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Abstract

Masonry bridges are among the most sustainable structures ever to have been built. The long service
time, the resilience to carry larger loads than originally intended, and significantly lower life cycle cost
compared to other bridge types suggest that we should consider the design and construction of new
masonry bridges, even if their initial cost is greater than that of steel or concrete bridges

The aim of this work is to understand the structural behaviour and study the collapse of a single-span
masonry hydrostatic shell, that is a shell designed specifically to carry a hydrostatic load. Due to the
complexity of the masonry shell interacting with fill, it is necessary to use a combination of computa-
tional methods and load tests on physical models in their structural assessment. We perform a load test
to failure on a physical model spanning 770 mm made from 3D printed blocks and analyse the model
using the Discrete Element Method (DEM) in Dassault Systèmes Abaqus.

The physical model behaved well and predicts that the bridge could be used at full scale. The preliminary
results from a computational DEM model are found to be qualitatively good, but greatly overestimate
the collapse load of the bridge.

Keywords: masonry bridges, masonry vaults, form finding, load test, discrete element method

1. Introduction
Masonry bridges play a vital role in our built environment and infrastructure. According to a 2004
survey by the International Union of Railways [1], the 200,000 masonry arch bridges and culverts of the
participating organisations represented 60 % of their bridge stock. Most of the bridges, 70 %, were at
that time between 100 and 150 years old.

Masonry bridges have a long service life, the resilience to carry larger loads than originally intended,
and significantly lower life cycle costs than other bridge types [1]. McKibbins et al. [2, p. 25] wrote

Masonry arch bridges can be viewed as among the most sustainable structures ever to have
been built. Many have already been in service for hundreds of years without significant
repair or strengthening works - exceeding the design life requirements of modern structures.
By contrast, many of the steel and concrete bridges built in the last century have required
considerable expenditure on maintenance and repair or even replacement within the first
30-40 years of service.
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The successful long-term structural and environmental performance of masonry bridges means that we
should consider the design and construction of new masonry bridges, even if their initial cost is greater
than that of steel or concrete bridges. In the paper, ‘The construction of new masonry bridges inspired
by Paul Séjourné’ [3] we presented the new design concept of hydrostatic shells and its associated
theoretical framework.

The hydrostatic shell transforms the arch, the spandrel walls and the wing walls of a traditional masonry
arch bridge into a shell or vault. The hydrostatic shape is due to that masonry bridges contain a consider-
able amount of fill material. The fill adds weight to the arch and spreads the load. The pressure from the
fill has resulted in a geometry with less curvature at the top of the arch and more acute curvature near the
supports, which can be observed in built examples such as the Maidenhead Railway Bridge (Figure 1)
by Brunel or in bridges designed by Paul Séjourné.

Due to the complexity of the masonry shell interacting with the fill, it is necessary to use a combination
of computational methods and load tests on physical models in their structural assessment. These can be
used in conjunction with existing methods such as the line of thrust or MEXE [4]. The aim of this paper
is to explain the structural behaviour, describe the form finding technique for a single-span hydrostatic
shell and examine the collapse mechanism.

Figure 1: Elevation of Maidenhead Railway Bridge, image from Network Rail Corporate Archive.

2. Form finding of a single span hydrostatic shell
The concept of hydrostatic shells relies on the idea that the form is a membrane shell that is in equilibrium
with the hydrostatic pressure. The equilibrium equation for a membrane shell can be written as

1√
a

(
σαβ√aaβ

)
,α
+ pβaβ + pn = 0. (1)

Green & Zerna [5] use nαβ instead of σαβ for the membrane stress tensor and a3 instead of n for
the normal. For a hydrostatic shell, i.e only having a hydrostatic load excluding gravity one assumes
p = −ρgz, where ρg is the weight per unit volume and pβ = 0. Thus, we assume that the weight of the
masonry is small compared to the total weight. We also assume that we have a mono-axial state of stress
in the masonry so that one of the principal membrane stresses follows geodesics on the surface.

In form finding, the stresses and loading are known, and the geometry is unknown. For this problem,
one could use techniques such as dynamic relaxation [6] or the force density method [7]. However, these
methods tend to be unstable for this application since bulges tend to form between the geodesics. For
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the special case of a single-span bridge it is much simpler to integrate (1), assuming a grid of geodesic
coordinates and where the forces flow along the geodesics. Rewriting (1) to

Tbb− Taa+
ρgz

4
(a+ b)× c = 0, (2)

where z ≤ 0. Vector a is ri,j − ri−1,j , b is ri+1,j − ri,j and c is ri,j+1 − ri,j−1 for a grid as in Figure 2.
Ta and Tb are the force densities of a and b. The unknown in this case is b.

Boundary conditions c
a

b

ri,j-1

ri,j

ri-1,j

ri+1,j

ri,j+1

z

Step 1 Step 10 Step 15

Figure 2: Form finding of hydrostatic shell with geodesic coordinates. Left, the right angles are given
by the set boundary conditions (blue). Middle, the vectors a and b are the direction of the geodesics.
The vector c is the direction of the orthogonal trajectories. Right, the form finding in progress at steps
1, 10 and 15.

Geodesic coordinates [8] mean that one of the coordinate curves follows geodesics, and the other co-
ordinate curves intersect at a right angle and have a constant spacing. We only need to impose two of
these conditions since the third results from the other two. In this case, it is assumed that the spacing
is constant |a| = |b| = L2. The condition of orthogonality comes from the set boundary conditions,
blue in Figure 2, which is the transverse section profile to the span of the bridge at mid-span. Thus, the
geometry is found by integrating along the geodesics (coming from the two other conditions), finding b

to get the new position of ri+1,j .

The expression (2) can be simplified by assuming Ta = Tb = T

b− a+
ρgz

4T
(a+ b)× c = 0.

It is possible to attain the expression for b as a linear combination of a, c and a× c as

b =
(1− q · q)a+ 2 (a · q)q− 2a× q

1 + q · q
,

where q = (ρgz/4T ) c.

The form finding is illustrated in the right of Figure 2, showing the simulation at steps 1, 10 and 15.
Depending on the choice of force density and the starting profile (blue) one get different results. After a
certain amount of iterations, the surface will fold in on itself, similar to the case of a hydrostatic arch [9].
The form finding technique presented requires the designer to specify force density and the transversal
section at mid-span of the bridge. The force density affects the span-to-rise ratio, where a lower force
density will require a higher curvature of the geodesics. The specified profile shape and curvature affect
the stiffness of the cross-section. More curvature should give more stiffness and thus attract forces,
similar to the fold in a piece of paper. In Figure 3 are examples having different mid-span profiles. The
effect of the curvature is most visible on the superellipse or Lamé curve to the right in Figure 3.

3. Prediction of the behaviour of masonry structures under load
There are several possible approaches for the prediction of structural behaviour: ‘rules of thumb’ or past
experience, hand calculations, computational analysis, small-scale model tests, and full-scale tests.
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Vertical start and end tangents
to cross-section 

Catenary Circle Superellipse

Figure 3: Perspective view of alternative bridges generated having different starting profiles at mid-span
during form finding.

Hand calculations are usually based on plastic analysis (Figure 4 left). Heyman [10] states three key
postulates that enable the upper and lower bound theorems of plasticity to be applied to masonry: ma-
sonry has no tensile strength, stresses are so low that masonry has effectively an unlimited compressive
strength, and sliding failure does not occur. However, masonry bridges often contain a considerable
amount of frictional fill material, and so, while one can use a lower bound approach, that is postulate a
state of stress in equilibrium with the applied loads which does not violate the yield condition, but the an-
swer is not necessarily a lower bound to the real collapse load. This is because if the fill yields according
to the Mohr–Coulomb failure criterion this does not satisfy the normality postulate of plasticity.

Computational analysis may involve elastic analysis, but this is usually not appropriate since it does not
take into account the opening of masonry joints. The Discrete Element Method (DEM) is commonly
used for structural analysis of masonry structures in which the structure is modelled as a system of
blocks, which can be rigid or deformable, or particles [11].

Small-scale model tests, or masonry block models [12], have been vital for master builders in the struc-
tural design and analysis of masonry vaults and arches. Most known is perhaps Danyzy’s experiments
[13] (Figure 4 right) with masonry arches to verify the masonry arch theory by Couplet [14]. The results
scale directly between the model and the full scale, meaning scaling the span ten times the mass and
other loads scale with a factor of a thousand. This is usually not the case for structures, but it is be-
cause structural analysis of masonry arches and vaults is usually not a question of strength but stability.
This is because we assume that the stresses are relatively low in the architectural scale of, for instance,
cathedrals, as Heyman [10] describes.

P

P

Figure 4: Left, the collapse mechanism for a masonry arch redrawn from Heyman [10]. Right, depictions
of Danyzy’s experiments of masonry arches from Frézier [13].
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Proper scaling of the results involve dimensional analysis using Buckingham π theorem. First, we look
at the scaling of the fill or the soil. From the Mohr-Coulomb criterion τ = c′ + σ′ tanϕ′, where τ is the
shearing stress acting on the plane of failure and σ′ is the effective normal stresses to the same plane.
The effective stress is the total stress minus the pore water pressure. For a fill that is a granular soil
that allows water and air to penetrate through the soil, the pore water pressure has less influence. The
cohesion and friction angle are the material constants c′ and ϕ′, respectively.

The cohesion c′ is affected by scaling. However, using dry sand as the fill could be seen as cohesionless
soil [15], meaning c′ = 0. In such cases, the soil is purely frictional and only the ratio between the
shear and normal stresses matters. If the fill is purely frictional, one could imagine that it would be a
conservative assumption and that real fill would be safer.

For the masonry, we can list relevant variables and their corresponding dimensions as in Table 1. Since
we only have dimensions expressed in F and L, the number of independent non-dimensional groups
are the number of variables subtracted by two, and we can also combine these to create other non-
dimensional groups. In Table 2 examples of non-dimensional groups are presented.

Variables Dimensions
Density times gravity, ρg F/L3

Span, S L
Collapse load, P F

Compressive strength of masonry, σ F/L2

Young’s modulus of masonry, E F/L2

Table 1: Possible variables for masonry bridge

Non-dimensional groups Variables
Independent Group 1 P/ρgS3

Independent Group 2 P/σS2

Independent Group 3 σ/E

Alternative Group A σ/ρgS

Alternative Group B E/ρgS

Table 2: Non-dimensional groups

Group 1 in Table 2 expresses that if the span of our bridge increases by a factor of 30, the collapse load
increases by 27,000. (

P

ρgS3

)
full scale

=

(
P

ρgS3

)
model

(3)

However, if we believe the crushing of the stone is a probable risk, we can do the same for group 2, and
the loads will scale by a factor of 900 instead. Group 3 is basically if we believe there is a failure in
strain. Alternative group A would be stones failing under the weight of bridge and group B the bridge
would not be stiff enough under its own weight.

4. Testing and analysis of model bridge
4.1. The bridge model

For the load test, the catenary profile was chosen in Figure 3. The fill depth to span ratio at the crown
was 0.06, which is quite normal compared to other masonry arch bridges where it is common to lie
between 0.04-0.06 (Figure 8 (d) in Brencich and Morbiducci [16]).

The span-to-rise ratio was chosen to be 0.11 (Figure 5), which can be considered a shallow bridge for
masonry arch bridges. Shallow arch bridges are considered between 0.15 and 0.30, where the average
value is 0.20 in historic and contemporary bridges [16]. As a reference, the Maidenhead Railway Bridge
by Brunel has a span-to-rise ratio of 0.19, which was considered very shallow when built. However,
since our bridge model is not an arch but a shell, it is difficult to compare directly.

The thickness of the bridge model was chosen to be 10 mm, giving it a ratio between the thickness in the
crown and the span to be 0.013. This is considered low compared to other masonry arch bridges where
most lie in the span 0.05-0.07 (Figure 8 (b) in Brencich and Morbiducci [16]).
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Figure 5: Section and elevation of the bridge that was tested had a catenary profile as input in form
finding. Measurements are in mm.

The masonry blocks were 3D printed using the ProJet CJP 660. The material is similar to gypsum, and
the printed parts can be fragile during handling; thus, the blocks were impregnated with 3D Systems
ColorBond. The model was assembled (Figure 6) as dry masonry. The falsework was not removed until
the fill had been applied, which in this model was finely-grained dry sand. The weight of the bridge was
2.49 kg masonry and 7.34 kg sand.

Figure 6: The construction process of a model bridge. Left, the 3D printed blocks are assembled without
glue. Rounded extrusions are for easier assembly but do not contribute to any bending stiffness. The
middle shows the bridge before filling it with sand as in the right image.

4.2. Load test setup

The model was built on a MDF board with a plywood board underneath to add strength. The timber
abutments were screwed into these two boards, and thus a metal clamp was attached to increase the
capacity to handle the lateral thrust during the test.

To apply the load, a rectangular timber frame was built that could fit around the model and carry a
bucket placed underneath the model. The load was to be applied as a point load, and the chosen area
was a square of 65x65 mm. On the underside of the frame, a scale was fitted with a metal hook for the
bucket. It was decided to place the load at 1/4 the arch length, which is a critical placement for an arch.

The model had some initial geometric imperfections. In the top view (Figure 7 left), it is visible that
one of the abutments is slightly rotated. Thus, on one side, it bulges outwards at mid-span, and on the
other side, it curves slightly when it should be straight. From the elevation view (Figure 7 right), there
is a slight downward bulge in the mid-span, where it should be nearly flat. Also, the blocks near the
abutments on the left side have some imperfections.

Three cameras were used to capture the load test. One recorded the top view, the second the elevation
view, and the third the scale display. Two measurement papers were placed at the midpoint and at the
1/4 point on the left side of the model. A string was attached between the abutments to capture their
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Figure 7: Left, view along the model seen from the left abutment. Right, the model in elevation. The
white dashed line shows the contour which indicates the initial profile.

relative displacement.

4.3. Load test

The model was loaded twice before the collapse. The load was applied by a steady flow of sand. The
bucket became full without collapse the first time of loading, which was approximately 19 kg. At this
stage three phenomena were observed, exaggerated in blue in Figure 8 top. First, the abutments rotated
slightly outwards on the left side and inwards on the right side. Second, there was a slight uplift on
the left side of the bridge while the right moved slightly down. The bottom left picture shows the
magnitude of the deformation, which is barely visible (Figure 8 bottom left). Third, there was local
plastic deformation below the loading point, causing the profile to be nearly flat rather than curved
(Figure 8 bottom right).

Before the second test, the model was unloaded. Since the collapse load was unknown, we started with
a metal weight of 20 kg and, from there, a small increase of load using a flow of sand. There was not
much displacement until around 27 kg when the displacement under the load increased, going from
almost straight in profile to bulging outwards, and a crack began to become visible on the left side (both
locations indicated in Figure 9 top). At a load of 28.5 kg, sand starts to come out of the crack under the
load. At 28.7 kg, there is a constant flow of sand coming from the crack until 28.9 kg, where the crack
opens completely (Figure 9 top) and the rig punches through (Figure 9 middle) and there is a sudden
collapse (Figure 9 bottom). See the full video from the load test [17].

Thus, if we scale the model by a factor of 50 to match the span of the Maidenhead Railway bridge of
39 m using (3), the collapse load would be 28.9× 125,000× 10−3 = 3,600 tonnes.

Discussion of failure modes

Taken as a whole, the bridge is a 3-dimensional thin shell but, in a 2-dimensional projection, acts as a
thick arch and therefore the simple failure modes shown in Figure 4 are not kinematically possible. This
explains why we have the localised bulging failure shown in Figure 9. This bulging failure is possibly
influenced by the horizontal movement of the supports.

4.4. Computational analysis - Discrete element method

The bridge was modelled by the proprietary software Abaqus 2023, using Abaqus/Explicit, which is an
explicit solver that is suitable to capture the non-linear behaviour as well as the opening of the joints of
the masonry structure.

The geometry was based on the size of the bridge model. The voussoirs are defined as deformable bodies
and given properties of Young’s modulus of 70 GPa, Poisson’s ratio of 0.3 and a density of 2750 kg/m3.

The supports were modelled as a fixed surface on which the adjoining blocks are free to rotate and move.
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Figure 8: Top, exaggerated deformation pattern in blue after the loading of 19 kg. Bottom left, the up-
ward displacement on the left side around the 1/4 point. The white dashed line shows the initial position
and the black dashed line after 19 kg loading. Bottom right shows the local permanent deformation
under the load, which decreased the initial curvature (white dashed) to be flat (black dashed).

We have used a ‘hard’ contact formulation with default enforcement method for the normal behaviour.
For the tangential behaviour, we want to ensure that there is no sliding and collapse due to plastic hinges
according to Heyman’s postulates. Abaqus employs the basic Coulomb friction model τcrit = µp, where
µ is the friction coefficient and p the contact pressure. To ensure no sliding failure we have used a penalty
method with a high friction coefficient of 5 and an infinite elastic slip stiffness as Stagnitta [18].

To run a quasi-static simulation within an explicit framework, damping was added at the contact inter-
faces, with a coefficient of 0.4. The interaction is modelled with a general contact algorithm.

Loading was performed in two different steps. First, the self-weight of the masonry and fill were applied.
Second, the point load was applied and progressively increased to failure.

The self-weight of the voussoirs is defined as a gravity load with magnitude based on volume and density
of the material. The load of the fill is modelled as hydrostatic pressure as in (1) and (2), where ρ = 1600

kg/m3 and z is the vertical distance from the top of the bridge. The point load is assumed to spread as a
cone with a 45◦ angle through the fill onto the shell with decreasing magnitude towards the cone surface.

The simulation result is seen in Figure 10. In the top image, just before the collapse, there is a visible
bulge under the load and a small lift on the model’s underside on the left side. In the bottom image, the
load has penetrated the bulge on the right side. This corresponds well to the behaviour in the physical
model test, but the collapse load of 14 kN = 1400 kg force which is a factor of 50 times larger. If we
assume that this discrepancy is not due to a gross error in the computer model input data, then the most
likely cause is the fact that the computer model assumes rigid horizontal supports and does not include
geometric imperfections. It is well known in shell theory that geometrical imperfections can have a
major impact on collapse load, particularly where buckling is involved.
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Figure 9: Top, just before the collapsing at 28.9 kg, sand comes out of the bulging crack under the load
(white dashed). On the left side, there is a visible crack (white dashed) that opens at the top. Middle, the
crack under the load opens up and the rig punches through before the sudden collapse, bottom figure.

Figure 10: Deformation plots showing the vertical displacements. Top, just before the collapse. In the
bottom image, the collapse has been initiated.
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5. Conclusions
The physical model behaved well and predicts that the bridge could be used at full scale. Taken as a
whole, the bridge is a 3-dimensional thin shell but, in a 2-dimensional projection, acts as a thick arch
and therefore the simple failure modes shown in Figure 4 are not kinematically possible. This explains
why we have the localised bulging failure shown in Figure 9. This bulging failure is possibly influenced
by the horizontal movement of the supports.

The DEM model of the bridge gave qualitatively good results regarding failure mechanisms, but the
magnitude of the collapse load obtained was 50 times larger than the load test. We will endeavour to
investigate the cause of this discrepancy, but it is believed that it could be caused by the flexibility of the
supports and imperfections in the physical model, which were ignored in the computer model, as well
as the difficulty in modelling the fill and point load.
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