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ABSTRACT
The success of Artificial Intelligence (AI) applications is driven
by efficient hardware accelerators. Recent trends show a rapid
increase in the application demands, which in most cases surpass
the available resources in the accelerators. As such, the efficient
management of these limited resources becomes a critical factor in
achieving high-performance.

In this work we focus on the management of the available on-
chip memory resources for Deep Learning (DL) accelerators. While
most state-of-the-art accelerators have static buffer separation for
different data types, we observed that the heterogeneity of recent DL
models demands formore flexible solutions. In this workwe propose
using all on-chip scratchpad memory, including space for double
buffering, in a unified way. To efficiently exploit that space, we
propose a memory management technique that can apply different
policies to best meet the demands of each different execution phase.
For cases when the available memory is less than the requirements,
the memory management can use the available space for either
optimizing the data reuse or the fetching of data ahead.

Comparing our approach against a baseline accelerator shows
that the flexibility in the management of the scratchpad memory
leads to a considerable reduction of up to 80% of the off-chip mem-
ory accesses, or up to 56% of the latency.
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1 INTRODUCTION
With the rise of AI, there is an increased demand for the execution
of complex and resource hungry Deep Learning (DL) applications
across devices spanning the entire compute continuum. This puts a
considerable pressure on the hardware leading to the fast develop-
ment of domain-specific architectures, also known as accelerators.
Recent examples include the stand-alone Google Tensor Processing
Unit (TPU) [14] or the Neural Processing Units (NPU) in many
general-purpose CPUs such as in the Intel processors [8]. While
there are many such accelerators in the market, in order for the
hardware to be able to execute efficiently the different and evolving
models, the hardware is composed of simple basic generic modules.
Typically, these modules include units to accelerate matrix opera-
tions (e.g. systolic array [17]) and local buffers (e.g. scratchpads [2])
to capture data reuse. More complex and dedicated accelerators
(e.g. FPGA-based [26]) are required in order to achieve better per-
formance and/or efficiency.

This work focuses on the management of the on-chip memory
for DL hardware accelerators. Although DL applications have usu-
ally a very large memory footprint [28], their execution pattern
exhibits a considerable amount of data reuse. Consequently, in most
cases, DL accelerators come with a considerable amount of local
memory. The memory accesses for DL applications are regular and
deterministic [21]. As such, the local memory modules are usually
simple software-managed buffers also known as scratchpads [2]. As
the different data types (i.e. input, output and filters) have different
access patterns and exhibit different types of reuse, the common
approach in accelerators is to have separate memory modules, one
dedicated to each data type. For example, the Google TPU v1 has a
24MB local buffer for the input and output and a separate buffer for
the filters [14]. While this makes the hardware and control simple,
it is not able to capture the variety of requirements of the different
DL models and their layers.

The core of a DL application is the execution of a pre-trained
multi-layer deep neural networkmodel. Amodel is usually executed
in a layer-by-layer manner and each layer may have different data
footprint, access, and reuse patterns [19]. Some recent accelerators
handle these different layer requirements by offering a single local
buffer for all the data types but then rely on sophisticated mapping
schemes to make best use of the available space [7, 39, 41]. Nev-
ertheless, most of these works require changes in the algorithm’s
dataflow or accesses patterns to match the hardware. Furthermore,
frequent changes in models being executed, as well as support for
multi-tenancy [20] require more efficient mappings. In addition,
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Figure 1: Case A requires large space for filters while case B
requires large space for output feature maps. A global buffer
with amanagement scheme is a flexibleway to able to capture
more reuse or have more space for prefetching than separate
buffers.

almost all accelerators optimize the execution by providing a mem-
ory space for double buffering [27] to overlap the execution of a
layer with the prefetching of the data for the next layer. This space
is used exclusively for data prefetching and can not be exploited
for data reuse.

It is important to note that the on-chip memory space is used
for two purposes: (1) to avoid costly unnecessary off-chip memory
accesses by storing data that is reused during execution; and (2) to
bring data ahead of its use (prefetching), thereby reducing the wait
time for costly off-chip memory accesses.

The goal of this work is to exploit the complete on-chip memory
space in a more flexible way, as to adapt to the increasing demands
of the ever evolving models (e.g. memory requirements, diverse
access and reuse patterns). At the same time, we want to provide a
technique that supports algorithm optimizations without relying
on complex dedicated software and/or hardware implementations.
Consequently we propose a solution that exploits a single on-chip
scratchpad memory (i.e. global buffer) designed to meet the needs
of various DL applications data types. The effective use of this
scratchpad is achieved with a flexible software memory manage-
ment technique. This technique uses lightweight estimation models
to statically determine how to partition the available space among
different data types and how much space to reserve for prefetch-
ing. The objective for the memory management is to identify the
optimal data reuse given the constraints and goals. Our focus is on
estimating the potential benefits and effectiveness of the approach.

Figure 1 shows the benefits of using a global buffer with flexible
memory management compared to fixed separate buffers, for two
different cases. The diagram does not represent real values but is
inspired by real requirements observed for the ResNet18 model (see
Figure 3). The data requirements are shown as a breakdown for each
different data type: input, also known as input feature map (ifmap);
output, also known as output feature map (ofmap); and weights or
filters. For each casewe show threemappings of data to the available
on-chip memory space: (1) mapping for the separate buffer setup;
(2) mapping for the global buffer setup with goal of reducing the
accesses; and (3) mapping for the global buffer setup with goal of
reducing the latency. The solid pattern shows data stored for reuse

while the dashed shows data stored for prefetching. We clearly
observe that in both case A and B the data reuse and prefetching
can not be satisfied for the separate buffer even though there is
space available, while for the global buffer with the management
scheme it is possible to utilize the complete available space for more
reuse (access goal) or prefetching (latency goal).

The main contributions of our work are the following:
• A set of different policies for the scratchpad memory man-
agement that exploit different data reuse patterns.
• A mechanism that decides which policy to use for each dif-
ferent layer of the model execution in order to optimize the
execution for reduction of memory accesses or latency.
• The evaluation of the proposed memory management
schemes for different memory sizes and different goals.

Our evaluation using six well known DL models shows that
our proposed scratchpad memory management technique reduces
the off-chip memory accesses up to 80% or the latency up to 56%
when compared to the baseline, a SCALE-Sim simulated system
representing a standard accelerator with separate buffers. We also
show the trade-off in using the available on-chip memory space for
achieving different goals. For example, for the smaller buffer size,
we also observed that optimizing for latency, as opposed to off-chip
accesses, resulted in a reduction of 23% in the latency with a cost
of an increase in 33% in the off-chip accesses.

2 BACKGROUND
This section covers the background and related information rele-
vant to our work. DL models, such as Convolutional Neural Net-
works (CNNs), are widely used in a variety of applications, such
as computer vision [3, 12, 13], image processing [16] and speech
recognition [1]. Performance and efficiency requirements have led
to the development of hardware accelerators for these applications.
While a multitude of DL accelerators have been proposed in the
past [11], our work is somehow oblivious to the different proposed
computational engines and the scope is focused on the on-chip
memory subsystems of these accelerators and the approaches used
to manage that available memory space.

2.1 DL accelerator memory systems
In order to satisfy the increasing memory requirement demands
of modern AI applications, DL accelerators usually include a large
off-chip memory which is complemented with smaller on-chip
scratchpad memories (or buffers) for capturing the local reuse of
the data, as to reduce the off-chip data transfers. The most common
on-chip memory systems are:
• Separate buffers for each data type [5, 10, 29, 37]. In this
system, each data type, i.e. input feature map (ifmap), filters
and output feature map (ofmap), is stored on a different on-
chip buffer. This setup, which can be seen as an extension of
a set of dedicated registers, has the simplest hardware but
no flexibility in the use of its space.
• Activation buffer and a filter buffer [4, 15, 23, 34]. In this
system there are two separate buffers: a unified buffer for the
ifmap and ofmap and a separate buffer for the filters. In this
setup the sharing is limited so the hardware complexity does
not increase significantly and it allows for more flexibility
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than in the separate buffers. By allowing the input and the
output to be on the same buffer, this opens the possibility
for data reuse across layers as the results (outputs) of one
layer can be reused directly from the buffer as inputs to the
next executing layer (inter-layer reuse).
• Global buffer (GLB) [7, 9, 36, 38, 39, 41]. In this system, all
data types are stored in a single memory unit, the GLB. This
is the most flexible setup as accommodates any data types
of any size as long as they fit in the available space. In terms
of hardware there is an increasing complexity in the access
to the shared memory space but not enough to overshadow
the potential benefits of the extra captured data reuse.

In the context of this paper, we focus on accelerators with a GLB.
The main reason is that GLB-based systems give the opportunity
to exploit inter-layer reuse, which leads to reduced off-chip data
transfers. Also, due to the data types heterogeneity (see Section 3.3),
a single buffer can lead to better utilization of the available memory
space and improve the data reuse. In addition, instead of keeping
a separate space for the working and prefetching data as in most
accelerators, we exploit the use of a scratchpad memory that com-
bines all on-chip memory resources into a single pool that can be
used in a flexible manner. A software memory management scheme
is then proposed to use that space in the best way according to a
particular objective such as latency reduction.

2.2 Reuse patterns in model layers
As mentioned before, modern accelerators employ on-chip scratch-
pad memories for local reuse of the data types. The data types of
a fully connected or convolutional layer (ifmap, filter, ofmap) are
described by the hyperparameters listed in Table 1. The main reuse
types are global, inter- and intra-layer reuse:
Global reuse: the network filters (also known as weights) are
stored on-chip, so they are used every time a new input is fed into
the model for processing.
Inter-layer reuse: the output of a layer is used as input for the
next layer.
Intra-layer reuse: there are two main data reuse patters in effect:

• ifmap reuse: Each ifmap is reused by multiple filters to gen-
erate the ofmap channels. In addition, each ifmap element
is reused from the same filter approximately 𝐹𝐻 ∗ 𝐹𝑊 times,
while sliding over the ifmap to generate the ofmap elements.
• filter reuse: Each filter is reused 𝑂𝐻 ∗𝑂𝑊 times on the same
ifmap to generate one ofmap channel. Filters are also reused
by multiple inputs.

2.3 Scheduling
Scheduling of the data on the scratchpad memory and later on the
accelerator’s processing unit affects the efficiency of the execution.
Scheduling is affected by two factors, the available on-chip mem-
ory size and the underlying dataflow. In most cases, the on-chip
memory size is not large enough to store all the data types (input,
filter, output) of even a single layer of a neural network. To mit-
igate the impact of limited on-chip memory, tiling emerges as a
valuable technique for enabling the execution of neural network
computations within the available limited memory budget.

Table 1: Hyperparameters of a model layer.

Hyperparameter Description
𝐼𝐻 / 𝐼𝑊 ifmap height / width
𝐹𝐻 / 𝐹𝑊 filter height / width

𝐶𝐼 number of ifmap / filter channels
𝐹# number of 3D filters

𝑂𝐻 / 𝑂𝑊 ofmap height / width
𝐶𝑂 number of ofmap channels
𝑆 stride
𝑃 padding

Tiling: Tiling involves partitioning the neural network compu-
tation graph into smaller tiles that fit within the available memory
space. Due to intra-layer reuse, the same data is used multiple times.
As the network is partitioned in tiles, some data might need to be
loaded multiple times. For example, in a convolution layer, an ifmap
tile is needed by all filters. If the filters are tiled as well, then the
ifmap or filter tile will have to be loaded from the off-chip mem-
ory multiple times. These multiple loads increase the number of
off-chip memory accesses. As the off-chip data transfers are the
most energy costly operations [18], approximately 10-100x of the
energy for a local computation, their increase leads to higher energy
consumption. In addition, the limited bandwidth of the off-chip
memories in combination with the increased need of transferring
tiles can lead to latency overheads due to contention.

Different tiling methods that aim to minimize the off-chip mem-
ory accesses have been proposed before. In [28] the authors present
some memory schemes for reading each element from the off-chip
memory only once and one scheme with working sets of filters and
activations. However, the memory requirements, even for the least
memory demanding scheme, can be in the order of megabytes.

The main goal of [6, 22, 33, 40] is to reduce the energy consump-
tion of the system by reducing the off-chip accesses. In [33], the
authors try to identify tile sizes that will lead to reduced off-chip
accesses, while considering the architectural parameters. Their ap-
proach is design space exploration (DSE), where they check all
possible combinations, leading to a time consuming process. In [22]
the authors use loop transformations (interchange and tiling) as
to maximize reuse under memory constraint. In [40] the authors
decide on the tile sizes by checking the off-chip accesses, aiming
to keep as many outputs on-chip as possible. However, the ofmap
buffer size remains static for the entire model execution.

In [27] the authors try to find the optimal tiling parameters
for input and output when using batching, but focus on the fully
connected (FC) layers only. In [35] the authors work with the
architectural-dataflow co-design problem for CNN accelerators
and find tile loop permutation and tile sizes that minimize the total
energy for the execution through DSE.

Dataflow: Dataflow exploits reuse of specific data for reducing
the off-chip communication. The existing dataflows are: (1) weight
stationary (WS), where the filter weights remain stationary in the
register file (RF); (2) input stationary (IS), where the input pixels
remain stationary in the RF; (3) output stationary (OS), where the
output pixels remain stationary in the RF (the partial sums are
stored in the same RF); (4) row stationary (RS) [7], where one row
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of filter weights and one row of input pixels stay stationary in the
processing element (PE); and (5) no local reuse (NLR) where there is
no data reuse at the RF level.

Most common accelerators use one of the above described
dataflows, but there are works such as [19] that exploit adaptive
dataflows and tiling sizes for each layer of a network, as to minimize
the off-chip communication and therefore the energy consumption.

In our workwe propose a softwarememorymanagement scheme
to use the scratchpad memory space in the best way for the particu-
lar model execution phase, compute engine configuration, memory
buffer size constraint, and target goal, which in our case is reduc-
tion of off-chip accesses or latency. We explore this using policies
that estimate the key metrics for the decisions in a lightweight
way allowing for the memory management to change dynamically
even as the requirements change during runtime. In particular, our
policies use different tiling techniques to exploit the data reuse
types mentioned above and a combination of dataflows (OS, NLR).

3 METHODOLOGY
The main objective of this work is to manage the available on-chip
memory space for exploiting data reuse and prefetching. A critical
constraint is the size of the on-chip buffer (Section 3.1). Due to
the memory constraint, we identify some memory management
policies (i.e. tiling and reuse pattern) that keep the off-chip data
transfers close to minimum (Section 3.2). Finally, we formulate an
algorithm that matches the per layer requirements of a model with
a policy considering the execution target (Section 3.3).

3.1 Optimization problem formulation
In this work we consider two optimization objectives.

Objective 1: Reduce off-chip data transfers for a network under
memory constraint.

Objective 2: Reduce latency for a network under memory con-
straint.

The constraint of the objectives is the size of the on-chip GLB, as
it limits the amount of data that can be stored. For deciding on the
amount of data stored we take two approaches: (1) use the entire
space for loading data for the current execution and (2) reserve
space for prefetching of the data types for the next execution. The
second approach is examined for reducing latency by hiding transfer
time with compute time. The constraints for the two approaches
are described in Equation (1) and Equation (2), respectively. The
tile sizes of the data types can be either of the ones described in
Section 3.2.

GLB ≥ 𝐼Tile + 𝐹Tile +𝑂Tile (1)

GLB ≥ 2 ∗ 𝐼Tile + 2 ∗ 𝐹Tile + 2 ∗𝑂Tile (2)

3.2 On-chip memory policies
In Section 2.2 we described the main reuse types in convolutional
layers. In intra-layer reuse the off-chip transfers are minimized,
i.e. each element is transferred only once. To take advantage of
intra-layer reuse the on-chip storage should be large enough to
fit the entire layer, which can be some hundreds of kB. However,
based on the intra-layer reuse patterns, we identify some memory
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height-wise
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(b) Sliding window tile

Figure 2: Ifmap access directions and elements re-load.

management policies to reduce the per layer memory requirements
while keeping the number of off-chip data transfers to the minimum.

Policy 1. ifmap reuse: For taking advantage of ifmap reuse,
all the filters of a layer need to be stored on-chip. The ifmap can
be loaded in tiles of size 𝐹𝐻 ∗ 𝐼𝑊 ∗ 𝐶𝐼 in a height-wise manner.
The ofmap size should be equal to 1 ∗𝑂𝑊 ∗𝐶𝑂 to hold the results
from the inner product of the 𝐹𝐻 ifmap rows with all the filters
of the layer. By sizing the ifmap tile to 𝐹𝐻 ∗ 𝐼𝑊 ∗𝐶𝐼 , i.e. a sliding
window, and load the tiles height-wise, we completely exploit ifmap
reuse, as the ifmap elements need to be loaded only once from
off-chip (Figure 2b). If the ifmap tile’s dimensions are smaller than
𝐼𝐻 , 𝐼𝑊 ,𝐶𝐼 , then depending on the access direction, a number of
elements needs to be re-loaded. Figure 2a shows the three access
directions, height-wise, width-wise and depth-wise, and denotes
with turquoise colour the elements that need to be re-loaded.

Policy 2. filter reuse: For making the most of filter reuse, the
entire ifmap of a layer needs to be stored on-chip. The filters can be
loaded one-by-one and the ofmap size should be equal to𝑂𝐻 ∗𝑂𝑊

to hold the results from the inner product of one filter with the
ifmap.

Policy 3. per channel reuse: An important detail about convo-
lutions, is that we have reuse only per channels. That means that
one channel of the ifmap is reused only by one channel of each
filter. Considering the reuse only per channels, we can benefit from
ifmap reuse by storing on-chip only one channel of all the filters
of the layer, 𝐹𝐻 ∗ 𝐹𝑊 ∗ 𝐹#. The ifmap can be loaded in tiles of size
𝐹𝐻 ∗ 𝐼𝑊 in a height-wise manner. In this case, the ofmap should be
sized to hold the output results for the entire layer, 𝑂𝐻 ∗𝑂𝑊 ∗𝐶𝑂 .

In the above described policies each element is transferred only
once from/to off-chip memory. However, most of these techniques
require high memory storage for some layers of the network, e.g.,
EfficientNetB0 requires 1491.9kB for intra-layer reuse and 1252.3kB
for policy 3. To overcome the high memory demands, we modify
policies 1 and 3 so that the filters and ofmap elements are transferred
only once, while the transfers for the ifmap elements may increase.

Policy 4. partial ifmap reuse: In this policy, similar to policy
1, ifmap is loaded in sliding window tiles of size 𝐹𝐻 ∗ 𝐼𝑊 ∗ 𝐶𝐼 .
The filters are loaded in blocks of 𝑛 filters each, 𝐹𝐻 ∗ 𝐹𝑊 ∗𝐶𝐼 ∗ 𝑛,
where 𝑛 = [1, 𝐹#). The ifmap will be loaded from off-chip memory
𝑥 = ⌈ 𝐹#𝑛 ⌉ times. The ofmap is sized to store the results from the inner
product of the ifmap tile with the 𝑛 filters of the layer, 1 ∗𝑂𝑊 ∗ 𝑛.
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Figure 3: Memory breakdown into the different data types
for each layer of the ResNet18 model.

Note that this policy can lead to high memory requirements when
𝐶𝐼 is large.

Policy 5. partial per channel reuse: In this policy, similar
to policy 3 and 4, ifmap is loaded in sliding window tiles of one
channel only in height-wise manner, 𝐹𝐻 ∗ 𝐼𝑊 . The filters are loaded
in blocks of 𝑛 filters each, one channel per filter, 𝐹𝐻 ∗ 𝐹𝑊 ∗ 𝑛,
leading in loading the ifmap from off-chip memory 𝑥 = ⌈ 𝐹#𝑛 ⌉ times.
The ofmap is sized to hold the results deriving from the 𝑛 filters,
𝑂𝐻 ∗𝑂𝑊 ∗ 𝑛.

3.3 Memory management technique
CNNs are highly heterogeneous, requiring different memory sizes
for each layer and for each data type. Figure 3 shows the memory
breakdown of the different data types for each layer of the ResNet18
model. As we observe, the first layers require more memory for the
ifmap and ofmap, while the last layers require more memory for
the filters. As it was shown already in Figure 1, a fixed memory
partitioning would lead to under-utilized memory for some data
types, while that empty space could be used for another data type.
This inherent heterogeneity in layers strengthens the decision for
heterogeneous on-chip memory management, that can be adapted
to the layer’s needs.

Motivated by the above fact, we formulate an algorithm to man-
age the scratchpad memory per layer in a neural network, aiming
to reduce the off-chip accesses or latency. The operational flow of
our memory management technique, based on our previously de-
veloped RAINBOW tool [42], is depicted in Figure 4. The inputs to
the algorithm are a CNN model description and accelerator specifi-
cations (operation per cycle, data width, GLB size, off-chip memory
bandwidth). The CNN model description is generated through code
that translates TensorFlow or Pytorch models to the input format
of the system. The accelerator specifications are user defined, based
on the desired system to examine.

The memory management algorithm integrates the intra-layer
reuse pattern and the reuse policies outlined in Section 3.2. For
each policy the memory requirements and the number of off-chip
accesses are estimated based on the sizes and accesses described
in Section 3.2 and the latency based on the number of operations,
bandwidth and tile sizes for each layer of the model. The simplest
way to execute a model is to apply the same policy to each layer

DL model
description

Accelerator
specifications &

constraints

Memory management
scheme

policies

Memory Management Technique

estimate_memory

Analyserestimate_accesses

estimate_latency

Figure 4: Operational flow of our proposed memory manage-
ment technique.

of the model. This is what we call a homogeneous execution plan or
homogeneous management scheme. For each policy we can thus get
a different homogeneous management scheme.

The estimation results are fed to an analyser, that based on the
GLB size constraint and optimization objective, decides on which
policy should be applied to each layer. The output of the analyser
is a heterogeneous execution plan or heterogeneous management
scheme, i.e. a plan where each layer of the model may use a different
management policy, one that satisfies better the problem objective.
Algorithm 1 describes how the memory management technique
works, when the objective is the reduction of off-chip accesses.
Line 1 defines the policies integrated in the system. In lines 7-9 the
memory requirements, accesses and latency of each layer for each
policy are estimated. The analyser is described in lines 10-16. If the
condition in line 10 for one layer is not true for any of the policies,
then we have to search for appropriate tile sizes that will satisfy
the condition. This may lead to an increased off-chip accesses.

Algorithm 1 Finding per layer policy when targeting minimum
accesses
Input: CNN, GLB_size
Output: per_layer_policy
1: policies = {intra-layer reuse, intra-layer reuse with prefetching,

policy 1-5, policy 1-5 with prefetching}
2: for layer ∈ CNN do
3: min_accesses←∞
4: min_latency←∞
5: layer_policy← 𝑁𝑈𝐿𝐿

6: for policy ∈ policies do
7: memory = estimate_memory(𝑝𝑜𝑙𝑖𝑐𝑦)
8: accesses = estimate_accesses(𝑝𝑜𝑙𝑖𝑐𝑦)
9: latency = estimate_latency(𝑝𝑜𝑙𝑖𝑐𝑦)
10: if memory ≤ GLB_size then
11: if accesses < min_accesses then
12: per_layer_policy[layer]← policy
13: else if accesses = min_accesses then
14: if latency < min_latency then
15: per_layer_policy[layer]← policy
16: end if
17: end if
18: end if
19: end for
20: end for
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Table 2: Characteristics of the DL models studied. Types of
layer can be: convolution (CV), depth-wise convolution (DW),
point-wise convolution (PW), fully-connected (FC), or pro-
jection layer (PL).

Network Number of Layers Types of Layers
EfficientNetB0 [32] 82 CV, DW, PW, FC
GoogLeNet [30] 64 CV, PW, FC
MnasNet [31] 53 CV, DW, PW, FC
MobileNet [13] 28 CV, DW, PW, FC

MobileNetV2 [25] 53 CV, DW, PW, FC
ResNet18 [12] 21 CV, PW, FC, PL

Table 3: Maximum memory requirements in kB for policies
where each element is transferred only once.

Network
Policies

intra-layer
reuse Policy 1 Policy 2 Policy 3

EfficientNetB0 1491.9 1176.2 1201 1252.3
GoogLeNet 2051 788.6 199.7 2051
MnasNet 1252.3 588.2 591.5 1252.3
MobileNet 1178 784.2 801.7 1038

MobileNetV2 1491.9 1176.2 1201 1252.3
ResNet18 2353 788.6 199.7 2318

4 EXPERIMENTAL SETUP
The DL models used in this work are described in Table 2. We
have selected a set of well known standard DL models used in com-
puter vision applications, with focus on image classification. These
models have different characteristics (Table 2) and various mem-
ory requirements for the different policies. In Table 3 we present
the memory requirements for intra-layer reuse and policies 1-3.
Policies 4 and 5 are memory-dependent, which means that their
requirements are constrained by the GLB size.

We have implemented our proposed methodology according to
the description in Section 3.3. The execution of the models is as-
sumed to be done layer-by-layer, in accordance to the baseline [24],
which means that the residual connections present in some CNNs
(e.g. ResNet18) are serialized. As mentioned before, the accelerator
specifications and constraints are the number of operations per
cycle (OPs), the data width, the GLB size and the bandwidth to
off-chip memory. The number of multiply and accumulate (MAC)
operations is half the number of OPs, as it requires two cycles to
complete. The simulated architecture consists of 16× 16 processing
elements (PEs), a small size that results in higher PE utilization for
the smaller tiles used. For that reason, the OPs are set to 512. The
data width is 8-bits and the off-chip memory bandwidth is set to
16 elements per cycle, matching the maximum average bandwidth
of the baseline. The on-chip memory bandwidth is assumed to be
enough to match the demands of the PEs for both our setup and
the baseline. The GLB sizes tested are 64kB, 128kB, 256kB, 512kB
and 1024kB, a range from small to large on-chip memory capacities
for the particular PE array. The estimations are for inference with a

batch size of 1, as it is the most appropriate for latency constrained
applications.

The baseline used is a systolic array implemented on the SCALE-
Sim simulator [24]. We chose SCALE-Sim as it is a well known
simulator and a representative of systolic array accelerators [4, 15].
The architecture selected for the baseline consists of 16 × 16 PEs
to match our implementation with output stationary dataflow and
the range of buffer sizes from the mentioned set. Since we used
output stationary dataflow, we allocated a small ofmap buffer size of
4kB for all configurations. The remaining memory was distributed
between the ifmap and filter buffers in ratios of 25-75%, 50-50%
and 75-25%. It should be noted that the buffers in SCALE-Sim are
double-buffered. However, instead of requiring additional space,
the assigned buffer size is divided in half. One partition holds the
active data, while the other is used for prefetching. We created
those three baselines for exploring different points in the design
space that could result in benefit for different layers of the CNNs.

It is relevant to note that it took approximately one minute to
generate the management schemes for all the tested models on an
Intel Core i7-1185G7 CPU (@3.00GHz), while for the SCALE-Sim
baseline it took more than 5 hours. The difference in the runtime
of our approach and the baseline comes from the implementation.
Our approach is based on heuristics (i.e. memory management
policies) that are integrated in the implementation leading to fast
generation of the estimations. On the other hand, the baseline is
a full simulator of a systolic array accelerator that produces also
the traces to the off-chip memory, leading to high runtime. Results
from our methodology have been validated against [28].

5 RESULTS
The next sections present the estimated performance metrics for
the simulated architectures. Experiments for the two objectives,
optimize for off-chip accesses (Section 5.1) and optimize for latency
(Section 5.2) were performed. Section 5.3 analyses the impact on
accesses/latency when optimizing for latency/accesses, respectively.
Section 5.4 investigates the benefits of enabling inter-layer reuse.

5.1 Optimize for accesses
The first results we present, show how important it is to partition
the on-chip memory space in a flexible way as to capture the differ-
ent reuse patterns and layer footprints. In Figure 5 we present the
volume of accesses to off-chip memory in MB for different on-chip
buffer memory size configurations and all target DL models. Each
chart includes 5 bars corresponding to the memory accesses for
the different schemes: baseline with a fixed partition of 25-75%
ifmap-filters (sa_25_75), baseline with a fixed partition of 50-50%
(sa_50_50), baseline with a fixed partition of 75-25% (sa_75_25),
our proposed homogeneous management scheme that offers the
least off-chip accesses (Hom) and our heterogeneous management
scheme that offers the least off-chip accesses (Het). Note that Hom
is the scheme where each layer is executed using the same policy,
while Het is the scheme that is executed using the best policy for
each of its layers (see Section 3.3).

From the different baseline configuration results we can con-
firm that there is not a single fixed way of splitting the memory
between the features that achieves the best results for all models.
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Figure 5: Volume of off-chip memory accesses for the baseline configurations and proposed schemes for different models and
buffer sizes.

We can observe two clear trends. For EfficientNetB0, MnasNet, and
MobileNetV2, the baseline benefits from a larger portion of memory
assigned to the ifmap (sa_75_25). For GoogLeNet, MobileNet, and
ResNet18, the results show the opposite effect, the baseline for those
models benefits if configured with a larger portion of the memory
assigned to the filters (sa_25_75). That is because the models in the
first group have larger ifmaps while the models in the second group
have larger filters (see Figure 3 for ResNet18). This proves the point
that relying on a fixed partitioning of the on-chip memory space
leads to a sub-optimal solution since a larger portion should be
awarded to the dominant feature of a model and this changes from
model to model.

When comparing our proposed management schemes (Hom and
Het) to the baseline configurations, we observe that our schemes are
able to significantly reduce the number of accesses for the smaller
buffer sizes. For the 64kB memory buffer for Hom the reduction
ranges from 32.2% forMnasNet to 74.5% for ReNet18while forHet the
reduction ranges from 43.2% for MobileNetV2 to 79.8% for ResNet18.

Regarding the larger buffer sizes, the differences between the
baseline configurations and the proposed schemes are not signifi-
cant for most cases. It is important to note that these buffer sizes
are actually quite large. With a 16 × 16 engine configuration, 1MB
buffer means that there is 4kB per PE which is a much larger value
than what is found in current accelerators (e.g. the Google TPU has
0.375kB per PE [14]). For EfficientNetB0, MnasNet, and MobileNetV2
for the 1MB buffer size we can observe that both Hom and Het show
slightly higher accesses compared to the baseline. This is due to the
fact that unlike in the baseline, we consider padding of the ifmap in
our estimations. That means that all the comparisons are not fair
and the benefit presented from our policies is actually higher.

Another observation is that for Het the number of accesses is
almost constant independent of the buffer size, meaning that the
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Figure 6: Heterogeneous scheme memory breakdown for
ResNet18 with buffer size of 64kB.

Table 4: Memory policies for 64kB GLB size.

Network Memory policies used
EfficientNetB0 intra-layer reuse (+p), policy 1 (+p), policy 2

+p, policy 3 (+p), policy 5 +p
GoogLeNet intra-layer reuse (+p), policy 1 (+p), policy 2

+p, policy 3 (+p), policy 4, policy 5
MnasNet policy 1 (+p), policy 2 +p, policy 3 (+p)
MobileNet policy 1, policy 2, policy 3, policy 4, policy 5

MobileNetV2 intra-layer reuse, policy 1, policy 2, policy 3
ResNet18 policy 1, policy 2, policy 3, policy 5

flexibility offered by this scheme enables it to be able to capture the
minimum accesses from the smallest buffer size. Table 4 contains
the policies used in each of the networks. From the description
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Figure 7: Benefit of using the heterogeneous over homoge-
neous scheme for reduction of off-chip accesses for different
data width sizes and buffer sizes for MobileNetV2.

in Section 3.2, we know that for all policies, except 4 and 5, the
elements are transferred only once from/to the off-chip memory.
However, policies 4 and 5 can also achieve minimum transfers for
depth-wise layers, which contain only one filter. In EfficientNetB0,
policy 5 is applied only on some of the depth-wise layers, resulting
in the minimum off-chip communication for the total network.

The reason for the larger benefit for the smaller buffer configu-
rations is related to the fact that it is for those sizes that the fixed
partitions of the baseline configurations are less able to capture
the different requirements of the different layers for the models
tested. Figure 6 depicts the memory breakdown for the different
features of our Het scheme for the execution of the ResNet18 model
with a 64kB buffer configuration. The stacked bars represent the
memory allocated by our memory management to the different
features (ifmap, filter and ofmap) for the execution of each layer
(L1-21) of the model. In the label in parenthesis we present the pol-
icy selected by the memory management (p1-5) and if prefetching
was applied to that particular layer (+p). The dashed lines represent
the static partition of a baseline with a 50-50% memory distribution
(sa_50_50). From these results it is obvious that the fixed partition
approach is not able to capture the required flexibility. In the layers
at the beginning (L2-5) the largest portion is assigned to the filter,
for the middle layers the largest portion is assigned to the ofmap,
while for the layers at the end the largest portion is assigned to the
ifmap. In most cases the baseline fixed partitions are not able to
store all the data needed for the corresponding feature. In contrast,
the proposed Het scheme captures this heterogeneity with applying
different policies to the different layers: p1 to the first, p5 to the
middle and p2+p to the last layers.

While we observe heterogeneity in the models and their exe-
cution over time, the differences observed between the off-chip
accesses achieved by the two proposed schemes - Hom and Het - are
minimal except for EfficientNetB0 and MnasNet for the 64kB buffer
size. This is due to the fact that not only Het but also Hom are able
to achieve the minimum accesses as described above. This is more
evident for the results presented when we are using a data width
of 8-bit. In Figure 7 we show what is the impact on the off-chip ac-
cesses for different data widths and in particular what is the benefit
for the different data widths for using the Het instead of the Hom
scheme. From these results we can observe that indeed for the 32-bit

data width the Het scheme is able to reduce further the off-chip
accesses by 69% for 64kB and 52% for 128kB when compared to
using the Hom scheme. This difference fades out for larger buffer
sizes but still shows the relevance of using the Het scheme for the
cases when there is increased pressure on the available on-chip
memory space.

Overall, the proposed memory management is able to exploit
the flexibility of using the single buffer to capture the changing
requirements for the different models and different execution layers
of each model. The significant reduction in the number of accesses
(up to 80% for Resnet18) for the smaller buffer sizes means that we
are able to offer a solution that is bale to considerably reduce the
energy consumption for that setup which is extremely relevant for
example for small battery operated accelerators.

5.2 Optimize for latency
As mentioned previously, the flexible management of the buffer
space means that we are able to try to exploit its space for different
purposes, such as using a portion of it for prefetching data used in
a next phase (tile or layer) and thus be able to overlap the memory
loads with the model execution, leading to a reduction in the latency.

In Figure 8 we present the inference latency achieved by the
baseline and the proposed schemes optimized for reduces accesses
(Hom_a, Het_a) and optimized for reduced latency (Hom_l, Het_l).
The baseline SCALE-Sim simulation is done for zero stalls therefore
the latency is not affected by the sizes of the buffers and thus
we present only one baseline configuration bar in the charts. Our
Hom and Het results are done with a fixed bandwidth equal to
the maximum of the reported SCALE-Sim average bandwidth. As
such, our results will show higher latency as we will consider the
cases of the peak bandwidth requirements in our estimations. Also,
the limited bandwidth for our cases leads to the largest latency
reduction for the largest buffer size, as expected.

For these results it is possible to observe that Hom_a and Het_a
achieve less latency than the baseline due to reduced off-chip ac-
cesses. The benefit for optimizing for reduced latency is clearer
when comparing to optimizing for reduced accesses. As we see,
Hom_l achieves less latency than Hom_a (up to 23% for MobileNet
for 256kB) and Het_l achieves less latency than Het_a (up to 19%
for MobileNet for 64kB).

Also as observed before in the access results, there are cases
(GoogLeNet and ResNet18) for which the latency for the Hom and
Het schemes is worse than what is achieved for the baseline. The
reason for this, except of the bandwidth as mentioned before, is
the padding in the ifmap, resulting in a slightly increase in the data
footprint, which is not considered in the baseline.

Overall, these results show that using a memory management
policy for a single common buffer with a goal to optimize the latency
results in considerable gains (up to 56% forMnasNet for 1MB buffer).
This happens due to the flexible management of the buffer space
allowing to implement different policies and using the space for
data prefetching in a selective way for different layers.

5.3 Optimization for accesses vs latency
In the previous sections we presented the best results among the
different cases tested for the reduction of off-chip accesses and la-
tency, respectively. These results were achieved with the proposed
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Figure 8: Latency for the baseline configurations and proposed schemes for different models and buffer sizes.
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Figure 9: Comparison of the accesses and latency benefit for
the heterogeneous scheme optimized for reduced latency
when compared to a heterogeneous scheme optimized for
reduced accesses. These results are for all models for a buffer
size of 64kB.

schemes but since in each case a different goal was selected, the
policies chosen for the execution of the different layers are actually
different. This means that effectively an execution plan for access
reduction may be different than an execution plan for latency re-
duction. For both goals, the key aspect is the flexible management
of the buffer space. Intuitively, if the goal is reduction of accesses,
the space should be used to capture the data reuse while if the goal
is reduction of the latency, the space should be used to prefetch
data, thus overlapping the execution with the loading of data.

In this section we analyse the impact on the latency when a Het
scheme optimized for latency is used as opposed of a Het scheme
optimized for accesses. In Figure 9 we depict the benefit for the
accesses and latency for using a Het scheme for latency reduction
when compared to using a Het scheme for access reduction, for each
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Figure 10: Comparison of the accesses and latency bene-
fit for the heterogeneous scheme with prefetching enabled
when compared to the heterogeneous scheme with disabled
prefetching. The results are for MobileNet and all the buffer
size configurations tested. In parenthesis we present the
prefetching coverage for each configuration.

model tested in this work. The benefit represents the change in the
metric (accesses or latency) when using the Het scheme optimized
for latency. A negative benefit represents a penalty.

The results in Figure 9 show, for example, that the highest benefit
in terms of latency is achieved for MobileNet with 23% latency
improvement when compared with using the scheme optimized
for access reduction. This benefit though comes with a price, the
penalty on the number of accesses by 33%. This is expected as
a technique used to improve latency is prefetching and this may
results in an increase in the number of accesses due to part of the
space having been reserved for prefetching thus not being available
to fully exploit the reuse.
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To confirm that prefetching is indeed being applied in those
cases, in Figure 10 we show the accesses and latency benefits for
the Het scheme that is enabled to use prefetching when compared
to the Het scheme that has prefetching disabled. We show this for
a single model, in this case MobileNet, just to illustrate the point.
The other models show similar results. In this figure we show the
accesses and latency benefits for the different buffer sizes.

In these results we observe that latency benefit when using
prefetching is close to 15% for most configurations. We also observe
that for the smaller buffer size (64kB) the latency benefit comes with
a penalty on the number of accesses by 35%. This clearly shows that
for the smaller buffer sizes we have a tradeoff between access and
latency when deciding on what to prioritize for the buffer: space
for data reuse or space for prefetching. Larger buffer configurations
do not suffer from this tradeoff as there is enough space to exploit
the data reuse and thus any extra space may be effectively used
for prefetching data. It is also relevant to note the high coverage
achieved by the Het scheme with prefetching enabled. For 64kB,
93% of the layers use prefetching while for 256kB and larger buffer
sizes, this coverage goes up to 100%.

5.4 Inter-layer reuse
As mentioned in Section 2, in inter-layer reuse the output of a layer
is used as input to the next layer of the model. This is effectively the
implementation of dataflow between two consecutive layers and
translates to a considerable reduction in off-chip memory accesses.
Nevertheless, in the case of layer-by-layer execution this also means
that it can only be exploited if there is enough on-chip memory
space to store the whole output of a layer as the execution of layer
𝑖 + 1 only starts after the completion of the execution of layer 𝑖 .
With the proposed memory management, it is possible to capture
the reuse with only as much buffer space as needed so the on-
chip memory buffer is used more efficiently. Consequently, and
depending on the output size of each layer, there are certain cases
when it is possible to exploit the inter-layer reuse.

In order to evaluate the benefit of this optimization, in Figure 11
we depict the accesses and latency benefit for when we enable
exploiting inter-layer reuse when compared to a baseline scheme
with disabled inter-layer reuse.

The results show that while there are no visible benefits for
the smaller buffer sizes, the benefits are considerable for the larger
buffer sizes. For the smaller buffer sizes, the available space is barely
enough to capture the required data reuse. As such, inter-layer reuse
is rarely applied. In parentheses below the buffer size we present
the coverage of the inter-layer reuse, i.e. how many times has inter-
layer reuse been enabled when compared to all possible cases. For
example, for 64kB the coverage was 0% so inter-layer reuse was
never applied. The coverage grows to 4% for 128kB buffer, but
high coverage only happens for the larger buffer sizes with 88%
for the 512kB and 98% for the 1MB buffer sizes. As a consequence,
for the larger buffer size of 1MB we observe the largest coverage
(98%) and also the largest benefits for accesses, 70% reduction in the
accesses when compared with not using inter-layer reuse at all, and
for latency with 18% reduction. While we presented only the results
for MnasNet, we have also observed similar behaviours for the
other models. In particular the geometric mean of the performance
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Figure 11: Comparison of the accesses and latency benefit for
heterogeneous schemes with inter-layer reuse enabled when
compared to it being disabled. This is shown for all on-chip
buffer configurations for the MnasNet model.

benefit for 1MB buffer for all the models evaluated is 47% for the
access reduction and 8% for the latency reduction.

Overall we can observe that exploiting the inter-layer reuse re-
sults in a significant improvement in the accesses and latency but
this comes with a cost of requiring the use of considerably large
on-chip memories.

6 CONCLUSIONS AND FUTUREWORK
In order to address the pressure on the DL hardware accelerator re-
sources, in this work we propose a memory management technique
for a unified global on-chip buffer. This buffer can store any of the
different types of data to exploit reuse and at the same time allocate
space for prefetching data. This solution selects among different
data policies for different layers of the execution, utilizing the avail-
able buffer space in the best way for a specific goal. The goal can
be either reduction of off-chip accesses or latency. The evaluation
of our proposed memory management shows a reduction of up to
80% of the off-chip memory accesses for the smallest buffer size, or
up to 56% of the latency for the largest buffer size, when compared
to a baseline accelerator.

We are currently investigating how to integrate the memory
management technique and policies into an open source DL com-
piler such as TVM as to offer these benefits to existing accelerators.
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