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Reconciling Platform vs. Product Optimisation by Value-Based 

Margins on Solutions and Parameters 

Engineering companies face the challenge of optimising margins within product 

platforms while balancing individual product optimisation and maximising 

platform commonality. Key obstacles include organizational silos, diverse design 

variables, design space allocation, and varying time perspectives. This paper 

proposes a value-based modelling methodology that integrates both internal and 

external variety within the manufacturer. Using an automotive Head-Up Display 

(HUD) case study, we demonstrate how to effectively utilise platform margins to 

maximise technological variety and minimise internal variety, thereby enhancing 

long-term system value. This approach helps design teams understand the 

implications of their decisions, optimise platform margins to meet evolving 

technological demands, reduce costs, and maximise value. Our findings advance 

the understanding of margin optimisation in product platforms and support 

informed decision-making for engineering companies facing conflicting 

objectives. 

Keywords: Margin optimisation; Product platforms; Engineering design; Value 

modelling design margins; Technology integration.  

1 Introduction 

Engineering companies often face the challenge of balancing two conflicting objectives: 

1) optimising individual products for specific customer segments, and 2) maximising 

the use of standardised components across a product platform. While this 

standardisation enables cost-efficiency due to economies of scale, it means that the 

platform often contains components that are ‘more capable’ than what is requested by 

many customer segments (Eckert et al. 2020) since the platform is designed for ‘worst 

case’ scenarios. While this choice implies some sub-optimisation of individual customer 

requirements, it can be beneficial as it provides margins that provide a useful ‘room for 

growth’ if such requirements may arise in the future (Jacobson and Ferguson 2023). For 

these reasons, margins are added explicitly or implicitly during the development 



process, often relying on experience and intuition. However, this way of deciding about 

margins in a platform has some drawbacks. For example, it assumes that today, 

customers would require tomorrow a component with a higher capability than what they 

require. However, this may not always be the case. Some capabilities must be optimised 

for a certain parameter. For example, the size of a keyboard needs to adapt to the exact 

anthropometric dimensions of the user’s hand (i.e. a larger keyboard size is not always 

better). In some cases, the capability must avoid a certain parameter (e.g. in the case of 

resonances; Bertoni, Bertoni, and Isaksson 2018). Also, increasing a capability may 

come at the expense of other attributes (e.g. cost and weight); therefore, there are 

several trade-offs involved. These are simple examples that highlight the risk of over-

estimating the ‘future value’ of a margin included in a platform. As it will be further 

developed in this paper, considering the optimal value of a platform margin is even 

more complex, owing to the recursive connection among key variables (1) current and 

future product demand, (2) different cost aspects, such as the cost-efficiency brought by 

the platform approach, and (3) the maturity of key technologies. Possessing a way to 

computationally experiment with these nested connections would be helpful and 

effective to have a clearer visibility of the margin provided by choices made during 

platform and component selections.  

For these reasons, in this paper we focus on the following research question: 

“How can decisions about which optimal platform margin to reserve be supported?” 

The result is a modelling approach that aggregates the variables described above 

in a Net Present Value model, traditionally used in technology evaluation (de Weck 

2022).  

The outline of the paper is as follows. Section 2 reviews the foundational 

concepts of design margins within product platforms. Section 3 presents the research 



methodology and data collection methods employed. Section 4 introduces the value-

based margin approach and explains the steps involved in identifying key product 

properties, platform alternatives, technology options, and scenario variables. Section 5 

presents an industrial case study in collaboration with a Swedish car manufacturer on 

automotive Head-Up Displays (HUD, an advanced optical system to enhance driver 

safety). Finally, Section 6 discusses the broader implications of the findings, while the 

last section synthesizes the key takeaways and proposes future research directions to 

further refine and apply the methodology in diverse industrial contexts. 

2 Background: the role of margins in product platforms 

2.1 Design margins 

Design margins in product development are extra allowances built into the design to 

handle unexpected issues. These margins provide some excess (unused potential) that 

can be used to adapt to new requirements throughout the product lifecycle (Jones and 

Eckert 2019; Eckert et al. 2020), as well as a buffer to tackle other uncertainties. Design 

margins are crucial for mitigating the risks and uncertainties inherent in product 

development, ensuring that the product can withstand variations and unforeseen 

circumstances (Brahma and Wynn 2020). Unlike safety margins, which specifically 

address safety considerations, design margins focus on exceeding functional 

requirements to accommodate uncertainties (Jones, Eckert, and Garthwaite 2020; Eckert 

and Isaksson 2017). 

Excess margins involve intentionally adding more than the necessary allowances 

to meet functional requirements. However, they can lead to overdesign and 

inefficiencies in the product (Eckert, Isaksson, and Earl 2019). These margins can result 

from the independent inclusion of safety and design margins during the design process, 



thereby contributing to unnecessary redundancy (Eckert and Isaksson, 2017). Despite 

this, margin management is crucial for effective handling of engineering changes and 

iterations, allowing for the dynamic exploration of design spaces and influencing 

constraint satisfaction and performance (Guenov et al. 2018). 

In industrial practice, buffers are essential for enabling product adaptability, 

facilitating redesign, and supporting the development of follow-on products (Eckert et 

al. 2020). While they safeguard against uncertainty and risk, the practice of 

incorporating margins can sometimes lead to over-engineered solutions (Jones, Eckert, 

and Gericke 2018), impacting the overall design process by adding costs and delays.  

There are different ways to include margins in a product (Eckert et al. 2013).. 

Given the context of this study, we distinguish between geometric margins and 

operational or performance margins. Geometric margins result from the fitting of 

components within a confined space. Clearances and empty spaces are an interesting 

sub-case of geometric margins, as the empty space can be used to absorb uncertainties 

during the development process (e.g. changes in the physical placement of neighbouring 

components) or to include future technologies that will require more space. 

In contrast, operational or performance margins describe the ability of a 

component to meet the functional requirements for specific geometries and materials 

(Isaksson, Lindroth, and Eckert 2014). These margins must be understood in particular 

configurations and usage scenarios and are challenging to assess owing to the 

multifaceted functions and interdependencies of components. Extraneous conditions 

surrounding the operation of a product can dictate the margin consumed or retained 

within the system. For example, the most efficient performance point may not align 

with the maximum capability of the product. Thus, after a product begins operations, its 



usage pattern significantly influences the availability of the margins (Brahma et al. 

2023).  

2.2 Product platforms 

A product platform is a strategic approach that grew from the interest of 

providing customisation and personalisation to the customer base (i.e. the external 

variety offered) in a cost-efficient manner. Because developing a unique product for 

each customer segment would dramatically increase the cost, a product platform aims to 

build a similar architecture so that many products are generated by combining common 

parts. In this way, internal variety is reduced, and a range of diverse products can be 

produced cost-effectively through economies of scale (Meyer and Lehnerd 1997). Each 

product generated from a platform is called a product variant (van den Broeke, Boute, 

and Mieghem 2018). Determining the optimal number of variants to be derived from a 

platform is a challenging task. To aid these decisions, an economic model called Net 

Present Value (NPV) is often used (De Weck, Suh, and Chang, 2003). NPV is the 

difference between the cash inflows (i.e. the yearly profit from market share) and the 

cash outflows (i.e. the yearly costs) considering the current value of a future stream of 

payments (calculated with a discount rate of money). From a platform optimisation 

perspective, the challenge is that a platform has complex ‘nested’ interactions to both 

the profit and the cost parts of NPV.  

First of all, the expected demand and the NPV of the single variants of the 

platform can be considered cumulative only if one assumes that customers accept 

product performances ‘close enough’ to their specific needs (Ofer et al. 2002). This 

assumption is not always true; therefore, there is a tendency to increase the number of 

variants more than originally planned, as this increase would increase the likelihood of 

optimising the variants and accumulating the expected NPV. As observed by de Weck 



(2006), the average number of variants per platform has steadily increased. The problem 

with this is that adapting platforms to individual product requirements involves 

substantial development efforts (Boute, van den Broeke, and Deneire 2018). 

Simultaneously, increasing the number of variants must account for the negative effects 

of increased variety, which can lower the total NPV. These negative effects include 

reduced sales volume per variant and diminished economies of scale, leading to higher 

production costs and a lower overall NPV (Randall and Ulrich 2001; Lyons, Um, and 

Sharifi 2020). Thus, the mere addition of additional variants to a product family does 

not guarantee greater sales volumes in aggregate. Finding the optimal number of 

product variants is a complex task that must consider the maximisation of aggregate 

demand while maintaining low costs due to economies of scale (Tan et al. 2020). To 

account for these economies of scale, a learning curve scaling rule is often applied to 

platform cost modelling (Yelle 1979). The learning curve effect suggests that with every 

doubling of cumulative production, the cost per unit decreases by a constant percentage, 

owing to increased efficiency, worker proficiency, and process improvements (Argote 

and Epple 1990). Mathematically, learning curves follow the power function 

𝑦 = 𝑘𝑥𝑛 

where y = The number of direct labour hours required to produce the Xth unit. 

𝑘 = The number of direct labour hours required to produce the first unit. 

𝑥 = The cumulative unit number. 

𝑛 =
log𝜙

log2
 The learning index. 

𝜙 = The learning rate. 

1 − 𝜙 = The progress ratio. 

This has been demonstrated more recently empirically by comparing two 

products with different numbers of variants, where the costs related to the 



differentiation of the one with a greater number of variants were ten-fold those of the 

lower number of variants (Nørgaard et al. 2024). By leveraging the learning curve, 

companies can optimise production processes and supply chain decisions based on 

cumulative experience, thereby enhancing the effectiveness and efficiency of product 

platforms. 

These nested connections among product platform decisions and the total profit 

and cost contained in an NPV model necessitate a strategic approach to balance 

component commonality with product distinctiveness. For these reasons, Broeke, Boute, 

and Mieghem (2018) characterised the optimal platform portfolio strategy that 

minimises the total cost using an investment versus production customisation trade-off 

curve.  

2.3 The role of margins in product platforms 

Design margins are a critical aspect of product platform development (Eckert et 

al. 2020). However, platform margins have a contrasting ‘dual’ role in fulfilling the 

goals of platform planning and product development. From a product development 

point of view, margins are seen as an opportunity to meet the specific customer 

requirements in each market segment by deriving many product variants (often through 

parametric design) and therefore increase the likelihood of increasing the cumulative 

NPV coming from each individually optimised variant. This, however, may come at the 

expense of the original intent of the platform strategy, which is to decrease the number 

of variants, consolidating production around fewer, high-volume components and 

assemblies, to gain economies of scale through volume (Eckert et al. 2020). At the same 

time, platform developers focus on margins related to solution principles rather than 

specific continuous parameters. This involves working with discrete alternatives (i.e. 

that can have a value within a set of options) as opposed to the continuous (i.e. that can 



have any value within a range) optimisation parameters commonly used in product 

development. As discrete alternatives are difficult to manipulate and assess 

computationally (André and Elgh 2018), there is a risk that product developers will 

attempt to optimise a product that is already severely overdesigned during the platform 

planning stages. 

How to compromise this dual role can be difficult to be discerned, especially 

since the true value of platform margins for specific components often becomes 

apparent later in the design process (Eckert et al. 2020). In the next sections, we further 

explore this difficulty by looking at a case study in automotive platform design. 

3 Research Methodology  

In this study, we adopted an interactive research approach, a form of coproductive 

research characterised by close collaboration between researchers and practitioners to 

co-create knowledge that is both scientifically robust and practically relevant (Lindhult 

and Axelsson 2021). Unlike traditional quantitative and qualitative methods, which 

often maintain a distance between researchers and the subjects of their study, the 

interactive research approach emphasises continuous interaction and mutual learning.  

This participatory method enables deeper engagement with the research context, 

ensuring that the knowledge generated is immediately applicable and beneficial to the 

stakeholders involved (Engström et al. 2022). Comparatively, traditional research 

approaches, such as surveys or experiments, might provide quantitative data or 

controlled insights, but they often lack the practical applicability that comes from direct 

engagement with industry stakeholders. On the other hand, purely qualitative 

approaches might capture rich, contextual data, but can fall short in driving actionable 

change within organisations. The interactive research approach combines the strengths 

of both by enabling a collaborative environment in which theoretical and practical 



knowledge intersect. By engaging practitioners throughout the research process, from 

data collection to the application of the findings, we ensure that our theoretical models 

and methodologies are grounded in actual industrial practices and constraints. This 

close interaction enhances the relevance and applicability of our findings (Lindhult and 

Axelsson 2021), supporting better decision-making in engineering design and product 

platform development. 

The data collection for this study took place both during physical and online 

meetings, interviews, and workshops, conducted in 2022-2023. Twelve semi-structured 

one-hour-long interviews were conducted with nine industry professionals (listed in 

Table 1) at two automotive Original Equipment Manufacturers (OEMs). One OEM 

manufactures and markets luxury cars, whereas the other participates in the 

development of trucks distributed in more than 190 markets worldwide by different 

brands. The roles of the interviewees varied from platform planning (for example, 

System Architects and Modular Product Architecture Strategists) to product 

development (such as developers of the electrical infrastructure). The average years of 

experience in the sector of the interviews was 20 years, with a minimum of 9 years and 

a maximum of 35.  

Table 1 Case study interview participants 

ID Role Experience Interactions 

P1 Product Owner – Electrical Infrastructure 14 years Interview 

P2 Architecture Design Leader 15 years Interview 

P3 Product Owner 9 years Interview (2) 

P4 Mechanical Integration – Interior Room 20 years Interview 

Workshop 

P5 Modular Product Architecture Strategist 24 years Interview (2) 

P6 Base Product Development – Electrical 

Infrastructure 

22 years Interview 

P7 Mechanical Integration Coordinator 21 years Interview 

P8 Team Leader - Mechanical Architecture and 

Integration 

20 years Interview 

P9 Architecture Development 35 years Interview (2) 



Workshop 

 

Additionally, four workshops were organised, each lasting for three hours and 

attended on average by seven participants (some of which also participated in the 

interviews). Information from the workshops was collected through questionnaires and 

field notes. These sessions provided firsthand insights from industry professionals and 

offered empirical evidence to support the theoretical constructs. Furthermore, the 

authors attended weekly system integration meetings and biweekly project coordination 

meetings with practitioners for a year. This empirical study emphasised the importance 

of evaluating the 'value' of platform margins. These margins are influenced by various 

combinations of platform options and new technologies. These insights led to the 

development of a value-based margin methodology, which is presented in the next 

section. The methodology was then applied to a case study related to automotive Head-

Up Displays (HUDs). Digital experiments using the approach were conducted to 

showcase the application of the approach to industrial partners.  

4 Overview of the value-based margin methodology 

The objective of our study is to quantify the advantages (or value) of incorporating 

platform margins by analysing the net lifetime value of a system. This endeavour is 

complex, as it necessitates the integration of perspectives from both platform and 

product development, involving a multitude of characteristics.  

The overall approach is shown in Figure 1, represented using an IDEF0 diagram.  



 

Figure 1 Overall value-based margin approach using the IDEF0 representation. 

The overall steps, main models, and methods used are briefly summarised below.  

4.1 Step 1.1: Identify key product properties 

Customers and users of a product have expectations about the behaviour and properties 

of the product. Likewise, other stakeholders involved in the lifecycle of a product have 

their expectations and needs (e.g. regarding the sourcing of raw materials, the assembly 

of components, or the disposal of units at their end of life).  

4.2 Step 1.2: Identify platform alternatives and constraints 

This step involves considering factors such as available resources, technical capabilities, 

market requirements, and organisational goals and constraints to determine the available 

platform alternatives and to identify any constraints that may impact the implementation 

of these alternatives. 



4.3 Step 1.3: Identify technology alternatives 

This step involves considering factors such as the technical capabilities, compatibility, 

scalability, and cost of different technology solutions to determine the available 

technology alternatives that can support the goals and requirements of the product 

platform. 

4.4 Step 2. Identify platform margins and performance capabilities 

We consider platform margins as a variable influenced by decisions regarding platform 

design constraints and the integration of new technologies, enabling the exploration of 

various configurations by adjusting platforms, technologies, and margins concurrently. 

Therefore, the combination of technologies and platform alternatives determines both 

the margins and performance capabilities of the platform. To model these combinations, 

the approach emphasises the use of ‘parametric platform architecture models’, using 

idealised models of the unit and the surrounding components (because in a preliminary 

design, it is often not possible to possess a detailed CAD model of the platform). The 

approach uses the concept of ‘space envelope’, a shape model based on a boundary 

description (Hoover, Goldgof, and Bowyer 1998). The space envelope represents a 

three-dimensional volume that encapsulates the allowable spatial region within which 

components can exist. Instead of modelling each component individually, the space 

envelope encloses the volume of empty space around the components. This method 

provides a flexible and robust way to manage and optimise spatial allocations without 

the need for detailed models of each component. 

The main components in the architecture are described by their position in three-

dimensional space and the dimensions of their basic shape (e.g. box, cylinder). 

Conceptual three-dimensional models of the space allocations for each of the design 



solutions and their margins positioned within the constraints of the platform can then be 

generated. These space envelopes can then be used to understand and control the spatial 

constraints and interactions of various components within the product platform. 

Such parametric models allow us to identify the geometrical margins (Isaksson, 

Lindroth, and Eckert 2014) provided by technology-platform combination alternatives. 

At the same time, they can be used by dedicated tools to simulate the different product 

properties that determine the level of capability (or performance) given by the 

combinations. This will also allow us to determine the performance margins (Isaksson, 

Lindroth, and Eckert 2014) or operational margins (Brahma et al. 2023) of technology-

platform combination alternatives.  

4.5 Step 3: Create NPV models 

Future scenarios that have an impact on the value and cost of the alternatives, such as 

fluctuating demand for specific customer attributes and other time-dependent exogenous 

variables, are used. 

For system value, we adopt a modified model that aggregates product demand 

over time and lifecycle costs, in line with the Decision-Based Design framework 

(Hazelrigg 1998; Donndelinger and Ferguson 2019). This synthesis is financially 

quantified through Net Present Value (NPV) analysis, a method previously applied in 

studies exploring the introduction of new technologies in product platforms (Suh et al. 

2009; Suh, de Weck, and Chang 2007).  

The proposed model has two key features.  

(1) Product demand depends on product variety, represented by the different 

performance levels of key product properties. This variety is generated through 



the introduction of new technologies and parametric differentiation within 

existing technologies to maximise the external variety available to customers.  

(2) Lifecycle costs are affected by the internal variety generated during the 

manufacturing process. An increase in internal variety typically results in 

diminished economies of scale and elevated costs, including development and 

production expenses. Consequently, the goal is to reduce internal variety. 

Moreover, lifecycle costs are contingent on the necessity of redevelopment when 

platform constraints are exceeded, forcing platform modifications. 

Product demand is estimated based on specific customer attributes (the percentage 

coverage of delivered FoV and the product price) using Discrete Choice Analysis 

(DCA) (Hensher and Johnson 1981; Haghani, Bliemer, and Hensher 2021). DCA 

collects quantitative choice data for the proposed designs versus alternative options. 

From this data, demand can be estimated using a multinomial logit model (Wassenaar et 

al. 2005). This model allowed us to estimate the demand for a product with specific key 

product properties and prices.  

Our lifecycle simulation model computes the system costs and values over time, 

placing significant emphasis on the allowed platform margin as a pivotal variable. In the 

model, the allowed platform margin plays a crucial role in providing maximum external 

variety with minimal internal variety and needs to be traded off considering these two 

goals. Another important parameter in this model is the cost of platform redesign. This 

represents a penalty cost for redesigning the platform if the spatial constraints are 

violated by introducing a new technology. 

4.6 Step 4: Identify the maximum allowable number of product variants 

This step focuses on applying a product-development perspective to platform margins 



(Isaksson, Lindroth, and Eckert 2014). From a product development point of view, 

margins are seen as a method to increase the number of variants in the platform (often 

through parametric design) so that precise requirements from customers can be met (and 

therefore, NPV can be increased by ‘summing’ the revenues made in each customer 

segment). Therefore, there is a need to ‘segment’ the product into variants so that the 

precise requirements for the product attributes can be met. In this method, all the 

allowable margin is used to create variants, by dividing the platform margin into ‘bins’, 

representing potential product segments. In each bin, the frequency of the design points 

and their average NPV were calculated. A threshold value of NPV was selected to 

calculate the number of variants. Above this threshold, a different variant is created 

(considering that product demand is sufficient to justify a dedicated segment). For ‘bins’ 

with an average NPV below the threshold value, a single segment is considered 

(assuming that the product demand is not sufficient to justify a dedicated segment).  

4.7 Step 5: Identify the optimal number of product variants and the maximum 

allowable reserved platform margin 

This step focuses on adjusting the maximum number of product variants by considering 

the original objectives of the platform designers. From a platform perspective, margins 

are considered a method to reduce the number of variants in the platform to gain 

economies of scale through volume (Eckert et al. 2020). Increasing the number of 

variants by assuming that the expected demand (and, therefore, the NPV) of 

individually optimised variants can be cumulative has two negative effects, thereby 

lowering the total NPV:  

• Greater variety reduces the sales volume of individual variants (from the total 

sales volume potential).  



• Greater variety reduces economies of scale owing to lower sales volumes. This 

results in higher production costs and, therefore, a lower NPV.  

• Utilising all allowable platform margins to generate product variants limits the 

ability to reserve part of the margin for ‘unknown unknowns’ (e.g. new 

emerging technologies) or for the expansion of neighbouring components.  

Therefore, this step focuses on selecting the optimal number of variants to be developed 

and introduced in the market by 1) considering the effect of economies of scale using a 

learning curve scaling rule (Argote and Epple 1990) and 2) applying a margin 

optimisation-focused ordering. 

The application of these steps is illustrated in an industrial case study in the next 

section.  

5 Case Study - Space Reservation for Head-Up Display Technologies 

The case study presented here concerns the integration of a new technology with an 

OEM manufacturer in the automotive sector. Head-up displays (Hosking and Blackham 

1974) have been steadily gaining traction in the automotive sector. Automotive HUDs 

project information, such as speed and navigation prompts, directly into the line of sight 

of the driver via an optical combiner, commonly a windshield. This functionality 

enhances safety and comfort by allowing the driver to maintain focus on the road, 

mitigating the need to alternate attention between the road and instrument panel. The 

HUD case study was chosen by the manufacturer because it represents the concerns of 

both the platform and product developers. 

5.1 Step 1.1: Identify key product properties 

The HUD unit is placed behind the dashboard and instrument panel (IP) above the 

steering column, which is surrounded by heating, ventilation, and air conditioning 



(HVAC) components. Its primary performance attribute is the field-of-view (FoV, 

Figure 2), which represents the maximum image size that can be projected on the 

windshield in the vertical and horizontal dimensions (for simplicity, the FoV variables 

are combined as the percentage of the windshield used when presenting the results of 

this case study).  

 

Figure 2 Head-Up Display within its context. The simplification of the reserved space 

(in litres) of the case study (i.e. the purple rectangle) from the actual reserved space in 

the real-world industrial scenario (yellow area) is also shown. 

From a performance perspective, a clear objective is to increase the FoV such that more 

information can be displayed. However, the current and future desires for larger FoVs 



are still unclear. One strategy for a company could be to maximise its FoV by exceeding 

what is requested by most of the customer base today (Eckert et al. 2020). This 

performance margin (Isaksson, Lindroth, and Eckert 2014) would allow flexibility if 

higher demands for FoVs occur. Therefore, there is a request for product planners to 

increase the space reserved for HUD technologies, represented by a rectangular design 

space within which the HUD team can innovate without compromising the platform's 

integrity. However, the actual realisation of this performance margin is not without 

consequences. First, providing a higher FoV assumes that customers who are satisfied 

with less FoV will appreciate that more information is projected onto the windshield. 

Because the FoV interferes with the sight of the driver, it could be perceived as 

distracting. Therefore, it is likely that customers desire an FoV that exactly meets their 

requirements. Also, realising an increase in the FoV would mean an increase in the 

actual dimensions of the HUD ‘box’ unit (which would increase the weight, size and 

cost of the vehicle and therefore lower the demand for HUD technologies).  

For these reasons, there is a need to vary the actual (allocated) HUD unit sizes to 

keep the FoV to the actual FoV requests from the customers by creating variants. From 

a margin perspective, this need for variation creates an interesting ‘clearance’ between 

the reserved space and the actual dimensions of the HUD ‘box’ unit in a product-variant 

design. This clearance represents a case of a geometric margin (Isaksson, Lindroth, and 

Eckert 2014) that can be used 1) as a buffer to handle uncertainties in the desire of FoV 

(Eckert et al. 2020) or 2) as an excess (Long and Ferguson 2020) to allow for future 

expansions of the FoV unit or neighbouring components (such as the HVAC). 

Therefore, increasing this clearance is another objective of the platform team.  

5.2 Step 1.2: Identify platform alternatives and constraints 

The main components of the architecture are described by their position in three-



dimensional space and the dimensions of their basic shapes (e.g. box and cylinder). 

Table 2 lists the three platforms considered. The key components included in the model 

were the HUD, the Cross-Car Beam (CCB), Pedal Column Frame (PCF), Windscreen 

(WS), Steering System, and the Heat, Ventilation, and Air Conditioning System 

(HVAC) system. The table also reports the space reserved for the HUD (i.e. the 

platform constraints on the size of the HUD; other platform constraints might have been 

an energy budget or a weight limit). 

Table 2 Platform alternatives. 

 

CAD Image of the space 

reservations for the 

components of interest 

Space reserved 

(constraint from 

platform 

architecture choice)  

Simplified 

space 

reserved 

(considered 

in the case 

study) 

Platform A  

(in production) 

High maturity 

 

13.8 litres 

(300x230x200 mm3) 

2.5 litres 

Platform B  

(under 

development) 

Medium - High 

maturity  

48 litres 

(400x400x300 mm3) 

13.16 litres 

Platform C  

(conceptual) 

Low maturity 

 

31.5 litres 

(350x360x250 mm3) 

9.59 litres 

 

Owing to the difficulties in visualising the three-dimensional intricacies of the 

selectable technologies (presented in Section 4.1), the reserved space (in litres) in the 

case study is reduced from the actual reserved space in the industrial case (i.e. the violet 

rectangle). This simplification does not undermine the main purpose of this study 

(which is to show how the value of a platform margin can be modelled). 



5.3 Step 1.3: Identify technology alternatives  

A three-dimensional analysis of the selectable technologies was performed using the 

parametric architecture model and dedicated performance models.  

Table 2 shows that the three platforms included in this study are at different 

levels of maturity. Platform A is the most mature platform considered; therefore, it has a 

more constrained space for the HUD. Changes to increase its volume would propagate 

further and with greater impact, whereas changes to reduce its volume would not be 

easily taken advantage of by the surrounding components. Platform B is an evolution of 

Platform A, but with a larger space reservation for the HUD. Platform C is the least 

mature, and it considers the introduction of a different architecture in this area of the 

car, which is enabled by a Steer-by-Wire (SbW) system. 

The three technological alternatives considered in this study are listed in Table 

3. The technologies differ in terms of allocated volume (crucial for determining the 

platform margin), provided customer attributes (FoV percentage), and cost and maturity 

(crucial for determining technology uncertainty).  

Table 3 Technology alternatives. 

 Volume 

(litres) 

FoV as 

percentage of 

windshield 

used 

Current 

Maturity 

(TRL) 

Cost (relative) 

Technology 1 

(2G) HUD 

 

~1-8 ~0.75-3% TRL 9 Modest 

Technology 2 

(2G) AR-HUD 

 

~6-20 ~1.5-8% TRL 9 High 



Technology 3 

(3G) 

Holographic 

Wave Guide 

AR-HUD 

 

~1-33 ~3-15% TRL 7-8 High 

 

The first alternative technology considered is a traditional windscreen HUD based on a 

mirror assembly and an image generated by a display (for example, Thin-Film 

Transistor, TFT). This alternative embodies a mature technology for moderate cost and 

space requirements, but has limited performance in terms of image size, field of view, 

and distance to the virtual image. A second alternative is an Augmented Reality (AR) 

HUD, which enables variable dimensionality of the projection (in contrast to a fixed 

position in the traditional HUD) and features a Digital Light Processor (DLP) projector 

as the image source. This alternative has a higher cost of acquisition, as well as much 

greater space requirements, as it still requires the same kind of optical mirror 

arrangement as traditional HUDs but is scaled up to accommodate larger image sizes 

and fields of view. The third alternative is a laser-based projector with holographic 

waveguides (Skirnewskaja and Wilkinson 2022). This third alternative is the least 

mature option, with lower space requirements for image size and field of view 

comparable to those of the second alternative (together with other benefits such as lower 

energy use and high luminance).  

5.4 Step 2. Identify platform margins and performance capabilities 

By using the data gathered in Steps 1.2 and 1.3, it is possible to model the performance 

of the component using the different technologies while within the boundaries defined 

by each platform under study. In Figure 3, the relationship between the volume of the 



component and its performance in terms of FoV(%) is compared to the limits set by the 

platforms on the volume of the component. 

 

Figure 3 Platform constraints and associated performance in terms of FoV(%) 

The areas represented correspond to designs with different levels of other performance 

parameters (e.g. the distance to the virtual image). Table 4 summarises the values of the 

FoV (%) and clearance (i.e. the geometrical platform margin) for designs optimised to 

maximise either the FoV or clearance. Note that even in the most favourable cases, it is 

inevitable to have considerable margins (1.801 litres), given the limitations of the 

technologies considered. 

Table 4 Values of FoV (%) and clearance (in litres) for each combination of technology 

and platform 

 Technology 1 

(2G) HUD 

 

Technology 2 

(2G) AR-HUD 

 

Technology 3 

(3G) Holographic Wave 

Guide AR-HUD 

 

 FoV 

(capability 

maximized)  

Clearance 

(margin 

maximized) 

FoV 

(capability 

maximized) 

Clearance 

(margin 

maximized) 

FoV 

(capability 

maximized) 

Clearance 

(margin 

maximized) 

Platform A  

(in 

production) 

High 

maturity  

FoV = 2.985 

Clearance = 

1.801 

FoV = 2.985 

Clearance = 

1.801 

N/A N/A 

FoV = 

14.925 

Clearance = 

1.801 

FoV = 

14.925 

Clearance = 

1.801 



Platform B  

(under 

developmen

t) 

Medium - 

High 

maturity  

FoV = 2.985 

Clearance = 

12.4556 

FoV = 2.985 

Clearance = 

12.4556 

FoV = 6.2 

Clearance = 

0 

FoV = 5.763 

Clearance = 

7.3926 

FoV = 

14.925 

Clearance = 

12.4556 

FoV = 

14.925 

Clearance = 

12.4556 

Platform C  

(conceptual

) 

Low 

maturity  

FoV = 2.985 

Clearance = 

8.8904 

FoV = 2.985 

Clearance = 

8.8904 

FoV = 3.7 

Clearance = 

0 

FoV = 5.763 

Clearance = 

3.8274 

FoV = 

14.925 

Clearance = 

8.8904 

FoV = 

14.925 

Clearance = 

8.8904 

 

5.5 Step 3: Create NPV models 

The profit for the company (in terms of Net Present Value), which is determined by the 

revenues generated from demand minus product costs, varied in time depending on the 

sensitivity of the customers to the attributes (for example, FoV versus price) given by 

the platform-technology combinations and exogenous variables outside the control of 

the company that are defined as scenarios (following an approach similar to the ones by 

Hazelrigg 1998; Suh et al. 2009).  

Three scenarios are considered for the future, encompassing changes to the 

manufacturing costs of the components (e.g. the cost of the main optical elements, such 

as mirrors in conventional HUDs), the levels of performance expected from customers, 

and the possibility of large architectural changes to the platform. 

In Table 5, the scenario variables are described, and the levels or values 

considered in this study are listed. For example, for each scenario, a subset of the three 

technologies (T1, T2, and T3) may be available. 

Table 5 Scenario variables for the HUD case. 

Scenario variable Levels Description 

x) Technology available T1, T2, T3 Sub-set of [T1, T2, T3] 

y) Demand by Year 2022-2030 Composite variable that 

combines the trends in 



consumer expectation of 

performance and price 

sensitivity 

z) Unit cost Percentage of cost versus 

baseline technology 

Driven by the main 

components of the 

technology 

 

The combination of scenario variables into the plausible scenarios of interest is 

presented in Table 6.  

Table 6 Description of scenarios. 

Scenario Description Vector of variables 

S1 Current 

status 

Currently common 

technologies available, low 

preference for FoV  

([T1, T2], 2022-2024, 100%) 

S2 Greater 

performance 

desire from 

users 

Expectations regarding FoV 

from customers rise (e.g. due 

to the alternatives from 

competitors), and procurement 

costs decrease 

([T1, T2], 2024-2026, 80%) 

S3 New 

technology 

available, even 

greater desire 

from users 

A radically new technology is 

mature, with even greater 

preferences for higher FoV 

([T1, T2, T3], 2026-2028, 80%)  

 

For example, the first scenario considers the current situation in which only 

technologies T1 and T2 are available, with market adoption for HUD technologies 

being low (only early adopters) and at 100% of the current cost. One important 

parameter that has been modelled is that preferences for higher performance 

progressively increase for Scenarios 2 and 3 (due to alternatives from competitors and 

HUD technologies maturing in the technology adoption lifecycle).  

The comparative results for all three platforms are shown in Figure 4. For 

confidentiality reasons, all value data were normalised in the results from the underlying 

monetary NPV figures. 



 

Figure 4 Results for the three platforms for the three technologies in the three scenarios. 

Figure 4 shows the Net Present Value (normalised) for different HUD volumes (in 

litres) provided by the three different technologies. Each HUD design provides a 

different FoV that impacts product demand depending on the scenario. Demand is 

calculated as the probability of purchase from the total potential sales volume, and 

constants are set for all FoV values allowed by the HUD designs. In addition, the figure 

shows a grey area indicating HUD designs that fall outside the volume constraint set by 

the reserved platform space (for example, approximately 13 litres for Platform B). The 



NPV for these incompatible designs progressively decreases, indicating the effect of the 

cost of the platform redesign if the HUD volume exceeds the reserved volume. As a 

minor detail, the volume constraint is shown as a clear cut-off value, although some 

incompatible designs may still exist within the reserved volume owing to 

incompatibility along the three-dimensional space. However, this did not affect the core 

results of the study. Table 7 indicates for each scenario the design that yields the highest 

NPV and the specific technology enabling this optimal configuration.  

Table 7 Designs with the maximum NPV (normalized) for each platform and scenario 

 Scenario 1 Scenario 2 Scenario 3 

Platform A Max NPV = 0.264 

Volume = 2.461 L 

Technology = 1 

Max NPV = 0.527 

Volume = 2.461 L 

Technology = 1 

Max NPV = 0.846 

Volume = 2.459 L 

Technology = 3 

Platform B Max NPV = 0.291 

Volume = 13.101 L 

Technology = 2 

Max NPV = 0.583 

Volume = 13.101 L 

Technology = 2 

Max NPV = 1 

Volume = 8.644 L 

Technology = 3 

Platform C Max NPV = 0.280 

Volume = 9.558 L 

Technology = 2 

Max NPV = 0.561 

Volume = 9.558 L 

Technology = 2 

Max NPV = 1 

Volume = 8.644 L 

Technology = 3 

Determining the value of these ‘platform-technology introduction roadmaps’ can 

provide insights into the margins that can be used in the later design phases. This can be 

observed when looking at a given platform when transitioning from Scenario 2 to 

Scenario 3 (Figure 5).  



 

Figure 5 Net Present Value versus HUD volume for Platform B when transitioning from 

Scenario 2 to Scenario 3. 

The figure also shows the margins (in terms of space in litres) that can be generated by 

adopting different design solutions. For example, the figure shows the margins 

generated when choosing the designs that provide an FoV for a size of 2.5% of the 

projection on the windshield (as an example of the minimum requirement that could be 

set by customers) for each technology. However, from a platform point of view, it 

would be more intuitive to select the design that provides the highest NPV (i.e. the 

highest profit with the least number of manufactured designs). For this platform in 

Scenario 2, this optimal design is provided by Technology 2 with a HUD of 11.8 litres 

(which corresponds to an FoV of 2.69%). However, the NPV provided by the different 

designs of Technologies 1 and 2 are not significantly different (although there is an 



optimal point for Technology 2). This result suggests the first benefit of the margins 

provided by Technology 2 over Technology 1. Because higher FoV values can be 

provided (for example, 2.69%), the demands for a lower FoV (for example, 2.5%) can 

still be satisfied because of this buffer. At the same time, allowing the introduction of 

Technology 2 in the platform provides a buffer for product developers in cases in which 

the optimal designs should be different in the future (e.g. due to uncertainties in the 

demand model).  

Considering Scenario 3 in Figure 5, another impact of the technology roadmap 

on the margins can be visualised. In this scenario, Technology 3 has matured, 

potentially providing a higher FoV while occupying a smaller volume. In this scenario, 

the demand for a higher FoV increases, and the optimal point shifts to the left (at 4.3 

litres with 7.87% FoV). This indicates that higher margins were created. Additionally, 

the ‘cloud’ of designs enabled by Technology 3 never surpasses 9 litres (Figure 5). This 

means that even if the optimal design should shift in the future (even going down to 

2.5% of the FoV at 8 litres), there will always be approximately 4 litres of ‘room for 

growth’ (Eckert et al. 2020) for neighbouring components or even for completely new 

components if new technologies emerge.  

5.6 Step 4: Identify the maximum allowable number of product variants 

In this step, the analysis shifts towards enhancing the external variety of the product 

platform within the constraints of the previously defined platform margin. This phase 

aims to create a diverse range of product variants through parametric modifications, 

thereby increasing the product's appeal and differentiation in the market without 

compromising the efficiency and cost-effectiveness established by the optimal platform 

margin. The results of this study are shown in Figure 6. 



 

Figure 6 Results for the three platforms to identify the maximum allowable number of 

product variants given the platform margin. 

This study used the same design points, as shown in Figure 4, however, the platform 

margin was divided into ‘bins’ of 0.5 litres each, representing potential product 

segments. In each bin, the frequency of the design points (from Figure 4) and their 

average NPV were calculated. A threshold value of NPV (corresponding to 0.56 in 

normalized terms) is selected to calculate the number of variants. Above this threshold, 

a different variant is created (considering that product demand is sufficient to justify a 

dedicated segment). For ‘bins’ with an average NPV below the threshold value, a single 

segment is considered (assuming that the product demand is not sufficient to justify a 

dedicated segment).  

These findings indicate that a deeper understanding of margins enables product 

developers to maintain a wide range of offerings without the need to expend effort to 

optimise configurations that are unlikely to be successful (Isaksson, Lindroth, and 

Eckert 2014). This can be seen in Platforms B and C, where the designs from 9.5 to 10.5 

litres are merged into one single variant (instead of two). However, looking at the 

platform margin from a pure product optimisation perspective may lead to the risk of 

product development teams misusing margins. This can be visible in Platform B. 



Because a larger margin is allowed (and the designs after 2 litres offer an average NPV 

per design above the threshold), the HUD product development team may find it 

beneficial to ‘use’ all the reserved platform margins for a granular segmentation of 

HUD components (allowing for 19 variants). Thus, a larger total NPV can be obtained 

because of this variety. However, this assumption must consider the original 

considerations of platform planners when designing platforms. Increasing the total 

number of variants has a profound impact on the economies of scale that can be 

obtained in production, which in turn affects the total NPV that can be obtained from 

each variant. These considerations were examined in the final step of the approach. 

5.7 Step 5: Identify the optimal allowable number of product variants and the 

maximum allowable reserved platform margin 

This step builds upon Steps 3 and 4, but incorporates a platform-centric view of variety. 

This perspective emphasises the strategic reduction of product variants to capitalise on 

economies of scale. The goal is to optimise the balance between offering sufficient 

external variety to meet market demands and maintaining a streamlined production 

process that maximises economic and operational efficiencies by minimising internal 

variety. There is an optimal point for the number of variants where the positive effects 

of external variety (the cumulative NPV derived by the sale of individually optimised 

variants) are counterbalanced by the negative effects brought about by a reduction in 

economies of scale. In terms of margin, identifying this optimal number of variants 

allows us to reserve part of the margin for unknown unknowns or the growth of other 

neighbouring components (e.g. the HVAC).  

To perform this step, the same ‘clouds’ of design points as in Figure 4 were used 

but in this case, we considered only the designs that provide the highest NPVs for each 

‘bin’ of HUD designs incrementally increasing by 0.5 litres. To select the optimal 



number variants, two additions are made to the NPV model created in Step 3: 1) a 

learning curve scaling rule (Argote and Epple 1990) applied to the production cost and 

2) a margin-optimisation-focused ordering of the design variants. The results of these 

two additions are shown in Figure 7.  

 

Figure 7 Margin-optimisation-focused ordering of variants.  

The idea behind this margin optimisation-focused ordering is that while in Step 3 the 

NPVs for the designs have been obtained by modelling customer preferences (Figure 6), 

there could still be some uncertainties (e.g. in the technology or market conditions) that 

have not been modelled. Therefore, there is a need to select design variants that 

maximise the summed total NPV given by all selected variants while maintaining the 

highest possible margin. Therefore, the first variant selected was the one that allowed 

for the maximum margin. For Platform A in Figure 7, this is represented by the blue dot 

on the far-left side of the figure. Therefore, the NPV is given by the price (P), demand 

D1, and cost C1 (comprising the production costs). The learning curve rule used to adjust 

cost C1 is dependent on the cost of producing a single unit of the variant on the 



production line (C1, ONE UNIT) and a learning factor depending on the technology chosen 

bT1. The second variant was chosen by considering the blue dot immediately to the 

right, as it is the design that allows the second-largest margin. However, the combined 

NPV of producing these two variants must consider the following: 1) the potential 

demands D1 and D2 (if only that variant is produced) are now divided in half, and 2) the 

variant costs C1 and C2 are now much higher (because the production volume has been 

roughly halved). The same rule is applied when the production of a third variant is 

considered (the blue dot immediately on the right, which divides the potential demand 

by three) and the production of a fourth variant (the green dot immediately on the right, 

which divides the potential demand by four). In addition, this technology has a different 

learning rate, bT3). The sorting-by-value algorithm, by definition, will always have a 

higher value for the first variants. The advantage of the sorting-by-margin algorithm is 

that at a certain point, it is possible to achieve both high value and high margin, while 

using the sorting-by-value algorithm, many margins are sacrificed too early. 

Applying this sorting procedure to all three platforms allowed us to obtain the 

results shown in the top row (a) of Figure 8, while the sorting-by-value of each 

additional variant is represented in the bottom row (b). The graphs represent the 

cumulative NPV for sets of variants for each platform on their left axis and the 

remaining margin available for that set of variants on the right axis. The stacked bars 

represent the contribution to the total NPV of each variant (with its unique colour) in the 

set. 



 

Figure 8 (a) Sorting-by-margin and (b) sorting-by-value of variants.  

The focal point of the figure is to show how the platform margin is ‘consumed’ to create 

product variants that adhere to precise customer preferences (e.g. following a product-

focused view). However, the figure shows that there is an optimal point after which 

creating margins to create many product variants is not beneficial from a platform 

perspective (because the NPV from each variant becomes low owing to the loss of 

economies of scale). Merging the platform and product perspectives allows us to obtain 

a more balanced perspective on margins. Powered by a model such as the one shown in 

Figure 8, the design teams may decide not to ‘consume’ all the margins to create 

variants for the HUD, but to reserve part of the margin as a buffer. To determine this 

optimal margin, Figure 8 intersects the point of the highest NPV with the available 

margin. The results show that the number of variants for each platform tends to be 

lower than that calculated in Step 4 for platforms with high margins (Platform B 



fluctuates from 19 to 9 and Platform C from 12 to 9). 

 

Figure 9 Comparison of NPV and margins for the two sorting algorithms 

In Figure 9, both the NPV and margins for the two sorting algorithms are represented 

for each platform (in blue for the difference in margins and red for the difference in 

NPV). For low external variety, optimisation in terms of single products is 

advantageous (resulting in high NPV and some margin), but as soon as high external 

variety is desired, prioritising the margins of the selected variants leads to NPV close to 

that from the previous approach, but with a much better margin still available. 

In this model, the effects of uncertainties can also be considered to determine the 

optimal margin. We consider uncertainties following this assumption: if only one 

variant is produced, there is a greater change in the NPV that is lower than that 

calculated considering a nominal scenario (because the variant does not adhere to the 

precise preferences of the entire customer base). If two variants are produced, the 

possibility of a lower NPV is reduced (because the two variants are close to the 

preference of the two customer segments). If many variants are produced, the possibility 

of worst-case scenarios is reduced, and there is a greater possibility of the actual NPV 

being greater than that calculated for a nominal scenario. In Figure 8, this is visible by 

the gray area (the confidence interval) being skewed from the nominal scenario (the red 

line), considering more optimistic scenarios when the variety increases (until a certain 



point, where the NPV starts to decay due to the loss of economies of scale). This 

skewed confidence interval shows how the margin can be partially consumed to allow 

for variants that ‘absorb’ the possibility of worst-case scenarios. This means that the 

optimal margin is slightly reduced from the nominal scenarios, thus allowing for a 

minor increase in the NPV. For Platform B, the optimal residual platform margin is 8.7 

litres, and for Platform C, it is 5.3 litres. For Platform A, all margins were consumed 

with a much lower NPV than those of the other two platforms. This result indicates that 

Platform A did not provide high overall flexibility because of its overly constraining 

limitations. In terms of design margins, this platform does not provide valuable margins 

for its product variants, allowing for the useful evolution of the platform considering the 

technology path.  

In contrast, Platform B enables a considerable number of variants, but many of 

them do not increase the value of the system. Under-constraining the platform causes, in 

this case, a waste of reserved space, impacting the options of the neighbouring 

components to utilise that space. This means that this platform, compared to Platform 

A, suffers from the opposite imbalance: the margin provided allows for the evolution of 

the platform, yet not always in valuable ways.  

Finally, Platform C shows that with balanced margin delimitation, a high value 

can be achieved by offering adequate variety for the HUD without restricting the 

freedom to address uncertainties. In this platform, the margin level assigned to the 

platform was carefully selected by considering the following:  

(1) The need for technological evolution (which may increase the available margin, 

as shown in Step 3). 

(2) The need to provide adequate variety that adheres to the precise preferences of 

the customer base (while not undermining the possibility of achieving 



economies of scale). In addition, providing such an adequate variety can absorb 

the uncertainties related to the customer base itself and the value model used to 

calculate the cost-revenue profiles expected from each variant.  

(3) Cost of violating platform constraints.  

The results from this step highlight how the understanding of margins can be the key to 

diversifying product offerings while mitigating the need for exhaustive optimisation of 

configurations with anticipated low sales volumes.  

6 Discussion 

To address the research question, “How can decisions about which optimal platform 

margin to reserve be supported?”, the study proposes a value-based modelling 

methodology that integrates Net Present Value (NPV) assessments with a 

comprehensive understanding of both discrete and parametric variables. This model 

helps evaluate and allocate platform margins by considering the balance between 

external variety (meeting diverse customer preferences) and internal variety 

(maintaining production efficiencies). The methodology includes steps to identify key 

product properties, platform alternatives, technology options, and scenario variables, 

which collectively inform the optimal margin reservation by incorporating the potential 

impact of uncertainties and technological evolution. The results presented in the 

previous section demonstrate that optimal margin reservation is achieved by 

strategically balancing the highest NPV and flexibility necessary for future technology 

integration. 

The research presented in this paper highlights the utility of value-modelling 

approaches in assessing platform margins to balance individual product optimisation 

against platform commonality. The value model demonstrated in this study provides a 



novel methodology that integrates both discrete and parametric variables, offering a 

comprehensive way to evaluate platform margins. An industrial case study on 

automotive Head-Up Displays (HUDs) showcases the practical application and 

implications of the proposed methodology. It highlights the trade-offs involved in 

balancing platform and product optimisation, illustrating the varying outcomes across 

different platforms (A, B, and C) based on their margin allocations and technological 

adaptability. 

Eckert et al. (2013) and Eckert and Isaksson (2017) have extensively explored 

the concept of design margins, emphasizing their critical role in managing uncertainties 

and enabling design flexibility. Their work underscores that while margins are essential 

for accommodating unexpected variations and future technological requirements, they 

also pose a risk of overdesign if not managed properly. Our study builds on this 

foundation by providing a structured approach to optimise these margins, ensuring that 

they are neither excessively generous nor insufficiently allocated. By integrating value 

modelling, we offer a more nuanced understanding of how to balance these margins 

effectively to maximise the overall system value. 

Our findings contribute to the existing body of literature on product platform 

optimisation. Previous studies, such as those by Isaksson, Lindroth, and Eckert (2014), 

have emphasised the challenges of balancing individual product optimisation with 

platform commonality. The dual-level representation of margins in our study extends 

the work of Brahma and Wynn (2020) on mitigating risks and uncertainties through 

design margins. Additionally, the methodology aligns with the strategic insights 

provided by Meyer and Lehnerd (1997) on leveraging common components to achieve 

economies of scale. Our approach further supports the arguments of Suh, de Weck, and 



Chang (2007) on the economic benefits of flexible product platforms by providing a 

more detailed and actionable methodology for margin allocation. 

This study highlights that platform margins are crucial for accommodating 

external variety and ensuring long-term system value. Using a holistic approach that 

merges platform planning and product development perspectives, the proposed model 

offers a balanced and integrated way for optimising margins. This integration is critical 

for preventing suboptimal use of margins and ensuring that they are preserved for future 

technological advancements and market shifts. 

An industrial case study on automotive Head-Up Displays (HUDs) demonstrates 

the practical application and implications of the methodology. This underscores the 

importance of carefully selecting margin levels to accommodate both current and future 

needs, thereby enabling a more resilient and adaptable product platform. For example, it 

provides a clearer picture for design teams to renegotiate when the design team of 

another component (e.g. the HVAC) wants to claim the ‘use’ of ‘some’ platform margin 

originally reserved for one component (e.g. the HUD). The findings show that balanced 

margin delimitation can achieve a high value by offering adequate product variety 

without compromising the ability to address uncertainties. 

Furthermore, Eckert, Isaksson, and Earl (2019) highlight the hidden issues in 

industry related to design margins, particularly the tendency towards overdesign which 

can lead to inefficiencies and increased costs. Our case study on automotive HUDs 

demonstrates this risk, particularly with Platform B, which, while flexible, risks 

inefficient use of space owing to poor margin optimisation. Our findings suggest that by 

adopting a value-based approach, companies can mitigate the risk of overdesign 

highlighted by Eckert et al. (2020), ensuring that margins are used judiciously to 

support both current and future needs using buffers without unnecessary excess. 



Although the presented value model contains significant insights, it also has 

limitations. One limitation is the simplification of technology trajectories and the three-

dimensional complexity of selectable technologies. While these simplifications are 

necessary for the feasibility of the model, they may not fully capture the intricacies of 

real-world applications. Additionally, the case study’s focus on HUDs, although 

illustrative, limits the generalisability of the findings to other product types. Mitigations 

to these limitations include further refinement of the model to incorporate more detailed 

technological projections and extending the application of the methodology to diverse 

industrial contexts to test its robustness.  

Another potential drawback is the model’s reliance on Net Present Value (NPV) 

as a primary metric for decision-making. While NPV is useful for projecting financial 

performance, some authors claim that it does not fully incorporate future risk and 

strategic flexibility. Critics suggest that NPV-based approaches may overlook 

managerial flexibility in adapting to unforeseen changes, potentially leading to 

suboptimal decisions. Du and Jiao (2022) proposed integrating real options theory into 

value-driven models to better capture strategic flexibility and operational uncertainty, 

thus enhancing the model’s robustness and applicability in diverse engineering contexts. 

However, this study addresses these concerns by introducing the concept of design 

margins, particularly platform design margins, which encompass strategic flexibility. 

The implications of our findings are significant for engineering companies that 

aim to optimise platform margins in a dynamic market environment. The proposed 

model provides a holistic methodology that supports informed decision-making, helping 

design teams balance immediate product requirements with long-term system value. 

Moving forward, companies should consider adopting value-modelling approaches to 



enhance strategic and tactical alignment in platform planning and product development. 

Recommendations for both researchers and practitioners include the following: 

(1) Further Refinement and Validation: Continued development of the value model 

to include more comprehensive technological and market scenarios. 

(2) Broader Application: Testing the methodology in various industrial settings to 

validate its applicability across different product platforms. 

(3) Training and Implementation: Providing training for design teams on using 

value-modelling tools to ensure a thorough understanding of margin 

optimisation and its implications. 

(4) Integration with Existing Processes: Seamlessly integrating the value model into 

existing product development and platform planning processes to enhance 

decision-making efficiency. 

7 Conclusion 

This paper presents a value-based modelling approach to optimise platform margins, 

addressing the dual objectives of individual product optimisation and platform 

commonality. The proposed methodology integrates discrete and parametric variables, 

offering a comprehensive way to effectively evaluate and allocate platform margins. 

This dual-level representation of margins, coupled with a value model, has not been 

explored previously and provides a significant contribution to the field of engineering 

design and product platform optimisation. 

This study advances state-of-the-art research by introducing a new platform 

margin representation methodology. This work extends the current research in margins 

of 1) increasing the traceability of the reasons behind the ‘use’ of a platform margin 



during the design process and 2) representing the ability of margins to absorb changes 

in both discrete variables (e.g. technology types) and parametric variables.  

Furthermore, this work extends the state-of-the-art in platform modelling by 

simultaneously considering alternative platform designs instead of the prevailing 

research work on the optimisation of the architecture of a single platform at a time. 

However, industrial reality (as reported by participants in the HUD case study) suggests 

that multiple platforms are designed simultaneously, and the work of platform planners 

is to assess how long a particular platform design can last before changes in the 

technology landscape make it more profitable to introduce a new platform. Our 

approach has this ability (for example, Platform A in the case study provides a 

satisfactory NPV in Scenarios 1 and 2 compared to the other two platforms, while being 

severely suboptimal in Scenario 3). 

In conclusion, this research advances the understanding of platform margin 

optimisation by providing a methodology that supports informed decision-making. The 

insights gained from this study can guide design teams in optimising platform margins 

to meet evolving technological demands, reduce costs, and maximise the overall system 

value. This approach is essential for engineering companies that aim to balance 

conflicting objectives in a dynamic market environment. Future research should focus 

on further refining this methodology and exploring its applications in diverse industrial 

contexts to enhance its robustness and applicability. 
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