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ABSTRACT

Recent self-supervised learning methods often prevent infor-
mational collapse by implicitly regularizing information.
Variance-Invariance-Covariance regularization (VICReg)
was introduced as a non-contrastive loss function that ex-
plicitly maximizes information through regularization. While
VICReg has garnered substantial interest in the field of com-
puter vision, its application to the music domain remains
unexplored. To address this gap, we introduce VICMus -
VICReg for music representation learning. We pre-train VIC-
Mus on the Free Music Archive and achieve 36.3 mAP on
MagnaTagaTune, outperforming Contrastive Learning of Mu-
sical Representations (CLMR), a recent contrastive method
pre-trained on the ten times larger Million Song Dataset,
which got 35.6 mAP. We evaluate VICMus on the Holis-
tic Audio Representation Evaluation Suite (HARES)-music
benchmark and achieve an average score of 51.7. Our results
indicate that while VICMus may not yet achieve the perfor-
mance of state-of-the-art self-supervised models, it offers a
promising and computationally efficient avenue for music
representation learning. Our code and models are available at
https://github.com/SebastianLoef/VICMus.

Index Terms— Self-supervised learning, representation
learning, regularization, music embeddings

1. INTRODUCTION

Self-supervised learning (SSL) has gained significant atten-
tion in the machine learning community, showing promise in
multiple domains such as computer vision, natural language
processing, audio and music recognition [1]. These methods
do not rely on human annotations and excel at creating infor-
mative representations by training on large unlabeled datasets.
The learned representations can later be used in various down-
stream tasks, as input features for simple models.

Many popular SSL frameworks are Joint Embedded Ar-
chitectures (JEAs), where two or more networks project sim-
ilar inputs to a joint embedding. However, while JEAs shows
impressive results, a notable issue is dimensional collapse, in
which learned representations lose their discriminative power

This work was supported by Epidemic Sound and Google Research
Cloud

by collapsing into a single point or a smaller subspace [2].
Many variations of contrastive methods [3, 4] have been in-
troduced to mitigate this issue by contrasting dissimilar pairs
of input. A downside with contrastive methods however, is
that they require a lot of memory during training since large
batch sizes are important to choose informative negatives for
avoiding collapse [1, 5]. Furthermore, such methods explic-
itly push dissimilar inputs away from each other, which can
counteract information maximization if they still have a high
degree of similarity.

The Variance-Invariance-Covariance regularization (VI-
CReg) loss function [1] is a proposed solution to information
collapse without the need to contrast dissimilar embeddings.
Instead, VICReg avoids collapse by directly enforcing vari-
ance and covariance regularization on each branch of the JEA
separately. This self-supervised learning algorithm is simple,
as information maximization is ensured through simple sta-
tistical formulations, and is thus theoretically insusceptible to
collapse [6].

While VICReg has been applied primarily to computer
vision tasks, its principles could be effectively translated to
audio representation learning. Extending our previous work
on comparing VICReg and Contrastive Learning of Musical
Representations (CLMR) [7], we introduce VICMus, a spe-
cialized adaptation of VICReg for music representation learn-
ing that utilizes a ResNet50 backbone with spectrogram input,
making it comparable and competitive with current music au-
dio SSL benchmarks.

We pre-train VICMus on the medium subset of the Free
Music Archive Dataset (FMA) [8], a dataset of 25k songs,
and show that a simple linear classifier applied on top of the
learned VICMus embeddings achieves 36.3 mean average
precision (mAP) on music tagging on the MagnaTagaTune
(MTAT) dataset [9]. This outperforms CLMR [10] mAP of
35.6, which is trained on the ten times larger Million Song
Dataset (MSD) [11].

For evaluating VICMus, we rely on the standard down-
stream classification tasks for evaluating audio representa-
tions, following the Holistic Audio Representation Evalua-
tion Suite (HARES) benchmark [12] for music data: music
tagging on MTAT [9], and pitch estimation and instrument
identification on NSynth Dataset [13].



Fig. 1: VICMus architecture. From left to right: a batch of waveforms are augmented from a distribution T . The augmented
waveforms are transformed into a log-mel spectrogram and finally normalized. The batch pairs are forwarded through the
encoder fθ, then the projector hϕ. Finally, the projector’s output is used to calculate the Variance ν, Invariance s, and Covariance
c regularization terms. After pre-training, the projector is discarded, and the encoder is frozen and used as input for downstream
classification tasks.

2. RELATED WORK

2.1. Contrastive Learning for Audio

Contrastive methods learn information by minimizing the
distance between similar audio pairs and prevent dimensional
collapse by pushing dissimilar pairs away. Various con-
trastive methods have been adapted from the image domain
to the music domain. Both COntrastive Learning for Audio
(COLA) [14], Contrastive Learning of Auditory Representa-
tions (CLAR) [15], and CLMR implemented the contrastive
method SimCLR [3]. While COLA uses a Siamese net-
work architecture with spectrograms as input, CLAR uses
both audio waveform and spectrogram, and CLMR only uses
waveforms. Although it has been shown that those methods
can achieve good performance on various tasks, they ex-
hibit the problem of requiring substantial batch sizes to not
collapse [5], or computationally expensive triplet mining to
select informative negative examples [16].

2.2. Modal adaptations of VICReg

VICReg has been successfully adapted to different modali-
ties [17, 18]. The author of [17] used a variation of VICReg
loss on a combination of image and sensor input for SSL ter-
rain representation from robot experience, achieving state-of-
the-art results [17]. Similarly, Variance and Covariance reg-
ularizers from the VICReg loss were used in [18] to penal-
ize correlated embeddings generated when finetuning BERT
models [19], leading to a reduction in estimation errors in the
speech-based prediction of cognitive impairment. The origi-
nal VICReg publication also demonstrated that it could out-
perform both full-supervision and Barlow-Twins loss [4] on a
general audio classification dataset ESC-50 [1]. These stud-
ies provide evidence that VICReg, while initially designed
for image-based tasks, can be successfully adapted to other
modalities, such as audio and sensor data, offering compelling
performance in various applications.

3. VICMUS

In this work, we propose VICMus, a self-supervised method
that can be used to learn useful music representations from
unlabelled data. VICMus is grounded on VICReg [1], but we
adapt it to process music data, which requires different data
augmentation procedures. We utilize similar augmentations
to CLMR [10], which have been proven to be useful for learn-
ing representations via contrastive self-supervised methods.

VICMus, like many other SSL methods, follows a siamese
network architecture consisting of an encoder fθ, which en-
codes audio information in a lower dimensional space, and
a projector hϕ, which projects the representations fθ(x) to a
higher-dimensional feature space at which the VICReg loss
is applied. We apply the regularization loss to a projection
of the representations since this has been empirically shown
to have better performance than applying the loss directly to
the learned embeddings [1, 20]. Unlike VICReg, the encoder
takes in normalized log-mel spectrograms as input [16]. A
complete overview of VICMus can be found in Figure 1.

VICMus follows VICRegs triple loss function [1], which
consists of a Variance ν, Invariance s, and a Covariance c
term. Unlike most other SSL techniques, only the invari-
ance s is applied across the branches of the Siamese archi-
tecture, and the other regularization terms are applied inde-
pendently, as shown in Figure 1. In order to define these,
let’s first denote the batch of randomly augmented songs X =
[x1, ..., xn] and the same songs with different augmentations
X ′ = [x′

1, ..., x
′
n]., where n corresponds to the batch size. The

augmentations of X and X ′ are both drawn from a distribu-
tion T . The respective resulting embeddings of the branches
are denoted Z and Z ′, each consisting of n vectors of dimen-
sion d. zj denotes the column-vectors at the j-th dimension
in batch X . The variance term is then defined as:

v(Z) =
1

d

d∑
j=1

max(0, γ − S(zj , ϵ)). (1)



In this equation, γ stands as the target for the standard de-
viation, and ϵ is a small scalar introduced to prevent numeri-
cal instability. The function S denotes a regularized standard
deviation and is defined as:

S(x, ϵ) =
√

Var(x) + ϵ. (2)

This constraint ensures a constant standard deviation of γ
along the batch dimension, mitigating informational collapse.
The invariance term is the mean-squared Euclidian distance
between pairs of vectors Z and Z ′:

s(Z,Z ′) =
1

n

∑
i

∥∥zi − z′i
∥∥2
2
. (3)

The covariance term is defined as

c(Z) =
1

d

∑
i̸=j

[C(Z)]2i,j , (4)

where C is the covariance matrix defined as follows:

C(Z) =
1

n− 1

∑
i=1

(zi − z̄)(zi − z̄)T , (5)

where

z̄ =
1

n

n∑
i=1

zi. (6)

This decorrelates the off-diagonal elements of the covariance
matrix by forcing them to be close to zero, preventing dissim-
ilar embeddings from encoding similar information. Finally,
the complete loss function is formulated as a weighted sum-
mation of the variance, invariance, and covariance terms:

l(Z,Z ′) =λs(Z,Z ′)

+µ[v(Z) + v(Z ′)]

+ν[c(Z) + c(Z ′)].

(7)

In the above equation, λ, µ, and ν function as hyperparame-
ters that modulate the weight of the different components in
the loss function. Following VICReg, we use 25, 25 and 1, re-
spectively, in our experiments. Tuning those hyperparameters
for music is left as future work.

4. EXPERIMENTS

4.1. Datasets

All pre-training was completed using the FMA dataset [8].
The FMA dataset is a large-scale collection of music from
various genres sampled by the Free Music Archive platform,
consisting of over 100, 000 tracks, spanning 161 genres.
FMA is divided into three subsets based on the number of
tracks: small (8, 000 tracks), medium (25, 000 tracks), and
large (106, 574 tracks). Its large-scale nature and exten-
sive metadata make it particularly useful for training and

evaluating machine learning models, such as self-supervised
representation learning. In this study, we only use FMA
medium.

The representations are evaluated using HARES-music
[12]. We chose only to evaluate on the subset HARES-music
since HARES also contains downstream tasks that are not re-
lated to music. HARES-music consists of three downstream
classification tasks with the MagnaTagATune and Nsynth
datasets.

The MagnaTagATune (MTAT) dataset [9] consists of
25, 863 music clips at 29 seconds each, with multi-label
annotations provided by multiple users in a crowdsourcing
tagging game called ”TagATune”. With this dataset, we
evaluate music tagging.

Neural Synthesizer (NSynth) [13] is a synthetic dataset
generated by deep neural networks. The dataset consists of
305, 979 four-second audio clips of single notes, played by
11 different instruments, covering 128 different pitches. With
this dataset, we evaluate instrument recognition (NSynth In-
strument) and pitch classification (NSynth Pitch).

4.2. Data Augmentations

We use the same set of data augmentations for pre-training
VICMus as CLMR [10] - a contrastive based SSL method for
music: RandomCrop, PolarityInversion, Noise, Gain, High-
LowPass, Audio, PitchShift and Reverb. We use the same
settings as CLMR [10] except for RandomCrop, with 65, 024
samples at 22, 050 hz.

Finally, we convert the augmented audio to log-mel spec-
trograms like in [16], but with a window size of 46ms, hop
length of 23ms, and duplication over channels, resulting in
an input shape of (3, 128, 128). Each input is min-max nor-
malized to the interval [−1, 1].

For training downstream tasks, we used RandomCrop for
MTAT and no data augmentations for NSynth tasks.

4.3. Implementation details

Our hyperparameters during pre-training closely resemble
that of VICReg [1]. We use a ResNet50 [21] as our encoder
network fθ and an MLP with dimensions 2048-8196-8196-
8196 as our projector hϕ. We pre-train this architecture
for 4, 000 epochs on FMA medium using a LARS opti-
mizer [1] with a weight decay of 10−6 and a batch size
of 2048. The learning rate follows a cosine decay sched-
ule with ten warmup epochs. The learning rate is set to
lr = batch size/256 × base lr, where base lr = 0.4. For
downstream tasks, we discard the projector and replace it
with a linear classifier applied atop the pre-trained frozen
encoder. All pre-training took approximately five days on a
TPUv3-8 virtual machine.



Table 1: Evaluation on HARES-music downstream tasks. Scores reported on MTAT are mAP and on NSynth accuracy.
HARES-music is the average score across the all tasks. All encoders are evaluated using downstream linear classification.
VICMus uses the same augmentations as CLMR, other models use example mixup. Our previous work is marked by †.

Method Model (#Params)
pre-training

dataset (#Samples)
NSynth

MTAT HARES
MusicPitch Instrument

SimCLR [12] SF NFNet-F0 (63m) AudioSet (1.9m) 88.0 78.2 39.5 68.6
SimCLR [12] ResNet50 (23m) AudioSet (1.9m) 78.5 73.8 38.7 63.7
Supervised [12] ResNet50 (23m) - 69.3 70.7 38.7 59.6
CLMR [10] SampleCNN (2.5m) MSD (200k) - - 35.6 -
CLMR† [7] SampleCNN (2.5m) FMA (25k) - - 33.4 -
VICReg† [7] SampleCNN (2.5m) FMA (25k) - - 34.7 -

VICMus (ours) ResNet50 (23m) FMA (25k) 54.4 64.4 36.3 51.7

4.4. Results

We evaluated VICMus against several baseline methods on
the HARES-music downstream tasks, as summarized in Table
1. For the MagnaTagATune (MTAT) task, we report mean
Average Precision (mAP), and for NSynth tasks: accuracy.

To isolate the impact of the VICReg loss function, we
compared VICReg and CLMR using the same SampleCNN
backbone, FMA training data subset and data augmentations
in our previous work [7], as seen in table 1 marked with †.
VICMus extends our previous work [7] with ResNet50 as
backbone utilizing spectrograms as input, which further im-
proved performance and makes our model comparable to re-
cent benchmarks. In table 1, VICReg outperforms CLMR
when trained on FMA medium, achieving a mAP of 34.7
compared to CLMR’s 33.4, both using SampleCNN (2.3m
parameters) as an encoder. VICMus, employing the same
loss function but with a ResNet50 architecture (23m parame-
ters), achieves a mAP of 36.3, beating previous methods. This
performance is particularly noteworthy given that it also sur-
passes the original CLMR [10] pre-trained on MSD, which is
a dataset nearly ten times larger than FMA.

While VICMus outperforms CLMR on MTAT, it un-
derperforms across the downstream tasks compared to its
ResNet50-based supervised and SimCLR counterparts pro-
vided by HARES [12]. While there are many differences
in hyperparameters and setups between these models, it is
important to highlight SimCLR, which outperforms VICMus
in all downstream tasks, was trained on the almost hundred
times larger AudioSet dataset [22]. This highlights the poten-
tial impact of dataset size on model performance and suggests
that VICMus could benefit from training on larger datasets.

Another observation is VICMus’ poor performance on
the NSynth Pitch downstream task. This is likely due to the
PitchShift augmentation used in VICMus being detrimental
to the Pitch-related downstream tasks: it trains the represen-
tations to be invariant to pitch.

In summary, our results demonstrate VICMus’s signifi-

cant performance gains over CLMR while also isolating hy-
perparameters that might otherwise confound these results.
Despite its promising performance in some tasks, VICMus
is outperformed by specialized or more extensively trained
models in the comprehensive HARES-music benchmark.

5. CONCLUSION & FUTURE WORK

In this study we introduced VICMus, a specialized adaptation
of the VICReg loss function for music representation learn-
ing, and compared its performance with baseline methods on
the HARES-music downstream tasks. Our results demon-
strate that VICMus not only outperforms CLMR but also does
so with a smaller dataset.

However, VICReg falls short in the broader HARES-
music benchmark, particularly compared to its supervised
counterpart. Given the performance gains VICMus demon-
strated even when trained on a smaller dataset, an exciting
avenue for future research is to evaluate its capabilities when
trained on larger music datasets, such as MSD. This could
offer insights into scalability, and the ability to leverage more
extensive data for improved performance.

Additionally, the performance of VICMus on HARES-
music is decreased as a result of our augmentations, which
were specifically tuned for MTAT [10]. Consequently, certain
augmentations, such as PitchShift, may be detrimental to per-
formance on NSynth Pitch; since the learned embeddings are,
in this case, trained to be invariant to pitch change.

In summary, VICMus offers a promising and computa-
tionally efficient avenue for music representation learning.
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