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ABSTRACT: Personal care products (PCPs) contain diverse volatile organic
compounds (VOCs) and routine use of PCPs indoors has important implications
for indoor air quality and human chemical exposures. This chamber study
deployed aerosol instrumentation and two online mass spectrometers to quantify
VOC emissions from the indoor use of five fragranced PCPs and examined the
formation of gas-phase oxidation products and particles upon ozone-initiated
oxidation of reactive VOCs. The tested PCPs include a perfume, a roll-on
deodorant, a body spray, a hair spray, and a hand lotion. Indoor use of these
PCPs emitted over 200 VOCs and resulted in indoor VOC mixing ratios of
several parts per million. The VOC emission factors for the PCPs varied from 2
to 964 mg g−1. We identified strong emissions of terpenes and their derivatives,
which are likely used as fragrant additives in the PCPs. When using the PCPs in the presence of indoor ozone, these reactive VOCs
underwent oxidation reactions to form a variety of gas-phase oxidized vapors and led to rapid new particle formation (NPF) events
with particle growth rates up to ten times higher than outdoor atmospheric NPF events. The resulting ultrafine particle
concentrations reach ∼34000 to ∼200000 cm−3 during the NPF events.
KEYWORDS: Indoor ultrafine particles, Oxidized vapors, Ozone, Inhalation exposure, Chamber study

1. INTRODUCTION
Personal care products (PCPs) encompass consumer products
used for personal hygiene, grooming, and beautification and
are widely used indoors. These products exhibit a wide variety
of chemical compositions. Headspace analyses have demon-
strated that PCPs emit hundreds of volatile organic
compounds (VOCs).1−3 Notable VOCs commonly observed
include monoterpenes, acetaldehyde, siloxanes, alcohols (e.g.,
ethanol, n-propanol), and alkanes (e.g., butane).4−6 Indoor use
of PCPs is therefore a potentially important source of human
exposure to VOCs. The use of PCPs can result in episodic
strong emission events, causing indoor VOC levels to reach
one or 2 orders of magnitude higher than those found
outdoors.7

Monoterpenes (C10H16) are a class of VOCs commonly
added to personal care products (PCPs) as fragrances,8 that
are highly reactive with gas-phase oxidants.9−12 The reactions
between monoterpenes and ozone play an important role in
indoor air chemistry, as they represent a substantial gas-phase
loss of ozone, induce the formation of secondary VOCs, and
initiate new particle formation. The use of products like air
fresheners, diffusive oils, and cleaning products can release
monoterpenes, such as lemon-scented limonene, which
subsequently react with indoor ozone, leading to the formation
of secondary organic aerosols (SOAs) within the building and
increasing the occupants’ inhalation exposure to particles.13−15

Using fragranced PCPs indoors may also lead to particle
formation in a similar manner. Moreover, the ozonolysis of
monoterpenes leads to the production of reactive oxygen
species (ROSs), such as organic peroxides and hydroperoxides,
which can exist in both gas and particle phases.16 Due to their
biochemical reactivity, ROSs can damage lung cells, potentially
resulting in adverse health effects for individuals exposed to
these compounds.17,18 On the other hand, indoor emitted
VOCs from PCPs may be transported outdoors due to
building ventilation and contribute to atmospheric organic
gases and the formation of SOAs, which has been addressed in
several recent modeling and chamber studies.19−32

A better understanding is needed regarding indoor emissions
of VOCs from the use of PCPs and the subsequent formation
of oxidized organic vapors and particles due to secondary
chemistry with ozone. The objective of this study is to provide
novel insights into how using PCPs indoors alters the chemical
composition of indoor air through a series of chamber
experiments, where we used online high-resolution mass
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spectrometers and cutting-edge aerosol instrumentation to
characterize the VOC emission dynamics, transient human
inhalation exposure, formation of gas-phase oxidation products
upon ozone-initiated oxidation, and new particle formation
from the use of selected fragranced PCPs indoors.

2. METHODS AND MATERIALS
2.1. Chamber and Experimental Description. The

experiments were conducted in the indoor environmental
chamber at EPFL Fribourg, Switzerland. The chamber
represents a modern office environment with an area of 24.7

Figure 1. (A, B) Concentrations of directly emitted VOCs from the PCPs measured by the Vocus PTR; (C) Time-series plot of aerosol number
size distribution (dN/dLog(Dem)); (D) concentrations of nanocluster aerosol (NCA, <3 nm; blue line), ultrafine particle (UFP, 3−100 nm; red
line), PM1 mass concentration (<1 μm; green line) with a reference UFP concentration measured in urban Pittsburgh44 (blue dash-dotted line)
and a PM1 mass concentration measured in urban Zürich45 (gray dashed line); and (E−F) concentrations of selected gas-phase oxidation products
measured by the Vocus PTR in an oxidation experiment. The consumption of the roll-on deodorant, hand lotion, hair spray, perfume, and body
spray were 0.264, 9.72, 2.04, 0.167, and 1.11 g, respectively. The vertical bars in Panels A and D indicate when the PCPs were applied. The ozone
level was between 35 and 40 ppb.
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m2 and a volume of 62 m3. The chamber adopts a single-pass
mechanical ventilation system, providing 100% outdoor air. It
is equipped with two particulate filters (F7 and high-efficiency
particulate filters) and one activated carbon filter to remove
particles, ozone, and VOCs in the supply air. The PCPs being
tested were randomly selected at a grocery store, including a
deodorant body spray (hereafter body spray), a hand lotion, a
roll-on deodorant, a perfume, and a dry shampoo hair spray
(hereafter hair spray). Details about the type of PCPs and their
ingredient chart are presented in the Supporting Information
(SI).
Two types of experiments were conducted. Primary emission

experiments examined the direct VOC emissions resulting
from the use of PCPs, where the ventilation system maintained
the chamber air exchange rate (AER) at 3 h−1. The second
type of experiments�oxidation experiments�probed the
ozone-initiated oxidation of VOCs originating from the
PCPs, where an ozone generator maintained the chamber’s
ozone level at 35−40 ppb with an AER of 0.65 h−1. In the
experiments, the application of the PCPs was simulated in the
chamber by a volunteer, who wore a protective suit, activated
carbon facemask, and nitrile gloves to minimize human-related
VOC emissions and ozone-human surface reactions. For the
body spray, perfume, and hair spray, the volunteer directly
sprayed these products in the chamber air at a height of 160
cm above the floor. For the hand lotion and roll-on deodorant,
the products were applied and spread on a Kimwipe (40 × 40
cm2) on a clean glass plate using a glass rod in the chamber.
The glass plate with the Kimwipe was left in the chamber for
an hour. In this study, the VOC emissions from the hand
lotion and roll-on deodorant only represent the emissions
within the first hour of application. The products were weighed
on a balance to calculate the consumption before and after
each use.

2.2. Measurements and Instrumentation. In the
chamber, the aerosol size distribution over the size range of
1.4 nm to 10 μm was monitored in real-time with an A11
nanocondensation nucleus counter (nCNC; Airmodus Ltd.,
Helsinki, Finland; 1.4−3 nm), a scanning mobility particle
sizer (SMPS; Grimm Aerosol Technik, Hamburg, Germany;
3−55 nm), and a wide-range aerosol spectrometer (MiniW-
RAS; Grimm Aerosol Technik, Hamburg, Germany; 55−
10000 nm). Ozone and NOx concentrations were monitored
by a Tanabyte 72X analyzer (Tanabyte Engineering, Inc., FL,
USA) and a 2B Tech 405 analyzer (2B Technologies, CO,
USA), respectively.
A Vocus proton-transfer-reaction mass spectrometer (Aero-

dyne Research Inc., MA, USA; hereafter Vocus PTR) and a
Vocus iodide-adduct chemical ionization mass spectrometer
(Tofwerk AG, Thun, Switzerland; hereafter I-CIMS) with an
Aim reactor were deployed to measure the gas-phase organic
compounds. All the experiments were repeated with each
instrument, except for the hand lotion and roll-on deodorant
primary and oxidation experiments, which were only
conducted with the Vocus PTR. We estimated the volume
mixing ratio for the VOCs monitored by the Vocus PTR based
on measured or assumed instrument sensitivities (SI). The
abundance of the compounds monitored by the I-CIMS was
reported as counts per second (cps). During the primary
emission experiments, the chamber air was also sampled using
Tenax TA sorbent cartridges (PerkinElmer) and analyzed with
a Thermal-Desorption Gas-Chromatography Mass-Spectrom-
eter (TD-GC-MS; Markes International, Unity 1 and Ultra

thermal desorber; Agilent 6890 gas chromatograph; Agilent
5973 N mass selective detector). Details about sampling and
the operation of the instruments are presented in the
Supporting Information (SI).

3. RESULTS AND DISCUSSION
Primary Emissions of VOCs. We were able to differentiate

the directly emitted VOCs and secondarily formed gas-phase
organic compounds by comparing the concentration profiles
obtained during the primary emission and oxidation experi-
ments. The Vocus PTR identified more than 200 directly
emitted VOCs associated with the selected PCPs. Figure 1A
illustrates the concentration profiles of several directly emitted
VOCs with low indoor reactivities in an oxidation experiment.
The molecular formulas in the legend were determined based
on the mass-to-charge ratio measured by the Vocus PTR, while
the compound names in the legend were assigned based on
TD-GC-MS analysis (Table S1).
Among the “spray-type” PCPs, namely hair spray, perfume,

and body spray, significant emissions of ethanol were observed.
At an AER of 0.65 h−1, the ethanol concentration reached
2000−4000 ppb (2−4 ppm) immediately after applying the
three PCPs. However, the concentrations were still several
orders of magnitude lower than the occupational short-term
exposure limit of 1000 ppm.33 Strong emissions of propylene
glycol (PG) and dipropylene glycol (DPG) were detected from
the perfume and body spray. These compounds are commonly
used as solvents and carriers for fragrant chemicals in cosmetic
products and PCPs.34 Ethanol facilitates rapid evaporation,
providing an initial burst of fragrances, while PG and DPG
serve as fixatives, prolonging the on-body evaporation.35−37

Additionally, 1,1-dimethoxyoctane38 and o-cymene were two
fragrances emitted from the hair spray and body spray,
respectively. The hand lotion exhibited a notable emission of
C8H10O2, likely phenoxyethanol, a fragrant compound
commonly used as a preservative in cosmetics.39,40 The VOC
emission dynamics from the “spray-type” products are different
from the roll-on deodorant and hand lotion. The use of “spray-
type” products resulted in a pulse release of VOCs, followed by
a first-order decay pattern. In contrast, using the roll-on
deodorant and hand lotion led to relatively stable VOC
emissions throughout the 1 h emission period.
Significant emissions of terpenes and their derivatives from

the PCPs were observed (Figure 1B). Monoterpenes were
emitted from all five products, with peak concentrations
ranging from approximately 0.06 to 37 ppb following product
use. TD-GC-MS analysis identified several emitted mono-
terpenes, including β-myrcene, α-pinene, β-pinene, limonene,
and γ-terpinene. Additionally, emissions of monoterpenoids
were also observed, and some of them were identified by TD-
GC-MS analysis, including C10H16O, C10H18O (eucalyptol and
linalool), C10H20O (citronellol and dihydro-α-terpineol), and
C12H20O2 (α-terpinyl acetate and linalyl acetate). Beyond the
commonly identified fragrances in previous PCP studies, we
discovered remarkable emissions of sesquiterpenes (C15H24)
and several terpene-related chemicals with a carbon number
greater than 13, such as C13H20O, C14H22O, C14H24O2,
C16H26O, and C17H26O. Sesquiterpenes are very sensitive
components of particle production rates as they are efficient
precursors of ultralow volatility organic compounds upon
ozone-initiated oxidation.41 The concentration of sesquiter-
penes, C16H26O, and C17H26O could reach 0.3−0.7 ppb and
1.3−4.3 ppb after spraying the perfume and body spray,
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Figure 2. continued
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respectively. Even though their identities cannot be obtained
through the TD-GC-MS analysis, C13H20O, C14H22O,
C16H26O, and C17H26O are potentially associated with ionone,
α-isomethyl ionone, tetramethyl acetyloctahydronaphthalenes
(OTNE), and acetyl cedrene, respectively, which are fragrant
chemicals commonly used in perfume and cosmetic
products.42,43 A notable feature of the terpenes and their
derivatives found in this study is that the majority of them
contain unsaturated C�C double bonds, which may readily
react with indoor gas-phase oxidants, such as ozone. Even
though we were not able to determine the concentrations of
some of the individual terpenes and derivatives due to the
existence of isomers, linalool and β-myrcene are the two
compounds exhibiting the highest rate coefficients among the
aforementioned compounds for reactions of O3 (Table S2; 4.1
× 10−16 and 4.7 × 10−16 cm3 molec.−1 s−1), which are
important in terms of gas-phase ozone loss.
Gas-phase VOC emission factors (EFs) for each tested PCP

were estimated based on measurements obtained with the
Vocus PTR during the primary emission experiments (Figure
2). The EF of a VOC represents the ratio of the emitted mass
of the VOC to the mass consumption of the product of the use
(details in the SI). It is important to note that the Kimwipes
and glass plates used for the roll-on deodorant and hand lotion
were only placed in the chamber for 1 h during the
experiments and the glass plates were not heated to body
temperature. As a result, their EFs solely represent the first-
hour emissions and serve as the lower bound of the actual EF.
The perfume exhibited the highest total EF of 964 mg g−1,
indicating that the liquid consists predominantly of VOCs in
ethanol and evaporates rapidly after use. The body spray
showed the second-highest total EF (318 mg g−1), followed by
hair spray (65 mg g−1), roll-on deodorant (19 mg g−1), and
hand lotion (2 mg g−1). Ethanol was the dominant VOC
emitted from the hair spray, perfume, and body spray,
accounting for 95%, 84%, and 95% of the total EF, respectively.
The total EF of the hand lotion and roll-on deodorant was
dominated by C8H10O2 (tentatively phenoxyethanol) and
C2H4O (acetaldehyde), respectively. The monoterpene EFs of
roll-on deodorant, hand lotion, hair spray, perfume, and body
spray were 1241, 148, 1204, 32219, and 4953 μg g−1,
respectively. They exhibit the second-highest EF in hand
lotion, perfume, hair spray, and body spray, and the third-

highest EF in the roll-on deodorant. Interestingly, none of the
tested PCPs emitted cyclic methyl siloxanes (Figure S1), which
are a class of VOCs found in multiple indoor air studies
originating from PCPs.46,47

It is important to acknowledge that the reported EFs only
account for VOCs with a proton affinity greater than water,
detectable by the Vocus PTR. However, the PCPs may also
emit alkanes, which possess a proton affinity less than water
and are therefore undetectable. For example, the ingredient
chart of the hair spray includes propane and butane (Table
S3), commonly used in many pressurized spray cans but not
detectable by the Vocus PTR with hydronium (H3O+) primary
reagent ions. Additionally, the Vocus PTR may not be sensitive
to certain organic compounds emitted from the PCPs if they
undergo fragmentation in the focusing ion molecule reactor
(FIMR) or adhere to inlet tubing walls. During the primary
emission experiments with the I-CIMS, we identified the
emission of several organic compounds with a carbon number
greater than 15 from the body spray, for example, C15H28O5,
C20H40O, C20H42O, C21H44O, C22H46O, which were not
detected by the Vocus PTR (Figure S2). They have not
been reported in previous indoor air studies. C20H42O,
C20H40O, C21H44O, and C22H46O may be associated with
octyldodecanol, phytol, 1-heneicosanol, 1-docosanol, respec-
tively, which are used as fragrant additives in perfume or serve
as emulsifier, emollient, thickener in cosmetics.48−50 It should
be noted that the VOC EFs reported in this study may
represent the lower bound of the actual EF due to potential
limitations in the detection capabilities of the instruments.

Particle Formation and Dynamics. When using the
tested PCPs with elevated indoor ozone levels, rapid new
particle formation (NPF) events were observed, except when
applying the roll-on deodorant. Figure 1C presents a time-
series plot of aerosol size distribution in an oxidation
experiment, exhibiting four clear “banana” curves. Aerosol
nucleation was observed immediately after the use of the hand
lotion, hair spray, perfume, and body spray. Then the
nucleated aerosols grew fast and led to the significant
formation of ultrafine particles (UFPs; < 100 nm). The
particle growth rate51 from 3 to 7 nm ranged between 30 and
40 nm h−1, and from 7 to 20 nm between 15 and 23 nm h−1,
which are considerably higher than those reported in
atmospheric aerosol studies in urban or remote environments

Figure 2. VOC emission factors (EFs) of the tested PCPs, estimated from the measurements of the Vocus PTR in the primary emission
experiments. The yellow bars indicate that the compounds may contain unsaturated C�C double bonds and their oxidation products have been
detected. The assignment of the species was based on the offline VOC analysis with the TD-GC-MS and previous literature on indoor air
measurements with a proton-transfer-reaction mass spectrometer (PTR-MS).
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(Table S4). The peak number concentrations of UFPs during
the four NPF events ranged from ∼34000 to ∼200000 cm−3,
surpassing the UFP concentrations in many urban atmospheric
environments.44,52 The NPF events dramatically elevated
indoor PM1 concentrations (mass concentration of all the
aerosols with an aerodynamic diameter smaller than 1 μm). In
the last experiment with body spray, the PM1 concentration
exceeded 20 μg m−3, which was three times higher than the
previously reported annual average PM1 concentration in
urban Zürich.45

The variation of the SOA formation potential among
different PCPs was attributable to the differences in VOC
precursors, their emission rates, and emission factors. The
formation potential is also influenced by oxidant concentration,
NOx concentration, and environmental conditions, such as
AER, since they can affect the abundance of precursor VOCs,
the formation rate of condensable vapors, room air retention
time, and aerosol condensation sink. In a supplementary
oxidation experiment with a lower ozone concentration (25−
30 ppb) and a higher AER (1.83 h−1), the PM1 mass
concentrations in the experiments for perfume, hair spray, and
body spray were lower by more than 50% (Figure S2) than
those in the experiments shown in Figure 1, with even greater
consumption of the PCPs (Figure S2), as the formation rate of
condensable vapors and condensable aerosol surface area were
lower, leading to lower particle mass concentrations.

Gas-Phase Oxidation Products. The oxidation experi-
ments revealed a wide range of gas-phase oxidized organic
compounds with a varying number of carbon elements (1 to
17) and oxygen elements (up to 8) (Figures S4 and S5). The
concentration profiles of the oxidation products follow the use
of the PCPs (Figure 1E-F and Figure S2C−I). Among the
oxidation products, C10H16O3, CH4O3 (tentatively hydrox-
ymethyl hydroperoxide), and C9H14O5 exhibited the highest
signal intensity. We speculated that the oxidation products
were primarily formed through the ozonolysis of terpenes and
their derivatives that are used as fragrant additives in the PCPs.
Additionally, we also observed several N-containing oxidation
products (e.g., C10H17NO5−7) in a further supplementary
oxidation experiment with the I-CIMS (Figure S2H), which
may have formed through nitrate-radical-induced autoxidation,
as we observed the formation of N2O5 with the I-CIMS in the
chamber before the experiment.53,54

Monoterpenes are the dominant reactive VOCs emitted
from the PCPs with respect to ozone. Given the highest EFs of
monoterpenes among all the reactive VOCs that are emitted
from the PCPs and their high reaction rate coefficients with
ozone (Table S2), we speculated that monoterpenes were the
most consumed VOCs in the gas-phase reactions. Figure 1E
and Figure S2C−F show the abundance of monoterpene
oxidation products measured with the Vocus PTR and I-CIMS,
respectively. Many of these compounds have been reported in
field measurements and chamber experiments in atmospheric
chemistry studies, such as C10H16Ox, C9H12Ox, C9H14Ox, and
C8H12Ox, as indicated in the mass defect plot of organic vapors
measured by the Vocus PTR and I-CIMS (Figure S3). It is
known that ozonolysis of monoterpene produces highly
oxygenated organic molecules (HOMs), which play an
important role in aerosol nucleation and growth in outdoor
environments.55−58 Despite not being effectively detected by
the Vocus PTR and I-CIMS, we speculate based on
experiments reported in the literature that HOMs with more
than 8 oxygen atoms will have formed, and together with the

detected low-volatility monoterpene oxidation products,
significantly contribute to particle formation.
Aside from monoterpene oxidation products, we found that

sesquiterpene and other terpenoids from the PCPs also
underwent oxidation reactions, leading to multiple highly
oxygenated oxidation products not commonly reported in
previous studies. C10H18O4−6, C10H20O3−6, C12H20O3−7,
C14H22O4−5, and C15H24O3−5 (Figure 1F and Figure S2G−
H) might be associated with the oxidation of linalool,
citronellol, α-terpinyl acetate, linalyl acetate, and sesquiter-
penes, which were identified in the primary emission
experiments.59−63 Moreover, newly identified compounds,
such as C13H20O3−5, C16H26O3−4, and C17H26O3−4, found in
the perfume and body spray oxidation experiments, are
hypothesized to be produced from the oxidation of C13H20O
(tentatively ionone), C16H26O (tentatively OTNE), and
C17H26O (tentatively α-isomethyl ionone), respectively.
These oxidation products are classified as low-volatility organic
compounds and semivolatile organic compounds (Figure S4),
and they also could contribute significantly to the formation
and growth of particles in PCP oxidation experiments.64
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