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ABSTRACT

In auditory augmented reality applications, virtual sound sources
can be added to a real-world acoustic environment by processing
each source signal with a spatial room impulse response (SRIR) to
render acoustic characteristics of the environment, and with a set
of head-related transfer functions to create binaural headphone sig-
nals. The SRIR of a user’s environment is typically unknown and
needs to be estimated. We propose a method to estimate the SRIR
blindly from speech signals captured with a microphone array. The
blind estimation task is transformed into a non-blind one using a
pseudo reference signal that is obtained from the array signals via
dereverberation and beamforming. The SRIR is then estimated us-
ing a frequency-domain multichannel Wiener filter with the pseudo
reference as the input and the array signals as the desired signals.
In contrast to conventional methods, the proposed method is able
to successfully estimate SRIRs of realistic lengths at a sampling
rate that supports the entire audible frequency range. Results from
200 simulated and 16 measured SRIRs show that the estimates from
the proposed method reproduce the reverberation time and the direct-
to-reverberant energy ratio with low error, outperforming a baseline
method that does not use dereverberation.

Index Terms— Augmented Reality, Blind System Identifica-
tion, Dereverberation, Microphone Array, Room Impulse Response

1. INTRODUCTION

In auditory augmented reality applications, virtual sound objects
may be added to a real-world environment that the user can freely
explore, typically while wearing non-occluding headphones to limit
the distortion of real-world sounds. A specific use case is augmented
telepresence which aims at making remote speech appear in the local
acoustic environment and vice versa. A virtual sound source can be
created by processing a source signal with the binaural transfer func-
tion from a position in the real-world environment to the listener’s
ears. The binaural transfer function comprises the acoustic room
transfer function, or its time-domain counterpart, the acoustic room
impulse response, and the listener’s head-related transfer function
(HRTF) [1]. Spatial room impulse responses (SRIRs) contain the
linear, time-invariant, directional properties of an acoustic environ-
ment for a single source-receiver pair and can, together with a set
of HRTFs, be used to virtually add a sound object to a real acoustic
environment [2, 3]. We thus refer to an SRIR as a multichannel
room impulse response that is captured using a somewhat compact
microphone array whose inter-element spacing is smaller than a
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wavelength for a considerable part of the frequency range of interest
to pick up directional properties of the room transfer function for a
single listener position [4]. SRIRs are often represented in a linear
transform domain using spherical harmonics (SH) basis functions
which facilitates array-independent analysis and processing [5].

The SRIR of a user’s environment is typically unknown and
needs to be blindly estimated from signals that naturally occur in
that environment. Blind multichannel system identification methods
typically exploit cross-relations between the channels to estimate rel-
ative transfer functions [6, 7, 8, 9, 10]. While these well-established
methods return accurate estimates for short impulse responses, we
show in Sec. 3 that they do not converge in reasonable amounts of
time in our scenarios of interest, which cover SRIRs of hundreds
of milliseconds in length at a sampling rate of 48 kHz. Recently,
machine-learning (ML) methods were introduced that either allow
for the estimation of room impulse responses or directly match an
audio signal with the acoustics of a target environment [11, 12, 13].
However, only [12] achieves this at a sample rate of 48 kHz, sup-
porting the entire audible frequency range. The ML methods so
far are designed for single-channel audio signals and do not guar-
antee the preservation of directional properties of the acoustic envi-
ronments that are embedded in the inter-channel relations of mul-
tichannel SRIRs. As the ML methods need to be trained on large
sets of realistic data, training ML models for specific microphone
array configurations further requires a large measurement or simula-
tion effort, and methods that do not rely on training data will remain
relevant.

In this contribution, we propose a non-data-driven method that
uses a pseudo reference signal to transform the blind identification
task into a non-blind one and estimate SRIRs using a frequency-
domain multichannel Wiener filter. The pseudo reference signal is
obtained from the array signals via dereverberation and beamform-
ing. A related method was recently proposed in [14], where relative
transfer function estimates in the SH domain were obtained using a
beamformer and a frequency-domain recursive-least-squares (RLS)
algorithm. The method was evaluated for simulated SRIRs and an
ideal SH receiver in terms of a reverberation time error and a direc-
tional error. We model a room impulse response as being composed
of direct sound, early reflections, and late reverberation, and show
that (non-relative) transfer functions can be estimated by a care-
ful design of the beamformer and additional dereverberation. The
proposed method directly processes the microphone signals and is
not limited to specific microphone arrays but can also be applied to
spherical arrays and an SH decomposition of their microphone sig-
nals. We systematically investigate the performance of the proposed
method in comparison to a generalized version of [14] by analyzing
reproduced reverberation times, direct-to-reverberant energy ratios,
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Fig. 1: The SRIR is estimated using a multichannel Wiener filter (MWF) with the multichannel array signals as desired signals and a
dereverberated, beamformed signal as pseudo reference signal. Bold lines represent multichannel signals.

and a directional energy metric using 200 simulated and 16 mea-
sured SRIRs that include circular microphone arrays, equatorial mi-
crophone arrays, and spherical microphone arrays.

2. SPATIAL ROOM IMPULSE RESPONSE ESTIMATION

Let us consider a sound source in a room emitting the signal s(n)
which propagates through the room and is being picked up by a mi-
crophone array. Under linear, time-invariant conditions, the array
signals d(n) are described as a convolution of the signal and the
multichannel impulse response h(n), d(n) =

∑L−1
l=0 h(l)s(n− l).

Acoustic room impulse responses are typically described as being
composed of three parts, the direct sound hd(n), the early reflec-
tions he(n), and the late reverberation hl(n), so that the convolu-
tion can be re-expressed to show the contribution of these individual
parts:

d(n) =

Ld−1∑
l1=0

hd(l1)s(n− l1) +

Le−1∑
l2=Ld

he(l2)s(n− l2)

+

L−1∑
l3=Le

hl(l3)s(n− l3) . (1)

Blind RIR estimation methods estimate h(n) without access to the
source signal s(n). The herein proposed method achieves this via
an estimate of s(n), termed pseudo reference signal x(n), that is
obtained from the array signals d(n) by dereverberation and beam-
forming as shown in Fig 1. While the dereverberation aims at cancel-
ing the late reverberation in the third term of (1), the beamformer’s
task is to suppress the second term of (1) containing the influence
of the early reflections, while compensating for the direct part of the
room impulse response hd(n) to obtain an undistorted estimate of
s(n).

For the dereverberation, we utilize the generalized weighted pre-
diction error (GWPE) method as it offers blind multichannel derever-
beration while preserving time differences between channels [15]. In
a nutshell, the GWPE method estimates a multichannel linear pre-
diction filter that minimizes temporal signal correlations after a pre-
diction delay. The prediction delay is typically chosen in the range
of tens of milliseconds to not cancel the non-zero short-term auto-
correlation of dry speech. The GWPE method is usually applied in
a subband domain such as the short-term Fourier transform (STFT)
domain. We formulate the rest of the processing in the frequency
domain and apply the processing to signal blocks obtained via the
STFT.

From the dereverberated array signals d̃(ω), the pseudo refer-
ence signal

x(ω) = wH
BF(ω)d̃(ω) (2)

is obtained via the matched-filter beamformer

wBF(ω) =
a(ω)

aH(ω)a(ω)
, (3)

where a(ω) is the array transfer function for a plane wave impinging
on the array from the source direction under anechoic conditions, the
superscript (·)H denotes the conjugate transpose and ω is the angular
frequency. All variables in the remainder of this section are defined
in the frequency domain and we omit the frequency dependency for
readability. The array transfer function a is assumed to be known for
any given source direction and is in practice determined either via an
analytic description or measurements. The direction of arrival of the
speech signal can, for instance, be estimated via the multiple signal
classification (MUSIC) algorithm [16]. If the direction-of-arrival es-
timate is accurate, the selected anechoic transfer function is equal
to the direct part of the RIR, a = hd, and the beamformer recov-
ers the signal s from the direct part of the RIR without distortion.
We assume no knowledge about the transfer functions of individual
early reflections he so that their influence is only suppressed to a cer-
tain degree by the directivity of the beamformer. The matched-filter
beamformer can be interpreted as a minimum-variance distortion-
less response (MVDR) beamformer with the identity matrix as the
noise power spectral density (PSD) matrix, which for instance is the
case for spherical arrays with regularly distributed microphones in
an isotropic white-noise field.

A frequency-domain multichannel Wiener filter (MWF) [17,
Ch. 6.6] is used to estimate the SRIR. It is designed to minimize
the mean square error (MSE) between the filtered pseudo reference
signal y = wx and the array signal d,

JMSE(w) = E{∥y − d∥22} , (4)

= E{x∗wHwx} − 2E{x∗wHd}+ E{dHd} .

The superscript (·)∗ denotes complex conjugation and E{·} is the
expectation. The optimal filter wMWF is obtained after setting the
derivative ∂JMSE(w)/∂w to zero,

wMWF =
1

Φxx
Φxd , (5)

where Φxx = E{x∗x} is the PSD of the pseudo reference signal
and Φxd = E{x∗d} is the cross spectral density (CSD) vector of
the pseudo reference and the desired signal. In this publication, we
apply the processing directly to the array signals but as there are no
specific assumptions on the microphone array, the whole process-
ing can be performed in any linear transform domain such as the
spherical harmonics domain [5]. We consider batch processing of
a few seconds of captured array signals but adaptive dereverbera-
tion algorithms based on multichannel linear prediction are avail-
able [18, 19], and the MWF can be replaced by a recursive-least-
squares algorithm [14].

3. CONVERGENCE BEHAVIOR

Acoustic environments typically have reverberation times of several
hundreds of milliseconds to multiple seconds. At sampling rates that
support the full audible frequency range up to 20 kHz, this results



0 2 4 6 8 10 12 14 16

t (s)

-4

-2

0

N
P
M

(d
B
) RNMCFLMS

MWF

0 20 40 60 80 100 120 140 160

t (ms)

-50

-40

-30

-20

-10

0

j"
j(

d
B
)

ground truth
MWF

Fig. 2: Top: NPM for RNMCFLMS and MWF (proposed), for SRIR
lengths of 512 samples (dotted lines) and 8192 samples (solid lines).
Bottom: Magnitude of one channel of the 8192-sample ground truth
SRIR and the estimate from the MWF.

in lengths of the corresponding room impulse responses of tens of
thousands to hundreds of thousands of samples. To successfully
identify such long responses from a few seconds of speech, fast
convergence is required. We analyze the convergence behavior of
the proposed method by calculating the normalized projection mis-
alignment (NPM) [20] of SRIR estimates from the proposed method
and comparing the convergence behavior to the cross-relation-
based Robust Normalized Multichannel Frequency-Domain Least
Mean Square (RNMCFLMS) algorithm [9]. The NPM is a scale-
independent measure of the norm of the error between an estimated
impulse response and the ground truth impulse response. Fig. 2
(top) shows the NPM over time that is achieved by the proposed
method (MWF) and the RNMCFLMS for an SRIR that was sim-
ulated for a spherical microphone array with 6 microphones using
the image source method and a sampling rate of 48 kHz. While the
RNMCFLMS algorithm achieves a lower NPM than the proposed
solution for the shortened SRIR of 512 samples (dotted lines), the
RNMCFLMS method does not show a meaningful reduction of
the NPM when estimating an 8192-sample-long SRIR (solid lines)
which corresponds to a length of 170ms and thus is still rather short
for a realistic acoustic impulse response. The proposed method in
both cases converges within less than 2 seconds.

The lower part of Fig. 2 shows one channel of the 8192-sample
ground truth SRIR and the corresponding estimate of the proposed
method. As suggested by the corresponding NPM of about −4 dB,
the proposed method is not able to accurately reproduce all of the in-
dividual reflection peaks but, as illustrated by the shown magnitude,
captures overall characteristics like the decay rate and the reflec-
tion density well. We thus evaluate the performance of the proposed
method using three different room acoustical metrics in the follow-
ing. Due to the poor convergence behavior of the RNMCFLMS even
with SRIRs of moderate length, we exclude it from the evaluation.

4. EVALUATION

4.1. Evaluation Procedure

We evaluate the proposed method using three metrics and compare it
to a generalized version of [14] that does not require an SH decom-

position and is obtained by removing the dereverberation from the
proposed processing shown in Fig. 1. For comparability, we do not
use the adaptive solution from [14] but also utilize the MWF in this
dereverberation-free case which is equivalent to running the method
from [14] with a forgetting factor of one. The evaluation scenarios
are static so that an adaptive solution is not required.

The chosen evaluation metrics comprise the reverberation time
T20, the direct-to-reverberant energy ratio (DRR), and the weighted
angular error [14]. While the first two metrics are individually ob-
tained for each microphone channel, the latter characterizes the di-
rectional energy distribution that is captured by the inter-channel re-
lations of the SRIRs. The T20 error ϵT20 is calculated as the absolute
difference of the T20 reverberation time in octave bands of the esti-
mated SRIR and the ground truth, and is given in percent relative to
the ground truth. It is calculated using the toolbox from [21]. The
DRR error ϵDRR is obtained as the energy ratio of the direct sound
(in a window starting 1ms before and ending 2ms after the direct
sound peak) and the rest of the SRIR until the beginning of the noise
floor which is determined by the T20 estimator. The weighted an-
gular error ϵang is calculated by representing the array signals via
spherical harmonic (SH) or circular harmonic (CH) coefficients us-
ing the least-squares approach from [22] and calculating the angular
mismatch of the pseudo intensity vector (PIV) between the estimated
SRIR and the ground truth as done in [14]. We use a decomposition
into SHs for arrays with microphones distributed on a spherical sur-
face and CHs for arrays with microphones on a circle. The error is
calculated for the first 50ms of the SRIRs and the final results are
given in degrees. All metrics are obtained for a frequency range be-
tween 200Hz and 8 kHz where the employed speech signals have
significant energy. Although accurate results for the given metrics
are only expected in this frequency range, the estimates are gener-
ated at a sampling rate of 48 kHz to support a potential auralization.

The error metrics were evaluated for a total of 200 simulated
and 16 measured SRIRs. SRIRs of 200ms length were simulated
for 20 arrays and the same 10 rooms per array using the image
source method with the tool from [23]. The simulated shoebox-
shaped rooms had random dimensions between 4 × 4 × 2 m and
10× 8× 5 m generated from an equal distribution. The source and
the microphone array were placed at random positions in the rooms
while ensuring a minimum distance of 1m to the walls and 2m to
each other. The same random absorption coefficients with equally
distributed values between 0.2 and 0.7 were applied to all bound-
aries, resulting in reverberation times between 240ms and 480ms.
The simulated arrays comprise open and rigid spherical microphone
arrays (SMAs), i.e., microphone arrays with microphones that are
distributed on the surface of a sphere according to t-designs [24]
with and without a spherical scattering body, circular microphone
arrays (CMAs), and equatorial microphone arrays (EMAs) [25]. For
CMAs and EMAs, the microphones are equally distributed on a cir-
cle, and for EMAs, this circle is located on the equator of a rigid
sphere. The arrays were simulated with radii of 4 cm and 8 cm, and
with 6, 12, and, in the case of the SMAs, 32 microphones.

The measurement-based evaluation was performed with openly
accessible SRIRs from a variable acoustics room [26]. In particu-
lar, we used 4 measurement positions of the Eigenmike EM32 32-
channel, rigid-sphere microphone array with a radius of 4.2 cm and
4 measurement positions of the Zylia ZM-1 19-channel, rigid-sphere
array with a radius of 4.9 cm. For both arrays and all measurement
positions, we compared measurements with 25% and 50% active
absorption in the room (leading to reverberation times of 760ms
and 540ms at 1 kHz), resulting in a total of 16 SRIRs.

The SRIRs were estimated using two different speech signals
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Fig. 3: Means and standard deviations of the reverberation time error
ϵT20, the DRR error ϵDRR, and the weighted angular error ϵang. Re-
sults from the simulated and the measured SRIRs are separated by a
vertical black line.

from the EBU SQAM1, one containing male and one female speech,
which were convolved with the ground truth SRIR to obtain the ar-
ray signals that were used for the SRIR estimation. The array sig-
nals were created at a sampling rate of 48 kHz and had a length
of 2.5 seconds (male speech) and 4 seconds (female speech). The
GWPE dereverberation was applied in blocks of 2048 samples, with
a hop size of 128 samples, a prediction order of 12, and a prediction
delay of 20 ms. In the case of the simulated SRIRs, the beamformer
was informed of the true direction of arrival (DOA) of the speech,
and in the case of the measured SRIRs, a broadband DOA was esti-
mated using the MUSIC algorithm [16]. The PSDs and CSDs of the
MWF were estimated in signal blocks of 400ms length for the sim-
ulated SRIRs and 1 s for the measured SRIRs, which is significantly
longer than the true responses to facilitate the approximation of the
convolutive transfer functions as multiplicative transfer functions via
the STFT, and with a hop size of 43ms.

4.2. Results

Fig. 3 shows the means and standard deviations of the three error
metrics which were calculated from the individual errors for each of
the two speech signals, each microphone channel (only for ϵT20 and
ϵDRR), and each octave band (only ϵT20). In the case of the simulated
SRIRs (shown left of the vertical black line in the figure), results

1Sound Quality Assessment Material recordings for subjective tests,
available at https://tech.ebu.ch/publications/sqamcd.

were further averaged over 10 different rooms for each array which
explains the higher standard deviations when compared to the re-
sults from the measured SRIRs. The axis labels for the simulated
SRIRs denote the type of microphone array, the array radius, and the
number of microphone channels, while the labels for the measured
SRIRs denote the array type, the percentage of active absorption in
the room, and the measurement position.

The proposed method achieves mean reverberation time errors
ϵT20 between 6.3% and 15.2% which are in all cases lower than
the mean errors of the baseline method without the dereverberation
ranging between 19.7% and 43.9%. For the measured SRIRs, the
proposed method further shows significantly lower standard devia-
tions than the baseline method. The type of microphone array influ-
ences the ϵT20 performance only slightly but in many cases, arrays
with a larger radius show slightly lower mean ϵT20 errors than their
counterpart with a smaller radius.

Similar observations hold for the DRR error ϵDRR. Again, the
proposed method in all cases generates lower mean errors than the
baseline and also smaller standard deviations, especially for the sim-
ulated SRIRs. The mean ϵDRR errors of the proposed method lie in
a range between 0.4 dB and 1.6 dB while the method without the
dereverberation produces mean errors between 0.6 dB and 4.4 dB.
Again, arrays with a larger radius show better performance.

In the case of the weighted angular error ϵang, both methods
perform similarly: the proposed method achieves angular errors be-
tween 15◦ and 84◦, and the baseline method between 13◦ and 85◦.
As seen from the results for the simulated arrays, arrays with a rigid
scattering body achieve considerably lower angular errors than ar-
rays without a scattering body. This is not surprising as the rigid
spherical scattering body is known to facilitate a better conditioned
SH representation [5, Ch. 4.6].

For the target application of auditory augmented reality, the
goal is to create perceptually convincing virtual sound sources from
the SRIR estimates. Just noticeable differences (JNDs) for the
DRR are known to be between 2.4 dB and 7.3 dB depending on
the DRR [27]. By interpolating the given JNDs from [27] that
were determined for DRRs of -10, 0, 10, and 20 dB, we found that
98.9% of the estimated DRRs of the proposed method deviate from
the ground truth by less than the JND. JNDs for the reverberation
time lie between 4% and 7% [28, 29] and thus the estimates of the
proposed method in most cases must be assumed to be perceptually
distinguishable from the ground truth. However, perceivable differ-
ences do not necessarily impair the plausibility of renderings, and
the results may thus still be valuable for the target application of
auditory augmented reality applications where virtual sound sources
may differ from real sources in signal and position and are only
indirectly comparable.

5. CONCLUSION

We presented a method for the blind estimation of spatial room im-
pulse responses (SRIRs) from speech signals using dereverberation
and a beamformer. The method is able to estimate SRIRs of real-
istic lengths using just a few seconds of speech signals. The SRIR
estimates reproduce the reverberation time with an average error be-
low 16% for all arrays and 98.9% of the estimates reproduce the
direct-to-reverberant energy ratio with errors below the just notice-
able difference. A perceptual evaluation of the estimated SRIRs is
planned as future work.

https://tech.ebu.ch/publications/sqamcd
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