
Co-Design of Convolutional Algorithms and Long Vector RISC-V
Processors for Efficient CNN Model Serving

Downloaded from: https://research.chalmers.se, 2024-10-26 12:15 UTC

Citation for the original published paper (version of record):
Gupta, S., Papadopoulou, N., Chen, J. et al (2024). Co-Design of Convolutional Algorithms and Long
Vector RISC-V Processors for Efficient CNN Model
Serving. ACM International Conference Proceeding Series: 73-83.
http://dx.doi.org/10.1145/3673038.3673121

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Co-Design of Convolutional Algorithms and Long Vector RISC-V
Processors for Efficient CNN Model Serving
Sonia Rani Gupta

Chalmers University of Technology
Gothenburg, Sweden
soniar@chalmers.se

Nikela Papadopoulou
University of Glasgow

Glasgow, UK
nikela.papadopoulou@glasgow.ac.uk

Jing Chen
Chalmers University of Technology

Gothenburg, Sweden
chjing@chalmers.se

Miquel Pericàs
Chalmers University of Technology

Gothenburg, Sweden
miquelp@chalmers.se

ABSTRACT
The performance of convolutional algorithm depends on the size,
stride, and input/output channels of the convolutional kernel. More-
over, the varying computational demands of convolutional layers
influence the requirement for SIMD support on multicore proces-
sors. Finally, sharing cache resources in scenarios such as inference
serving also impacts the runtime choice of the best algorithm. To
identify the best settings, we perform a co-design exploration, fo-
cusing on the software parameters of the convolutional layers of
convolutional neural networks (CNNs), and three distinct algo-
rithmic implementations: Direct, im2col+GEMM, and Winograd,
jointly with hardware parameters for vector architectures. Our
simulation-based study identifies that Winograd is suitable for con-
volutional layers with a 3×3 kernel size and stride 1, specifically
for shorter vector lengths and L2 cache sizes. For layers with more
input/output channels, im2col+GEMM performs better. Looking at
VGG-16, our study shows that not all the layers benefit from our
biggest simulated cache memory when using the Direct and Wino-
grad implementations, while the im2col+GEMM implementation
scales to an L2 cache memory of 64MB with all layers. In contrast,
all the simulated layers of YOLOv3 benefit from an L2 cache mem-
ory of 64MB, for all convolutional algorithms. To select the best
implementation at runtime, we develop a random forest predictor
that selects the best algorithm in over 90% of the cases, with lim-
ited degradation when a sub-optimal configuration is selected. We
conclude with a Pareto analysis of the area-performance trade-off
in an inference serving scenario, on a 7nm RISC-V multicore model
with a vector unit supporting vectors of 512 up to 4096 bits.

ACM Reference Format:
Sonia Rani Gupta, Nikela Papadopoulou, Jing Chen, andMiquel Pericàs. 2024.
Co-Design of Convolutional Algorithms and Long Vector RISC-V Processors
for Efficient CNN Model Serving. In The 53rd International Conference on
Parallel Processing (ICPP ’24), August 12–15, 2024, Gotland, Sweden. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3673038.3673121

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICPP ’24, August 12–15, 2024, Gotland, Sweden
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1793-2/24/08
https://doi.org/10.1145/3673038.3673121

1 INTRODUCTION
Model-serving is a major source of computing cycles, with some
cloud providers reporting over hundreds of trillion of AI model
executions per day [31]. Within AI model serving, Convolutional
neural networks (CNNs) are commonly used in image and vision
tasks. CNNs are computationally intensive and require high com-
puting power to accelerate their performance. GPUs (Graphics
Processing Units) have been widely used to accelerate CNNs due to
their parallel processing capabilities [4, 22, 42]. As an alternative,
CNNs have also become popular on CPUs [18, 27, 28] where they
benefit from higher availability, and the increasing parallel pro-
cessing capabilities offered by larger core counts and SIMD units.
In particular, emerging long vector architectures are a promising
direction for efficient inference serving [11, 23].

CNN models are built upon a series of consecutive layers, with
convolutional layers being the most time-consuming. Various algo-
rithms can be employed to implement these convolutional layers,
including Direct, im2col+GEMM, Winograd, and FFT. The Direct
convolutional operation involves sliding convolutional weights
over the input tensor and calculating the dot product between the
weight and input [33]. On the other hand, the im2col+GEMM al-
gorithm transforms the image into a column matrix, turning the
convolutional operation into a matrix multiplication by convolving
the transformed input matrix with the weight matrix. This matrix
multiplication operation can significantly enhance the performance
of the convolutional layers because of the well-established opti-
mizations for GEMM on most computing platforms [19]. While
im2col+GEMM shares the computational complexity of Direct, it
does increase the memory footprint [35] because of the imageto-
column transformation (im2col). Winograd and FFT necessitate
the initial transformation of both the image and weights, followed
by block-by-block multiplications on the transformed input and
weight matrices, concluding with output transformation. These
methods enhance the convolutional implementation’s performance
by reducing computational complexity. Winograd is effective with
small kernel sizes, such as 3×3 or 5×5 [6], while FFT is better suited
for larger kernel sizes [29]. Since large kernel sizes are not common
in modern CNNs, we do not further consider the FFT algorithm in
this work.

Common convolutional network models consist of multiple con-
volutional layers with distinct dimensions, dictated by the input,

73

https://doi.org/10.1145/3673038.3673121
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3673038.3673121
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3673038.3673121&domain=pdf&date_stamp=2024-08-12


ICPP ’24, August 12–15, 2024, Gotland, Sweden Sonia Rani Gupta, Nikela Papadopoulou, Jing Chen, and Miquel Pericàs

kernel, and output’s width and height, the input and output chan-
nels, and the stride of the convolution [37]. Notably, the different
algorithms (im2col+GEMM, Direct, Winograd) that can be used to
implement convolutional layers demonstrate varying performance
depending on the convolution dimensions, as a consequence of
their varying algorithmic complexity and memory footprint [32].
Moreover, the underlying computer architecture affects the per-
formance of each algorithm. On the one hand, cache sizes, and
memory bandwidth influence the performance, as certain algorith-
mic implementations, such as im2col+GEMM, increase the memory
footprint of a convolutional layer. On the other hand, vector units
can offer high performance to algorithms, albeit they require several
algorithmic optimizations to exploit increasing vector lengths.

Model-serving frameworks [7, 10] aim to optimize inference
performance through techniques like concurrent model execution.
This approach creates replicas of a single model, enabling parallel
processing on a single hardware unit (GPU or CPU). Load balancing
distributes incoming requests across these replicas, maximizing
resource utilization. While beneficial for cost-effective deployment,
particularly for smaller models, concurrent execution introduces
competition for caching resources. Consequently, the selection of
the optimal algorithm becomes dependent on the characteristics of
co-running inference tasks.

Previous studies [14, 20, 21, 40, 43, 44] have focused on optimiz-
ing the performance of specific algorithms on vector architectures,
presenting comparative analyses with state-of-the-art libraries for
different layers of network models on vector processors, and ex-
ploring the interplay of algorithmic optimizations with hardware
parameters of long vector architectures. Several works [12, 13, 16]
provide a comparative analysis of different algorithmic implemen-
tations of convolutional layers on SIMD ARM-based architectures.
Despite the extensive research on convolutional neural networks
and various algorithmic implementations, the mutual impact of
convolution algorithms and hardware parameters remains unex-
plored, reducing utilization and hampering the task of effectively
designing future CPUs for CNN model serving.

In this paper, we conduct a performance investigation and co-
design study on three distinct algorithms, Direct, im2col+GEMM,
and Winograd, for the implementation of convolutions on RISC-V
based architectures implementing the "V" vector extension v1.0 [2]
(RVV). RVV enables a style of programming called vector length ag-
nostic programming (VLA), which allows the same program to run
unmodified on processors implementing different vector lengths.
We simultaneously explore the characteristics of convolutional neu-
ral network models and the hardware parameters of long vector
architectures, focusing on the vector length and the size of the L2
cache. Building upon our previous work, where we have developed
optimized versions of im2col+GEMM and Winograd for vector ar-
chitectures [20, 21], we use two variants of im2col+GEMM [21], a
3-loop implementation and a 6-loop implementation, and the Wino-
grad algorithm [20] implemented and optimized for RVV within
the Darknet framework [38]. We additionally implement a vector-
ized implementation of the Direct algorithm on RVV, following the
implementation proposed in [40] for the oneDNN framework. Our
simulations on an RVV-enabled fork of gem5 [1] show that block-
ing of the input channels is not a beneficial optimization for the
Direct algorithm over naive vectorization. Instead, loop reordering

provides a greater improvement in performance (3×). Subsequently,
we present a comparative analysis of the three algorithms, con-
sidering the tradeoffs between algorithmic optimizations, shared
last-level cache sizes, and vector lengths. Our simulation results
show that there is no optimal algorithmic choice for all convolu-
tional layers. Hence, to support efficient model serving, we train
several classification algorithms, finding that random forests ex-
hibit high accuracy in selecting the optimal algorithm for each case.
We conclude the paper with insights into the trade-off between the
performance, throughput, and resource considerations for the long
vector architectures.

We hereby highlight the main contributions of our paper:
• We vectorize the Direct algorithm and perform a comparative
analysis involving our previously developed, vectorized imple-
mentations of im2col+GEMM [21] and Winograd [20], on an
RVV model with a vector length of 512 bits and an L2 cache of
1MB. The analysis shows Winograd to be the best choice for
layers with 3×3 kernel size, whereas, the 6-loop implementation
of im2col+GEMM is the best choice for layers with large numbers
of input and output channels and skinnier matrices. The Direct
algorithm performs best when the input and output dimensions
are high, but the number of channels is relatively small.

• Our co-design analysis demonstrates that the Winograd algo-
rithm exhibits adequate performance with small vector lengths
for 3×3 kernel sizes, while the Direct algorithm excels with longer
vector lengths. The im2col+GEMM variants require larger L2
caches owing to their larger memory footprints, however, the
6-loop im2col+GEMM variant scales well and exhibits high per-
formance for layers with large input and output dimensions. The
Direct algorithm benefits from large cache sizes, especially as
the vector length increases, and performs well with large input
and output dimensions when the matrices are not skinny.

• We evaluate several classification algorithms and train an algo-
rithm selection model using random forests, which deliver the
best prediction accuracy. The trained model selects the optimal
algorithm in 92.8% of the cases, on average. The overall slow-
down introduced by mispredicted layers is negligible in most
cases, and never above 10%.

• We employ Pareto frontiers to analyze the trade-off between
execution time, model serving throughput, and area when using
the different algorithms with the VGG16 and YOLOv3 network
models. We show that, for the case of a single network, algorithm
selection allows for better performance in less area, compared
to using a single algorithm for each layer. Our analysis for co-
located model instances shows that co-location and algorithm
selection offer throughput that scales linearly with area, making
a compelling case for co-design for model serving.

2 RELATEDWORK
Several works have focused on optimizing convolutions for vector
architectures. Specifically, Alaejos et al. [5] optimize GEMM for
deep learning on the ARM-NEON, ARM-SVE and Intel AVX512
vector extensions. Wang et al. [44] optimize the Winograd algo-
rithm on RISC-V architectures with a custom instruction extension.
Dolz et al. [16] optimize the im2col transformation and Winograd
algorithms for ARM-SVE. In another work, Dolz et al. [15] optimize

74



Co-Design of Convolutional Algorithms and Long Vector RISC-V Processors for Efficient CNN Model Serving ICPP ’24, August 12–15, 2024, Gotland, Sweden

the Winograd algorithm for Intel AVX, ARM NEON, and ARM-SVE
architectures. Santana et al. [40] optimize the Direct algorithm for
long vector architectures, focusing on ARM-SVE. Kelefouras et al.
[25] vectorize and optimize the 2D direct convolutions on Intel AVX.
Wang et al. [43] optimize the Direct algorithm on ARM NEON. In
our previous work [20, 21], we optimize the im2col+GEMM and
Winograd algorithms on ARM-SVE and RISC-V Vector extensions,
also performing a co-design study concerning the vector length,
vector lanes, and L2 cache size.

Concerning performance comparisons of different algorithmic
implementations of convolutions, Jordà et al. [24] and Xu et al. [45]
perform such an analysis on GPUs. Jordà et al. focus on cuDNN
and propose that different algorithms should be used depending on
the kernel size. Xu et al. also look at cuDNN implementations and
propose a scheme for algorithm selection based on the convolution
dimensions. Dolz et al. [12] focus on performance-energy tradeoffs
of the different algorithms for convolutions on ARM processors.
Zlatenski et al. [46] perform a comparative analysis of Winograd
and FFT for convolutions using different CNNs on modern CPUs,
for full network models.

In this paper, we utilize optimized algorithmic implementations
for im2col+GEMM, Winograd, and Direct-based convolutions. We
focus on the emerging, long vector architectures with the vector-
-length-agnostic RVV ISA, and perform not only a comparative
analysis of algorithms at a per-layer basis, but also a co-design study,
and a performance-area analysis, seeking to optimize future vector
architectures for convolutions. In contrast to our previous work
[20, 21], where we seek to explore the performance potential of
vector architectures for CNNs via co-design, we focus on the aspect
of algorithm selection and its impact on the attainable throughput
per area in the scenario of model serving.

3 METHODOLOGY
3.1 Experimental Platform
In this work, we focus on the RISC-V Vector Extension [2] (RVV)
within the RISC-V Architecture. Including 32 vector registers, the
RISC-V Vector architecture supports a maximum vector length
(MVL) of 16384 bits. RVV allows the utilization of various vector
lengths (vlen), expressed as powers of two, provided they do not
exceed the MVL. The architecture employs the concept of vector
length to specify the number of elements to be processed within a
vector. The vector instruction vsetvl instruction is used to dynam-
ically determine the vector length at runtime. This instruction takes
the requested vector length (rvl) in elements and the element width
in bits (sew) as inputs. The output of this instruction is the granted
vector length (gvl) in elements. In this way, Vector Length Agnostic
(VLA) code generation with different vlen is handled at runtime.

We perform all our experiments on a fork of the gem5 simu-
lator [1], a cycle-accurate simulator configured with the RISC-V
in-order RiscvMinorCPU CPUmodel, with a core frequency of 2GHz.
The simulator implements a tightly integrated vector unit targeting
the RVV v1.0. In our experiments, we vary the maximum vector
length of the vector units from 512 bits up to 4096 bits. The memory
subsystem is configured with DDR3 1600 memory technology with
12.8GiB/s bandwidth per core, which is not far from the measured
per-core bandwidth of a recent Intel Xeon Max 9480 with HBM

(∼19GB/s) [30]. Additionally, the simulated CPU integrates two
levels of data cache. We fix the L1 cache size to 64KB and vary
the L2 cache size from 1MB up to 64MB in our experiments. We
note that this fork of gem5 models a constant latency for all vector
instructions. In practice, the latency of the instructions will vary
with the implementation of RVV. Also, we note that the simulator
supports vector lengths only up to 4096 bits. To validate the results
of convolutional layers, we additionally use Spike [3], a RISC-V ISA
simulator that supports vector lengths up to 4096 bits and supports
the RVV v1.0 extension.

3.2 Algorithms for Convolutions
In this paper, we focus on three different algorithms commonly used
to implement convolutional layers, namelyWinograd, im2col+GEMM,
andDirect.We employ two variants of the optimized im2col+GEMM
algorithm for the RVV architecture, as described in [21], a 3-loop
implementation and a 6-loop implementation, hereby denoted as
im2col+GEMM - 3 loops and im2col+GEMM - 6 loops. Although this
previous work shows that the GEMM - 3 loops implementation per-
forms better on RVV, in this work, we simulate a tightly integrated
RISC-V vector unit, which resembles the architecture of the Fujitsu
A64FX processor, where the GEMM - 6 loops implementation has
been shown to perform more efficiently. We tune the block size
to fit in the L2 cache of our architecture, at a size of 16×512×128.
We utilize the vectorized and optimized Winograd implementation
outlined in [20]. The aforementioned implementations are open-
source and publicly available. For the Direct algorithm, we leverage
the algorithms described by Santana et al. [40], which target long
vector architectures and have been evaluated on the NEC Vector
Engine.

Implementing the Direct algorithm for RVV. We implement the
Direct algorithm in the Darknet framework [38]. Following the
rationale in [40], the Direct algorithm can be best optimized with
the NHWC memory layout of the input (where 𝑁 refers to the
number of images in the batch,𝐻 refers to the input height,𝑊 refers
to the input width, and 𝐶 refers to the input channels). Therefore,
we transform the input and weights from the NCHW format to the
NHWC format, before starting the computations. Subsequently, we
"naively" vectorize the Direct algorithm across the input channels
𝐼𝐶 . Following this, we implemented blocking of the input channels,
as proposed in [40], however, we did not observe any performance
improvement on top of the naive vectorization, as the memory
footprints of the subtensors produced by blocking are smaller than
the L2 cache size of 1MB we simulate. This is partly because the
proposed blocking scheme in [40] aims to optimize the algorithm
on an L2 cache size of 256KB, with a long cache line of 128 bytes.
To further optimize the vectorized algorithm, we instead followed
a loop reordering strategy, accessing the input channels after the
output channels and dimensions, improving performance by 3×
over the naive vectorized version. Furthermore, we utilize and
reuse the maximum possible vector registers by unrolling the loops
around the output width (𝑂𝑊 ) and output height (𝑂𝐻 ). We choose
the unrolling factor in such as way that the algorithm utilizes
the maximum possible vector registers by avoiding landing on
the tail loop if possible, to avoid any potential bottleneck in the

75



ICPP ’24, August 12–15, 2024, Gotland, Sweden Sonia Rani Gupta, Nikela Papadopoulou, Jing Chen, and Miquel Pericàs

Table 1: Convolutional layers of the VGG-16 (top) and
YOLOv3/20 layers (bottom) networkmodels. IC = Input Chan-
nels, OC = Output Channels, IH = Input Height, IW = Input
Width, OH = Output Height, OW = Output Width, KH= Ker-
nel Height, KW = Kernel Width

Layers IC OC IH,IW OH,OW KH,KW stride
1 3 64 224 224 3 1
2 64 64 224 224 3 1
3 64 128 112 112 3 1
4 128 128 112 112 3 1
5 128 256 56 56 3 1
6,7 256 256 56 56 3 1
8 256 512 28 28 3 1

9,10 512 512 28 28 3 1
11 512 512 14 14 3 1

12,13 512 512 14 14 3 1
Layers IC OC IH,IW OH,OW KH,KW stride

1 3 32 608 608 3 1
2 32 64 608 304 3 2
3 64 32 304 304 1 1
4 64 64 304 304 3 1
5 64 128 304 152 3 2
6,8 128 64 152 152 1 1
7,9 64 128 152 152 3 1
10 128 256 152 76 3 2
11 256 128 76 76 1 1

12,14 128 256 76 76 3 1
13,15 256 128 76 76 1 1

performance due to the tail loop. If the tail loop is unavoidable, we
also vectorize it using RVV intrinsic instructions.

3.3 Experimental Setup
In this paper, we evaluate two popular CNN models. The first one
is YOLOv3 [39], an object detection network, which features 107
layers of five different types, out of which 75 layers are convolu-
tional. We profile the execution time of the convolutional layers
of YOLOv3, as implemented in the Darknet framework, finding
that the convolutional layers contribute ∼96% of the total execution
time. The second model is VGG-16 [41], an image classification
model, which includes 25 layers, out of which 13 are convolutional
and 3 are fully connected. Profiling VGG-16 within the Darknet
framework, we find the convolutional layers contributing ∼ 64% of
the total execution time.

We evaluate the layers of YOLOv3 and VGG-16 network models
from the Darknet [38] framework on a 768 × 576 pixels input im-
age, using a batch size of 1, which is a common case for inference.
As described above, we use a fork of gem5 for our experiments.
To acquire feasible simulation times, we limit our evaluation to
the first 20 layers of the YOLOv3 network, out of which 15 are
convolutional layers. We provide details on the dimensions of the
convolutional layers of VGG-16 and YOLOv3 in Table 1. We note
that we use single-precision floating point numbers for the weights,
and thus for all computations. We use the EPI-Builtins [17] to vec-
torize the Direct convolutional algorithm on RVV in a VLA way.
We use the EPI fork of the LLVM [9] Clang cross-compiler version
17.0.0 for RVV, with -O3 optimization flag to compile all the three
convolutional algorithms in our setup.

1 2 3 4 5 6 7 8 9 10 11 12 13
Layer

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Winograd
im2col+GEMM - 3 loops

im2col+GEMM - 6 loops
Direct

Figure 1: Comparative analysis for different algorithms for
VGG-16 convolutional layers on RVV with gem5, with a vec-
tor length of 512 bits and 1MB of L2 cache.

For our co-design study, we vary the maximum vector length
from 512 to 4096 bits on RVV, incrementing in powers of 2. To
analyze the impact of cache parameters, we increase the L2 cache
size from 1MB up to 64 MB. We consider a constant latency of 20
cycles for all the L2 cache sizes.

4 EVALUATION
In this section, we first showcase our findings for the best suitable
algorithm for each layer in the CNN-based VGG-16 and YOLOv3
network models on RVV, on a single core. Subsequently, we present
the results of our per-layer co-design study for both networkmodels.
In all experiments with gem5, we report the per-layer performance
in terms of execution time in seconds. We then implement a pre-
dictor for algorithm selection, and showcase the performance-area
tradeoffs for model serving on a 7nm RVV chip.

4.1 Performance Comparison of Convolution
Implementations

We start our evaluation with a performance comparison of convolu-
tions with the 3 different algorithms, i.e. Winograd, im2col+GEMM
(with the two variants of GEMM), and Direct. We evaluate each con-
volutional layer of YOLO-v3 and VGG-16 on RVV using the gem5
simulator, for a fixed vector length of 512 bits, and an L2 cache size
of 1MB. Figure 1 shows the per-layer performance for the VGG-16
network model. We observe that, for layers #1 and #2, where the
input and output width/height are high (𝐼𝐻 , 𝐼𝑊 , 𝑂𝐻 , 𝑂𝑊 ), the
Direct algorithm performs well, although the winner algorithm for
layer 2 is Winograd. For layers #3 to #13, Winograd, as well as the
6-loop implementation of im2col+GEMM perform better than all
other algorithms. For layers #5 to #13, where the input and output
matrices become skinny but the number of input and output chan-
nels (𝐼𝐶 , 𝑂𝐶) increase, the 6-loop im2col+GEMM variant prevails.
Although Winograd reduces the computational complexity of the
convolutional layer by reducing the number of multiplications, the
increased numbers of input and output channels add transforma-
tion overheads to the Winograd algorithm, leading to its inferior

76



Co-Design of Convolutional Algorithms and Long Vector RISC-V Processors for Efficient CNN Model Serving ICPP ’24, August 12–15, 2024, Gotland, Sweden

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Layer

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Winograd
im2col+GEMM - 3 loops

im2col+GEMM - 6 loops
Direct

Figure 2: Comparative analysis for different algorithms for
the first 15 convolutional layers of YOLOv3 on RVV with
gem5, with a vector length of 512 bits and 1MB of L2 cache.

performance, compared to im2col+GEMM. In the case of layer #1,
Winograd underperforms compared to all other algorithms, as the
number of input channels is too low for the algorithm to use the
inter-tile parallelism approach described in [21].

Figure 2 shows the per-layer performance of the different algo-
rithms for the first 15 convolutional layers of the YOLOv3 network
model. The YOLOv3 network model has convolutional layers with
kernel sizes 3×3 with stride 1 or 2 and 1×1 kernel sizes. We note that
the Winograd algorithm is only appropriate for layers with kernel
sizes of 3×3 and strides of 1, due to issues of numerical stability. We
therefore only present results with Winograd for layers with these
properties. Similar to the case of VGG-16, Direct offers superior
performance for layer #1, where the input and output dimensions
are high but the number of input channels is low. Additionally, the
Winograd algorithm demonstrates high performance for all the
layers where it is applicable and comparable performance to the 6-
loop im2col+GEMM implementation, for many of these layers. The
Direct algorithm offers high performance to layers #1-#3, where the
input and output dimensions are high, but as the matrices become
skinnier, for layers #5-#15, the 6-loop im2col+GEMM implementa-
tion prevails. It is noteworthy that the performance of the 3-loop
and 6-loop implementation of im2col+GEMM is comparable for
the first layers, but the 6-loop transformation proves beneficial to
skinny matrices.

4.2 Co-designing Convolutions on Long Vector
Architectures

In this section, we jointly explore the effect of the hardware pa-
rameters of vector architectures and the algorithm selection for the
implementation of convolutional layers. As discussed, we focus on
the vector length and the L2 cache size.

4.2.1 The effect of the vector length. We experiment with vector
lengths ranging from 512 bits to 4096 bits, while keeping the L2
cache size fixed to 1MB, and observe the scalability of the different
algorithms on the convolutional layers of VGG-16 and YOLOv3.

In Figure 3, we show the scalability of the different algorithms on
the layers of VGG-16. The Winograd algorithm scales from ∼1.3×
to ∼1.7× as we increase the vector length from 512 to 2048 bits.
However, moving from 2048 bits to 4096 bits, we observe limited
scaling, especially for skinny matrices. We attribute this behavior
to the need for larger sub-block sizes to leverage longer vector
lengths for the tuple multiplication in the Winograd algorithm. As
a consequence, the block sizes for the input and output channels
are reduced, requiring increased loop iterations for transformations
and tuple multiplications, resulting in increased overhead despite
the use of longer vector lengths.

On the other hand, the 3-loop im2col+GEMM variant scales from
∼1.4× to ∼3.5× when transitioning from vector lengths of 512 to
4096 bits. However, layers #6 and #7 exhibit no scalability beyond
2048 bits, and layer #8 experiences performance degradation beyond
2048 bits.We attribute this to increased pressure to the L2 cache, and,
examining the L2 cache miss rate for these layers, we observe a very
high cache miss rate of ∼ 98% for vector lengths of 4096 bits. The
6-loop im2col+GEMM variant algorithm demonstrates scalability
of ∼1.4× up to ∼2.1× for all layers as we increase the vector length
from 512 bits to 4096 bits. The Direct algorithm demonstrates the
best scalability for all layers, with performance improvements of
∼2.4× - 5.8× transitioning from 512 bits to 4096 bits of a vector
length. We do note, however, that the 6-loop im2col+GEMM variant
can offer better performance than the Direct algorithm with vector
lengths of 2048 bits for layers #6 to #13.

We conduct a similar analysis for YOLOv3 in Figure 4. TheWino-
grad algorithm is applicable on a total of 6 convolutional layers,
and these layers exhibit scaling between ∼1.3× and ∼1.6×, as we
increase the vector length from 512 bits to 4096 bits, however, we
observe no noticeable scalability as from 2048 bits to 4096 bits.
The 3-loop im2col+GEMM variant scales between ∼1.3× and ∼3.5×
for the YOLOv3 layers. On the other hand, the im2col+GEMM 6
loops kernel demonstrates scaling between ∼1.3× and ∼2.0× for
the YOLOv3 layers. Similarly to the case of VGG-16, the Direct
algorithm exhibits better and robust scalability, scaling between
∼1.9× and ∼4.6× for all layers. Moreover, the Direct algorithm out-
performs the other algorithms for most layers, except for those
involving skinnier matrices (i.e. layers #10, #12, and #14), where the
im2col+GEMM variants offer better performance for vector lengths
higher than 1024 bits.

4.2.2 The effect of the L2 cache size. We further experiment with
the L2 cache size, as it can significantly reduce the pressure on the
main memory. We consider L2 cache sizes of 1MB to 64MB, fixing
the vector length at 512 and 4096 bits.

We showcase the scalability of the different algorithms for the
L2 cache size, for the layers of VGG-16, in Figures 5 and 6, for
vector lengths of 512 bits and 4096 bits respectively. For the case
of Winograd, the algorithm scales ∼1.3× - 1.5× for layers #1 to #4
when increasing the L2 cache from 1MB to 64MB, for the vector
length of 512 bits, and ∼1.3×-1.6×, for the vector length of 4096 bits.
The number of input and output channels in this case is small and
allows the algorithm to scale. For layers #5 to #13, we observe a
scalability of∼1.2× - 1.5× as we increase the L2 cache size from 1MB
to 16MB, but the algorithm does not benefit from further increasing
the cache to 64MB, for any vector length.

77



ICPP ’24, August 12–15, 2024, Gotland, Sweden Sonia Rani Gupta, Nikela Papadopoulou, Jing Chen, and Miquel Pericàs

1 2 3 4 5 6 7 8 9 10 11 12 13
Layer

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Winograd-512 bits
GEMM - 3 loops-512 bits
GEMM - 6 loops-512 bits
Direct-512 bits

Winograd-1024 bits
GEMM - 3 loops-1024 bits
GEMM - 6 loops-1024 bits
Direct-1024 bits

Winograd-2048 bits
GEMM - 3 loops-2048 bits
GEMM - 6 loops-2048 bits
Direct-2048 bits

Winograd-4096 bits
GEMM - 3 loops-4096 bits
GEMM - 6 loops-4096 bits
Direct-4096 bits

Figure 3: Scalability of different convolutional algorithms with vector lengths from 512 bits to 4096 bits for the convolutional
layers of VGG-16, for an L2 cache of 1MB, on RVV with gem5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Layer

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Winograd-512 bits
GEMM - 3 loops-512 bits
GEMM - 6 loops-512 bits
Direct-512 bits

Winograd-1024 bits
GEMM - 3 loops-1024 bits
GEMM - 6 loops-1024 bits
Direct-1024 bits

Winograd-2048 bits
GEMM - 3 loops-2048 bits
GEMM - 6 loops-2048 bits
Direct-2048 bits

Winograd-4096 bits
GEMM - 3 loops-4096 bits
GEMM - 6 loops-4096 bits
Direct-4096 bits

Figure 4: Scalability of different convolutional algorithms with vector lengths from 512 bits to 4096 bits for the first 15
convolutional layers of YOLOv3, for an L2 cache of 1MB, on RVV with gem5.

The 3-loop im2col+GEMM algorithm scales well, with perfor-
mance improvements of∼1.8× - 2.4× for the smaller vector length of
512 bits, as we scale the L2 cache from 1MB to 64MB, and achieving
remarkably high performance for the 64MB cache. For the 4096-bit
vector length, the algorithm benefits intensively from the 64MB
cache for layers #4 to #10, which exhibit high L2 cache miss rates
with longer vectors, scaling up to ∼3.6×. However, for the more
compute-intensive layers #11 to #13, the algorithm does not ben-
efit from L2 caches larger than 16MB, and the performance does
not scale further. On the other hand, the 6-loop im2col+GEMM
cache-friendly variant benefits less from the larger L2 cache sizes,
improving ∼1.1×-∼1.76× as we move from 1MB to 64MB, for both
the smaller and larger vector length. Similarly to the 3-loop variant,
it does not show any further improvement by increasing the cache
size further than 16MB in the case of the more compute-intensive
layers #11 to #13.

The Direct algorithm scales moderately as we increase the L2
cache size from 1MB to 16MB, with improvements of ∼1.1× - 1.4×
for the vector length of 512 bits, and ∼1.2× for layers #2 to #4 and
∼2.2× for layers #5 to #13 for the vector length of 4096 bits. The
only exception is layer #2 for the case of 512 bits, which has high
input and output dimensions, where the Direct algorithm benefits
from the 64MB of cache.

We similarly examine the scalability of the layers of the YOLOv3
model, in Figures 7 and 8, for 512 bits and 4096 bits of vector lengths
respectively. For the layers where the Winograd algorithm is ap-
plicable, we observe a scalability of ∼1.2× - 1.3× and ∼1.3× - 1.4×
when increasing the cache size from 1MB to 64MB, for the case of
512 bits and 4096 bits of vector lengths respectively. Notably, the
layers with higher input and output dimensions benefit more when
increasing the cache size from 16MB to 64MB. For the case of the
3-loop im2col+GEMM variant, we observe scaling of ∼1.1× - 2×,
for both vector length sizes, but the last layers #10-#15 only lightly

78



Co-Design of Convolutional Algorithms and Long Vector RISC-V Processors for Efficient CNN Model Serving ICPP ’24, August 12–15, 2024, Gotland, Sweden

1 2 3 4 5 6 7 8 9 10 11 12 13
Layer

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Winograd-1MB
GEMM - 3 loops-1MB
GEMM - 6 loops-1MB
Direct-1MB

Winograd-4MB
GEMM - 3 loops-4MB
GEMM - 6 loops-4MB
Direct-4MB

Winograd-16MB
GEMM - 3 loops-16MB
GEMM - 6 loops-16MB
Direct-16MB

Winograd-64MB
GEMM - 3 loops-64MB
GEMM - 6 loops-64MB
Direct-64MB

Figure 5: Scalability of different convolutional algorithms with L2 cache sizes from 1MB to 64MB for the convolutional layers
of VGG-16, for a vector length of 512 bits, on RVV with gem5.

1 2 3 4 5 6 7 8 9 10 11 12 13
Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Winograd-1MB
GEMM - 3 loops-1MB
GEMM - 6 loops-1MB
Direct-1MB

Winograd-4MB
GEMM - 3 loops-4MB
GEMM - 6 loops-4MB
Direct-4MB

Winograd-16MB
GEMM - 3 loops-16MB
GEMM - 6 loops-16MB
Direct-16MB

Winograd-64MB
GEMM - 3 loops-64MB
GEMM - 6 loops-64MB
Direct-64MB

Figure 6: Scalability of different convolutional algorithms with L2 cache sizes from 1MB to 64MB for the convolutional layers
of VGG-16, for a vector length of 4096 bits, on RVV with gem5.

benefit from increasing the cache size from 16MB to 64MB. The
6-loop variant of im2col+GEMM shows similar scalability of ∼1.1×
- 2× as we increase the L2 cache size. The Direct algorithm, on the
other hand, sees a significant performance boost from scaling the
L2 cache size, especially for the case of the longer vector length
of 4096 bits, with scalability of ∼1.3×-∼2.8×. We point out that
layers #2 and #4 are those that benefit the most from increasing the
cache size from 16MB to 64MB, however, the performance of the
last layers #10 to #15 experience no further scalability from 16MB
to 64MB of L2 cache. In both the cases of im2col+GEMM variants
and the Direct algorithm, the layers #3, #6, and #8, with the smaller
kernel size of 1 × 1 and higher input/output dimensions benefit
more from the increase of the L2 cache size.

In summary, we attribute the limited scalability of the Winograd
algorithm to the fixed tile size, which does not fully utilize larger
cache sizes, for both shorter and longer vector lengths. Both variants
of im2col+GEMM benefit up to more than 2× from larger cache

sizes, for any vector length, especially for layers with moderate
numbers of input and output channels but high input and output
dimensions. Conversely, the Direct algorithm benefits the most
from the larger L2 cache when the vector length is long and the
input and output dimensions are high, as is the case of the first
convolutional layers of YOLOv3.

4.3 Algorithm Selection
Our results show that there is no single algorithm that minimizes
the execution time across all layers. Therefore, to minimize the
execution time of a full network model, a machine learning frame-
work should be able to select the appropriate algorithm per layer at
compile time or at runtime (autotuning). To this end, we construct
a fast and accurate predictor that performs algorithm selection, de-
pending on the layer dimensions, and the hardware configuration.

To predict the optimal algorithm among Winograd, the two vari-
ants of im2col+GEMM and Direct, we experiment with several

79



ICPP ’24, August 12–15, 2024, Gotland, Sweden Sonia Rani Gupta, Nikela Papadopoulou, Jing Chen, and Miquel Pericàs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Layer

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Winograd-1MB
GEMM - 3 loops-1MB
GEMM - 6 loops-1MB
Direct-1MB

Winograd-4MB
GEMM - 3 loops-4MB
GEMM - 6 loops-4MB
Direct-4MB

Winograd-16MB
GEMM - 3 loops-16MB
GEMM - 6 loops-16MB
Direct-16MB

Winograd-64MB
GEMM - 3 loops-64MB
GEMM - 6 loops-64MB
Direct-64MB

Figure 7: Scalability of different convolutional algorithms with L2 cache sizes from 1MB to 64MB for the first 15 convolutional
layers of YOLOv3, for a vector length of 512 bits, on RVV with gem5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Winograd-1MB
GEMM - 3 loops-1MB
GEMM - 6 loops-1MB
Direct-1MB

Winograd-4MB
GEMM - 3 loops-4MB
GEMM - 6 loops-4MB
Direct-4MB

Winograd-16MB
GEMM - 3 loops-16MB
GEMM - 6 loops-16MB
Direct-16MB

Winograd-64MB
GEMM - 3 loops-64MB
GEMM - 6 loops-64MB
Direct-64MB

Figure 8: Scalability of different convolutional algorithms with L2 cache sizes from 1MB to 64MB for the first 15 convolutional
layers of YOLOv3, for a vector length of 4096 bits, on RVV with gem5.

classification models, available in the Python scikit-learn 1.3.2
package, including a Support Vector Machine, K-Nearest Neighbors,
Naive Bayes, a Multilevel Perceptron, a Decision Tree, Gradient
Boosting, and Random Forests, to predict the best performing algo-
rithm per layer. We use as input parameters the vector length, the
L2 cache size, the input channels, height, width, stride, and padding,
the output channels, height, and width, and the kernel height and
width, totaling 12 parameters, out of which 2 are relevant to the
architecture and 10 are drawn from the convolution dimensions.
The model outputs the algorithm predicted to perform the best. We
select random forests as the classifier with the best performance.
We partition the data (of 448 data points) into 80% for training and
20% of testing, and use 5-fold cross-validation and shuffling, there-
fore all points in a testing set are not included in the corresponding
training set, i.e. are previously unseen by the model. We tune the
hyperparameters of the Random Forest classifier, resulting in a
maximum tree depth of 10, and the usage of bootstrapping.

Our evaluation shows that the algorithm selectionmodel achieves
an average prediction accuracy of 92.8% (ranging from 91% to 96%)
across the 5 cross-validation sets, indicating the model’s profi-
ciency in correctly selecting the best-performing algorithms un-
der various contexts. Notably, within the 7.1% of misclassified lay-
ers/configurations, if the predicted algorithm is employed instead
of the optimal one, the mean absolute percentage error in the per-
formance of layers is only 20.4%.

To demonstrate the importance of our algorithm selection model,
and to further evaluate its accuracy, we assess the inference time of
VGG-16 and YOLOv3 in Figures 9 and 10 respectively. Specifically,
we compare the execution time of each networkmodel when always
using the same algorithm for all layers, against using the Optimal
algorithm per layer, or the Predicted Optimal algorithm per layer,
namely the output of our algorithm selection model. For VGG-16,
we observe that selecting the optimal algorithm per layer results
in reduced execution compared to using any single algorithm, for

80



Co-Design of Convolutional Algorithms and Long Vector RISC-V Processors for Efficient CNN Model Serving ICPP ’24, August 12–15, 2024, Gotland, Sweden

51
2 

bi
ts

 x
 1

 M
B

51
2 

bi
ts

 x
 4

 M
B

51
2 

bi
ts

 x
 1

6 
M

B

51
2 

bi
ts

 x
 6

4 
M

B

10
24

 b
its

 x
 1

 M
B

10
24

 b
its

 x
 4

 M
B

10
24

 b
its

 x
 1

6 
M

B

10
24

 b
its

 x
 6

4 
M

B

20
48

 b
its

 x
 1

 M
B

20
48

 b
its

 x
 4

 M
B

20
48

 b
its

 x
 1

6 
M

B

20
48

 b
its

 x
 6

4 
M

B

40
96

 b
its

 x
 1

 M
B

40
96

 b
its

 x
 4

 M
B

40
96

 b
its

 x
 1

6 
M

B

40
96

 b
its

 x
 6

4 
M

B

0

2

4

6

8

10

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Algorithm
Direct
im2col+GEMM - 3 loops
im2col+GEMM - 6 loops
Winograd
Optimal
Predicted Optimal

Figure 9: Execution time of VGG-16, for different vector
lengths and L2 cache sizes, when a single algorithm is used
for all layers (Direct, im2col+GEMM - 3 loops, im2col+GEMM -
6 loops,Winograd), compared against using the Optimal algo-
rithm per layer, and using our algorithm selection model to
predict the optimal algorithm per layer (Predicted Optimal).

all examined hardware configurations. Indicatively, selecting the
optimal algorithm can improve the execution time by up to 1.85×
over always using the Direct algorithm and up to 1.73× over using
the 6-loop implementation of im2col+GEMM. Concerning the pre-
dictive ability of our algorithm selection model, the average error
compared to the optimal configuration is 1.67% and the maximum
error is 8.4%. For YOLOv3, selecting the optimal algorithm can
improve the execution time by up to 1.33× and 2.11× over always
using the Direct and 6-loop implementation of im2col+GEMM algo-
rithms, respectively. The average error from the predicted optimal
configuration against the optimal configuration is 0.95%, and the
maximum error is 5.9%. We also point out that, even in configura-
tions where our algorithm selection model introduces some error, it
still manages to provide configurations that are better than always
using a single algorithm to compute all layers.

4.4 Performance-Area Tradeoffs
Our analysis so far has shown that convolutional layers scale with
longer vector lengths and larger cache capacity, for all the different
algorithms. However, the longer vector lengths and larger L2 cache
sizes require a larger chip area. To evaluate this performance-area
tradeoff, as well as the attainable performance in a fixed area en-
velope, we first examine the scenario of a single model instance
executing on an RVV core with an integrated VPU, like the one
simulated in Section 3, implemented in 7nm FinFET technology.
Building on the results in [26], we estimate the area of the core,
VPU, and vector register file (VRF) in 22nm, based on the assump-
tion that both the VPU and VRF area will increase proportionally
to the vector length. In contrast, the core area will remain constant.
Our analysis estimates that the chip area dedicated to the VPU and
VRF consume ∼28%, ∼43%, ∼60% and ∼75% of total chip area, as
we increase vector lengths from 512 bits to 4096 bits. We then scale
the total area to a 7nm FinFET technology, which translates to a

51
2 

bi
ts

 x
 1

 M
B

51
2 

bi
ts

 x
 4

 M
B

51
2 

bi
ts

 x
 1

6 
M

B

51
2 

bi
ts

 x
 6

4 
M

B

10
24

 b
its

 x
 1

 M
B

10
24

 b
its

 x
 4

 M
B

10
24

 b
its

 x
 1

6 
M

B

10
24

 b
its

 x
 6

4 
M

B

20
48

 b
its

 x
 1

 M
B

20
48

 b
its

 x
 4

 M
B

20
48

 b
its

 x
 1

6 
M

B

20
48

 b
its

 x
 6

4 
M

B

40
96

 b
its

 x
 1

 M
B

40
96

 b
its

 x
 4

 M
B

40
96

 b
its

 x
 1

6 
M

B

40
96

 b
its

 x
 6

4 
M

B

0

2

4

6

8

10

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Algorithm
Direct
im2col+GEMM - 3 loops
im2col+GEMM - 6 loops
Winograd*
Optimal
Predicted Optimal

Figure 10: Execution time of YOLOv3 (first 15 layers), for
different vector lengths and L2 cache sizes, when a single
algorithm is used for all layers (Direct, im2col+GEMM- 3 loops,
im2col+GEMM - 6 loops,Winograd*-uses im2col+GEMM for
some layers), compared against using the Optimal algorithm
per layer, and using our algorithm selection model to predict
the optimal algorithm per layer (Predicted Optimal).

conservative estimate of a 6.2× increase in transistor density [8, 34].
We use PCacti [36] to estimate the area of L2 caches in 7nm.

We showcase the performance (in cycles) - area (in𝑚𝑚2) trade-
off, accompanied by the Pareto curve, for VGG-16 in Figure 11. Due
to space limitations, we omit the relevant figure for YOLOv3. It
is evident that the impact of longer vector lengths on the area is
minimal, but it is significant for performance, while the cache size
has a more significant impact on the total area. The Pareto frontier
consists of 7 data points, including all possible configurations with
the smallest possible cache, i.e. 1 MB of cache, as well as all config-
urations with a vector length of 4096 bits. All the Pareto frontier
points correspond to selecting the optimal algorithm per layer. The
Pareto-optimal point for both VGG-16 and YOLOv3 is given by the
configuration with 2048 bits and 1MB of L2 cache, with a total area
of 2.35𝑚𝑚2. Using the optimal algorithm per layer results in 1.18×
- 1.6× better performance compared to using a single algorithm
for YOLOv3, and in 1.26×-2.32× better performance for VGG-16.
Inversely, the Direct algorithm would require an area of 3.07𝑚𝑚2,
i.e. 30% more area, to achieve the same level of performance both
for YOLOv3 and VGG16, while im2col+GEMM can only achieve
the same performance for YOLOv3 at 13.6𝑚𝑚2.

We then consider the case of a multi-core RVV chip. We consider
configurations with 1, 4, 16, and 64 cores, of 512 up to 4096 bits of
vector lengths, with a shared L2 cache of 1, 4, 16, 64, and 256 MB,
at 7nm, as a realistic server in a model-serving context, resulting in
200 different hardware configurations. To simplify our analysis, we
consider the existence of some static cache partitioning mechanism,
e.g. similar to Intel CAT, which grants isolated cache ways to each
hosted application. We also assume that the memory bandwidth
does not become a bottleneck in this system, which is known to
be the case for some systems with high-bandwidth memory [30].

81



ICPP ’24, August 12–15, 2024, Gotland, Sweden Sonia Rani Gupta, Nikela Papadopoulou, Jing Chen, and Miquel Pericàs

1 2 5 10 20 50

Area (mm2)

10
10

3 × 10
9

4 × 10
9

6 × 10
9

2 × 10
10

C
yc

le
s

Direct - 1MB
Direct - 4MB
Direct - 16MB
Direct - 64MB
im2col+GEMM - 3 loops - 1MB
im2col+GEMM - 3 loops - 4MB
im2col+GEMM - 3 loops - 16MB
im2col+GEMM - 3 loops - 64MB
im2col+GEMM - 6 loops - 1MB
im2col+GEMM - 6 loops - 4MB

im2col+GEMM - 6 loops - 16MB
im2col+GEMM - 6 loops - 64MB
Winograd - 1MB
Winograd - 4MB
Winograd - 16MB
Winograd - 64MB
Optimal - 1MB
Optimal - 4MB
Optimal - 16MB

Optimal - 64MB
512 bits
1024 bits
2048 bits
4096 bits
Pareto frontier
Pareto optimal
Pareto frontier - Predicted
Pareto optimal - Predicted

Figure 11: Performance-area tradeoff and Pareto frontier for
a single instance of VGG-16 on an RVV chip at 7nm.

1 2 5 10 20 50 100

Area (mm2)

10
10

10
9

10
8

Im
ag

es
/C

yc
le

#Models - Vector Length
1 models - 512 bits
1 models - 1024 bits
1 models - 2048 bits
1 models - 4096 bits
4 models - 512 bits
4 models - 1024 bits
4 models - 2048 bits
4 models - 4096 bits
16 models - 512 bits
16 models - 1024 bits
16 models - 2048 bits
16 models - 4096 bits
64 models - 512 bits
64 models - 1024 bits
64 models - 2048 bits
64 models - 4096 bits
L2 cache requirement per model
1MB
4MB
16MB
64MB
Pareto frontier

Figure 12: Throughput-area tradeoff and Pareto frontier for
multiple instances of VGG-16 on an RVV chip at 7nm, using
the optimal algorithm per layer.

On each of these configurations, we co-locate from 1 up to 64 iden-
tical instances of each network model, with the assumption that
the cores and L2 cache do not become oversubscribed. We then
analyze the tradeoff between the achieved throughput, in terms
of Images/Cycle, and the required area, for VGG-16, in Figure 12.
We observe that by co-locating multiple instances of VGG-16, we
achieve an increase in throughput that is equivalent to the increase
in area, as we add a larger cache size, a longer vector length, or
additional cores. We highlight that all points of the Pareto frontier
correspond to co-locating as many models as possible with the
lowest possible L2 cache per model (1MB or 4MB at most). Such a
configuration is enabled by the presence of high external memory
bandwidth. Notably, though, such configurations will increase the
energy consumption on external memory accesses. Finally, our anal-
ysis reveals that for a hardware configuration of 64 cores, 256 MB
of cache, and vector units of 4096 bits, co-locating model instances
with the optimal algorithm per layer leads to improved overall

throughput by 1.16×, compared to using the best-performing algo-
rithm (Direct), across all layers.

5 CONCLUSION
In this paper, we explore CNN co-design involving three distinct
algorithms: direct, im2col+GEMM (two variants), and Winograd,
on the convolutional layers of two CNN models i.e., YOLOv3 and
VGG-16, with hardware parameter tuning for the RVV architecture,
targeting model serving of CNNs. Our co-design exploration fo-
cused on tuning the vector length from 512 bits to 4096 bits, and the
L2 cache size from 1MB to 64MB. Our study shows that the choice
of the best algorithm depends on several parameters, including the
kernel size, the dimensions of the activations, the vector length,
and the L2 cache size. To select the best algorithm for each layer we
build a Random Forest classifier, resulting in an average of 92.8%
prediction accuracy, with inference time predictions showing at
most 10% of relative errors. Finally, we analyze performance/area
tradeoffs in the case of a single, as well as multiple model instances,
showing that carefully selecting the algorithm per layer allows
for higher performance in a reduced area. Coupled with model
co-location, algorithm selection leads to increased throughput per
area, highlighting the need for co-design in the context of model
serving.

In the future, we aim to parameterize algorithmic optimizations,
and include more hardware features in our exploration, enhancing
our search space. We will also consider alternative neural network
architectures and additional computational kernels, such as point-
wise and depth-wise convolutions and attention mechanisms.

ACKNOWLEDGMENTS
Thiswork has received funding from the EuropeanHigh-Performance
Computing Joint Undertaking (JU) under grant agreement No.
956702 (eProcessor), under Framework Partnership Agreement No.
800928 and Specific Grant Agreement No. 101036168 (EPI SGA2),
and under grant agreement No. 101034126 (The European PILOT).
The JU receives support from the European Union’s Horizon 2020
research and innovation programme and Spain, Sweden, Greece,
Italy, France, Germany. Additionally, this work has received funding
from the project PRIDE from the Swedish Foundation for Strate-
gic Research with reference number CHI19-0048, and the project
P4PIM from the Swedish Research Council (VR) with project ID
2020-04892. The computations were enabled by resources provided
by the National Academic Infrastructure for Supercomputing in
Sweden (NAISS), partially funded by the Swedish Research Council
through grant agreement no. 2022-06725.

REFERENCES
[1] [n.d.]. plct-gem5. https://github.com/plctlab/plct-gem5
[2] [n.d.]. RISC-V Vector. https://github.com/riscv/riscv-v-spec/releases
[3] [n.d.]. Spike RISC-V ISA Simulator. https://github.com/riscv-software-src/riscv-

isa-sim.
[4] 2015. Whitepaper GPU-Based Deep Learning Inference : A Performance and

Power Analysis.
[5] Guillermo Alaejos, Adrián Castelló, Héctor Martínez, Pedro Alonso-Jordá, Fran-

cisco D Igual, and Enrique S Quintana-Ortí. 2023. Micro-kernels for portable and
efficient matrix multiplication in deep learning. The Journal of Supercomputing
79, 7 (2023), 8124–8147.

[6] Syed Asad Alam, Andrew Anderson, Barbara Barabasz, and David Gregg. 2022.
Winograd Convolution for Deep Neural Networks: Efficient Point Selection. ACM
Trans. Embed. Comput. Syst. (mar 2022). Just Accepted.

82

https://github.com/plctlab/plct-gem5
https://github.com/riscv/riscv-v-spec/releases
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim


Co-Design of Convolutional Algorithms and Long Vector RISC-V Processors for Efficient CNN Model Serving ICPP ’24, August 12–15, 2024, Gotland, Sweden

[7] BentoML. [n.d.]. BentoML Docs: Concurrency. https://docs.bentoml.com/en/
latest/guides/concurrency.html

[8] Mark Bohr. 2017. 22FFL technology. (2017). https://en.wikichip.org/w/images/e/
e1/22FFL-2017.pdf

[9] BSC. 2023. LLVM EPI Compiler. https://ssh.hca.bsc.es/epi/ftp/
[10] Nvidia Corporation. [n.d.]. Triton Inference Server: Architecture: Concurrent

Model Execution. https://docs.nvidia.com/deeplearning/triton-inference-
server/archives/triton_inference_server_1150/user-guide/docs/architecture.
html#concurrent-model-execution

[11] Francesco Petrogalli Dan Andrei Iliescu. [n.d.]. Arm Scalable Vector Extension
and application to Machine Learning. https://developer.arm.com/solutions/hpc/
resources/hpc-white-papers/arm-scalable-vector-extensions-and-application-
to-machine-learning

[12] Manuel F. Dolz, Sergio BarrachinaMir, Hector Martinez, Adrián Castelló, Antonio
Maciá, Germán Fabregat, and Andrés Tomás. 2023. Performance–energy trade-
offs of deep learning convolution algorithms on ARM processors. The Journal of
Supercomputing 79 (01 2023).

[13] Manuel F. Dolz, Adrián Castelló, and Enrique S. Quintana-Ortí. 2022. Towards
Portable Realizations of Winograd-based Convolution with Vector Intrinsics and
OpenMP. In 2022 30th Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP). 39–46.

[14] Manuel F Dolz, Héctor Martınez, Pedro Alonso-Jordá, Adrián Castelló, and En-
rique S Quintana-Ortı. [n.d.]. Parallel and Vectorised Winograd Convolutions
for Multi-core Processors. ([n. d.]).

[15] Manuel F Dolz, Héctor Martínez, Adrián Castelló, Pedro Alonso-Jordá, and En-
rique S Quintana-Ortí. 2023. Efficient and portable Winograd convolutions for
multi-core processors. The Journal of Supercomputing (2023), 1–22.

[16] Manuel F. Dolz, Héctor Martínez, Pedro Alonso, and Enrique S. Quintana-Ortí.
2022. Convolution Operators for Deep Learning Inference on the Fujitsu A64FX
Processor. In 2022 IEEE 34th International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD). 1–10.

[17] Roger Ferrer. 2022. epi-builtins-ref. https://repo.hca.bsc.es/gitlab/rferrer/epi-
builtins-ref

[18] Evangelos Georganas and Kalamkar. 2021. Tensor processing primitives: a pro-
gramming abstraction for efficiency and portability in deep learning workloads.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–14.

[19] Kazushige Goto and Robert A. van de Geijn. 2008. Anatomy of High-Performance
Matrix Multiplication. ACM Trans. Math. Softw. 34, 3, Article 12 (may 2008).

[20] Sonia Rani Gupta, Nikela Papadopoulou, andMiquel Pericàs. 2023. Challenges and
Opportunities in the Co-Design of Convolutions and RISC-V Vector Processors.
In Proceedings of the SC ’23 Workshops of The International Conference on High
Performance Computing, Network, Storage, and Analysis (SC-W ’23). Association
for Computing Machinery, New York, NY, USA, 1550–1556.

[21] Sonia Rani Gupta, Nikela Papadopoulou, and Miquel Pericàs. 2023. Acceler-
ating CNN inference on long vector architectures via co-design. In 2023 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 145–155.

[22] Yunxiang Hu, Yuhao Liu, and Zhuovuan Liu. 2022. A Survey on Convolutional
Neural Network Accelerators: GPU, FPGA and ASIC. In 2022 14th International
Conference on Computer Research and Development (ICCRD). 100–107.

[23] European Processor Initiative. 2019. V for vector: software exploration of the
vector extension of RISC-V. https://www.european-processor-initiative.eu/v-
for-vector-software-exploration-of-the-vector-extension-of-risc-v/

[24] Marc Jordà, Pedro Valero-Lara, andAntonio J. Peña. 2019. Performance Evaluation
of cuDNN Convolution Algorithms on NVIDIA Volta GPUs. IEEE Access 7 (2019),
70461–70473.

[25] Vasilios Kelefouras and Georgios Keramidas. 2022. Design and Implementation
of 2D Convolution on x86/x64 Processors. IEEE Transactions on Parallel and
Distributed Systems 33, 12 (2022), 3800–3815.

[26] Cristóbal Ramírez Lazo, Enrico Reggiani, Carlos R. Morales, Roger Figueras
Bagu’e, Luis Alfonso Villa Vargas, Marco Antonio Ramírez Salinas, Mateo Valero
Cortés, Osman Sabri Unsal, and Adrián Cristal. 2021. Adaptable Register File
Organization for Vector Processors. 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA) (2021), 786–799.

[27] Rui Li and Xu. 2021. Analytical characterization and design space exploration for
optimization of CNNs. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems. 928–
942.

[28] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang. 2019. Opti-
mizing {CNN} Model Inference on {CPUs}. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). 1025–1040.

[29] Michael Mathieu, Mikael Henaff, and Yann LeCun. 2014. Fast Training of Convo-
lutional Networks through FFTs. arXiv:cs.CV/1312.5851

[30] John D.McCalpin. 2023. Bandwidth Limits in the Intel XeonMax (Sapphire Rapids
with HBM) Processors. In High Performance Computing, Amanda Bienz, Michèle
Weiland, Marc Baboulin, and Carola Kruse (Eds.). Springer Nature Switzerland,
Cham, 403–413.

[31] Inc. Meta Platforms. [n.d.]. Building Meta’s GenAI Infrastructure.
https://engineering.fb.com/2024/03/12/data-center-engineering/building-
metas-genai-infrastructure/

[32] Sparsh Mittal, Poonam Rajput, and Sreenivas Subramoney. 2021. A survey of
deep learning on CPUs: opportunities and co-optimizations. IEEE Transactions
on Neural Networks and Learning Systems 33, 10 (2021), 5095–5115.

[33] Sparsh Mittal and Shraiysh Vaishay. 2019. A survey of techniques for optimizing
deep learning on GPUs. Journal of Systems Architecture 99 (2019), 101635.

[34] Phil Oldiges, Reinaldo A Vega, Henry K Utomo, Nick A Lanzillo, ThomasWassick,
Juntao Li, Junli Wang, and Ghavam G Shahidi. 2020. Chip power-frequency
scaling in 10/7nm node. IEEE Access 8 (2020), 154329–154337.

[35] Jongseok Park, Kyungmin Bin, and Kyunghan Lee. 2022. MGEMM: Low-Latency
Convolution with Minimal Memory Overhead Optimized for Mobile Devices.
In Proceedings of the 20th Annual International Conference on Mobile Systems,
Applications and Services (MobiSys ’22). Association for Computing Machinery,
New York, NY, USA, 222–234.

[36] Pcacti. [n.d.]. SPORT lab. https://sportlab.usc.edu/downloads/packages/
[37] Felizia Quetscher. [n.d.]. A comprehensible explanation of the dimensions in

CNNs. https://towardsdatascience.com/a-comprehensible-explanation-of-the-
dimensions-in-cnns-841dba49df5e

[38] Joseph Redmon. 2013–2016. Darknet: Open Source Neural Networks in C. http:
//pjreddie.com/darknet/.

[39] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement.
arXiv (2018).

[40] Alexandre de Limas Santana, Adrià Armejach, and Marc Casas. 2023. Efficient
Direct Convolution Using Long SIMD Instructions. In Proceedings of the 28th ACM
SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming
(PPoPP ’23). Association for Computing Machinery, New York, NY, USA, 342–353.

[41] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv:cs.CV/1409.1556

[42] Leyuan Wang, Zhi Chen, Yizhi Liu, Yao Wang, Lianmin Zheng, Mu Li, and Yida
Wang. 2019. A Unified Optimization Approach for CNN Model Inference on
Integrated GPUs. arXiv:cs.DC/1907.02154

[43] Pengyu Wang, Weiling Yang, Jianbin Fang, Dezun Dong, Chun Huang, Peng
Zhang, Tao Tang, and Zheng Wang. 2023. Optimizing Direct Convolutions
on ARM Multi-Cores. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’23). Association
for Computing Machinery, New York, NY, USA, Article 70, 13 pages.

[44] Shihang Wang, Jianghan Zhu, Qi Wang, Can He, and Terry Tao Ye. 2021. Cus-
tomized Instruction on RISC-V for Winograd-Based Convolution Acceleration.
In 2021 IEEE 32nd International Conference on Application-specific Systems, Archi-
tectures and Processors (ASAP). 65–68.

[45] Rui Xu, Sheng Ma, and Yang Guo. 2018. Performance Analysis of Different Con-
volution Algorithms in GPU Environment. In 2018 IEEE International Conference
on Networking, Architecture and Storage (NAS). 1–10.

[46] Aleksandar Zlateski, Zhen Jia, Kai Li, and Frédo Durand. 2018. FFT Convolutions
are Faster than Winograd on Modern CPUs, Here is Why. ArXiv abs/1809.07851
(2018). https://api.semanticscholar.org/CorpusID:52339177

83

https://docs.bentoml.com/en/latest/guides/concurrency.html
https://docs.bentoml.com/en/latest/guides/concurrency.html
https://en.wikichip.org/w/images/e/e1/22FFL-2017.pdf
https://en.wikichip.org/w/images/e/e1/22FFL-2017.pdf
https://ssh.hca.bsc.es/epi/ftp/
https://docs.nvidia.com/deeplearning/triton-inference-server/archives/triton_inference_server_1150/user-guide/docs/architecture.html#concurrent-model-execution
https://docs.nvidia.com/deeplearning/triton-inference-server/archives/triton_inference_server_1150/user-guide/docs/architecture.html#concurrent-model-execution
https://docs.nvidia.com/deeplearning/triton-inference-server/archives/triton_inference_server_1150/user-guide/docs/architecture.html#concurrent-model-execution
https://developer.arm.com/solutions/hpc/resources/hpc-white-papers/arm-scalable-vector-extensions-and-application-to-machine-learning
https://developer.arm.com/solutions/hpc/resources/hpc-white-papers/arm-scalable-vector-extensions-and-application-to-machine-learning
https://developer.arm.com/solutions/hpc/resources/hpc-white-papers/arm-scalable-vector-extensions-and-application-to-machine-learning
https://repo.hca.bsc.es/gitlab/rferrer/epi-builtins-ref
https://repo.hca.bsc.es/gitlab/rferrer/epi-builtins-ref
https://www.european-processor-initiative.eu/v-for-vector-software-exploration-of-the-vector-extension-of-risc-v/
https://www.european-processor-initiative.eu/v-for-vector-software-exploration-of-the-vector-extension-of-risc-v/
https://arxiv.org/abs/cs.CV/1312.5851
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://sportlab.usc.edu/downloads/packages/
https://towardsdatascience.com/a-comprehensible-explanation-of-the-dimensions-in-cnns-841dba49df5e
https://towardsdatascience.com/a-comprehensible-explanation-of-the-dimensions-in-cnns-841dba49df5e
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://arxiv.org/abs/cs.CV/1409.1556
https://arxiv.org/abs/cs.DC/1907.02154
https://api.semanticscholar.org/CorpusID:52339177

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Experimental Platform
	3.2 Algorithms for Convolutions
	3.3 Experimental Setup

	4 Evaluation
	4.1 Performance Comparison of Convolution Implementations
	4.2 Co-designing Convolutions on Long Vector Architectures
	4.3 Algorithm Selection
	4.4 Performance-Area Tradeoffs

	5 Conclusion
	Acknowledgments
	References

