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Quantum and classical metrology for noise radar

Robert S. Jonsson

Applied Quantum Physics Laboratory
Department of Microtechnology and Nanoscience (MC2)
Chalmers University of Technology

Abstract
We are in an era of rapid advancements in quantum technology, exploring the
potential of exploiting quantum phenomena for technological solutions across a
wide range of applications. Quantum technologies show promise in areas such as
computing, optimisation, communication, sensing, and more. Among these emerg-
ing quantum technologies, sensing has perhaps reached the highest level of matu-
rity, with practical applications already available. Quantum radar, a concept from
quantum sensing, has garnered significant attention within the radar community,
due to the potential of enhancing detection sensitivity compared to classical radar.

This thesis and the appended papers explore measurement protocols for radar-
like scenarios. The research spans across two areas, from the classical world to
the quantum domain. On the quantum side, the viability and practicality of
quantum-enhanced radar is investigated, shedding light on the origin of its po-
tential advantages and the challenges of its realisation. Furthermore, using the
tools of quantum metrology, optimal probes for radar-like parameter estimation
tasks are established. On the classical side, the development and implementation
of an experimental bistatic noise radar system is detailed in terms of a series of
signal processing methods.

Keywords: Noise Radar, Quantum Radar, Clutter suppression, Model-based Sig-
nal Processing, Quantum Metrology, Quantum Fisher Information

i



ii



Time is a measure of space,
just as a range-finder is
a measure of space,
but measuring locks us into
the place we measure.

Frank Herbert, Children of Dune
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Chapter1
Introduction

1.1 Background
The basic principle of radar was demonstrated already in 1904 by Christian
Hülsmeyer when he used his invention of the Telemobiloskop to detect passing
ships on the river Rhine [1, 2]. Today, radars are a relatively common technology,
with applications not only within the military disciplines, but also for civil sectors,
such as air traffic surveillance, navigation and weather forecasting. A radar system
operates by transmitting electromagnectic waves into the environment and ‘listen-
ing’ for echoes generated by the reflection off of objects, referred to as targets. In
fact, RADAR is an acronym for RAdio Detection and Ranging describing the use
of radio waves to detect and estimate properties of targets. For the modern practi-
cal radar applications of today, a classical (as in non-quantum) description of elec-
tromagnetics is usually sufficient to understand the underlying physics, because
the relevant energies vastly overwhelm the scale of individual photons. However,
inspired by the potential benefits in harnessing underlying quantum phenomena,
there have been research efforts towards developing quantum radars.

Today, we understand not only how quantum systems behave, but also their metro-
logical properties [3]. By metrology, we mean the theory, or the science, of mea-
surement which can be understood as follows. In a quantitative experiment the
experimentalist uses calibrated equipment to measure some quantity of interest.
Fundamentally, such an experiment must respect the uncertainties mandated by
quantum mechanics. In many real-life applications, noise and other errors over-
whelm the quantum mechanical uncertainties. However, there are situations where
careful analysis and understanding of quantum mechanics allows us to do better
than any purely classical probe. These concepts may be collectively referred to as
quantum enhanced sensing and the theory of this analysis is that of metrology [4].
As an example, the LIGO gravitational wave detector uses a quantum enhanced
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CHAPTER 1. INTRODUCTION

protocol to push the sensitivity beyond the standard limits of precision [5, 6].

1.2 Noise radar
Many conventional radar systems, such as air surveillance radars, operate by trans-
mitting sequences of pulses. Between the pulses, the radar switches to receiver
mode and records possible electromagnetic reflections off of objects in the envi-
ronment. By estimating time-of-flight, the distance of targets can be determined.
Noise radar is an alternative to pulsed operation, instead using a continuous trans-
mission with a non-repeating signal that may be indistinguishable from thermal
noise. The idea to use noise radar is not new [7], but the technology has not existed
for it to be realised as practical and useful systems. There have been experimental
demonstrators, such as the system used in Refs. [8, 9], but, as far as we know, no
commercially available noise radar.

In a noise radar, the measurement of target signals is performed by correlating
the received signal with a retained reference of the transmitted signal. This in-
troduces several challenges compared to pulsed operation [10]. One may justify
dealing with those challenges for several reasons. For one, a noisy waveform enables
processing that is unambiguous in both range and velocity. By processing a large
time-bandwidth product, the instantaneous power spectral density can be kept
low, possibly reducing the risk that the radar signal is intercepted [11–13]. There
have been investigations into using noise radar for applications such as ground
penetrating and through-the-wall sensing [14–16] as well as imaging with short-
range synthetic aperture radar [17]. Passive radar, using existing transmitters of
opportunity instead of a cooperating transmitter, faces similar challenges with
the use of waveforms that typically are noisy, such as issues caused by correlation
processing [18–20].

1.3 Quantum Radar
Going by the patent of Ref. [21], a quantum radar is a radar system that cir-
cumvents the Rayleigh diffraction limit by using “a signal including a plurality
of entangled particles” for the purpose of resolving targets better than a classical
system. We must acknowledge that the term can refer to different things depend-
ing on the context [22–24]. From the description found in literature, there is some
ambiguity as to whether it refers to a theoretical protocol or a physical device.
The device described in the patent of Ref. [25] uses a pair of entangled signals
to realise a quantum advantage over a classical benchmark with the protocol of
Quantum Illumination (QI). The aforementioned QI protocol was named so in
Ref. [26], where, building on the work of Sacchi [27, 28], an entangled signal-idler
pair was shown able to significantly outperform single-photon signals in the task
of deciding whether a weakly reflecting target is present in a noisy background – a
scenario that certainly has radar-like quailities. Further analysis proved that this

2



1.3. QUANTUM RADAR

advantage could overtaken by a weak coherent state probe [29]. However, Tan
et al. showed in Ref. [30] that Gaussian state QI can achieve an entanglement
advantage of a factor of 4 in the effective SNR, commonly referred to as “the
6 dB advantage”. The QI protocol is particularly interesting from a purely theo-
retical point of view because of the peculiar feature that a quantum advantage is
achieved over the classical benchmark even though the initial entanglement does
not survive the process. It thus calls into question what role entanglement has as
a metrological resource. However, this question is beyond the scope of this thesis.
It is important to note that, although QI performs the detection part of radar
operation, it requires prior knowledge of the transmit-to-receive path length to
realise the advantage. That is, the protocol is not able to perform detections at an
unknown distance. Nevertheless, the QI protocol has been understood as a type
of quantum radar [22]. There are other protocols claiming to be quantum radars,
where estimation of time-of-flight is incorporated [31].

A metrological protocol such as QI describes not only the probe state and measure-
ment scenario, but also the receiver setup that measures the optimal observable.
For the QI protocol, receiver structures based on Optical Parametric Amplification
(OPA) and Phase-Conjugation (PC), respectively, were described by Guha and
Erkmen [32] which lead to the patent of Ref. [25]. These receivers are sub-optimal
because they realise only a factor of 2 advantage. A theoretical receiver structure
based on iteration of sum-frequency generation has been shown to realise the full
advantage [33], but experimental realisation of that concept is not feasible.

A no-go result shown by Nair [34]. It says that no quantum advantage can be
achieved over a coherent state if the discrimination is done against a vacuum
background. A consequence of this no-go result is that the discrimination must
be against a noisy background. At ambient room temperature conditions the vis-
ible light spectrum does not satisfy this requirement. On the other hand, noise is
naturally present at room temperature in the microwave regime (approximately
300 MHz to 30 GHz). The necessary technology, such as number resolving mi-
crowave photon detectors, is not yet developed. This technology gap was ap-
proached in Ref. [35], with the proposed solution of using an opto-mechanical
interface to coherently convert photons between visual light frequencies and mi-
crowaves. This scheme allows for the generation and detection of entangled pho-
tons to be done at optical frequencies, where the necessary technology is available,
while the probing is done with microwaves, where the background is noisy and an
advantage may be had. Around this point in time general media started to write
about quantum radar applications and realisations, see, e.g., Refs. [36, 37]. These
reports, targeting a non-expert audience, tended towards creative interpretations
of the quantum properties, such as the role of quantum entanglement, and over-
stated the maturity of the technology. For example, the dubious statement that a
quantum radar can detect stealth aircraft was picked up as a revolutionary tech-
nological achievement [36]. Nevertheless, reports like these increased awareness of
the ideas and likely influenced decisions leading to further research funding.
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On the academic side, there have been several publications claiming experimental
demonstration of the QI protocol, e.g., Ref. [38]. These results have been chal-
lenged as to whether they fully realised the QI protocol [39] on the grounds that
coincidence-counting setups do not fully exploit the initial entanglement. In 2015,
the QI protocol was demonstrated with a sub-optimal OPA receiver [40]. Another
experimental demonstration was performed by England et al. [41]. They used
optics and coincidence counting and a jamming laser was used to artificially add
background photons to the detector. Similarly, Blakely et al. [42] presented results
of performing a similar QI-like task for LIDAR1 applications.

A variation on the QI protocol was put forward in Refs. [43, 44] with experimental
results in the microwave regime with free-space propagation, showing how entan-
gled signals outperform correlated thermal noise signals. These results garnered
some attention because the experiments showed a quantum advantage with a sim-
ple heterodyne detection scheme. The demonstrated protocols were described as
a type of quantum noise radar. While the initial pre-print of Ref. [45], published
as arXiv:1908.03058 in 2019, presented similar results at that point in time, the
final published version clarifies that ideal photon number detection is required
to realise the advantage. The pre-print result was also reported as a quantum
radar [46]. Criticism as to the correctness of these results in the microwave regime
as implementations of QI were raised by Shapiro in Ref. [39], where one of the
main arguments is that the correlated thermal noise used as a classical reference
system is not optimal and that, with minor modifications, the classical reference
system would perform equivalently to the quantum enhanced system. More mi-
crowave quantum illumination demonstrations have been reported, using mea-
surement techniques that could realise a sub-optimal quantum advantage [47, 48]
Other, theoretical receiver structures have also been suggested, such as Ref. [49].
It has been shown that it is possible to utilise a transformation from signal-idler
correlations to idler displacement [50, 51] to realise a receiver, which may be pos-
sible to implement as a sequential protocol [52]. Improvements in the enabling
microwave quantum technology are also being made, with demonstrations of mi-
crowave single-photon detection [53, 54].

There are protocols other than QI that seek to exploit quantum properties in radar-
like tasks [55], such as improving the measurement accuracy of distance with pulse
compression [56] and velocity by utilising the Doppler shift [57]. Additionally,
there have been extensions to the target model, such as a target cloaking by
phase-shifting the illuminating radiation [58] or a target signal that fluctuates
over the observation interval [59]. There have also been some investigations into QI
with three-mode entangled Gaussian states [60]. To this day, interest in quantum
illumination for radar continues [61, 62].

Overall, the prospects of real-life application of these quantum radars lean towards
close-range probing, such as a non-invasive scanning of sensitive samples, rather

1LIDAR: LIght Detection And Ranging
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than competing with conventional radars that can find targets at distances of up
to hundreds of kilometres.

1.4 Thesis project and overview
This thesis is the outcome of a research project jointly undertaken by Saab Ab
and Chalmers University of Technology within the Wallenberg Centre for Quan-
tum Technology (WACQT) programme. The project started out in the field of
quantum radar, with a plan to develop the theory and perform experiments in
the microwave regime. At the time (the year 2019), there were recent publications
with experimental results that indicated that quantum illumination and similar
protocols may be applicable for real-world radar systems, and the initial direction
of the research project was to understand and, if possible, replicate and improve
on these results. The project was to be executed by two PhD students, Martin
Ankel and the author of this thesis, with responsibilities split between theory and
experimental work. This thesis covers the theory side of the project. Along the
way, the experimental part of the project instead ended up in the development of a
non-quantum, experimental noise radar. This lead to a two-way split in the theory
research topics with one part focusing on signal processing for noise radar and the
other part expanding the analysis of quantum radar to adjacent metrology top-
ics. The theoretical material in this thesis is organised according to a (hopefully)
coherent progression rather than following the chronology of the project.

The rest of the thesis is organised as follows. The next two chapters present and
develop the theory that is used in the results of the appended papers. Chapter 2
develops a noise radar system model, where the signals involved are derived from
transmission to target detection. The material in Chapter 2 roughly follows the
chronology of the publication history of the appended Papers I-IV. Focus is given
to challenges in processing non-periodic, noisy waveforms. Chapter 3 moves on to
quantum mechanics and metrological aspects as a foundation for Papers V-VIII.
A detailed description of quantum illumination is presented in a formulation that
should be accessible to a reader familiar with conventional radar. Next, Chapter 4
gives a short summary of each of the appended papers. Finally, Chapter 5 reflects
on the project and results.

Overall, the text in this thesis strives to maintain a consistent notation through
all chapters. It is unavoidable that some variables are being repurposed between
chapters, but all expressions should be unambiguous in context. A consequence is
that the expressions in the main text sometimes differ from those in the appended
papers in terms of variables, sign convention etc. For the entire thesis, vectors are
denoted by lowercase boldface font, e.g., x, while matrices use uppercase boldface
font, e.g., X. All vectors are organised as column vectors and, when they appear,
row vectors are always written as the transpose (⊤) or conjugate transpose (†) of
a column vector.
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Chapter2
Noise Radar

2.1 Radar fundamentals
A radar system operates by the transmission and reception of electromagnetic
waves. Since electromagnetic waves may scatter off of objects, reflected signals
can be detected by the radar at reception. The radar system extracts target in-
formation (distance, velocity, etc.) from these received signals and reports them
to an operator. To design a processing algorithm that performs this task, it is
necessary to understand what happens to the signal at each step from trans-
mission to detection. This chapter presents how the signals are modelled in the
noise radar, followed by a presentation of some details regarding signal processing.
Here, we are concerned with a simplified statistical model, and details regarding
hardware such as amplifiers, filters etc. are omitted. We present the theory for
quasi-monostatic setups, where the radar transmitter and receiver are considered
separate systems, but located at the same site. The appended research papers on
noise radar contains such experimental setups, but also true bistatic separation,
where the transmitter and receiver system are located far from each other. Bistatic
separation introduces many technical challenges, such as time and frequency syn-
chronisation, positioning, etc. However, from a mathematical point of view, most
of the theory is equivalent for monostatic and bistatic setups. When modelling
target signals, we will assume that the relevant scattering happens in the electro-
magnetic far-field. While it will not be of central importance to this text, this
means that, for a monostatic radar, the return power PR of a point target at a
distance R can be related to the transmitted power PT as

PR ∝
PT

R4 , (2.1)

equivalently to the standard radar range equation derivation found in textbooks,
e.g., Refs. [63, 64].
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CHAPTER 2. NOISE RADAR

This chapter is organised as follows. First, we model strictly temporal signals, with
a noise radar able to measure distance and radial velocity. In the temporal domain,
the noise radar correlation processing is discussed and, in this context, the issue
of multiple target signals and the correlation noise floor are introduced. Next, a
detector function for noise radar is derived and some algorithmic approaches to
handle the correlation noise floor are presented. Finally, we expand the model to
handle spatial information and discuss the suppression of unwanted signals from
certain directions in Section 2.6.

2.2 Temporal Signal modelling
The noise radar waveform is generated from a noisy reference x0 ∼ CN (0, IM )
consisting of M complex Gaussian pseudo-random samples. The radar will trans-
mit a continuous signal x(t) generated by the sequence x, which is the original
random sequence x0 matched to the system bandwidth. We write the discrete
signals, sampled at rate of fs, as

xm = x(m/fs), m = 0, 1, . . . ,M − 1 (2.2)

and collect sequences in a vector as

x = [x0, x1, . . . , xM−1]⊤ . (2.3)

The processing will be applied to sequences of length M , which is arbitrary, but
large. We interchangeably refer to the data and its length as the coherent process-
ing interval (CPI). The discrete representation of the transmitted signal x can be
reconstructed digitally by knowledge of the pseudo-random seed and system char-
acteristics. The radar operates at a carrier frequency fc in the microwave regime,
which keeps components reasonably small. We will assume that the bandwidth of
the transmitted signal x(t) may be significant, but not larger than approximately
20% relative fc, such that separation of carrier and base-band makes sense. Since
we are mainly concerned with noise radar, we will have to accommodate our mod-
els for continuous transmission and long integration times.

2.2.1 Target signal
The transmit-to-receive channel for one target is modelled as follows and as illus-
trated in Figure 2.1. First, the noisy reference signal is up-converted to the carrier
frequency as

xRF(t) = x(t) exp [2πifct] . (2.4)
The signal xRF(t) is transmitted and assumed to scatter off of a target in the
environment. After a delay τ(t), the reflected signal arrives at the radar receiver
as

yRF(t) = θ(t)xRF [t− τ(t)]
= θ(t)x [t− τ(t)] exp [2πifc(t− τ(t))] ,

(2.5)
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2.2. TEMPORAL SIGNAL MODELLING

Transmitter

Receiver

x(t)

y(t)

xRF(t)

yRF(t)

Figure 2.1: Schematic overview of the transmit-to-receive channel. The reference
signal x(t) is up-converted to xRF(t) and transmitted. After a travel time of τ(t)/2,
the transmitted signal scatters off of a target. Finally, after another travel time
of τ(t)/2, the receiver captures the scattered signal yRF(t) and down-converts it
to y(t).

where θ(t) is the target scattering function. Finally, the receiver down-converts
the signal back to baseband as

y(t) = yRF(t) exp [−2πifct]
= θ(t)x [t− τ(t)] exp [−2πifcτ(t)] .

(2.6)

We will refer to the baseband signal y(t) and its discrete representation y inter-
changeably as the received signal or the observed signal.

We must specify the time-dependent delay function τ(t) which expresses how much
the signal is delayed with respect to the time of transmission when it arrives at the
receiver. The derivation follows closely Ref. [65] where the expression is derived
in the radar system frame, and holds for targets moving at non-relativistic speeds.
Determining the delay time is central for the radar to be able to detect the distance
to the target. In the model of the delay time, as presented below, the resulting
expression also shows how both Doppler modulation and time dilation affect the
received signal.

Let R(t) denote the instantaneous distance between the target and the radar
system at time t, referenced with respect to the time of transmission. Since the
signal travels to the target and back again, the signal ’interacts’ with the target
at time τ(t)/2, at which time the distance to the target is R

(
t− τ(t)

2

)
. The total

9



CHAPTER 2. NOISE RADAR

transmit-to-receive distance covered by the signal is cτ(t), where c is the speed
of light. Mathematically, we can express this relation between the distance and
delay time as

c

2
τ(t) = R

(
t− τ(t)

2

)
. (2.7)

To solve for the delay, we compute the linear Taylor expansion of τ(t) around a
reference delay time τ0, as

τ(t) = τ0 + τ̇ (τ0) (t− τ0) , (2.8)

where reference time corresponds to a reference target distance R0 = τ0c
2 . Linear

evolution of the delay time corresponds to a constant relative velocity. A higher
order expansion is needed to model accelerating targets. The function τ̇(t) is found
by taking the time derivative of Eq. (2.7) as

τ̇(t) = 2
c

(
1− τ̇(t)

2

)
Ṙ (t− τ(t)/2) , (2.9)

where Ṙ(t) is the radial velocity of the target at time t. Since we are modelling
constant velocity over observation interval, we denote it by v0 = Ṙ (t). Solving
Eq. (2.9) for τ̇(t) and evaluating at t = τ0, we have

τ̇ (τ0) = 2v0
c+ v0

. (2.10)

Inserting the expression for τ̇ (τ0) in Eq. (2.8) and rearranging yields

t− τ (t) = st− sτ0, (2.11)

where we have introduced the stretch factor

s = c− v0
c+ v0

. (2.12)

Due to the relative movement between the target and radar, the stretch factor
describes the time dilation of the received signal.

The received RF signal is ỹ(t) = θ(t)x̃ (st− sτ0), and the corresponding base-band
signal is

y(t) = θ′(t)x (st− sτ0) exp [2πifct(s− 1)] , (2.13)

where we incorporated a constant phase in the scattering function θ′(t) = θ(t)e−2πifcsτ0 .
In general, we will consider θ′(t) to be unknown, so the addition of a constant phase
will be irrelevant within the model. Formally, when considering time stretching
we require that the total energy of x(t) is conserved, which introduces a stretch
dependent scaling factor. For our purposes, this scaling is also incorporated in the
unknown scattering function θ′(t).

10



2.2. TEMPORAL SIGNAL MODELLING

In practically all radar applications, the radial velocity is minuscule with respect
to the speed of light and we can take |v0|

c ≪ 1, such that s = 1 − 2v0
c + O

(
v2

0
c2

)
.

Then, the received baseband signal can be modelled

y(t) = θ′(t)x
[(

1− 2v0
c

)(
t− 2R0

c

)]
exp

[
−2πifct

2v0
c

]
. (2.14)

Here, the factor exp
[
−2πifct

2v0
c

]
produces the “normal” Doppler modulation

which is more readily expressed in terms of the wavelength λ = c
fc

. It is common
in conventional radar, with Doppler tolerant waveforms, to drop the 2v0

c -term in
the base-band waveform and consider only Doppler processing. However, for fast
targets and processing with large time-bandwidth products, the mismatch loss
with a noisy waveform may be significant if one does not compensate for time
dilation in the baseband.

Since treatment presented here is restricted to the monostatic radar setup and con-
siders only target moving with constant radial velocity, there are some obvious
extensions. In Ref. [65], the authors also compute a second order Taylor expansion
in Eq. (2.8) to model targets with constant acceleration. Even targets moving with
constant velocity with respect to the ground will exhibit some amount of accelera-
tion with respect to the radar system. In the bistatic setup, the derivation follows
equivalent steps as presented here, but the transmit and receive channels have to
be treated separately, and the resulting stretch factor involves more parameters,
see e.g., Refs. [66, 67] for details.

The noise radar system samples the received signal at a rate fs and implements
digital processing. At time tm = m

fs
, the observed signal sampled from Eq. (2.14)

is then
ym = y (tm)

= θ′
(
m

fs

)
x

[(
1− 2v0

c

)(
m

fs
− 2R0

c

)]
exp

[
−2πim2v0

fsλ

] (2.15)

and, again, we collect M samples in a vector y = [y0, y1, . . . , yM−1]⊤. Each sample
corresponds to a distance cell of size ∆R = c

2fs
. To simplify the notation, we define

the Doppler frequency1

fD = −2v0
λ
. (2.16)

Now, we assume that the target scattering function is constant over the observa-
tion interval,

θ′
(
m

fs

)
= θ′, for all m = 0, 1, . . . ,M − 1. (2.17)

1The Doppler sign convention can be understood as follows. An approaching target will have
a negative radial velocity, because the distance is reducing. At the same time, the Doppler effect
will cause the observed frequency to increase for an approaching target, meaning the Doppler
shift will be positive.
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CHAPTER 2. NOISE RADAR

This assumption may fail for several reasons. If the target is not perfectly pointlike,
electromagnetic scattering may vary significantly as the target moves and is illu-
minated by the radar from different angles. By introducing the vector h (R0, v0)
with elements

[h (R0, v0)]m = x

[(
1 + fD

fc

)(
m

fs
− 2R0

c

)]
exp

[
2πimfD

fs

]
, (2.18)

the observed target signal can be expressed

y = θ′h (R0, v0) . (2.19)

The assumptions that lead us to Eq. (2.19) will be retained for the rest of this
chapter. Unless explicitly stated, we will incorporate all amplitude information in
the scalar θ′ and normalise the signal vector, i.e., ||h (R0, v0) ||2 = 1.

2.2.2 Multisignal modelling
In any radar scenarios we can expect to receive reflections from more than one
object, and not all of these objects may be targets of interest. We refer to unin-
teresting signals as clutter while any interesting signals are referred to as targets.
Each individual signal is modelled by Eq. (2.19). For now, only signals from our
own system are modelled.

The clutter environment is modelled as PC independent scattering points with no
scattering between them. That is, the observed digital signal is the superposition
of the signal from each scattering point, which we write as

yC =
PC∑
p=1

θph (Rp, vp)

= HCθC .

(2.20)

Here,
HC =

[
h (R1, v1) h (R2, v2) . . . h (RPC

, vPC
)
]

(2.21)

is an observation matrix of size M×PC , and θC =
[
θ1 θ2 . . . θPC

]⊤
is a vector

of the complex amplitudes.

2.3 Noise radar processing
At the simplest level, noise radar processing involves correlating the observed
signal y with the digital reference x. If a strong correlation is observed, target
presence can be declared. However, the analysis is slightly more complicated, since
a given target may have almost any possible distance and velocity. Instead, the
correlation should be performed between the observed signal and the target signal

12



2.3. NOISE RADAR PROCESSING

model h, which depends on x. This means that, in principle, we want to compute
the cross-correlation between y and a large number of signal vectors h. In this
section, we discuss some aspects regarding computation of the 2D cross-correlation

[Z]i,j = h† (Ri, vj) y. (2.22)

for a Range-Velocity grid with range cells Ri and velocity cells vj . For the range
cells, the computation of [Z]i,j = zi,j is performed in the frequency domain, as
the correlation for different delays is efficiently implemented with the Fast Fourier
Transform (FFT) algorithm. In particular, for zero velocity (v0 = 0) we can com-
pute the vector of correlations as

z0 = F−1
↓ [F↓ [h∗ (0, 0)]⊙F↓ [y]] , (2.23)

where h (0, 0) = x, see Eq. (2.18). Here, F [·] denotes the (discrete) Fourier trans-
form and the subscript ↓ denotes that the transform is applied column-wise. After
a shift in the indices, the correlation vector has elements corresponding to different
range cells, as

z0 =
[
h† (0, 0) y h† (∆R, 0) y . . . h† ((M − 1)∆R, 0) y

]⊤
, (2.24)

where ∆R = c
2fs

is the range cell size. For non-zero velocities, we can compute
the correlation with a Doppler shifted signal vector as

zj = F−1
↓ [F↓ [h∗ (0, vj)]⊙F↓ [y]] , (2.25)

which requires the computation of h (0, vj) from x for each vj . If the velocity grid
is large, with many vj , the 2D cross-correlation grid is computationally expensive.
To lower computational load, we implement an approximate method, referred to
as batch processing. By separating the observed signal into several batches, the
velocity information can be extracted by applying a Fourier transform in a manner
similar to pulse-Doppler radar.

As before, the received signal y consists of theM samples which cover the coherent
processing interval. In the case of batch processing, both the observed signal and
the reference signal are separated into B batches of length N . To not introduce
unnecessary complications regarding truncation, we take BN = M . The signal vec-
tors of each batch are identified by subscript b = 0, 1, . . . , B−1, with the elements
xb =

[
xbN xbN+1 . . . xN(b+1)−1

]⊤
and yb =

[
ybN ybN+1 . . . yN(b+1)−1

]⊤
.

For each batch, the correlation is computed as

cb = F−1
↓ [F↓ (x∗

b)⊙F↓ (yb)] , (2.26)

and the result from all the batches in the CPI can be represented in the matrix

C =
[
c0 c1 . . . cB−1

]
. (2.27)
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Each row in C is separated by the time 1/fs, sampling the correlation with a
particular distance. Each column of C is separated by the time N/fs. By conven-
tion, the high sample rate of the rows is referred to as ‘fast-time’ while the lower
sample rate of the columns is referred to as ‘slow-time’.

Let us assume that the observed signal is noise-free and contains only the signal
of one target at distance i∆R moving with radial velocity v, as y = θh (i∆R, v).
Then, the elements of C are

[C]i,b = x†
byb

= θSb exp
[
2πibNfD

fs

]
,

(2.28)

where the coherent sum over fast-time elements is

Sb =
N−1∑
n=0

x∗ (tn,b)x
[(

1 + fD
fc

)
tn,b

]
e2πin fD

fs (2.29)

and where the reference is sampled at the time steps

tn,b = n+ bN

fs
− 2Ri

c
. (2.30)

As a first approximation, we assume that the coherent sum is identical across all
batches in the CPI, i.e., Sb ≈ S for all b = 0, 1, . . . , B− 1. Then, the remaining ef-
fect of a moving target is that the phase evolves by exp

[
2πiNfD

fs

]
between batches.

This means that the slow-time coherent sum along row i can be computed as
B−1∑
b=0

[C]i,b exp
[
−2πiNbfD

fs

]
= θSB, (2.31)

i.e., an effective increase in the signal strength of B. When computing a grid of ve-
locities, the slow-time coherent sum can be implemented with a Fourier transform
along the rows of C as

Z = F→ [C] . (2.32)

2.3.1 Target movement compensation
If the target is stationary, the fast-time sum of Eq. (2.29) will be a perfect match
between the observed and reference signal and there will be no losses involved in
processing the signal in batches compared to the 2D cross-correlation. However, a
moving target will induce differences between the reference and observed signals,
causing integration losses [68]. With knowledge of v, we can apply two operations
to mitigate this loss without the need for a full resampling of the reference. The
simplest improvement is to apply a Doppler modulation to the reference as

[
x′]

m = [x]m exp
[
2πimfD

fs

]
, (2.33)
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which corrects for the phase evolution in Eq. (2.29), and is sufficient when range
cell migration is negligible. For faster targets or longer integration times we need
to also compensate for time dilation in the baseband signal.

The Fourier transform has the property that a time shift in the time domain
corresponds to a phase shift in the frequency domain, as

[F [xm−a]]n = [F [xm]]n exp
[
−2πian

M

]
. (2.34)

This means we can apply a phase factor in the Fourier domain to approximately
correct for time dilation in the baseband waveform. Within the batch processing,
this corresponds to shifting each batch by a constant time. Since the Fourier trans-
forms are already implemented for the correlation, time dilation compensation can
be implemented simply with an extra phase factor in Eq. (2.26) as

c′
b = F−1

↓
[
F↓
[
(x′

b)∗]⊙F↓ [yb]⊙ ϵb

]
, (2.35)

where the phase factor2 is

[ϵb]n = exp
(
−2πinbfD

fc

)
. (2.36)

Finally, the correlation grid matched to velocity v is

Z′ = F→
[
c′

0 c′
1 . . . c′

B−1
]
. (2.37)

While it mitigates the mismatch losses, computing the correlation grid for a large
number of velocities increases the required computational resources. Preferably,
the relevant range of possible velocities is covered by computing the correlation
grid matched to a set of velocities separated to ensure the integration loss is
limited.

2.3.2 Correlation noise floor
The correlation noise floor (CNF) is a central effect in noise radar operation.
It occurs when there is more than one signal present in the observed data and
takes the form of a raised noise floor, approximately the time-bandwidth product
beneath the strongest signal. We now derive this effect. Assume that the observed
signal contains two signals, well separated in range and velocity with R1 ̸= R2
and v1 ≠ v2, as

y = θ1h1 + θ2h2, (2.38)

where h1 ≡ h (R1, v1) and h2 ≡ h (R2, v2). As discussed above, one approach to
detect signal #1 is to compute the product z = h†

1y and check if the modulus
2This expression is found in the inner sum of Eq. (7) in Paper II, which has an error that

should be corrected as e2πi q·p
M → e2πi q·m

M .
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square exceeds a predefined threshold. Since the two signals are well separated, we
can model them as independent random vectors distributed as CN

(
0,M−1IM

)
.

Then, keeping θ1 and θ2 fixed, the expectation value over the modulus square of
the correlation is

E |z|2 = E
∣∣∣θ1|h1|2 + θ2h†

1h2
∣∣∣2

= E
[
|θ1|2|h1|4 + |θ2|2|h†

1h2|2 + 2Re
(
θ∗

1θ2h†
1h2

)]
= |θ1|2E|h1|4 + |θ2|2E|h†

1h2|2 + 2Re
(
θ∗

1θ2E
[
h†

1h2
])

= (M + 1)|θ1|2 + |θ2|2

M
,

(2.39)

where we used3 that E
[
|h1|4

]
= M+1

M , E
[
|h†

1h2|2
]

= M−1, and that E
[
h†

1h2
]

=

E
[
h†

1

]
E [h2] = 0. Eq. (2.39) illustrates how a finite correlation in the modulus

square, proportional toM−1, between the two independent signals causes sidelobes
from the second target to interfere with our test for the first target. Since the
distance and velocity of the two targets are arbitrary, we conclude that these
stochastic sidelobes will affect all possible range and velocity cells. Because of its
random nature, this effect can be understood as a raised noise floor.

Let us now require that, to be detected separately from noise, the correlation∣∣∣h†
1y
∣∣∣2 must produce a local peak that is stronger than a factor of γ relative to

the local noise floor. Then, because of the CNF, this corresponds to a requirement
that (M + 1)|θ1|2 > γ|θ2|2. If this is not satisfied, the stochastic sidelobes from
signal #2 will mask signal #1. This consequence of the CNF is known as the
masking effect [69].

As an example, consider two signals that are due to reflections off of two iden-
tical targets with R1 > R2. Using Eq. (2.1) for the relative return power, we
can estimate that the range that target #1 can be detected must satisfy R1 <
R2[(M + 1)/γ]1/4. In our setup, we use M ≈ 107 and γ ≈ 13.8 which implies
[(M + 1)/γ]1/4 ≈ 30. Thus, if R2 = 10 m, target #1 can ideally be detected at a
distance of R1 = 300 m. In practice, we will always expect clutter within at least
100 m of the radar system, indicating that the masking effect will limit detection
ranges to a few kilometres, at best.

While it introduces some challenges, the masking effect can be mitigated by chang-
ing how the signal is processed, e.g., by incorporating knowledge of signal #2 in
the computation of Z as we will see below.

3For details, see Eq. (A.2) and Eq. (A.3) in the Appendix.
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2.4 Noise radar detector
So far, we have modelled the signals involved in noise radar operation. In a typical
radar scenario, we are ignorant to the presence of possible targets. Instead of
directly estimating and reporting all signal coefficients, the radar should report
only those signals that are strong enough that confidently can be said to originate
from actual targets. The question is whether the observed signal y, of length M ,
originates from thermal noise, or from a target signal plus the thermal noise. This
question can be stated as a binary decision where the two hypotheses are

H0 : y = noise,
H1 : y = θ · signal + noise.

Now, we introduce a central function of any radar: the signal detector. Detection
is understood mathematically as the indicator function

1γ (Λ) =
{

1 if Λ ≥ γ,
0 otherwise.

(2.40)

The indicator function compares a test statistic Λ ∈ R with a threshold value
γ ∈ R. The test statistic is a function of the observed signal data y, and parameters
α, labelling the the signal under test, i.e., Λ = Λ(y; α). The parameters could
be distance R and radial velocity v, as in Eq. (2.19) and we would have α =
[R, v]⊤. Indeed, we will implement the detector for range and velocity parameters.
However, other parameters such as direction, acceleration, and more could also
be included in α. If a certain input gives an indication, we interpret that those
parameters α can be associated with a signal detected in y.

Regardless of what the threshold is tuned to, the detector will unavoidably be sub-
ject to statistical error. For any given problem, the detector can be characterised
in terms of the conditional probabilities that it declares the correct (or false) re-
sult. In the context of radar, it is conventional to use the events of True Positive
and False Positive outcomes, quantified with the probability of detection PD and
false alarm PFA, respectively. Both detection and false alarm refer to the event
when the detector declares in favour of target presence, conditioned on whether
the target is actually present or not. In the terminology of decision making, the
false alarm is a Type-I error and the miss is a Type-II error. A quantity familiar to
any radar engineer is the relation between probability of detection and probability
of false alarm, given a certain signal-to-noise ratio. This relation is known as a
receiver operating characteristic (ROC) and captures how enforcing a low proba-
bility of false alarms by raising the threshold necessarily lowers the probability of
detection.

As an alternative to studying the trade-off between the Type-I and Type-II errors,
there is the related quantity of the total error probability, defined as

PE = π0PFA + π1 (1− PD) , (2.41)
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where π0 and π1 are the a priori probabilities of the events associated with H0
and H1, respectively. The total error is commonly used in the communication
scenario, where the priors are known. On the other hand, the prior probabilities
are unknown for radar scenarios and the total error probability is not useful.

While simple in concept, there are several challenges in designing a detector. How
should the test statistic Λ(y; α) be designed and implemented? How to set the
threshold γ? If the threshold is reduced, the radar will be able to find weaker
target signals at the cost of an increase in the number of false alarms. Conversely,
an increase in the threshold will lower the probability of false alarms, but the
radar will be less sensitive to weak target signals.

One simple way to define a binary detector function when the priors are unknown
is as a likelihood ratio test [70] (LRT). The LRT takes as input the observation y
and computes the test statistic

LLRT = p(y |H1)
p(y |H0)

, (2.42)

where p(y|Hi) denotes the probability density function (PDF) of y under hypothe-
sis Hi. For practical purposes, the log-likelihood test statistic, ΛLRT = 2 logLLRT,
is often more useful than the direct ratio. It is known that, for many repeated in-
dependent and identically distributed measurements, such that the central limit
theorem applies, any log-likelihood test is asymptotically distributed as a chi-
squared random variable. This result is known as Wilks’s theorem [71]. For a
simple binary hypothesis test, e.g., θ = 0 against θ = θ1, where θ1 is known, the
likelihood ratio test is optimal by the Neyman-Pearson Lemma [70]. In a radar
scenario, the simple hypothesis is usually not encountered, because the value of θ
is not known. In this case optimality of the likelihood ratio test is not guaranteed.
In the general case, is it impossible to find a globally optimal detector function
for these problems, and one might have to resort to a locally optimised test.

2.4.1 Signal estimation

Before developing the detector in detail, we need to handle our ignorance of the
signal coefficient θ. To do this, we specify the signal model and use some results
from estimation theory [72]. To combat the CNF issues, we will describe the
detector as a problem of detection and rejection of multiple signals. The total
signal model incorporates one target signal yT = hT θT according to Eq. (2.19) and
clutter signals yC = HCθC according to Eq. (2.20). At this point, we can no longer
postpone the introduction of the system noise ν. The noise is distributed according
to the complex normal distribution, i.e., ν ∼ CN

(
0, σ2IM

)
, with variance σ2.

In principle, we may model coloured noise with non-diagonal covariance matrix.
However, as long as the covariance matrix is known, we could decompose it to pre-
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whiten4 the signals which results in an identity covariance matrix. Thus, there is
no limitation imposed by this assumption on the noise.

We write the total observed signal as

y = yT + yC + ν

=
[
hT HC

]
︸ ︷︷ ︸

≡H

[
θT

θC

]
︸ ︷︷ ︸

≡θ

+ ν. (2.43)

In this formalism, the only distinction between target and clutter is whether the
signals are of interest to the radar operator. Mathematically, this corresponds to
whether the signal is described by the columns of hT or HC . Beyond that, the
signal model is generic and allows for arbitrary columns. We will always assume
that the total signal matrix H =

[
hT HC

]
is a tall matrix (i.e., PC + 1 ≪ M)

of rank PC + 1, such that the estimation problem is well posed.

For now, we assume that the signal basis (i.e., the matrix H) are known, but the
coefficients θ is an unknown vector of length PC + 1. Then, the coefficients are
estimated as

Tθ =
(
H†H

)−1
H†y, (2.44)

which is the solution to the least-squares problem

Tθ = argmin
θ

(y−Hθ)† (y−Hθ) . (2.45)

Here, Tθ denotes an unbiased estimator of the parameters θ, i.e., E [Tθ] = θ. In
this setting, the clutter amplitudes θC are nuisance parameters – additional un-
knowns that we must account for in the estimation task, even though our primary
interest may be θT .

The structure of the problem may be elucidated by extracting the estimate for
the target parameters alone which, by Eq. (B.6), is

TθT
=
[(
I−HCH+

C

)
hT

]+
y, (2.46)

where H+
C is the Moore-Penrose pseudoinverse. It is notationally convenient to

introduce the projection matrices PHC = HCH+
C and P⊥

HC
= I − PHC . In this

form, the estimate (2.46) can be interpreted as the least-squares fit of the data
4Thermal noise is always full rank and its covariance matrix Σ is guaranteed to be non-singular.

We may decompose the inverse covariance matrix as Σ−1 = D†D and define the pre-whitened
observed signal and observation matrix, as ỹ = Dy and H̃ = DH, respectively. After this
transformation, the noise is white, since Dν ∼ CN (0, I).
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to the target signal in the subspace that is orthogonal to the subspace of clutter
signals. Then, Eq. (2.46) can be understood as the ’clutter-free’ scalar product

TθT
=

h†
T P⊥

HC
y

||P⊥
HC

hT ||2
. (2.47)

In the absence of clutter, the estimate reduces to TθT
= h†

T y, which is the scalar
product considered in Section 2.3.

2.4.2 Detector function
We form our detection problem as a binary hypothesis test based on the signal
model of Eq. (2.43). The null hypothesis H0 has PC signals described by HC and
the alternative hypothesis H1 has PC + 1 signals jointly described by hT = hT (α)
and HC . We state the two hypotheses as

H0 : y = HCθC + ν ∼ CN (HCθC ,Σ)
H1 : y = hT θT + HCθC + ν ∼ CN (hT θT + HCθC ,Σ)

(2.48)

with ||θT ||2 > 0. The formalism used to analyse this hypothesis test results in
what is known as the Matched subspace detector [73]. We use the total observation
matrix H =

[
hT HC

]
when referring to the signals involved in the alternative

hypothesis. The derivation of this result as presented here is well known and can
be found in textbooks, see, e.g., Ref. [70].

To define the test statistic, we use the generalised likelihood ratio test (GLRT). We
consider the case where the detector is adaptive against white noise with unknown
variance, i.e., we assume the noise covariance matrix is diagonal, Σ = σ2I, but
the scaling σ2 is unknown5. In this form, the GLRT will have the scale-invariance
property in the sense that the test will be independent of the true value of σ2.

The generalised likelihood ratio Λ′(y) applies the LRT of Eq. (2.42) and replaces
the unknown parameters with their corresponding maximum likelihood estimators,
as

Λ′(y) =
p
(
y|H1, Tθ, Tσ2

1

)
p
(
y|H0, TθC

, Tσ2
0

) , (2.49)

where Tσ2
0

and Tσ2
1

are the variance estimators under the respective hypotheses,
to be determined. Letting the unknown variance estimates be fixed for a moment,
we have that Tθ is given in Eq. (2.44). Inserting the expression of Eq. (2.44) in
the PDF of H1 we get

p
(
y
∣∣H1, Tθ = H+y, Tσ2

1

)
=

exp
[
−||P⊥

Hy||2/Tσ2
1

]
πMTM

σ2
1

. (2.50)

5This is equivalent to Σ = σ2Σ0, where the structure Σ0 is known, if the signals are pre-
whitened with respect to Σ0.
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Now, we find the maximum likelihood estimate Tσ2
1

by maximising the PDF, which
is equivalent to minimising its negative logarithm, such that

Tσ2
1

= argmax
T

σ2
1

exp
[
−||P⊥

Hy||2/Tσ2
1

]
πMTM

σ2
1

= argmin
T

σ2
1

[
Mπ +M lnTσ2

1
+ ||P

⊥
Hy||2

Tσ2
1

]

= argmin
T

σ2
1

[
lnTσ2

1
+ ||P

⊥
Hy||2

MTσ2
1

]
,

(2.51)

with the solution Tσ2
1

= ||P⊥
Hy||2
M . By repeating the same steps for H0, we find

Tσ2
0

=
||P⊥

HC
y||2

M . The concentrated PDFs under either hypothesis are

p

(
y
∣∣H1, Tθ = H+y, Tσ2

1
= ||P

⊥
Hy||2

M

)
= MM e−M

πM ||P⊥
Hy||2M

(2.52)

and
p

(
y
∣∣H0, TθC

= H+
Cy, Tσ2

0
=
||P⊥

HC
y||2

M

)
= MM e−M

πM ||P⊥
HC

y||2M
. (2.53)

With the concentrated PDFs, the GLRT statistic of Eq. (2.49) simplifies to

Λ′(y) =
(
||P⊥

HC
y||2

||P⊥
Hy||2

)M

. (2.54)

We get a simpler form of a fully equivalent test by taking the M ’th root and sub-
tracting 1, as Λ′′(y) = (Λ′(y))1/M−1. Then, with some subsequent simplifications,
we have

Λ′′(y) =
||P⊥

HC
y||2

||P⊥
Hy||2

− 1

=
y†
[
P⊥

HC
−P⊥

H

]
y

||P⊥
Hy||2

= y† [PH −PHC ] y
y†
[
P⊥

HC
−PȟT

]
y

=
y†PȟT

y
||P⊥

HC
y||2 − y†PȟT

y

=
|h†

T P⊥
HC

y|2

||P⊥
HC

hT ||2||P⊥
HC

y||2 − |h†
T P⊥

HC
y|2

,

(2.55)
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where ȟT = P⊥
HC

hT and where we used Eq. (B.5) for the projection matrix of a
concatenated matrix.

A hypothesis test statistic like the GLRT is by necessity a random variable and
characterisation of the probability distribution is central to its usefulness. So far,
we have not said anything about the distribution of Λ′′. Following the steps of
Ref. [73] we note that Λ′′ satisfies the form of a ratio between two independent
chi-squared random variables, missing only a scaling with 2 and 2M − 2PC − 2
degrees of freedom in the numerator and denominator, respectively. Such a ratio
is distributed according to the F distribution [70, 74]. By multiplying Λ′′ by
2M−2PC−2

2 , we arrive at our final test function

Λ(y) =
(M − PC − 1) |h†

T P⊥
HC

y|2

||P⊥
HC

hT ||2||P⊥
HC

y||2 − |h†
T P⊥

HC
y|2

. (2.56)

The test statistic has the statistical properties6

Λ(y) ∼
{
F2,2M−2PC−2 under H0,

F2,2M−2PC−2
(
λ2) under H1.

(2.57)

Under H1, the non-centrality parameter is

λ2 = |θT |2

σ2 ||P
⊥
HChT ||2, (2.58)

which can be understood as the power signal-to-noise ratio (SNR) in the clutter-
free subspace. Under H0, Λ is independent of the unknown parameters, and any
threshold γ will specify a certain probability of false alarm according to PFA =
Pr [Λ (y) ≥ γ|H0]. That is, a detector using Λ as the test statistic is said to have the
constant false alarm rate (CFAR) property. In many radar settings, the threshold
may be designed according to a desired rate of false alarms. Mathematically, we
can approach such a threshold tuning by first computing the right-tail marginal
distribution of Λ under the null hypothesis, as

PFA =
∫ ∞

γ
ds pF2,2M−2PC −2(s)

=
(

1 + γ

M − PC − 1

)−M+PC+1
,

(2.59)

where the PDF pF2,2M−2PC −2(s) is presented in Eq. (A.5). By solving the result for
γ we get the designed CFAR threshold

γ (PFA) = (M − PC − 1)
[
exp

(
− lnPFA
M − PC − 1

)
− 1

]
= − lnPFA

[
1− lnPFA

2 (M − PC − 1)

]
+O

[( lnPFA
M − PC − 1

)3
]
.

(2.60)

6See Appendix A for some properties of the F distribution.
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In our setting, M ≫ PC + 1 and the threshold can be set according to γ (PFA) =
− lnPFA. Often, we are testing for signals that are reasonably well separated from
the clutter subspace, in distance or velocity, and we approximate ||P⊥

HC
hT ||2 =

1−O
(
M−1) ≈ 1, which somewhat simplifies Λ.

2.5 Clutter suppression
In the derivation of the GLRT, we ended up with the test statistic of Eq. (2.56),
where the central quantity is the clutter-free scalar product h†

T P⊥
HC

y. This may
appear to conflict with the processing described in Section 2.3 where h†

T y was
considered. However, the processing is identical when applied to the clutter-free
observation vector y̌ = P⊥

HC
y. In this section, we briefly present some possible

approaches to computing y̌ as pre-processing step, collectively referred to as clut-
ter suppression algorithms. The algorithms discussed here are those that appear
in the appended papers, but there are several other approaches [75–78].

Our main reason for considering clutter suppression is that those signals often are
significantly stronger than the signals of targets of interest. In several settings, and
for continuous transmission in particular, the CNF from clutter7 will dominate. If
HC is an accurate representation of the clutter environment and its columns span
the strongest signals in the observation vector, correlation processing on y̌ will be
free of the CNF. Of course, there are several reasons why this is an unattainable
ideal, and some residual impact of the CNF will always remain. One limitation is
that we model the signal coefficients as constant over the CPI – an assumption
that may fail in reality. There may also be signals outside span of HC that we fail
to account for.

Regarding the computation of y̌, we can imagine two types of algorithms. In
the first type, HC is supplied to the algorithm based on a clutter map, where
each column is known or expected to represent a strong signal based on previous
knowledge. In the second type, the columns of HC are populated automatically
during the pre-processing step, e.g., by iteration. In some sense, these two types
can be understood as non-adaptive and adaptive, respectively.

When considering these types of algorithms, two design choices that become rele-
vant are:

• The model order PC , i.e., the number of columns in HC ;

• The dictionary {hd}, i.e., the possible columns that we may add to HC .

The dictionary {hd} = {hd : d = 0, 1, . . .} can be quite arbitrary in general, and
the procedures hold for both on-grid (discrete dictionary) and off-grid (continuous

7In this sense, clutter be can reflections from objects in the environment, but also near-field
coupling between transmitter and receiver antennas, or direct signal interference in a bistatic
configuration.
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dictionary) methods. As we have noted before, the dictionary vectors hd could
be parameterised with respect to range, velocity, direction, etc. However, we will
continue with the assumption that {hd} is a finite set of vectors on a range-velocity
grid. Without loss of generality, we assume that all vectors in the dictionary are
normalised, i.e., ||hd||2 = 1 for all d. We do not require the dictionary vectors to be
mutually orthogonal, since the computation of such dictionary would not be viable
with the length of vectors and size of the range-velocity grid we consider. However,
with noisy waveforms, our dictionary contains vectors that are almost mutually
orthogonal, as |h†

dh′
d|2 ≈ M−1 for d ̸= d′. We continue to assume that the noise

covariance matrix is diagonal, as in the case with thermal noise. At this point,
it is important to emphasise that the projection matrix P⊥

HC
is convenient for

compact notation, but should generally not be formed explicitly since it requires
O(P 2

CM) number of operations to compute and memory of size O(M2).

2.5.1 CLEAN
The CLEAN algorithm8 is a ’greedy’ [80] procedure that investigates the observed
signals by iteration. It works by repeating the following three steps

1. Identify the strongest signal in the data as h′ = argmax{hd} |h
†
dy|2;

2. Estimate the coefficient of the strongest signal: Tθ′ for h′;

3. Subtract the strongest signal from the data: y← y− h′Tθ′ .

Step 3 can be stated as the projection y ← P⊥
h′y. Thus, the output of this pro-

cedure is a data vector that approximates y̌, where the columns of HC are the
vectors h′ from all the iterations. However, since CLEAN keeps no memory of
previous h′, performance will degrade if there is even a small overlap between
iterations. For example, the amplitude of the coefficient may be overestimated in
early iterations due to the CNF. An incorrect estimate Tθ′ causes the algorithm
to accumulate a mismatch over time that eventually leads to saturation, i.e., total
energy in the data is no longer reduced by further iterations. CLEAN performance
will deteriorate if the model of the strongest signal h′ is incorrect, for example
due to stretch effects or system non-linearity.

In Paper I we extended CLEAN9 to account for straddling and extended clut-
ter, i.e., signals that originate off-grid or fail to be point-like. Like before, the
strongest signal is identified, but instead of subtracting only the strongest signal,
an orthogonal basis including neighbouring cells is used. The joint signal in all of
these cells is subtracted from the data. In particular, the algorithm repeats the
following steps:

8In the original reference, ’CLEAN’ is written in all capital letters, but it is not an abbrevia-
tion [79].

9We referred to the extension as Sequential CLEAN which is misleading. The correct name is
Extended CLEAN or Multi-Signal CLEAN.
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1. Identify the strongest signal in the data as h′ = argmax{hd} |h
†
dy|2;

2. Create the signal matrix H′ =
[
h′,h′′

1,h′′
2, . . . ,h′′

Q

]
where h′′

1,h′′
2, . . . ,h′′

Q are
perturbations of h′;

3. Estimate Q+ 1 coefficients by Tθ′ for H′;

4. Subtract the region of the strongest signal from the data y← y−H′Tθ′ .

At Step 3, it is possible to remove columns of H′ for which the amplitude is
negligible and recompute Tθ′ . In our application with clutter in noise radar, this
version of CLEAN worked very well for reducing the correlation noise floor, but
created some artefacts around regions where signals had been subtracted, see
Paper I.

It remains to select a stopping criterion that determines when CLEAN should
terminate to prevent it from identifying side-lobes or thermal noise fluctuations
as proper signals. A common criterion is to stop iterating when the energy in
the signal is no longer sufficiently reduced in the next step. As an alternative,
we suggest replacing the matched filter of Step 1 with the detector statistic Λ of
Eq. (2.56). The algorithm is then allowed to run until the strongest signal h′ is
weak enough to fall below the detection threshold. If there are remaining signals
that fall below the threshold, they are sufficiently weak to have negligible impact
on the CNF. The scale-invariance property of the GLRT makes this version of the
algorithm robust against model order runaway, as residual energy will be treated
as a raised noise floor and the test statistic scaled accordingly.

We can improve on CLEAN by incorporating the knowledge of removed signals
into future iterations. Instead of discarding the selected vector h′ at each itera-
tion we can append it to the matrix HC , which is initialised empty. Then, the
coefficients estimated at previous iterations may be updated as the model order
increases. This extension of the algorithm is a version of Orthogonal Matching Pur-
suit (OMP) [81]. While it introduces extra computations compared to CLEAN,
OMP can be implemented relatively efficiently [82].

2.5.2 Extensive Cancellation Algorithm
The Extensive Cancellation Algorithm (ECA) [20, 83] is another algorithm that
can be used for noise radar processing. ECA requires the clutter observation ma-
trix HC to be supplied. Similarly to CLEAN, the central idea of ECA is to use
the estimate of the clutter coefficients TθC

and subtract the corresponding clutter
signals from the observed data vector. We can write this as

yECA = y−HCTθC
. (2.61)

In this form, ECA can be seen as a one-step extended CLEAN, where all the
signals defined by HC are removed jointly. Because all signals are treated at the
same time, there is no problem if they are not mutually orthogonal.
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Direct implementation according to Eq (2.61) may require large amounts of com-
putational resources if the model order is large. A significant simplification can
be achieved in the case when the clutter is restricted to a limited subspace. Let
the clutter be stationary (vp = 0, for p = 1, 2, . . . , PC), such that the scatter-
ing process is simply a delay of the transmitted signal. Assume further that for
each sample delay the clutter signal’s amplitude is non-zero. In this example, the
observation matrix is

HC =
[
h (0, 0) h (∆R, 0) h (2∆R, 0) . . .

]
, (2.62)

where ∆R is the range cell size. Eq. (2.62) is a Toeplitz matrix consisting of de-
layed copies of the reference signal x up to some maximum relevant delay. Note
that the clutter estimate satisfies H†

CHCTθC
= H†

Cy where H†
CHC approximates

a Toeplitz matrix of the transmitted signal’s autocorrelation rx and H†
Cy approxi-

mates the cross-correlation between the transmitted and observed signal rxy. Thus
TθC

can be determined from the linear system

rx(0) r∗
x(1) r∗

x(2) . . .
rx(1) rx(0) r∗

x(1) . . .
... . . . . . . . . .

TθC
=


rxy(0)
rxy(1)
rxy(2)

...

 . (2.63)

In this form, the estimation task can be understood as an optimal filtering problem
and is convenient for application in noise radar processing for several reasons. Since
the transmitted signal is modelled as a stationary process, its autocorrelation
function can be pre-computed, and the cross-correlation with the observed signal
is efficiently computed with FFTs, as described earlier. Secondly, the maximum
delay considered in Eq. (2.63) can be small relative to the total processing length.
For a ground-based noise radar system, this is certainly true, because close-range
clutter will cause the most severe contributions to the CNF. Finally, the Toeplitz
problem can be efficiently solved with Levinson recursion [84].

2.6 Array processing
So far we have modelled the noise radar in the temporal domain, but a radar
should preferably also be able to determine the direction to the target. This can be
done by sweeping a highly directive antenna, with the result that, as an example,
each CPI corresponds to a different direction. In our case, we use a non-rotating
array antenna, where direction is determined by comparing the signal from several
receiver elements. In particular, we use a receiver antenna in the form of a uniform
linear array (ULA) of 8 approximately isotropic antenna elements, and the signal
from each element is digitised. The transmitter antenna is smaller, illuminating
the scene with a wide lobe. If the transmitter and receiver are operating from
the same site, we have a quasi-monostatic setup, but they may be separated for
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w∗
0 w∗

1 w∗
2 w∗

L−1

φ

Σ

yw

Figure 2.2: Schematic overview of a ULA with L antenna elements. A signal is
impinging on the array from the direction φ. The signal is received at each element
and multiplied by a channel weight wl. The array output yw is the coherent sum
from all elements.

bistatic operation. The model used to describe the spatial signals follows in broad
terms the presentation of Ref. [85].

2.6.1 Target Signal

We consider an ULA antenna in horizontal orientation, consisting of L elements
spaced by distance d and labelled by index l. Assume that the array picks up
the RF signal yRF(t) of Eq. (2.6) from azimuthal direction φ relative the antenna
normal, see Fig. 2.2. We assume that the source is far away and that φ is constant
over the observation interval. If we set the reference time with respect to element
l = 0 in the array, the instantaneous snapshot of the received signal for element
l is yRF

(
t− l d

c sinφ
)

where d
c sinφ is the inter-element time delay. By using the

temporal model from Subsection 2.2.1, we have, as a generalisation of Eq. (2.18),
a spatio-temporal description of the signal vector10 h(R, v, φ), of length ML, with

10While the two discrete indices m and l invites the notion that h(R, v, φ) may be written as
a matrix, we shall avoid that convention, because the matrix form is used to describe multiple
signals, as in Eq. (2.20).
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the elements

[h(R, v, φ)]m+Ml =x

[(
1 + fD

fc

)(
m

fs
− 2R0

c

)
− l d

c
sinφ

]
×

exp
[
2πi

(
m
fD
fs
− lfc

d

c
sinφ

)]
.

(2.64)

To ensure that the direction φ can be determined unambiguously, the elements
must be separated sufficiently close to avoid aliasing, which is satisfied for sepa-
ration no larger than d = λ

2 for the RF wavelength λ = c
fc

. Using this element
separation, we have d

c = 1
2fc

.

Now, we make the crucial assumption that the baseband signal x varies sufficiently
slowly to be approximately constant over the array at each snapshot in time. This
is a narrowband assumption that holds as long as the bandwidth of x is not too
large with respect to the size of the array. The assumption holds if LB ≪ fc, where
B is the bandwidth of x. Under this assumption, we may drop the l-dependent
term in the baseband as

x

[(
1 + fD

fc

)(
m

fs
− 2R0

c

)
− l

2fc
sinφ

]
= x

[(
1 + fD

fc

)(
m

fs
− 2R0

c

)]
, (2.65)

for l = 0, 1, . . . , L− 1. Then, the spatio-temporal signal vector factorises as

h(R, v, φ) = g(φ)⊗ h(R, v), (2.66)

where g(φ) is the spatial signal vector with elements

[g(φ)]l = exp
[
−2πilfc

d

c
sinφ

]
= exp [−πil sinφ]

(2.67)

for l = 0, 1, . . . , L− 1. In summary, the received target signal is modelled as

y = θ′ g(φ)⊗ h(R, v), (2.68)

which is a spatial extension to the model in Eq. (2.19).

2.6.2 Interference
Let us now introduce the possibility that the receiver picks up signals other than
our own. We refer to any such signal as interference. As a model, we assume that,
temporally, the interfering signal i behaves similarly to noise and is distributed
according to the complex normal distribution, i ∼ CN

(
0, |ϕI |2IM

)
, where |ϕI |2 is

the average power. Although noise-like from sample-to-sample, any interference
will have a finite bandwidth, and we assume that the interfering signal is spatially
correlated across the receiver array, as with the target model above. We write the
interfering signal, impinging from direction φI , as

j(φI) = g(φI)⊗ i, (2.69)
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where g(φI) is given in Eq. (2.67). Since i is a random vector, j characterised by
the covariance matrix

E
[
j(φI)j†(φI)

]
= |ϕI |2G(φI)⊗ IM , (2.70)

where we introduced the rank-1 matrix G(φI) = g(φI)g†(φI).

2.6.3 Total signal model
Now, we are ready to state the total spatio-temporal (ST) signal model as an
extension to Eq. (2.43). It incorporates the possibility of P signal sources and
Q independent sources of interference as well as internal noise. Explicitly, the
observed signal from M samples in L elements is

yST = HSTθ + Jϕ + νST, (2.71)

where HST and J are matrices with columns of Eq. (2.66) and Eq. (2.69), respec-
tively, such that

HSTθ =
P −1∑
p=0

[θ]pg(φp)⊗ h(Rp, vp) (2.72)

and

Jσ =
Q−1∑
q=0

[ϕ]qg(φq)⊗ iq. (2.73)

The noise is modelled according to νST ∼ CN
(
0, σ2IML

)
, i.e., each array element

is subject independent thermal noise with identical variance σ2.

Everything we discussed on the topic of temporal signal estimation in Section 2.4
applies equivalently here, with the observed signal distributed as yST ∼ CN (HSTθ,ΣST),
where the interference-and-noise covariance matrix is

ΣST =

Q−1∑
q=0
|[ϕ]q|2G(φq)

⊗ IM + σ2IML

= σ2ΣS ⊗ IM ,

(2.74)

where

ΣS =
Q−1∑
q=0

|[ϕ]q|2

σ2 G(φq) + IL (2.75)

is the L×L (normalised) spatial covariance matrix. The normalised weight |[ϕ]q|2/σ2

is the interference-to-noise ratio (INR) of source q. By factoring the variance σ2,
the covariance matrix of Eq. (2.74) is seen to allow for the scale-invariant property
of the GLRT, discussed in Section 2.4. Since the covariance matrix is no longer
diagonal, the estimation problem is now more complex. However, all the novel
statistical properties are captured by the covariance matrix ΣS.
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2.6.4 Adaptive Beamforming
Considering the full spatio-temporal signal processing problem as described by
Eq. (2.71) may not be possible because ML data points may not be feasible to
process. However, because of the factorised structure, a full space-time treatment
is not required and the processing can be performed in simpler steps. Suppose
that, as a first step, the signals from each element are coherently summed before
further processing, as shown in Figure 2.2, where the w = [w0, w1, . . . , wL−1]⊤
are tuneable channel weights. The spatial degrees of freedom introduced by the
channel weights allow us to suppress interfering signals. If the values of w are not
set by the user, but instead tuned according to observed signals, the processing is
said to be adaptive. We design the weights to minimise the instantaneous signal
power of the output in the case where the input of the array is only interference
and noise, denoted

yIN = Jϕ + νST, (2.76)

and the array output is
yIN,w =

(
w† ⊗ IM

)
yIN. (2.77)

Let the L-length vector ȳIN(m) be the instantaneous signal at each element in the
array at the temporal index m, defined as

[ȳIN(m)]l = [yIN]m+lM . (2.78)

The optimisation problem is

min
w

E
[
| [yIN,w]m |

2
]

= min
w

E
[
w†ȳIN(m)ȳ†

IN(m)w
]

= min
w

w†E
[
ȳIN(m)ȳ†

IN(m)
]

w

= min
w

w†σ2ΣSw

= min
w

w†ΣSw,

(2.79)

where ΣS is the spatial covariance matrix of Eq. (2.75). We must constrain the
problem to avoid trivial solutions, with w = 0, which would nullify the array.
Therefore, we require that the weights guarantee a fixed sensitivity in look direc-
tion φ0, as g†(φ0)w = β0 > 0. It is possible to introduce more than one constraint
here, for example to add artificial nulls to the antenna diagram, and the constraint
β0 can be selected differently depending on the implementation. This constrained
optimisation problem can be solved with Lagrange multipliers. As an example,
with the unit scalar constraint (β0 = 1), the solution is [85]

wopt = Σ−1
S g(φ0)

g†(φ0)Σ−1
S g(φ0)

. (2.80)

The spatial covariance matrix will typically be entirely unknown. An ad hoc so-
lution to this ignorance is to record data from the array while the transmitter
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is inactive, and use an estimated covariance matrix to set the weights. For this
method to be viable, the interference environment must be sufficiently stationary
that the estimated covariance matrix remains valid when the transmitter is again
activated.

2.6.5 Wideband effects
So far, we have worked under the assumption that there is no spatial dispersion of
the signal across the array. This corresponds to an assumption of the signal being
spatially narrowband. Since the ULA can only suppress a number of narrowband
signals that is smaller than the degrees of freedom it is important to understand
when the narrowband assumption fails. The narrowband assumption is studied
in Ref. [86], where it is defined to fail when the second largest eigenvalue of the
spatial covariance matrix exceeds the thermal noise.

To quantify wideband effects, we note that the spatial signal vector depends on
the carrier frequency g(φ) = g(φ; fc), see Eq. (2.67). We assume that the expres-
sion generalises to an arbitrary frequency f within the system bandwidth. Let one
interference source impinge on the array from the direction φI, covering a band-
width B centred at fc. For simplicity, let the interference have a constant spectral
density SI. The array response to the interference will not be constant over the
entire bandwidth, which means the covariance matrix with respect to this inter-
ference will not be rank-1. The interference can be descirbed by the covariance
matrix

ΣS = SI
σ2

∫ fc+B/2

fc−B/2
df g(φ; f)g†(φ; f). (2.81)

The integral is evaluated element-wise, as

[ΣS]m,n = SI
σ2

∫ fc+B/2

fc−B/2
df [g]m(φI; f)[g]∗n(φI; f)

= SI
σ2 sinc [πBγmn(φI)] exp [2πifcγmn(φI)] ,

(2.82)

where
γmn(φI) = d

c
(m− n) sinφI. (2.83)

The finite bandwidth of the interference causes the signal to decorrelate over the
array, as seen by the sinc-function. The spatial covariance matrix can be expanded
in the eigenbasis as

ΣS =
L−1∑
l=0

λlsls†
l (2.84)

with orthogonal eigenvectors sl and associated eigenvalues λl. Each eigenvector can
be understood to represent an independent narrowband interference with power
equal to its eigenvalue. Thus, one wideband source of interference is equivalent
to several independent narrowband interfering signals from different directions,
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where the effective number of the decomposition corresponds the the number of
eigenvalues that exceed the system noise, i.e., |{λl > 1 : l = 0, 1, . . . , L− 1}|. This
“interference rank” depends non-trivially on the interference power, the angle-of-
arrival, and the spectral density [86]. Importantly, if the wideband effects are
sufficiently severe, and the interference rank exceeds the number of degrees of
freedom in the array, the adaptive beamforming will not be able to suppress it.
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Chapter3
Quantum Metrology

3.1 Towards quantum radar
In this chapter, our goal is to understand how quantum effects can be incorporated
in radar operation, what the implications are, and whether there are advantages
to be had by exploiting such effects. At first glance, such an analysis should
follow similar steps as those in Chapter 2, modelling a system that is able to
transmit and receive electromagnetic waves and measuring whether the received
signal contains reflections off of targets. However, we will follow the established
literature on quantum radar and use a simplified modelling scheme that is, at
best, radar-like. The main addition in leaving the purely classical description is
that the electromagnetic field is described by quantum mechanics. The toolbox
used to analyse radar-like problems with quantum effects produces results that
are less precise than those in Chapter 2, relying more on asymptotic relations and
bounds. Nevertheless, this text strives to maintain some theoretical coherence
between classical and quantum radar as there are many similarities. Throughout
this chapter we use natural units. That is, we have ℏ = 1 for the reduced Planck
constant and c = 1 for the speed of light, unless stated otherwise.

3.2 Notation in quantum mechanics
In simple terms, quantum mechanics is the framework that governs physical dy-
namics at small scales, such as for atoms and molecules. In quantum mechanics,
the quantities are described in terms of states – denoted by kets |ψ⟩ with the dual
bras ⟨ψ| – and operators – denoted with hats x̂. Expectation values for quantum
states are written with the ‘bra-ket’ notation ⟨Ô⟩ = ⟨ψ| Ô |ψ⟩, where Ô is the
Hermitian operator of some observable. Our focus will mainly be on mixed states,
which describe statistical ensembles of quantum states. Mixed states are denoted

33



CHAPTER 3. QUANTUM METROLOGY

by the density operator1

ρ =
K−1∑
k=0

pk |ψk⟩⟨ψk| , (3.1)

with non-zero weights pk such that tr ρ = 1. The density operator satisfies rank[ρ] ≤
K, with equality if all |ψk⟩ are linearly independent. If rank[ρ] = 1, the state is
said to be ‘pure’ and may be written simply as the corresponding ket. All the
dynamics of a quantum mechanical system is described by the time evolution of
the density operator.

In any quantum mechanical experiment we should be interested in the outcome of
the measurement result. Such results may be statistical in nature, either because
the quantum system itself produces a random outcome, or because the measure-
ment setup is subject to fluctuations and noise. The ’Born rule’ is an axiom of
quantum mechanics that tells us how to get classical statistics out of the density
operator which done through a description of how the system is measured. With-
out going into details, a ‘measurement’ that gives rise to an observation X ∈ ΩX

is described by the operator2 Π̂X . A classical probability distribution is generated
from the quantum state as PrX(x) = tr Π̂Xρ. For this to make sense the sum
of all measurement operators must resolve the identity, ∑X∈ΩX

Π̂X = Î, which
is simply a statement of conservation of probability. Importantly, one can imag-
ine the task of an optimised experimental setup implementing a particular set of
measurement operators to realise certain properties of the resulting probability
distribution. We will return to this concept.

3.3 Quantising the electromagnetic field
Now, we sketch in an informal manner how electromagnetics can be made com-
patible with quantum mechanics. The steps follow how the material is presented
in textbooks on quantum optics, e.g., Refs. [87, 88]. For a more rigorous deriva-
tion, see, e.g., Ref. [89]. Our present goal is to promote the electric field E⃗ to a
Hermitian quantum operator Ê.

3.3.1 Classical electromagnetics
Our starting point is Maxwell’s equations in terms of the scalar potential ϕ =
ϕ(R, t) and the vector potential A⃗ = A⃗(R, t), at position R and time t. The free-
space electric field is determined by E⃗ = −∇ϕ − ∂tA⃗ and the magnetic field is
determined by B⃗ = ∇× A⃗. Then, the Maxwell equations for the potentials are

∇2ϕ+∇ · ∂tA⃗ = −σ⃗, (3.2)
∇(∇ · A⃗)−∇2A⃗+ ∂t∇ϕ+ ∂2

t A⃗ = J⃗ , (3.3)
1By tradition, the density operator alone does not wear the operator hat.
2Most generally, a positive operator-valued measure (POVM).
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where σ⃗ and J⃗ is the charge and current density, respectively. Now separate the
current density into transverse and longitudinal components, J⃗ = J⃗T + J⃗L, with
∇ · J⃗T = 0 and ∇× J⃗L = 0. In the Coulomb gauge, with ∇ · A⃗ = 0, the Maxwell
equations are

∇2ϕ = −σ⃗, (3.4)
∂t∇ϕ = J⃗L, (3.5)

−∇2A⃗+ ∂2
t A⃗ = J⃗T. (3.6)

Thus, we have decoupled the electrostatics determined by σ⃗ and J⃗L from the
electromagnetic waves determined by J⃗T.

Now, we continue with the transverse Eq. (3.6) alone, and consider the free field
where J⃗T = 0. This results in the homogeneous wave equation

−∇2A⃗+ ∂2
t A⃗ = 0. (3.7)

We impose periodic boundary conditions of a ‘big box’ with side length L, which
require that the wavevectors must satisfy k = 2π

L (nx, ny, nz)⊤, with nx, ny, nz ∈ Z.
Now, expand the vector potential at position R and time t in basis modes b⃗kπ

labelled by wavevector k and polarization π = ±1, as

A⃗(R, t) =
∑
k,π

b⃗kπ

[
akπ(t)eik·R + a∗

kπ(t)e−ik·R
]
. (3.8)

By treating each mode in Eq. (3.7) separately, we have for mode kπ the harmonic
oscillator equations

∂2
t akπ(t) + ω2

kakπ(t) = 0, (3.9)
with frequency ωk = |k|, for each field amplitude. The quantised frequencies are
strictly a consequence of the periodic boundary conditions and are purely classi-
cal. The central step of quantising the field is to impose the quantum harmonic
oscillator to Eq. (3.9) and to promote the mode amplitudes to operators.

3.3.2 The harmonic oscillator
The harmonic oscillator is the linear theory of oscillation. As a quick orientation,
we quickly look at the classical harmonic oscillator. Assume a particle with massm
is affected by forces linear in generalized displacement q with some spring constant
κ. The Hamiltonian of this classical harmonic oscillator is

H = p2

2m
+ κq2

2
, (3.10)

where the canonical conjugate momentum is p = mq̇. Applying the Hamilton
equations of motion [90], q̇ = ∂pH and ṗ = −∂qH gives the equation of motion as
q̈ + ω2q = 0, where ω2 = κ/m. The general solution for q is

q(t) = c−e−iωt + c+eiωt, (3.11)
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where the constants c+, c− ∈ C are determined by initial conditions. This solution
describes harmonic periodic motion with the radial frequency ω.

The quantum harmonic oscillator can be introduced with the Hamiltonian opera-
tor

Ĥ = 1
2

(
q̂2 + p̂2

)
, (3.12)

where q̂ and p̂ are now Hermitian quantum operators in suitable units. Pro-
moted to operators, the position and momentum satisfy the commutation relation
[q̂, p̂] = Îi. The non-commuting nature of these conjugate operators implies that
the respective variances jointly satisfy the Heisenberg uncertainty relation

(∆q)2 (∆p)2 ≥ 1
4
. (3.13)

The quantum harmonic oscillator algebra is given with the Bosonic annihilation
and creation operators â and â†, satisfying the commutation relation [â, â†] = Î.
The quantum harmonic oscillator is naturally represented in a Fock space with kets
|n⟩, where the index n = 0, 1, 2, . . . labels the occupation number. The operators
â and â† are also referred to as ladder operators, for their action on |n⟩, as â |n⟩ =√
n |n− 1⟩ and â† |n⟩ =

√
n+ 1 |n+ 1⟩, ‘stepping’ up and down between states

with different occupation numbers. This invites the use of the number operator
N̂ = â†â, for which |n⟩ is an eigenstate: N̂ |n⟩ = n |n⟩. The ladder operators are
related to the position and momentum operators of the oscillator by the relations

q̂ = 1√
2

[
â† + â

]
, (3.14)

p̂ = i√
2

[
â† − â

]
. (3.15)

Rewriting the Hamiltonian operator of Eq. (3.12) in terms of the ladder operators
and simplifying yields

Ĥ = N̂ + 1
2
. (3.16)

That is, for the Fock state |n⟩, the expectation value of the Hamiltonian reads
⟨Ĥ⟩ = n+ 1

2 . This additional term of 1
2 tells us that even the state with occupation

number zero has finite energy. This special minimum energy state, the vacuum
|0⟩, exhibits fluctuations.

3.3.3 Quantised electromagnetics
Now that we are familiar with the harmonic oscillator, we can go back to Eq. (3.9)
and take the solution akπ(t) = akπe−iωkt, similarly to Eq. (3.11). The field coeffi-
cient akπ is now promoted to a quantum operator, as akπ → âkπ, where âkπ takes
the role of a Bosonic annihilation operator. The occupation number n of the Fock
state |n⟩ refers to the number of photons of that mode. Now, we introduce a new
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phase φ = ωt+ k ·R and again drop the subscript kπ. Then, as an operator, the
electric field is

Ê(φ) = Eω√
2

(
âe−iφ + â†eiφ

)
(3.17)

where Eω is the electric field amplitude of one photon with frequency ω. If the
field is measured in units of Eω = 1, all relations are simplified. Rewriting the
electric field operator in terms of the generalized position and momentum with
the relations of Eq. (3.14) and Eq. (3.15) yields

Ê(φ) = q̂ cosφ+ p̂ sinφ. (3.18)

That is, the operators q̂ and p̂ take the role of quadratures. We take q̂ to be the
in-phase component and p̂ to be the orthogonal component, and refer them jointly
as the quadrature operators.

3.3.4 Multimode light
Even though we omit the explicit operator subscript that labels the wavenum-
ber and polarization, it is nevertheless important to introduce a joint notation
for states that consist of several modes, e.g., |n1⟩ ⊗ |n2⟩ ⊗ . . . ⊗ |nN ⟩. Analysis
of multimode-states can be made more convenient by collecting the quadrature
operators for each mode in the vector3

r̂ =
[
q̂1 p̂1 q̂2 p̂2 . . . q̂N p̂N

]⊤
. (3.19)

Between different modes, the quadrature operators commute. The multimode com-
mutation relation reads [[r̂]i, [r̂]j ] = i [Ω]i,j . Here Ω = IN⊗

[ 0 1
−1 0

]
is the symplectic

form.

The quantisation can be extended to the continuum by taking the limit of an
infinite size big box: L → ∞. In this limit, the Bosonic operators are labelled by
the continuous frequency ω, as âk → â(ω). Then it makes sense to introduce time
domain operators as Fourier transforms of frequency space operators

â(t) = 1√
2π

∫ ∞

−∞
dω eiωtâ(ω). (3.20)

For some applications, such as light pulses, it is useful to use the formalism with
photon-wavepacket operators

âξ =
∫ ∞

−∞
dt ξ(t)â(t) (3.21)

for a pulse shape ξ(t). If we consider an orthonormal set of pulses4 {ξi(t)}i=1,2,...,
we retain the Bosonic commutation relation as

[
âξi
, â†

ξj

]
= Îδi,j . When discussing

3Another common ordering is ŝ = [q̂1 q̂2 . . . q̂N p̂1 . . . p̂N ]⊤. For this convention the symplectic
form is Ω =

[
0 1

−1 0
]

⊗ IN .
4A set of pulse shapes that satisfy

∫∞
−∞ dt ξi(t)ξ∗

j (t) = δi,j for all i and j.
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radar-like applications, these are the types of modes that are understood to be
used, even though a simplified notation is maintained.

3.4 Gaussian quantum states
Gaussian states belong to a particular set quantum mechanical states that finds
large use in quantum optics. For one, the large amount of mathematical structure
exhibited by a Gaussian state allows for analytical treatment of many experi-
mentally relevant problems. Many Gaussian states may also be readily prepared
experimentally. There are many areas of applications for Gaussian states, beyond
the scope of this thesis, see, e.g., Ref. [91]. The theory presented here is primarily
based on the review of Adesso et al. [92] and the book of Serafini [93].

Similarly to random variables distributed according to the multivariate normal
distribution, the Gaussian states are completely characterised by the mean µ and
covariance matrix Σ of the quadratures. The mean vector has elements

[µ]i = ⟨[r̂]i⟩ (3.22)

and the covariance matrix has elements

[Σ]k,l = 1
2
⟨{[r̂]k, [r̂]l}⟩ − [µ]k[µ]l. (3.23)

This definition of the covariance matrix reduces to the classical one if the operators
commute, but it differs from the one in Ref. [93] where the scaled covariance matrix
σ = 2Σ is used.

In addition to to being Hermitian and positive semi-definite, the non-commuting
property of conjugate quadrature operators requires that covariance matrix satis-
fies

Σ + iΩ/2 ⪰ 0, (3.24)

where Ω is the symplectic form. This is known as the Robertson-Schrödinger
uncertainty relation.

3.4.1 Single-mode states
The single-mode Gaussian states can be parametrized in terms of a 2 × 1 mean
vector and a 2× 2 covariance matrix. In this section, we present some particular
states before presenting the canonical generic Gaussian single-mode state. Here,
without loss of any generality, we use a reference phase such that the covariance
matrix is diagonal. The minimum energy vacuum state |0⟩ has zero mean and
diagonal covariance matrix with the variance 1

2 . In fact, the vacuum is a minimum
variance state. That is, the state containing zero photons has a minimum variance
of 1

2 for both quadratures. If a state can achieve a measurement variance smaller
than 1

2 , it can be said to exhibit quantum advantage.
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Coherent State

If we start the vacuum state and displace the mean to some non-zero vector, we
find the coherent state, which is the eigenstate of the annihilation operator. That
is, the coherent state |α⟩, labelled by the parameter α ∈ C, satisfies â |α⟩ = α |α⟩.
The coherent state parameter can be written in polar form α =

√
Ncoheiϕ for a

phase ϕ ∈ [0, 2π) and average number of photons Ncoh = ⟨α|N̂ |α⟩. The statistical
moments are the mean

µ =
√

2
[
Re (α)
Im (α)

]
(3.25)

and covariance matrix
Σ = 1

2

[
1 0
0 1

]
. (3.26)

In some sense, the coherent state behaves as a classical state, describing the state
produced by a monochromatic laser. It is also a minimum variance state. For this
reason it often serves as the classical benchmark to beat in a quantum enhanced
protocol.

Single-mode squeezed vacuum

For the coherent state and the vacuum state, the variance is symmetrically shared
between the two quadratures. However, states can be prepared where this uncer-
tainty is asymmetrically distributed. The possibly simplest example of such a state
is the squeezed vacuum state, where the variance in one quadrature is reduced,
while the orthogonal quadrature sees an increase in variance. In the covariance
matrix, this can be parametrised as

Σ = 1
2

[
s 0
0 s−1

]
, (3.27)

with the squeezing parameter s ∈ (0,∞). Squeezing is an active process, adding
Nsq = 1

4
(
s+ s−1)− 1

2 average photons to the vacuum.

Thermal state

So far, we have considered pure states. We will need also the mixed thermal state
with density matrix

ρth = 1
Nth + 1

∞∑
n=0

(
Nth

Nth + 1

)n

|n⟩⟨n| , (3.28)

which is a Gaussian state that is characterised by zero mean and covariance matrix

Σ =
[
Nth + 1

2 0
0 Nth + 1

2

]
. (3.29)
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This state models the thermal equilibrium state at temperature T , where the
average number of photons Nth is given by the Bose-Einstein distribution at zero
chemical potential

Nth =
(
ehf/kBT − 1

)−1
, (3.30)

where f is the frequency, h is the Planck constant and kB the Boltzmann con-
stant. As an example, for a system operating with microwave frequencies at room
temperature the thermal background is strong, with Nth ≃ 1000, while for visible
light Nth ≃ 0. To have negligible thermal background at microwave frequencies,
the ambient temperature has to be reduced to a few milliKelvin, and this can be
achieved with dilution refrigerators.

Displaced squeezed thermal state

Finally, the generic single-mode Gaussian state can be generated by squeezing a
thermal state with Nth number of photons and displacing the mean [94]. That is,
the canonical Gaussian single-mode state is characterised by the mean

µ =
[
q̄
p̄

]
(3.31)

and the covariance matrix

Σ =

(Nth + 1
2

)
s 0

0
(
Nth + 1

2

)
s−1

 , (3.32)

where s ∈ (0,∞) is again the squeezing and q̄, p̄ ∈ R are the displacements. The to-
tal number of photons in this generic state is N = Ncoh+Nsq.th+Nth (2Nsq.th + 1).
As can be seen, increasing the mean adds ’coherent’ photons linearly, while the
squeezing or changing the temperature of the thermal state adds photons non-
linearly, with Nsq.th = 2Nth+1

4
(
s+ s−1)− 1

2 .

3.4.2 Two-mode states
With two modes, the mean vector is now of size 4× 1 and the covariance matrix
is of size 4 × 4. This means that a generic two-mode Gaussian system has 14
free parameters. The appended Paper VII considers various symmetries and
constraints to reduce the number of free parameters for a certain type of problem.
Here, we neglect to state explicitly the fully generic two-mode state, and describe
instead two special two-mode states in some detail.

Two-mode squeezed vacuum

An important non-classical feature that is introduced with two-mode states is that
we can have entanglement between the modes. A state that exhibits entanglement
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is the two-mode squeezed vacuum state (TMSV). It is, in fact, the maximally
entangled two-mode state on a per-photon basis [91].

The TMSV state can be generated with parametric amplification of the vacuum,
generating pairs of photons in two entangled modes. The entangled modes are
often referred to as signal and idler, respectively. If the two modes are sepa-
rated, and the signal is used as probe in a metrological protocol, one can achieve
entanglement-enhanced performance, which may surpass that of a purely classi-
cal probe. Because the TMSV state is populated by pairwise photons, the average
number of photons NS in the signal and idler are equal. The TMSV state has few
degrees of freedom, with zero mean and a covariance matrix

ΣTMSV =


NS + 1/2 0

√
NS(NS + 1) 0

0 NS + 1/2 0 −
√
NS(NS + 1)√

NS(NS + 1) 0 NS + 1/2 0
0 −

√
NS(NS + 1) 0 NS + 1/2

.

(3.33)
The statistics of each mode individually is indistinguishable from thermal noise,
but the inter-mode covariance proportional to

√
NS(NS + 1) – being larger than

the classical limit of NS – reveals that the state exhibits non-classical correlations.
These non-classical correlations are apparent in the regime with few photons per
mode, NS ≪ 1, where

√
NS(NS + 1) ≫ NS . In the strong signal regime, with

NS ≫ 1, the non-classical correlations are basically indistinguishable from the
classical correlations as

√
NS(NS + 1) ≃ NS .

Correlated thermal noise

As a classical counterpart to the TMSV state, we study the two-mode state con-
sisting of correlated thermal modes. We denote this state as classically correlated
noise (CCN). To our knowledge, this state has not been widely studied in litera-
ture, which merits its inclusion. The CCN state is generated by mixing the noise
from two independent thermal sources at temperatures TH and TC , described by
the operators âH and âC . Here, the subscripts H and C refer to ‘hot’ and ‘cold’,
respectively, indicating that we take TH ≥ TC . Each thermal source is in the
single-mode thermal state, with average number of thermal photons denoted by
NH and NC , respectively.

The CCN state is prepared by mixixing two thermal sources over a beamsplit-
ter labelled by the variable reflection coefficient β ∈ [0, 1]. The output modes,
designated as signal and idler to mirror the TMSV state, are

âCCN
S =

√
βâH +

√
1− βâC , (3.34)

âCCN
I = −

√
1− βâH +

√
βâC . (3.35)

Being a Gaussian state, the CCN state is characterised by having a zero first order
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moment and the covariance matrix

ΣCCN =


NS + 1/2 0 γSI 0

0 NS + 1/2 0 γSI

γSI 0 NI + 1/2 0
0 γSI 0 NI + 1/2

, (3.36)

whereNS = βNC+(1−β)NH ,NI = (1−β)NC+βNH , and γSI =
√
β(1− β)(NH−

NC). As long as the input modes have different number of photons on average,
corresponding to different temperature, the output modes âCCN

S and âCCN
I are

correlated.

3.5 Interacting with a noisy environment
In modelling radar-like scenarios, quantum states will take the role of signals. In
contrast to the noise radar treatment of Chapter 2, we do not have access to a
digital reference copy of the signal. Instead of transforming a particular signal,
the quantum transmit-to-receive channel acts as a mapping of the state. Formally,
the channel can be seen as the time evolution of the probe state ρ through the
Lindblad equation [95, 96]. During the transmit-to-receive time, the state interacts
with the target and environment through K modes as

ρ̇ =
[
Ĥ, ρ

]
+

K−1∑
k=0

γk

(
Γ̂kρΓ̂†

k −
1
2

{
Γ̂†

kΓ̂k, ρ
})

, (3.37)

where γk describes the coupling strength through the interaction of operator Γ̂k.
To be accessible for analysis, the model will be relatively simple, with the following
assumptions as delimitations.

• Only one target is modelled and the interaction occurs in an environment of
thermal noise with a known NB number of photons on average. There are
no other targets or clutter.

• The explicit time dependence is dropped with a fixed transmit-to-receive
interaction time that is known.

• There is no Doppler shift induced on the state, i.e., the target has zero
relative velocity.

• The interaction is dissipative and described by the operators Γ̂0 = â and
Γ̂1 = â† with coupling rates γ0 = γ(1 +NB) and γ1 = γNB, respectively.

In Paper VII we refer to the mapping corresponding to these dynamics as the
Lossy Bosonic channel. This type of interaction has been studied for loss sens-
ing [97–99].

As an alternative, the dynamics of the channel can be cast in the Heisenberg
picture as a beamsplitter mixing the signal mode â and an environmental thermal

42



3.6. METROLOGY

noise mode b̂ with NB number of photons on average. For Gaussian states, this
takes the form of the transformation

â→ ηâ+
√

1− η2 b̂, (3.38)

where the transmission coefficient is η ≡ η(t) = e−tγ/2. This formalism has been
used to model the transmit-to-receive channel of radar-like scenarios, see, e.g.,
Ref. [100]. For a two-mode state, partitioned into signal and idler, this channel
can be cast as a map of the mean and covariance matrix as

q̄S

p̄S

q̄I

p̄I

→

ηq̄S

ηp̄S

q̄I

p̄I

 , (3.39)

(
ΣS ΣSI

Σ†
SI ΣI

)
→
(
η2ΣS +

(
1− η2) (NB + 1

2

)
I ηΣSI

ηΣ†
SI ΣI

)
. (3.40)

It is common to introduce a normalisation of the background noise, as NB →
NB/(1−η2). The normalisation removes the effect where measuring a background
gives information of η, regardless of the signal mode, referred to as the ‘shadow
effect’ [101]. This is done ad hoc to eliminate any metrological power of the back-
ground and isolate the effect of the signal. Intuitively, the normalised channel
models a scenario where the target, if present, emits an average number of ther-
mal photons that equals that of the background environment were the target
absent.

Quantum effects are typically relevant only for states with few photons and am-
plification may be necessary to enable measurement of the signals involved. The
simplest possible model of amplification that is compatible with quantum mechan-
ics [102] – a phase-insensitive amplifier transformation – can be written

â→
√
Gâ+

√
G− 1b̂†, (3.41)

where the amplifier power gain is G ≥ 1.

3.6 Metrology
In general, metrology is the theory of measurement. Quantum mechanics sets the
fundamental limits on how well any such method can be implemented for physical
systems. While many quantitative fields can perform these inferences perfectly
well without an in-depth understanding of quantum mechanics, there are fields
where quantum features become relevant, see, e.g., Refs. [4, 103] for reviews on
quantum metrology.
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Preparation DetectionâI

âS âR

âB

Eη

Figure 3.1: Schematic overview of the QI protocol. An entangled signal-idler pair
is prepared. The signal mode âS is sent to interact with an unknown channel Eη,
modelled according to Eq. (3.38). The return mode âR is jointly measured with
the retained idler âI . If the correlation is sufficiently strong, the detector declares
in favour of target presence. [Reproduced from Figure 2 of Paper V.]

3.6.1 Quantum Illumination
As a subset of metrology, hypothesis testing forms the basis for most of quanti-
tative science by systematically deciding which of a prescribed set of descriptions
best fit observed data. As we have seen in Chapter 2, a binary hypothesis test
also performs the central detection function in a radar system. Within the world
of quantum detection theory we a focus on the QI protocol, since it serves as
the recurring foundation of quantum radar. With the restrictions discussed in the
transmit-to-receive model, quantum illumination by itself fails to perform some
of the tasks of a conventional radar protocol, such as measuring distance. It can
be argued that QI is at best radar-like.

Explicitly, QI discriminates between two possible states in the following way: A
probe state consisting of an entangled signal-idler pair with NS number of pho-
tons on average is generated as a TMSV state. The signal is passed through one
of two possible channels, where it is unknown which channel is actually in effect.
Both channels are Bosonic lossy thermal noise channels injecting NB noise pho-
tons on average, see Section 3.5. The two channels are distinguished by different
transmission coefficients η, here labelled by different hypotheses as

H0 : η = 0
H1 : η = η1 with 0 < η1 ≪ 1.

Both H0 and H1 are simple hypotheses, which is required for the tools used to be
valid. Back at the receiver we get either the state ρ0 or the state ρ1, depending
on which hypothesis is true, see Figure 3.1. Comparing to Figure 2.1, the radar-
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like qualities of QI should be clear, as determining if η is non-zero is similar to
detecting the presence of a radar target.

This test can be repeated independently for M modes, for example by frequency
multiplexing, or by repetition over time. The final task is thus to discriminate
between ρ⊗M

0 and ρ⊗M
1 , and decide which channel was in effect during the mea-

surement. Since a sufficiently strong signal will outperform any weaker signal, a
constraint imposed on the problem is that the average number of photons in the
signal mode NS is fixed.

QI was developed for a symmetric binary hypothesis test, where the priors are
assumed equal. The protocol seeks to minimise the total error probability PE, see
Eq. (2.41). Instead of studying an exact expression for PE, an asymptotic bound
is used. The quantum Chernoff bound [104, 105] is the central result that enables
this analysis. It says, informally, that, as the number of repeated trials M grows,
the total error probability will asymptotically enter a regime where it is bounded
from above by an exponentially decaying function, as PE ≤ 1

2 exp[−MξC], where

ξC = − log
(

min
0≤s≤1

tr
[
ρs

0ρ
1−s
1

])
(3.42)

is the quantum Chernoff coefficient that determines the decay rate. It is in this
situation that we can identify the Chernoff coefficient as the error exponent. Com-
putation of ξC can be difficult and a more simpler approach is found by relaxing
the inequality and computing instead the less tight Bhattacharrya bound with
coefficient ξB ≤ ξC. The Bhattacharrya coefficient5 ξB is found from Eq. (3.42)
by neglecting the minimisation procedure and requiring instead s = 1

2 . It is in
this context that Tan et al. [30] established that the Chernoff coefficient for a co-
herent state probe is ξcoh.

C = η1NS
4NB

and the Bhattacharrya coefficient for a TMSV
probe with an entangled idler is ξTMSV

B = η1NS
NB

, i.e., a factor of four advantage,
or approximately 6 dB, in the regime where NS ≪ 1, NB ≫ 1 and η1 ≪ 1.

One might ask as to what extent the coherent state serves as a relevant classical
benchmark. Maybe there are other classical states that perform better? The an-
swer can be understood quite simply. Fundamentally, there are limits to how well
the discrimination task can be performed for any probe state. Ref. [107] states
that the coherent state saturates a fundamental limit in the noise-free regime. This
can be understood as a no-go for any quantum advantage in the low-noise regime
because no probe can do better than to match the coherent state performance.
Conversely, for the noisy regime the TMSV saturates the limit.

The final aspect of a discrimination protocol is the description of a receiver struc-
ture that, ideally, realises the theoretical performance. That is, the measurement
operator should be constructed. For example, the optimal strategy is not possible

5In the literature, one encounters the term of Bhattacharrya distance [106], favouring a geo-
metrical interpretation. Here, we use instead coefficient to keep the terminology consistent.
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with local measurements [108] and a joint measurement strategy between the re-
turn mode and the idler is required. The receiver structures described in Ref. [32]
realise only a sub-optimal factor of two in the error exponent. A receiver struc-
ture that does achieve the full factor of four advantage is described in Ref. [33],
although building a device according to this scheme is technologically unfeasible.
However, the existence of an optimal scheme, albeit as a theoretical concept, is
important for the understanding of the QI protocol. As a complement to work-
ing with asymptotic results and somewhat abstract tools, important work has
also been done with the task of practical implementations and comparison with
classical protocols, see Ref. [109].

An important feature of quantum illumination is that entangled state protocol
presents a discrimination advantage over a non-entangled state, even though the
entanglement itself does not survive through the channel. That is, the advantage
should not be understood as a residual entanglement, but the interpretation is
rather that the signal-idler correlations of the probe state are stronger than those
of any possible separable state [30].

As noted in Chapter 2, conventional radar avoids introducing any assumptions
about the prior probabilities of target presence. While the original development of
the QI protocol was for symmetric priors, it has also been extended to the general
case of unknown, possibly asymmetric priors, more in line with conventional radar
operation [110, 111]. Equivalently to the detector function discussed in Chapter 2,
the problem is approached by maximising the probability of detection while en-
suring that the probability of false alarm is bounded by some prescribed rate ε.
In this situation we can not rely on the Chernoff bound, but instead turn to the
similar asymptotic result of Stein’s Lemma [112, 113], which states that, for any ε,
the probability of a missed detection is bounded as the number of repeated trials
tends to infinity. Informally, we understand this mathematically as

1− PD ≤ exp[−MD(ρ1||ρ0)], (3.43)

where
D(ρ1||ρ0) = tr ρ1 (ln ρ1 − ln ρ0) (3.44)

is the quantum relative entropy between the two possible output states. It has
been shown that also in this scenario, the TMSV state is optimal [114], but the
nature of the advantage is slightly more complicated than a single number, as
it depends non-trivially on the scenario. In fact, as NS → 0, the advantage of a
TMSV state probe over a coherent state grows without bound. This may appear
to be incredibly useful at first glance. However, due to the fact that the absolute
discrimination strength goes to zero in the same limit, it is simply a result of the
relative entropy tending to zero faster for the coherent state than for the TMSV
state.

As Stein’s Lemma is asymptotic, it does not incorporate the choice of ε. Higher
order asymptotic terms for the quantum Stein’s Lemma have been developed
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by Li [115] and used to analyse the transition to asymptotic behaviour of QI
in Ref. [110]. If we stick with the informal mathematical description, the semi-
asymptotic Stein’s Lemma takes the form

1− PD ≤ exp
[
−MD(ρ1||ρ0)−

√
MV (ρ1||ρ0)Φ−1(ε)

]
, (3.45)

where the number of repeated trials M is large, but finite. Here,

V (ρ1||ρ0) = tr ρ1 [ln ρ1 − ln ρ0 −D(ρ1||ρ0)]2 (3.46)

is the relative entropy variance and Φ−1 is the inverse standard normal distribu-
tion. Note that Φ−1(ε) < 0 for ε < 1

2 , which implies that a smaller relative entropy
variance is beneficial to the discrimination strength.

3.6.2 Fisher Information
As an alternative to the discrete decision problem, one can study the problem of
estimation, where the value of an unknown parameter is to be determined. As in
Chapter 2, we wish to construct an estimator that performs this task. Since the
estimator is a function of random data, it is itself a random variable. Therefore,
it is important to characterise the statistics of the estimator in order to quantify
its performance.

Central to the performance of any estimator is its variance and, preferably, it
should be made as small as possible. However, one may inquire how small the
variance could be for any estimator and define an a criterion of optimality if this
minimum is saturated. The tool of this analysis is the Cramér-Rao lower bound
(CRLB) [72]. For a classical estimation problem, the CRLB is a result given in
terms of a random variable X that is distributed according to the parametric
probability density function pX(x; θ). If we wish to estimate the value of θ based on
M independent observations ofX, the CRLB tells us that the minimum achievable
variance of any unbiased estimator Tθ of θ is given by

varTθ ≥ (MIθ)−1 , (3.47)

where
Iθ = EX [(∂θ log pX(x; θ))2] (3.48)

is the Fisher information (FI) of θ with respect to the random variable X. A large
FI indicates that the unknown parameter can be estimated with small variance.

When moving from classical statistics to quantum mechanics, we need to account
for different possible measurements, giving rise to different classical statistics. Let
ρθ be a density operator that depends on the continuous parameter θ. The quan-
tum Fisher information (QFI) [3] of this state is the FI maximised over all possible
sets of POVMs {Π̂X}, i.e.,

J(ρθ) = max{Π̂X}Iθ. (3.49)
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Thus, the QFI is manifestly the maximally achievable FI, when the optimal mea-
surement is implemented. The QFI can be computed as J(ρθ) = tr

[
ρθL̂2

θ

]
, where

L̂θ is the symmetric logarithmic derivative (SLD), defined as the solution to the
Lyapnov equation

2∂θρθ = L̂θρθ + ρθL̂θ. (3.50)

Given this definition of the QFI, the CRLB generalises to the quantum case in
the obvious manner. Stated together with the classical version of Inequality (3.47),
the quantum CRLB says that

varTθ ≥ (MIθ)−1 ≥ (MJ(ρθ))−1 . (3.51)

That is, the variance of any unbiased estimator is lower bounded by the reciprocal
QFI. Thus, the quantum CRLB presents the ultimate limit of the precision of any
estimation task. Importantly, the quantum Cramér-Rao lower bound is achiev-
able – there exist a POVM such that the classical Fisher information equals the
QFI. However, the optimal measurement may be difficult or even impossible to
implement due to technological limitations.
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Chapter4
Publications

4.1 Noise radar
Papers I-IV cover different topics of noise radar. In order of publication, they
report on the development of an experimental bistatic noise radar system, from
initial tests in Paper I to real-time operation with a spatially adaptive array
in Paper IV. The experimental results in these papers are supported by imple-
mentation and verification of the various algorithms and processing techniques of
Chapter 2. For these publications, the theory development has been a secondary
objective as main focus has been on the technical implementation and the novelty
centred on experimental results. In particular, the experimental demonstrations
have been focused on testing the system and processing in challenging scenarios
with strong, extended clutter. The system itself has been designed to be relatively
cheap and mobile.

A common challenge in these four papers is that noisy waveforms and continuous
transmission severely impact the range coverage of the radar system due to the
correlation noise floor (CNF). For this reason, we argue that, at least for ground-
based noise radar systems, the CNF will always be a large problem in a monostatic
setup, even with an optimised configuration to reduce the coupling between the
transmitter and receiver antennas. This is because there will generally be ground
clutter signals several orders of magnitude stronger than targets of interest and
the clutter sidelobes will mask the signals from most targets of interest. Increasing
the processed time-bandwidth product will reduce the CNF, but also brings other
challenges such as mismatch losses from range-cell migration of moving targets.
As we show in these publications, the techniques discussed in Chapter 2 can be
used to mitigate the CNF due to clutter in addition to reducing the losses due
to target movement. However, the algorithms are computationally expensive and
may exhibit diminishing returns with increased efforts, and one should not rely
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solely on processing techniques.

The experimental noise radar system operates at the L-band at fc = 1.3 GHz
and the final version is able to compute digital coherent processing in real-time
covering a time-bandwidth product of up to 77 dB. Most of the signal processing is
done on the Vivace platform developed by Intermodulation Products. By relying
on pseudo-noise to generate the signals, there is no need to communicate the
signal from the transmitter to the receiver, as pre-sharing the random number
seed is sufficient. A requirement for this to be possible is that the transmitter is
sufficiently linear to not distort the signal as it is transmitted. The bistatic system
does rely on a GNSS1 signal to synchronise the transmitter and receiver. For all
these publications, the experimental data were recorded with a DJI Matrice 600
uncrewed aerial vehicle (UAV) acting as coopering target.

4.1.1 Paper I

As this is our first publication on the topic of bistatic noise radar, a significant
amount of the material is focused on presenting the system and technical solutions.
Linearity of the transmitter is evaluated in terms of correlation losses. The viability
of bistatic operation as a method to mitigate the CNF is demonstrated as the
target UAV is detected with an improvement in the signal strength of over 20 dB
with respect to the effective noise floor compared to a monostatic configuration.
Additionally, a CLEAN-based clutter suppression algorithm was used to further
reduce the impact of clutter and direct signal interference, adding another 20 dB
improvement.

4.1.2 Paper II

This paper attempts to recover the mismatch losses by compensating for target
movement, as detailed in Section 2.3. We verify experimentally the effect of the
target signal spreading into several range and Doppler bins, with a continuous illu-
mination time of 1 s and the target UAV moving at approximately 11.5 m/s along
a straight line. With knowledge of the true radial velocity, the moving target com-
pensation technique manages to recover up to 13.6 dB of the signal strength, when
compared to the average signal strength with no compensation. In this context,
we discuss the losses involved and argue that, even with this approximate method,
the spacing of matched velocities can not be too large. Finally, we characterised
the UAV target’s coherence time. The UAV is an electromagnetically complex
target, with six uncovered rotor blades and there is no reason to assume it will
scatter the signals coherently for extremely long observation times. Nevertheless,
we observe that coherent integration is possible for, at least, a few seconds.

1Global Navigation Satellite System
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4.1.3 Paper III
The CLEAN-based method of Paper I was, as implemented, an ad hoc solution
to unmodified CLEAN not performing particularly well. This paper originated as
an attempt to put the clutter suppression algorithm in a theoretical framework
and to quantify its performance. The principles of multisignal GLRT detection
with maximum likelihood estimates of unknown parameters were used to guide
algorithmic development. The two resulting clutter suppression algorithms take
the overall form of OMP and ECA, respectively, and manage to suppress the
CNF by over 30 dB, a significant improvement over the CLEAN-based algorithm
of Paper I. With these algorithms, we verified that the clutter environment is
sufficiently stable that it can be mapped for reuse in the ECA-based algorithm
over several seconds at least, and possibly significantly longer.

4.1.4 Paper IV
This paper represents a significant step forward in the capabilities of the noise
radar system. Now, it may process detections in real-time, even in a bistatic con-
figuration. The receiver side has been updated with a 8-element ULA allowing for
spatial measurement of target signals for azimuthal direction finding. We demon-
strate detection of the UAV target at a bistatic distance of several kilometres.
The adaptive receiver array allows us to form suppress the direct signal from the
transmitter. When using only the information of spatial correlations over the ar-
ray there is no distinction between our own signal and uncorrelated interference.
Thus, the adaptive suppression can be used for direct signal self-interference. For
suppression of the direct signal to be possible in this configuration, the instanta-
neous power from the transmitter must overcome the receiver system noise. To
achieve this, we measured in a quasi-monostatic setup, with only tens of metres
bistatic separation. The results demonstrate that the direct signal interference can
be reduced. However, we noted in this setup that wideband effects became highly
relevant and the adaptive suppression failed if the transmitter was too close to the
receiver. A possible future endeavour would be to expand the adaptive processing
to better handle wideband signals. This can be done with a space-time adaptive
setup.
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4.2 Quantum Metrology

Papers V-VIII study various radar-like scenarios with the tools presented in
Chapter 3. These papers are all in the field of quantum metrology, with loss
sensing derived from the quantum radar project as the principal research topic.
While the setting and tools are different from conventional radar, Paper I and
Paper II analyse quantum illumination as an enhanced radar protocol in relation
to the, at the time, recent experiments of Refs. [43–45] and targets an audience
that are not experts on quantum mechanics.

Formally, the analysis in these four papers is related to the measurement of an
unknown transmission coefficient and the recurring question is whether a quantum
state provides an advantage of the semi-classical coherent state per signal photon.

4.2.1 Paper V

The principal goal of this paper is to further the understanding of CCN state, see
Section 3.4.2, and its metrological properties as a radar protocol probe compared
to an entangled probe. The CCN state is designed to model the classical reference
used in Ref. [43]. We quantify the benefit of stronger correlations by computing
the asymptotic ROC assuming heterodyne detection of both modes. Our results
show that heterodyne detection, even ideal, increases the variance sufficiently to
suppress any correlation advantage of the entangled probe state, in agreement
with Ref. [39].

The discrimination strength before detection is further analysed with the semi-
asymptotic result of the Quantum Stein’s Lemma, see Eq. (3.45), using the for-
mulas for Gaussian states from Ref. [110]. The results show that the TMSV state
can supply an unbounded advantage over the asymmetric CCN state in terms of
error exponent in the limit of vanishing probe brightness. It must be emphasised
that the total discrimination strength tends to zero in the same limit which chal-
lenges whether the advantage can be useful in a practical measurement. For the
advantage to be relevant there must be an external criterion that requires the
probe brightness to be low.

Finally, since the experiments that inspired this paper used amplifiers in their
setup, we analyse the impact of ideal phase-invariant amplification at various
points of the protocol. We compute a simple criterion that shows how amplification
of the idler suppresses any chance of a quantum advantage. However, since the
publication of this paper it has been shown [51] that a sub-optimal quantum
advantage can be realised with heterodyne measurement of the signal return mode,
if the idler is measured homodyne conditioned on the heterodyne result.
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4.2.2 Paper VI

This paper was prepared for the specific purpose of bridging a perceived gap
between radar engineers and quantum optics researchers with respect to quantum
radar, targeting the former as audience. Central to the analysis is the restrictions
imposed by the regime in which QI exhibits its advantage, i.e., where the signal
photons are few per mode and the thermal background is bright. Outside of this
regime there is no quantum advantage on offer and one may as well use a coherent
state probe. Intuitively, transmitting a weak signal to find a target in a bright
background will be difficult. In fact, it can be argued to be extremely difficult in a
conventional radar context. For a typical radar scenario, covering distances of tens
of kilometres, the transmit-to-receive ratio of power can be as small as 10−15 or
even smaller. One must coherently detect many modes to be able to detect targets
in this situation, which requires processing of a large time-bandwidth product. By
restricting the system to operate in the regime with a quantum advantage, there
is a discrepancy of at least ten orders of magnitude between what is technically
realistic and what is required to approach the performance of conventional radar.
Based on this analysis, we argue that the radar advantage offered by QI is so
situational and technically complicated that it is difficult to even imagine an
operational scenario where its implementation would provide a crucial benefit.

4.2.3 Paper VII

In this paper, we move on to quantum estimation where the task is to measure the
value of the transmission coefficient. Our tools of this study are the QFI and the
quantum CLRB. We investigate which input state, restricted to a certain power,
maximises the QFI of the channel transmission coefficient.

Our work in this paper consists of a full characterisation of the optimal Gaussian
probe state in single- and two-mode configuration. Even though this is a single-
parameter estimation problem there are several degrees of freedom in the generic
Gaussian state. The single-mode optimal state depends non-trivially on the aver-
age number of signal photons, the average number of thermal background photons
and the true value of the transmission coefficient. To enable analytical results, it
is crucial to establish canonical forms of the probe states with reduced degrees of
freedom. The more involved analytical results were calculated with support from
computer algebra software.

Additionally, we study the variant of the channel where the number of background
photons is normalised to be independent of the transmission coefficient, known
as the “no passive signature assumption” [4]. For this channel, with access to an
entangled idler, we show that the TMSV state is globally optimal. We prove this
result by showing that the QFI for the TMSV state saturates the fundamental
upper bound proved in Ref. [107]. The result that the TMSV state is universally
optimal when the shadow effect is removed was first reported without proof at the
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2021 International Symposium on Information Theory [116]. After our publication
of Paper VII, a longer version of Ref. [116] was published as Ref. [117].

4.2.4 Paper VIII
This paper is a manuscript that expands the dynamical interaction to include
quadratic term, modelling two-photon absorption [118–120]. Overall, the toolbox
is similar to the one of Paper VII, using the QFI to quantify performance of
various quantum mechanical probe states. In contrast to Paper VII, we include
non-Gaussian probe states in the analysis. The states we consider can be generated
by a qubic interaction Hamiltonian and are referred to as ‘tri-squeezed’ because
the generation process can be understood as three-mode down-conversion. Two-
photon interaction and states generated from a qubic Hamiltonian are not easy
to analyse with analytics and requires us to turn to numerics to compute the QFI.
The results show that the QFI of two-photon absorption can be larger for the tri-
squeezed probe states considered, particularly in the regime of few signal photons
per mode. At the time of writing some work remains for this paper. In particular,
the manuscript is missing a few results on the realised classical FI under certain
common measurements, such as homodyne.
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Conclusion and Outlook

At the start of this research project the goal was to investigate, and hopefully
demonstrate experimentally, the technological feasibility of quantum radar. Being
a project connected to Saab and the radar industry, it was unavoidable that the
practical usefulness of quantum radar was incorporated in the investigations.

Communication between academia and industry and the relationship between
pure research and technology development has been important. Regardless of the
research field, it is a challenge to balance the presentation of results between tech-
nical correctness and ease of access. Overall, the philosophy around this has been
to give special emphasis to presenting results in a relevant context with, if possible,
an application in mind. The field of quantum radar, and the technology hype that
proliferated about it at the time, was prone to misunderstandings by the radar
engineering community about the nature and regime of the oft-cited quantum
advantage over classical radar. With time, our understanding of the limitations of
quantum radar grew and the experimental side of the project was diverted into
classical1 noise radar. This may appear as a drastic change, but occurred as a nat-
ural evolution. After the publication of Paper V and Paper VI we felt confident
in our conclusions that practical applications of quantum radar for conventional
settings were unfeasible. We appear to not be alone in this conclusion as it was
noted in a recent pre-print [121] that the number of quantum radar publications
published with the IEEE peaked around the years 2020 and 2021, with a sharp
drop since. Time will tell if this is a permanent loss of interest or a just temporary
dip in the hype cycle.

Since the protocol of quantum illumination involves the correlation between a
noisy signal with a retained reference it can be understood as a type of noise
radar. Even though radar may be considered a mature and established field of

1Classical as in non-quantum.
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technology, there are still many interesting research challenges to tackle. Cur-
rently, the field of radar shifts more and more to digital solutions, which enables
entirely new possibilities in signal and data processing. These developments may
push radar using noise and other arbitrary waveforms into viable radar systems,
where the correlation noise floor does not fundamentally restrict the space of ap-
plications. With our work in noise radar, documented in Papers I–IV, we argue
that bistatic operation with separated transmitter and receiver is a major com-
ponent in designing noise radar systems. While we know the purpose of a radar
system is to survey the environment for targets, we have in this thesis and in
the relevant publications mostly ignored the question of an important use case for
noise radar in favour of pulsed radar operation. A non-periodic waveform does not
suffer from the ambiguities of a pulsed system, but instead causes self-interference
through the correlation noise floor. It can be argued that a radar operating with a
non-periodic waveform using a large instantaneous bandwidth is clandestine as its
signals will be difficult for an adversarial electronic surveillance system to detect
or identify as a radar. This may be the case, but quantitative analysis on this
topic tends to be confidential. Even if the use case of a noise radar system may
be called into question, the ability to process large time-bandwidth products of
signals with arbitrary waveforms is nevertheless useful, with passive radar using
existing transmitters of opportunity as a clear application. Further development
of the clutter suppression signal processing techniques will remain important for
these applications, and radar in general, for the foreseeable future.

While the experimental side of the project turned to noise radar, the theoretical
side was not abandoned. Instead, we continued the theory project with a broader
scope of within quantum metrology, producing Paper VII and Paper VIII.
Since these papers and their results are theoretical in nature, and the tools are
purely mathematical, they serve as a sharp contrast to the work with noise radar,
where the theoretical analysis could be performed with access to real-world exper-
imental data. When working with relatively abstract quantities such as quantum
Fisher information, the results can sometimes be quite subtle, with many technical
details and transparent assumptions needed for interpretation.

Ultimately, sensing and metrology will remain relevant and more devices may
have to account for quantum effects as measurement sensitivity is improved ever
further. It shall be interesting to see how the experimental methods continue to
develop. When pushing against the uncertainties of quantum mechanics, a deep
understanding of the limitations and possibilities is paramount. At this point
in time, radars are impressively sensitive technological systems able to detect
extremely faint signals in large amounts of data. However, most radars operate
at microwave frequencies with finite temperatures and, in these environments
and power levels, quantum effects are washed out and classical descriptions are
perfectly sufficient. It would appear that, at least for now, quantum radar will
remain an interesting research topic rather than a revolutionary paradigm for the
field of radar as a whole.
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AppendixA
Statistics

The relations presented here may be found in any graduate textbook on statistics
or statistical modelling, see e.q., Refs. [70, 72, 74].

A.1 Complex normal distribution

Let z be a complex random vector distributed according to the probability density
function

p (z;µ,Σ) =
exp

[
− (x− µ)† Σ−1 (x− µ)

]
πN det Σ (A.1)

with mean µ and covariance matrix Σ. Then z is distributed according to the
complex normal distribution, which we denote as z ∼ CN (µ,Σ).

In the circularly symmetric case with diagonal covariance matrix, i.e., z ∼ CN
(
µ, σ2I

)
,

we have Re[z] ∼ N
(
Re(µ), σ2

2 I
)

and Im[z] ∼ N
(
Im(µ), σ2

2 I
)

with Re[z] inde-
pendent of Im[z].

A.2 Power and ratio statistics

Here, χ2
D denotes the chi-squared distribution with D degrees of freedom and

Fd1,d2 denotes the F distribution with d1 and d2 degrees of freedom. If z ∼
CN

(
0, σ2

ZIM

)
and w ∼ CN

(
0, σ2

W IM

)
, then

E|z†w|2 = σ2
Zσ

2
WM. (A.2)
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If z ∼ CN
(
µ, σ2IM

)
and u = 2

σ2 ||z − µ||2. Then u ∼ χ2
2M with E[u] = 2M and

var[u] = 4M such that

E
[
u2
]

= var[u] + (E[u])2

= 4M(M + 1).
(A.3)

If u ∼ χ2
P and v ∼ χ2

Q, then u/P
v/Q ∼ FP,Q.

If z ∼ CN
(
0, σ2

ZIM

)
and w ∼ CN

(
0, σ2

W IN

)
, then

2||z||2

σ2
Z
/2M

2||w||2

σ2
W
/2N

= N ||z||2σ2
W

M ||w||2σ2
Z

∼ F2M,2N . (A.4)

In particular, we have use of the distribution of the variable s ∼ F2,2N with the
probability density function

pF2,2N
(s) =

(
1 + s

N

)−N−1
. (A.5)
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AppendixB
Linear Algebra

The relations presented here may be found in standard reference literature on
linear algebra, see e.g., Ref. [122].

B.1 Matrix vectorisation
The matrix vectorisation maps a matrix of size M ×N to a vector of size MN ×1
by stacking the columns. That is, for the matrix

A =
[
a1 a2 . . . aN

]
, (B.1)

where an are column vectors, the vectorisation is

vec A =


a1
a2
...

aN

 . (B.2)

The vectorisation of a matrix product satisfies

vec [ABC] =
[
C⊤ ⊗A

]
vec B, (B.3)

which is known as Roth’s Relationship.

B.2 Pseudoinverse and Composite projections

Let A be a matrix. The Moore-Penrose pseudoinverse A+ of A is the unique
matrix that satisfies

AA+A = A, A+AA+ = A+,[
A+A

]†
= A+A,

[
AA+

]†
= AA+.

(B.4)
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Let M =
[
A B

]
be an m × n matrix with m > n. The projection matrix onto

the column space of M is

PM = PǍ + PB = PA + PB̌, (B.5)

where Ǎ = P⊥
BA with P⊥

B = I −AA+, and equivalently for B̌. If rank M = n,
the Moore-Penrose pseudoinverse is [123]

M+ =
[
Ǎ+

B̌+

]
. (B.6)
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