

4.5 ± 1.9 3.7 ± 1.3 4.2 ± 2.0 NS

Systolic blood 
pressure 
(mmHg)

115.3 ± 10.9a 117.3 ± 11.8a 124.2 ± 10.8b 5.4 × 10−3

Diastolic 
blood pressure 
(mmHg)

74.5 ± 6.6a 74.1 ± 6.7a 77.9 ± 6.4b 3.7 × 10−2

Glucose, 
t = 0 min (mg/
dL)

86.1 ± 9.4 85.3 ± 7.9 84.4 ± 9.2 NS

Glucose, 
t = 30 min 
(mg/dL)

148.8 ± 22.1 141.3 ± 28.6 139.9 ± 25.3 NS

Glucose, 
t = 60 min 
(mg/dL)

123.9 ± 17.8 134.5 ± 24.4 141.7 ± 33.0 NS

Glucose, 
t = 90 min 
(mg/dL)

116.5 ± 11.5a 108.6 ± 23.7a 139.0 ± 31.0b 2.2 × 10−5

Glucose, 
t = 120 min 
(mg/dL)

114.1 ± 13.1a 113.8 ± 23.9a 136.4 ± 27.8b 1.4 × 10−3

Insulin, 
t = 0 min (µU/
mL)

20.5 ± 5.3 19.9 ± 5.9 23.3 ± 12.4 NS

Insulin, 
t = 30 min (µU/
mL)

223.4 ± 117.0a 122.4 ± 51.9b 130.7 ± 65.5b 5.3 × 10−4

Insulin, 
t = 60 min (µU/
mL)

154.8 ± 92.1a 196.8 ± 68.3b 152.5 ± 80.7a 6.0 × 10−3

Insulin, 
t = 90 min (µU/
mL)

143.6 ± 102.2a 117.5 ± 59.4a 196.1 ± 134.2b 7.9 × 10−3

Insulin, 
t = 120 min 
(µU/mL)

143.7 ± 93.0 136.5 ± 87.0 191.6 ± 103.1 NS

HOMA-IR score 4.3 ± 1.4a 4.2 ± 1.3a 4.9 ± 3.0 b 4.9 × 10−2

KIDMED score 7.5 ± 1.4 6.2 ± 2.5 6.0 ± 2.2 NS
Results are expressed as mean ± standard deviation (except for sex, expressed as 
percentage). Superscript letters within each row indicate significant differences 
between groups that are marked with different letters, according to the post 
hoc Fisher LSD test (p < 0.05). NS, non-significant
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mechanisms, including incomplete clearance through 
β-oxidation, release from adipose tissue, and higher 
dietary intake [20]. These lipids may in turn stimulate IR 
by worsening β-cell function and inhibiting sensitivity 
of target cells, which could account for the higher levels 
detected among subjects with delayed insulin response. 
Along with these changes reflecting mitochondrial defi-
cits, increments in blood alanine further support pro-
found failures in energy homeostasis, as this amino acid 
may serve as a precursor of pyruvic acid through the 
Cahill cycle and, consequently, as a marker of boosted 
anaerobic catabolism [19]. This was accompanied by 
reduced erythroid content of aspartic acid, which par-
ticipates in the synthesis of alanine and oxaloacetic acid, 
thereby establishing a plausible link between IR-related 
disturbances in energy and amino acid metabolisms [21]. 
This inefficient utilization of nutrients is well-known to 
be one of the most important triggers of oxidative stress, 
as excess supply of substrates into oxidative catabolic 
pathways may overload the mitochondrial electron trans-
port chain and cause sustained generation of free radicals 
[22]. Thus, in line with the aforementioned worsening in 
energy metabolism, children with late hyperinsulinemia 
also showed more pronounced changes in several oxida-
tive stress markers at both systemic and cellular levels. 
Increased lipid peroxidation [23] and defective neutral-
izing capacity of the glutathione system [24] have been 
proven as typical hallmarks of oxidative stress in obesity 
and IR, which could explain our results on higher levels 

of 4-oxononenal (in plasma) and simultaneous reduc-
tion of its detoxification product, 4-oxononenal glutathi-
one (in erythrocytes). Similarly, this exacerbated stress 
was reflected in accelerated purine degradation, with 
increased erythroid production of 5-hydroxyisouric acid 
from its precursor hypoxanthine [25]. Under this stress-
ful milieu, proinflammatory microbiota is known to 
modulate oxidative stress and chronic inflammation by 
releasing uremic toxins, such as p-cresol sulfate, which 
may contribute to the development of metabolic syn-
drome [26].

Complementarily, our results suggest a close relation-
ship between the insulin secretion pattern and vari-
ous lipids classes, including cholesterol derivatives and 
phospholipids. Obesity stimulates cholesterol metabo-
lism toward the production of bile acids to promote fat 
absorption [27], as well as the production of sex hor-
mones through a complex meshwork of interrelated 
mechanisms, such as secretion of gonadotropin-releasing 
hormone, over-expression of adrenocorticotropic hor-
mone, and reduction of sex hormone-binding globulin 
levels [28]. This release of steroid compounds may in 
turn bidirectionally modulate lipid homeostasis, inflam-
mation, and insulin function, thereby creating a vicious 
pathological cycle [29]. Accordingly, these lipid perturba-
tions would be expected to worsen among subjects with 
severe IR, as we report here. In contrast, plasma corti-
sol levels were lower in late responders when compared 
to children with early and middle insulin peaks. This 

Fig. 1  Overview of differential metabolites detected in plasma and erythrocytes
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apparently contradictory findings could be attributed to 
dysregulations in the circadian rhythm, in line with pre-
vious studies describing a flattened cortisol profile in 
subjects with diabetes, as mirrored in lower morning and 
higher evening levels of this corticosteroid [30]. Regard-
ing phospholipid species, delayed insulinemia was asso-
ciated with higher plasma content of lyso-phospholipids 
and increased erythroid levels of phosphatidylcholines 
and phosphatidylethanolamines. Although the existing 
literature on the association between phospholipids, obe-
sity, and IR is controversial, some authors have reported 
a similar overproduction of circulating lyso-phospholip-
ids due to enhanced phospholipase activity [31]. On the 
other hand, the raise in erythroid phospholipids could 
be allocated to various intertwined mechanisms, in line 
with previous data demonstrating a positive association 
between fasting insulin, HOMA-IR scores, and phospho-
lipids in erythrocyte membranes [32]. In that study, the 
authors hypothesized that IR could affect phospholipid 
homeostasis in different ways, such as by altering their 
dynamic exchange between cell membranes and plasma 
lipoproteins, regulating the production of molecules that 
stimulate cell import (e.g., chemokine connective tissue-
activating peptide III), and enhancing biosynthetic path-
ways. Altogether, lipid metabolism could represent a 
cornerstone in the metabolic derangements occurring in 
IR and childhood obesity, as presumable considering that 
adipocytes are physiologically insulin resistant cells.

Finally, metabolomics analysis of fasting samples also 
evidenced that subjects showing a late insulin peak had 
higher plasma levels of 1-methylhistidine together with 
decreased 3-(4-hydroxyphenyl)propionic acid, which 
are reliable markers reflecting the intake of meat and 
plant-based foods, respectively [33]. Furthermore, we 
detected an increased erythroid content of cystathionine, 
a metabolite that has traditionally been linked to vitamin 
B6 deficiency in obesity [34] and diabetes [35]. As these 
findings suggest the involvement of nutritional factors 
in IR pathophysiology, the KIDMED questionnaire was 
employed to evaluate diet quality of the study popula-
tion. Interestingly, we found that children with delayed 
insulinemia tended to have lower KIDMED scores (not 
reaching statistical significance), indicative of lesser pref-
erence for Mediterranean diet items (e.g., fruits, vegeta-
bles) and greater adherence to Western diets (e.g., red 
meat), which could explain our metabolomics results. 
This concurs with a recent study describing that chil-
dren with impaired response against an OGTT had lower 
blood arsenic levels and self-reported lower intake of sea-
food products, which is another pivotal component of 
the Mediterranean diet [8]. Therefore, unhealthy dietary 
habits stand out as an important risk factor presumably 
modulating the onset and severity of IR in children with 
obesity.

After identifying distinctive metabotypes of IR, as 
assessed by inspecting the morphology of insulin curves, 
our second major aim was to decipher the influence of 
disease severity degree in individuals’ metabolic flex-
ibility in response to a challenge test. As expected, the 
OGTT caused a transient increase in plasma and ery-
throid levels of various glycolytic intermediates (i.e., glu-
cose and derivatives, lactic acid) and hippuric acid, this 
latter resulting from the metabolization of the preserva-
tive benzoate contained in glucose syrups [36]. This was 
accompanied by downregulated levels of ketone bodies, 
acyl-carnitines, hydroxylated fatty acids, free fatty acids, 
and amino acids, suggesting the inhibition of mitochon-
drial energy pathways (i.e., ketogenesis, β-oxidation, 
proteolysis, and gluconeogenesis) with the aim to man-
age the glucose overload via glycolysis [36, 37]. More 
interestingly, the comparison of the three study groups 
enabled us discovering specific trajectories in these meta-
bolic adaptations, as schematized in Fig. 2. Children with 
delayed OGTT-induced insulinemia showed a more pro-
nounced increase of glycolytic products, together with 
blunted decline in some fatty acids and amino acids in 
plasma and erythrocytes. These findings are in accor-
dance with other studies demonstrating that IR may 
disrupt metabolic flexibility in people with obesity [38, 
39], impairments that are expected to be aggravated by 
disease severity. The challenge test also provoked a post-
prandial reduction of erythroid cysteinyl-glycine, an 
intermediate in glutathione biosynthesis, as previously 
reported by Wopereis et al. [40]. However, it is notewor-
thy that levels of this peptide were exclusively altered 
among children with middle and late insulin peaks, 
which could be indicative of their compromised capac-
ity to fight against oxidative stress. To conclude, plasma 
levels of cortisol and other corticosteroids were also 
found to decline along the OGTT, trends that could be 
allocated to diurnal falls related to the circadian rhythm 
rather than glucose-induced metabolic adaptations [41].

This study is majorly strengthened by the use, for the 
first time, of a novel approach to better characterize 
IR in children with obesity. Unlike most of the existing 
metabolomics literature, where the role of IR in modu-
lating obesity-related metabolic disturbances has usually 
been explored by looking for associations with surrogate 
markers (e.g., HOMA-IR), we have demonstrated that 
the shape of OGTT-induced insulin curves is a reliable 
measure to stratify subjects according to disease severity 
(i.e., early vs. late responders). In this respect, the recruit-
ment of a well-characterized population, matched for rel-
evant covariates such as BMI, enabled us to minimize the 
potential interference of confounding factors and, thus, 
to deepen into IR pathophysiology. Another strength 
of this study was the complementary analysis of fasting 
and postprandial biological samples, which stands out as 
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a suitable strategy to better understand the impact of IR 
on individuals’ homeostasis (i.e., metabotypes) and their 
capacity to properly face external stressors (i.e., meta-
bolic flexibility). To this end, parallel research in plasma 
and erythrocytes has provided the opportunity to char-
acterize the metabolic alterations occurring in the cross-
talk between IR and obesity in a comprehensive manner, 
at both systemic and cellular levels. On the other hand, 
it should be stressed that stratification according to the 
insulin secretion profile inherently limited the statistical 
power of the comparisons conducted, so further studies 
in larger and independent cohorts are needed for valida-
tion purposes and to define robust biomarkers with clini-
cal applicability. Furthermore, the observational nature of 
our study design has precluded disentangling whether IR 
could be a cause or a consequence of the metabolic disor-
ders herein described.

Conclusions
To our knowledge, this is the first study exploring dis-
tinctive metabotypes of IR in children with obesity. In 
line with recent studies, we found that insulin peak tim-
ing along an OGTT is a reliable predictor of individu-
als’ health, with subjects exhibiting late response being 
characterized by exacerbated cardiometabolic derange-
ments. When studying fasting plasma and erythrocytes, 
children with delayed insulin secretion showed more 
pronounced changes in typical IR-related disturbances in 
energy homeostasis (e.g., Krebs cycle, lipid β-oxidation), 
oxidative control (e.g., glutathione synthesis, purine deg-
radation), cholesterol metabolism (e.g., synthesis of bile 
acids and steroid hormones), and membrane phospho-
lipids. This evidences that fasting metabolite determina-
tions could serve as predictive biomarkers of IR severity, 
without the need of performing a time-consuming and 
invasive OGTT. Moreover, integrated metabolomics 
and dietary assessment suggested the involvement of 
unhealthy nutritional habits as a potential risk factor in 

Fig. 2  Schematic representation of time-dependent trajectories showing the effect of the oral glucose tolerance test in metabolite levels
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modulating the onset of IR in children with obesity. As 
a complementary approach, the study of postprandial 
samples collected along the OGTT evidenced that IR 
may have a deleterious impact on metabolic flexibility, as 
children with late insulin peak were unable to properly 
regulate energy metabolism and antioxidant defenses to 
face the transient metabolic stress provoked by glucose 
overload. In conclusion, this study demonstrates the 
potential of metabotyping to identify distinct phenotypic 
subtypes in complex disorders such as IR, and opens the 
door to establish better markers for its diagnosis and 
classification.
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