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Exhaustive local chemical space exploration
using a transformer model

Alessandro Tibo 1 , Jiazhen He1, Jon Paul Janet 1, Eva Nittinger 2 &
Ola Engkvist 1,3

How many near-neighbors does a molecule have? This fundamental question
in chemistry is crucial for molecular optimization problems under the simi-
larity principle assumption. Generative models can sample molecules from a
vast chemical space but lack explicit knowledge about molecular similarity.
Therefore, these models need guidance from reinforcement learning to sam-
ple a relevant similar chemical space. However, they still miss a mechanism to
measure the coverage of a specific region of the chemical space. To overcome
these limitations, a source-target molecular transformer model, regularized
via a similarity kernel function, is proposed. Trained on a largest dataset of
≥200 billionmolecular pairs, themodel enforces a direct relationship between
generating a target molecule and its similarity to a source molecule. Results
indicate that the regularization term significantly improves the correlation
between generation probability and molecular similarity, enabling exhaustive
exploration of molecule near-neighborhoods.

The so called similarity principle1—that structurally similar molecules
share similar properties—is a key concept in drug discovery and
molecular design. The main challenge in drug discovery is to find
compounds with a combination of desirable properties such as
absorption, distribution, metabolism, elimination and toxicity, safety,
and potency.Molecular optimization aims to address this challenge by
exploiting the similarity principle, improving properties of molecules
through small changes while still retaining or improving already
desirable properties, for example retaining affinity against a drug tar-
get while improving aqueous solubility.

The enormous sized “drug-like” chemical space is frequently dis-
cussed. One estimation based on the GDB-17 dataset is that the che-
mical space contains 1033 compounds2. There is no broadly accepted
way to quantify how much of this vast space is similar to a given
compoundof interest, in otherwords, howdense is the chemical space.
Further, although there exist methods that allow for local combina-
torial modification of compounds based on reagents3,4 and based on
matchedmolecular pairs (MMP)5, despite the key practical importance
of this task, no existing method is currently available that can sys-
tematically and exhaustively sample this bespoke chemical space.

In recent years, the application of deep learning methods have
had a dramatic impact in the field of chemistry6,7 and drug
discovery8–10. Advances in machine learning, including transformers11,
which have already shown remarkable success in natural language
processing12,13 and computer vision14–16, are readily adapted to solve
domain-specific problems including molecular design. Many different
deep-learning architectures have been proposed to explore the che-
mical space. Grisoni et al.17 andSegler et al.18 proposed recurrent neural
networks, De Cao and Kipf19 investigated generative adversarial net-
works, and Gómez-Bombarelli et al.20 and Jin et al.21 used variational
autoencoders to sample new molecules. All of these techniques allow
sampling compounds from the chemical space, but they do not
naturally encode the localized search characteristic of molecular
optimization. The generated molecules need to be refined with e.g.,
reinforcement learning approaches22,23 or via coupling the latent
representation to a predictive model.

Others24 have been treating molecular optimization as a transla-
tion task between a source and a target molecule, inspired by natural
language processing (NLP). These source-target-based methods
require a dataset of molecular pairs for training. Inspired by the
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medicinal chemistry concept of matched molecular pairs, He et al.25

generated molecular pairs based on MMP, identical scaffolds, or a
Tanimoto similarity above a certain threshold. The set of pairs were
used to train different molecular transformer models to explore the
region of the chemical space relatively close to a source compound.

Amolecular transformer is able to generate themost precedented
(probable)molecular transformations froma specific sourcemolecule.
The precedence (probability) of generating a molecule is a novel
concept not explicitly discussed in earlier work in deep learning-based
molecular de novo generation.

Precedence of transformations is determined by the distribution
of the observed data (empirical distribution) and, more specifically, by
a criterionof pair generation. Given a sourcemolecule, we consider the
space comprising all possible transformations that do not violate the
criterion used for generating pairs. We define as precedence the
empirical data distribution on this space. In our approach, we intro-
duce an inductive bias directing our model away from the empirical
data distribution created by pair generation. This is achieved by
explicitly adjusting sampling probability through regularization (see
Eq. (3)) of negative log-likelihoods (NLLs) to align with a similarity
metric rather than solely adhering to the empirical data distribution.
We consider auto-regressive transformers with SMILES, which have
emerged as powerful paradigm for molecular generation24–26. In this
approach, each generated token in the SMILES string is added with a
certain probability. Thus each generatedmolecule (SMILES string) will
have a certain probability. A precedented transformation for a given
target molecule are those that have high probability to be applied to a
given source molecule. The precedence associated to the molecular
transformation to a generated target molecule is learnt by the trans-
former model during the training phase, but the precedence is not
necessarily related to the molecular similarity between the source and
target molecule, i.e., a transformer model can generate target mole-
cules with a high precedence which are very dissimilar to the source
molecule. This behavior is not optimal in applications such as lead
optimization where one would like to be able to generate all similar
and relevant compounds given a specific source molecule.

Motivated by the fact that aforementioned approaches have only
an intrinsic knowledge of the similarity between molecules, given by
theway themolecularpairs are constructed,wepropose in this paper a
framework to systematically sample target molecules that are simul-
taneously associated to precedented transformations and are similar
to the source molecule. We stress the fact that similarity alone is not
enough as there exist target molecules similar to a source molecule
that should be associated to low precedented transformations, for
example chemically unstable target molecules or target molecules
containing an unusual atomic element not represented in the
training set.

To improve on the existing molecular transformer models, we
have developed a source-target molecular transformer model, trained
at a large scale on 1011 molecular pairs, that is able to pseudo-
exhaustively sample the near-neighborhood, represented by highly
precedented transformations and similar target molecules, of a given
source molecule. We adopted the same molecular transformer model
as proposed by He et al.25 but included a regularization term into the
training process to explicitly control the similarity of the generated
molecules. This additional term penalizes the generated target mole-
cules if their similarity to the sourcemolecule does not align with their
assigned negative log-likelihood (NLL), which is used as a proxy for
precedence (probability). However, as discussed in the “Methods”
section, the correlation between similarity and precedence will never
be perfect, and there will be similar target molecules associated with
low precedented transformations. In contrast to several recent works
which used ChEMBL27 to train transformer models, we used
PubChem28 which contains 40× more molecules, and accordingly
manymoremolecularpairs that can be extracted andused for training.

In this study, we retain the similarity principle assumption. Our aim is
to develop a versatile model that can produce similar molecules effi-
ciently and fine-tuned using reinforcement learning for task-specific
requirements. Incorporating properties into the training set is also an
option but it would require to retrain the model as soon as the desi-
derata properties change.

The main contributions of this work can be summarized as:
• a regularization term in the training loss for the source-target
molecular transformer is introduced, which establishes a direct
relationship between the precedence (probability, NLL) of
sampling a particular target molecule given a specific source
molecule and a given similarity metric;

• this method is used to train a foundationalmolecular transformer
model trainedonwhat is, to the best of our knowledge, the largest
ever dataset of molecular pairs assembled, comprising of over
200 billion pairs. Some recent source-target models24,25 used 2 to
10 million pairs, while previous foundational chemical transfor-
mermodels such as ChemBERTa29 were trained on approximately
100 million unique molecules. Contrastive-learning baselines are
available at the 10 million molecule scale30;

• our transformer model allows for the approximately exhaustive
sampling by using beam search to identify all target molecules up
to a user defined precedence (NLL) level for a given source
molecule. This corresponds by construction to an approximately
complete near-neighborhood chemical space of similar target
molecules with a high precedence for a given source molecule;

• we demonstrated (refer to the section “Generalization of the
method” and Supplementary Section 2.1) that our framework is
applicable and generalizes to various dataset scenarios, similarity
metrics, and models.

All software is based on Python 3.9. The transformer models and
software to reproduce our results are available at https://github.com/
MolecularAI/exahustive_search_mol2mol.

Results
Four different transformer models on D and Dc with and without
ranking loss were trained and the impact of the regularization term
during training and the count version of the ECFP4 fingerprints were
evaluated (see Eq. (3) and the section “Model training and sampling”
for training details).

Impact of ranking loss for sampling similar molecules
We evaluated all the metrics described in the section “Evaluation
metrics” for the 821 compounds in the TTD database. The results in
Table 1 clearly show that the binary and count versions perform
approximately the same in terms of VALIDITY, UNIQUENESS, and
TOP IDENTICAL. The models with regularization term (λ = 10) sig-
nificantly improve the TOP IDENTICAL, RANK SCORE, and CORRE-
LATION metrics. Finally, the model trained on Dc with λ = 10
outperforms all the other models on the RANK SCORE, and COR-
RELATION metrics, showing that the ECFP4 fingerprint with counts
achieves superior results compared to the binary version. The
models were trained on RDKit canonicalized SMILES strings, how-
ever, the transformer models can also generate non-canonicalized
valid SMILES strings. The uniqueness after the molecules are cano-
nicalized, remains close to 1.0 in all cases, indicating that in most
cases the canonicalized version of the SMILES string is the only one
generated. However once stereo-chemical information is removed
(NS in Table 1), the uniqueness falls to 0.5–0.6, which suggests that
the transformer models are generating approximately two stereo-
isomers formost of the targetmolecules. The increase from0–0.3 to
0.6–0.9 for TOP IDENTICAL when removing stereo-chemical infor-
mation indicates that the transformer models generate different
stereo-isomers with similar precedence.
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Figure 1 reports the results of the generated compounds corre-
sponding to penicillin. Overall, the ranking score is always higher for
the generated molecules from the regularized (λ = 10) models. Fur-
thermore, the distribution of the Tanimoto similarity is always shifted
to the right for the λ = 10 case, confirming that the regularized trans-
former models generate more target molecules similar to a given
source molecule. More experiments showing the generality of the
approach can be found in Supplementary Sections 2 and 4.

Exhaustive sampling of the near-neighborhood
The correlation between the NLL and molecular similarity implies that
sampling to a specific NLL threshold corresponds to exhaustively sam-
pling of the near-neighborhood chemical space around a given source
molecule. That is, given a source molecule of interest, the proposed
training method for the transformer model creates a controlled and
approximately complete enumeration of the local, precedented near-
neighborhood chemical space for a given sourcemolecule. The user can
decide how large the chemical space should be sampled by varying the

beam size. To demonstrate this results, we exhaustively sampled the
near-neighborhood of all molecules in the TTD database with a large
beam size of B = 30,000. All of the resulting generated targetmolecules
with Tanimoto similarity greater or equal than 0.8 were extracted. We
denote this set the near-neighborhood. Larger molecules have a larger
near-neighborhood chemical space for a for a fixed Tanimoto similarity,
and therefore source molecules were grouped based on their heavy
atom count (HAC). Between Oð10Þ and Oð104Þ on average near-
neighbors for source molecules between 13 and 36 heavy atoms,
respectively (Fig. 2) were identified. A similarity threshold of 0.8 is
chosen for illustrative purposes and represents a reasonable choice for a
near-neighborhood chemical space. Supplementary Fig. 4 depicts the
estimated near-neighborhood size for HAC 13-36 for different similarity
thresholds for a beam size of B = 30,000. The transformer model based
on count fingerprints trained with λ = 10 always generate larger near-
neighborhoods than the model trained with λ = 0.

To understand how close the results are to a truly exhaustive
sampling of the local chemical space, we created the GDB-12 database,

Table 1 | Combined results for all compounds in the TTDdatabase for beam size B = 1000 and the different transformermodels

TASK VALIDITY UNIQUENESS TOP IDENTICAL RANK SCORE CORRELATION

P C NS P C NS

D, λ = 0 1.00 1.00 0.97 0.60 0.04 0.04 0.62 0.24 ± 0.27 0.37 ± 0.13

D, λ = 10 0.99 1.00 0.95 0.53 0.31 0.30 0.93 0.35 ± 0.25 0.56 ± 0.17

Dc, λ = 0 1.00 1.00 0.97 0.59 0.06 0.07 0.66 0.29 ± 0.25 0.39 ± 0.14

Dc, λ = 10 0.99 1.00 0.95 0.53 0.31 0.31 0.93 0.44 ± 0.24 0.60 ± 0.19

A higher value is the better for all the columns, and the best results are highlighted in bold. D and Dc represent the training sets generated with ECFP4 fingerprints without and with counts,
respectively. The sub-columns P, C, and NS under UNIQUENESS and TOP IDENTICAL denotes different type of post-processing applied to the generated target compounds. The sub-columns are
fraction uniqueSMILES strings (P), fractionunique SMILES strings after canonicalization (C), and fraction uniqueSMILES stringsafter removing stereo-chemical information andcanonicalization (NS).
λ = 0 denotes the absence and λ = 10 the presence of the regularization term when training the transformer models. Best results are highlighted in bold.

Fig. 1 | Similarity (x-axis) and NLL (y-axis) of generated target compounds with
penicillin as the source compound (depicted on top). NLL represents the
negative log-likelihood. Top and bottom scatter plots refer to D (fingerprints
without counts) and Dc (fingerprints with counts), respectively. The first two
scatter plots from the left show theTanimoto similarity against theNLL for the λ =0
and λ = 10 models. λ is the hyperparameter controlling the strength of the

regularization term. The CORRELATION, i.e., the Pearson correlation coefficient
between theTanimoto similarity and theNLL, is always better for λ= 10models. The
green line in each scatter plot is the linear fitting of the data points. The plot to the
right shows the distribution of the Tanimoto similarity of the generated com-
pounds for the two models estimated for 100 samples.
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whichwas extracted from the GDB-13 database31. The GDB-12 database
enumerates all possible compounds based on a set of rules up to 12
heavy atoms. The heavy atomsused areC, N, O, S, andCl. This is, to our
knowledge, the most complete lower bound of the possible density of
organic chemical space available. For each compound in GDB-12, we
computed the number of neighbors inside GDB-12 up to the same
similarity threshold, and grouped them by the HAC.

We observed an exponential relationship between the HAC and
the near-neighborhood size for GDB-12 (Fig. 2). Although the voca-
bulary set used for creating GDB-12 is smaller than the vocabulary
set, V, used to train the transformer models, the behavior of trained
transformer models follow the same trend as shown by GDB-12 for
larger HAC, with an approximate linear slope of 0.10 and intercept of
0.55 for both GDB-12 and TTD for HAC 13-36 (i.e., neighborhood
size ≈ 100.10HAC+0.55). This suggests that, while our sampling remains a
lower bound on the full local chemical space, it is approximately as
complete as the enumerated near-neighborhood for the GDB-12
database. More approximations of the neighborhood size for dif-
ferent similarity thresholds can be found in Supplementary Fig. 5.

We also compared the results to the number of near-neighbors
that could be retrieved by searching PubChemwith the same similarity
cutoff and source compounds. On average two orders of magnitude
fewer near-neighbor compounds compared to the number of near-
neighbors generatedwith the transformermodels were retrieved. This
highlights that the near-neighborhood, even for therapeuticmolecules
in the TTD database, is relatively unexplored.

Finally, we investigated the overlap between the generated similar
target molecules with the transformer models and the similar mole-
cules identified in PubChem with a given source molecule. This was
done to assess if the trained transformer models identifies the same
near-neighbors as was identified in Pubchem. As expected the trained
transformer models are indeed able to retrieve most of the near-
neighbors in PubChem with ~98% average recovery rate. As will be
discussed in the section “Validation for novel compound series”, the
missing near-neighbors not identified by the transformer models in
Pubchemweremissed because of two reasons. First, beam search is an
approximation of an exhaustive search, meaning that there is no
guarantee to find all the molecules below a certain NLL. Second, the
transformer models do not provide a perfect correlation between the

NLL and molecular similarity, meaning that the NLL between two
similar source and target compounds can be high (low precedence) if
the molecular transformation from the source molecule to the target
molecule is not well represented in the training set. Incorporation of
the ranking loss and count fingerprints both improve recovery, from
96.98% to 98.15% for models trained on D with λ = 0 and λ = 10, and
from 97.19% to 98.38% for models trained on Dc.

Validation for novel compound series
It is also of interest to validate the transformer model for retrieving
similar compounds in a series of interest to a medicinal chemist.
Therefore 200 chemical series from the recent literature were
extracted from the ChEMBL database and collected in ChEMBL-
series. The 200 series were used to evaluate if the trained transfor-
mer model can efficiently retrieve near-neighbors of interest. This
was done through retrospectively investigating if known near-
neighbors could be identified within the 200 chemical series. All
the compounds within the 200 series are different from the training
set for the transformer models, having been published after our
training set was created. As an illustration, Fig. 3 depicts a chemical
series in ChEMBL-series consisting of five compounds. Here, the
series is represented as a graph where nodes are the compounds in
the series and edges depict the NLL for the transformation of the
source molecule to the target molecule and the Tanimoto similarity
(calculated with ECFP4 count fingerprints) for the compound pairs.
Note, that theTanimoto similarity is symmetric for themolecular pair
but theNLL is not,meaning that in general p(t∣s) ≠ p(s∣t), where s and t
are the source molecule and target molecule, respectively. The
transformer used in this experimentwas trainedwith a regularization
term and the ECFP4 count fingerprint. As expected, the NLL is
strongly correlated with similarity and the NLL is lower for similar
compounds and higher for dissimilar compounds. The difference
between p(t∣s) and p(s∣t) is small when the compounds are similar.
The lower-left plot in Fig. 3 shows the correlation between the
molecular similarity and the NLL evaluated for all pairs in all of the
200 extracted chemical series. The correlation coefficient is 0.88,
confirming the efficacy of the proposed ranking loss used in the
training of the transformer. The similarity between compounds in the
chemical series can be as low as 0.2, since the series assignment is

Fig. 2 | Average neighborhood size (y-axis in log scale), defined by a similarity
threshold of 0.8, to a source compound grouped by their number of heavy
atoms (x-axis).TheTanimoto similaritywas evaluatedwith ECFP4fingerprintswith
counts. The transformer models trained with λ = 10 always outperforms the
transformermodels trainedwith λ=0. λ represents the hyperparameter controlling
the regularization term. The filling color surrounding solid lines from HAC (heavy
atom counts) 1 to 12 and 19 to 36 represent the standard deviation. The standard
deviation is calculated based on a variable number of samples, which depends on

the HAC and the specific dataset or generated compounds. Due to computational
complexity, the similarity on GDB-12* was computed with ECFP4 fingerprints
without counts. Also included in the figure is the size of the near-neighborhood
retrieved from PubChem for each source compound. For HAC between 13 and 18,
the neighborhood size was plotted explicitly since only a few source compounds
were available in the TTD database, whereas for a HAC greater or equal than 19 the
average and standard deviation are depicted.
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solely based on that the compounds were extracted from the same
publication. We observed markedly-poorer correlation between the
NLL and the similarity for compound pairs with low similarity. The
NLL decreases more rapidly for compound pairs with low similarity
(deviations from the linear fit in Fig. 3). This is expected since our
training of the transformer only includes source-target molecular
transformations where the similarity is above ≥0.50, i.e., the model
has not been trained on molecular transformations of pairs with a
similarity below <0.50 and accordingly these source-target mole-
cular transformations have a low probability to be generated. The
lower-right plot in Fig. 3 depicts the maximum NLL as a function of
the beam size. Here, the NLL consistently increases as the beam size
increases, allowing an exploration of an increasingly dissimilar che-
mical space.

We repeated the analysis for all of the 200 compound series, for
each series we considered in-turn all of the compounds as source
molecules. Table 2 shows the results for beam sizes equal to 1000,
5000, and 10,000. To understand the results in Table 2 we need to
introduce two cutoff thresholds, tnll and tsim, calculated for each
series and each source compounds in the series. tnll is defined as the
highest NLL associated to a source compound found by beam search,
while tsim is defined as the similarity between the source compound
and the target compound with the highest NLL found by the beam
search. The choice of tsim is reasonable as we report averaged results
and therefore potential error would be canceled out, as confirmed by
the low standard deviations reported in Table 2. We define as true
positive (TP) the percentage of target molecules found by beam
search, with true negative (TN) the percentage of target molecules

Table 2 | The table gives an overview of how well near-neighbors in a chemical series are retrieved with a transformer

BS --
tnll

--
tsim TP FN TN

FN-B FN-P

--
x ~x --

x ~x --
x ~x --

x ~x

1000 11.03 ± 1.35 0.71 ± 0.05 29.48 23.33 4.69 2.94 3.41 0.83 62.42 68.10

5000 12.49 ± 1.64 0.68 ± 0.06 40.31 35.56 3.77 1.79 3.64 0.95 52.28 56.25

10,000 13.22 ± 1.95 0.66 ± 0.06 45.33 40.00 3.48 1.69 3.29 1.14 47.90 50.00

True positive (TP—the higher the better), false negative (FN—the lower the better), and true negative (TN) for beam sizes (BS) equal to 1000, 5000, and 10,000 are shown. Columns FN-B and FN-P,
represent the two types of false negatives. Either due to beam search being an approximation of exhaustive search or low precedence due to themolecular transformation is not well represented in
the training set, respectively.�tnll and�tsim represent theaverage tnlland tsimwith standarddeviations, respectively. �x and ~x representmeanandmedian expressed in percentages, respectively, over the
200 chemical series.

Fig. 3 | Overview of Tanimoto similarities (denoted with Sim in the figure) and
NLLs (negative log-likelihoods) for a ChEMBL-series consisting of five com-
pounds.To the top the ChEMBL-series consisting of five compounds and displayed
as a graph, where the nodes depict molecules and the edges depict the NLL of the
molecular transformation and the Tanimoto Similarity (Sim in the plot) between
the two connected nodes (molecules). Note that the NLL is not symmetric between
a compound pair. The arrows on top of NLL denote the direction of the molecular
transformation from the source molecule. If any generic pair of molecule in the

graph s and t are connected then NLL
��!

denotes � logpðtjsÞ and NLL
 ��

denotes
� logpðsjtÞ. The lower-left plot depicts the correlationbetweenTanimoto similarity
(evaluated on fingerprints with counts) and the NLL for the molecular transfor-
mation for all the possible pairs contained in the 200 compound series. The red
dots denote all the pairs of the above series. The lower-right plot illustrates the
maximum NLL reachable with different beam sizes. The fill color surrounding the
solid lines represents the standarddeviation,which is calculatedbasedon thebeam
the 200 compound series.
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not found by beam search where their similarity to the source
molecule is lower than tsim, and with false negative (FN) the percen-
tage of remaining target molecules not found by beam search but
should have been found in an ideal scenario. There are two types of
FN: either due to beam search being an approximation of an
exhaustive search, i.e., target compounds that have Tanimoto simi-
larity greater than tsim and NLL lower than tnll (column FN-B in
Table 2), or due to precedence i.e., target compounds that have a
Tanimoto similarity greater than tsim and NLL greater than tnll (col-
umn FN-P in Table 2). In the latter case, the transformation between
the source and targetmolecule is notwell precedented in the training
set and accordingly the NLL for the molecular transformation will be
high. Table 2 reports mean and median, denoted with �x and ~x,
respectively, for TP, FN, and TN. The majority of the target com-
pounds are retrieved correctly (TP + TN), while the FN are due to the
limitations with beam search (slightly more) and low precedence
(slightly less) for the transformation between the source and target
molecule. We additionally calculated the rate of FN identified for
beam size 1000 shifting to TP when the beam size increased from
1000 to 5000, having a decrease from 4.69% to 3.77% for FN due to
the limitations of beam search, and an increase from 3.41% to 3.64%
for FN due to low precedence of the molecular transformation. Thus
it is possible through increasing the beamsize to compensate for that
the beam search is only an approximation of exhaustive search. We
also computed the samemetrics for a beam size of 10,000. A further
decline in FNdue to the limitationswithbeamsearchwas observed to
3.48%. FN due to limited precedence of themolecular transformation
decreased to 3.29% with 10,000 beam size. The percentages of FN in
Table 2 for a beam size of 1000, 5000, and 10,000 show a decreasing
trend with increased beam size. Thus it is shown that most near-
neighbors to a compound in a compound series can be retrievedwith
a transformer regularizedwith a similarity constraint during training.
The analysis of different physico-chemical properties also shows that
the generated target molecules follow the same property distribu-
tions as the source molecules (see Supplementary Figs. 7 and 8).

Figure 4 highlights some limitations of the proposed method. A
compound series with five compounds is used to illustrate the limita-
tions. A compound was selected as source (the left-most in Fig. 4) and
the remaining are the target compounds. Beam search with two dif-
ferent beam sizes, 1000 and 5000, was used and it was checked which
of the target compounds was retrieved by the beam searches. The
maximumNLL reachable by beam searchwas 11.90 and 12.63 for beam
sizes of 1000, and 5000, respectively. Thismeans that the compounds
(represented to the right of the vertical red line in Fig. 4) for which the
NLL is above these numbers cannot be retrieved as a larger beam size
would be required. There are two reasons why a specific target

compound is not found. The first is due to the beam search algorithm
being a trade-off between a greedy and an exhaustive search con-
trolled by the beam size. We notice that for beam size equals to 1000
the second compound in the series is not found even though its NLL is
lower than 11.90. This happens because there is no guarantee that
beam search will always find all the compounds below the maximum
reachableNLL. The second reason is due to precedence as ourmethod
does not provide a perfect correlation between NLL and similarity. A
high NLL i.e., low precedence can occur for similar molecules if the
molecular transformation from the source molecule to the target
molecule is not well represented in the training set. This might occur
for instance for molecules containing unusual functional groups. Fig-
ure 4 shows that the right-most compounds has higher similarity than
other two but its NLL is higher, meaning that has lower precedence.
The low precedence for the right-most compoundmight be due to the
azo substructure. Unfortunately, determining which tokens are
responsible for an increased NLL in relation to a target compound is a
complex task. This complexity arises from the fact that the NLL is
influenced by both the source molecule and the generated target
tokens. It is possible that the NLL is spread across all the target tokens,
or alternatively, it may remain low until a specific point and then
sharply drop with the introduction of the next token in the target
compound. This is a general limitation of transformer-based
architectures.

Generalization of the method
To demonstrate the generality of the proposedmethodology, we have
carried out a comprehensive series of additional experiments,
encompassing:
1. eight experiments utilizing a dataset derived fromChEMBL. These

experiments involve training two distinct models with two dif-
ferent similarity metrics, both with and without the incorporation
of the proposed ranking loss;

2. an experiment with synthetic data (see Supplementary Sec-
tion 2.1) which considers another similarity metric.We used the
dataset of pairs extracted fromChEMBL (direct link to the dataset:
https://zenodo.org/records/6319821) by considering Tanimoto
similarity greater or equal than 0.5 defined in ref. 25. The dataset
contains 6,543,684 training pairs, 418,180 validation pairs, and
475,070 test pairs. We also considered two similarity measures:

• k1—Tanimoto similarity on ECFP4 with counts;

• k2—Similarity induced by the autoencoder, as defined in ref. 32. In
essence, the autoencoder takes a SMILES and employs a LSTM
encoder network to generate a representation z 2 R256 for the
entire sequence. This representation can be utilized to compute a

Source

BS
=5

,0
00

BS
=1

,0
00

NLL = 5.29
Sim = 0.86

NLL = 10.07
Sim = 0.69

NLL = 13.76
Sim = 0.61

NLL = 17.23
Sim = 0.71

Fig. 4 | A chemical series with a source molecule and the retrieved target
molecules (with green borders) with beam search for two different beam
sizes (BS). The red vertical line represents the maximum NLL (negative log-like-
lihood) reachable by the two beam search sizes which is 11.90 and 12.63 for BS =
1000 and BS= 5000, respectively. The compounds to the right of the red vertical

line cannot be found with these beam sizes due to the high NLL for the molecular
transformation. The right-most compound has a similarity (denotedwith Sim in the
figure) of 0.71 to the source compound but low precedence as the NLL is equal to
17.23. The low precedence for the molecular transformation might be due to the
azogroupwhich is a relativelyuncommonchemical substructure in the training set.

Article https://doi.org/10.1038/s41467-024-51672-4

Nature Communications |         (2024) 15:7315 6

https://zenodo.org/records/6319821
www.nature.com/naturecommunications


similarity measure between zs and zt, associated with a source s
and target t, respectively, as follows:

k2ðzs , ztÞ= zTs zt , k2ðzs, ztÞ 2 R: ð1Þ

The two similarities, k1 and k2, are poorly correlated (the Pearson
correlation coefficient is equal to 0.27), and exhibit weak correlation
and distinctions, as illustrated in Supplementary Fig. 9.

Regarding the models, we selected the identical transformer
employed in the “Results” section and a straightforward sequence-to-
sequence recurrent neural network (RNN) model, comprising a gated
recurrent unit (GRU33) encoder and decoder with 512 units each. Both
modelswere trainedwith andwithout the ranking loss (refer to Eq. (3)),
incorporating the two distinct similarity metrics, k1 and k2, for 30
epochs. We tested all the models by randomly selecting the same
1000 source compounds from the test set and running beam search
with beam size B = 100. For all the generated compounds we reported
the validity (see the section “Evaluation metrics”) and the correlation
(see the section “Evaluation metrics”) between the chosen similarity.
Table 3 shows the results demonstrating that the utilization of ranking
loss consistently enhances the correlation between NLL and similarity
(either k1 or k2 in this instance), independently of the specificmodel or
dataset employed. Additionally, in conjunction with the experimental
findings outlined in the “Results” section and Supplementary Sec-
tion 2.1, we have provided a comprehensive overview, demonstrating
the consistency of our framework across diverse datasets,models, and
similarity metrics. The lower performances of the RNN compared to
the Transformer are expected and attributed to its considerably
smaller number of parameters, making it inherently more challenging
to train. Nonetheless, it is important to highlight that the generated
compounds exhibit a validity exceeding 70% across all cases, and the
correlation consistently improves with the adoption of the rank-
ing loss.

Discussion
In this paper, we have introduced a strategy for training a source-target
molecular transformer that explicitly links the NLL for molecular
transformation of a source molecule to a target molecule with a simi-
larity metric. The method has been applied in the context of molecular
optimization. A transformer model has been trained on, to the best of
our knowledge, the largest dataset of molecular pairs so far. The
resulting model exhibits the intended relationship between the mole-
cular similarity and the corresponding NLL, with a strong correlation
across similarity ranges from 0.50 to 1.0 when evaluated for drug-like

molecules, including molecules absent from the extensive training set.
We could demonstrate a clear benefit in terms of the correlation
betweenmolecular similarity andNLLwhen applying our regularization
method. The limitations of using a binary fingerprint vs a count fin-
gerprint for the transformer model have also been described.

A model that exhibits this property can be used in novel appli-
cations for instance to estimate the density of the near-neighborhood
chemical space. This was previously not possible. In particular, we
could demonstrate an approximately exhaustive enumeration of the
local, precedented chemical space for a molecule of interest. We
showed that neighborhood sizes computed using this method scale in
a similar way as the GDB-12 database.

Fromadrugdesignperspective, the presentedmodelwill bemost
influential at a later drug development stage, where the focus changes
to exploring the chemical space around a lead compound. Using our
model, we can cheaply but extensively explore the chemical space
without being limited to available building blocks or previously syn-
thesized molecules, and without needing to conduct similarity sear-
ches against massive virtual libraries. In a second step, a property
evaluation of the generatedmolecules would follow to select themost
promising compounds to follow up in a target-appropriate manner.
Evaluation of such proprieties is target and project-dependent and not
the focus of the current work. However, we emphasize that themodels
developed here can be practically useful idea generators for drug
discovery applicable out of the box, and here we provide a simple
example of using them for the structure-based virtual lead optimiza-
tion of Phosphoinositide-dependent kinase-1 (PDK1) inhibitors in
Supplementary Section 6.

We also investigated how many of the similar compounds we
could retrieve in a chemical series extracted from the literature.With a
beam search of 10,000, it was found that ~87% of the similar com-
pounds could be retrieved. Reasons that a similar compound could not
be retrieved is due to that beam search is an approximation of an
exhaustive search or that the transformation from a source compound
to a target compound have low precedence, i.e., the transformation is
not well represented in the training set. This might happen for
uncommon chemical substructures. Low precedence have been dis-
cussed in the context of modifying an atom in penicillin.

We believe that a molecular transformer model trained with a
regularization term for the molecular similarity provides a completely
novel way to address the classic question of howmany near-neighbors
a given molecule has. The transformer model therefore holds great
promise as a tool for local molecular optimization and efficient local
chemical search in a more exhaustive and controllable manner than
previously possible. The proposed methodology to train transformer
with a similarity metric as a regularizer is general and not dependent
on any specific selected similaritymetric.Herewehave exemplified the
methodology with binary and count versions of the ECFP4 fingerprint.
However, any other similaritymetric could have beenused. If anyone is
interested in another similarity metric, a transformer can be trained
from scratch with that similarity metric. Alternatively, the trained
transformer described here can be fine-tuned with molecular pairs
constructed through another similarity metric.

Developed software, trained transformer models, and curated
datasets will be publicly released upon acceptance of the manuscript.

Methods
Transformer model with a regularized loss function
A transformer11,24,25 architecture trained on a SMILES (simplified
molecular-input line-entry system) string representation of amolecule
was used. The purpose of the study is to compare our proposed fra-
mework for training a molecular transformer with a regularized loss
function with existing unconstrained training framework25. However,
our framework can in general be applied to any transformer model
based on molecular pairs constructed with a similarity metric.

Table 3 | VALIDITY and CORRELATION (see the section
“Evaluation metrics” for definitions) for the RNN (recurrent
neural network) and Transformer models, considering simi-
larity k1 and k2 trained with and without ranking loss

Model Similarity Ranking
loss

Validity Correlation

RNN k1 × 0.90 0.10 ± 0.25

RNN k1 ✓ 0.71 0.22 ± 0.30

RNN k2 × 0.88 0.18 ± 0.24

RNN k2 ✓ 0.75 0.33 ± 0.26

Transformer k1 × 0.99 0.24 ± 0.17

Transformer k1 ✓ 0.99 0.63 ± 0.16

Transformer k2 × 0.99 0.09 ± 0.14

Transformer k2 ✓ 0.99 0.42 ± 0.22

k1 is the Tanimoto similarity kernel, while k2 is the kernel inducedby the autoencoder. By training
themodelswith ranking loss the correlation consistently improves,while the validity remains the
same for the Transformer and decreased for the RNN. The best results are highlighted in bold.
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Formally, we denote with X the chemical space, and with
P = fðs,tÞ j s,t 2 X ×Xg the set of molecular pairs constructed from X , s
and t are the source and target molecules, respectively. Each element
of sources and targets is a token (symbol) which takes values from a
vocabulary (ordered set) V. Furthermore, we denote with f θ : X ×X !
½0,1�jV j the transformer with θ being the set of its parameters. To
simplify, we denote with the same symbol a molecule and its SMILES
string representation. The transformer, fθ, consists of an encoder and a
decoder which are simultaneously fed by source molecules and target
molecules, respectively. Source molecules and target molecules are
first tokenized and then converted into sequences of dense vector
embeddings and passed over several stacked encoder and decoder
layers, respectively. The final encoder output is merged into the
decoder through a multi-head attention mechanism which captures
the transformation from a source molecule to a target molecule. Fig-
ure 5 shows the general architecture of our transformer model, more
details about the transformer architecture can be found in refs.
11,24,25.

fθmodels the probability p of the ℓ-th token of a target tiℓ given all
the previous ti,1:ℓ−1 = tiℓ−1,…, ti1 target tokens and source si compound,
i.e., fθ(ti,1:ℓ−1, si)[tiℓ] = p(tiℓ∣ti,1:ℓ−1, si). The transformer’s parameters θ are
then trained on P by minimizing the negative log-likelihood (NLL) of
the entire SMILES string, p(ti∣si), ðsi,tiÞ 2 P for all i= 1, . . . ,jPj, that is

NLLi = � logpðtijsiÞ= � log
YL
‘= 1

pðti‘jti‘�1, . . . ,ti1, siÞ

= �
XL
‘= 1

logpðti‘jti‘�1, . . . ,ti1,siÞ= �
XL
‘= 1

log f θðti,1:‘�1, siÞ½ti‘�,
ð2Þ

where L denotes the number of tokens associated to ti, and [tiℓ]
denotes the index of vector fθ(ti,1:ℓ−1, si) corresponding to the token tiℓ.
The NLL represents the probability (precedence) of transforming a
given source molecule into a specific target molecule. The NLL is
always non-negative and the higher the NLL value, the less likely a
targetmoleculewill be generated. A NLL equal to 0.0 would imply that
a specific target molecule would have the probability of 1.0 to be
generated from the source molecule.

The loss in Eq. (2) allows the transformer to learn but it associates
equal probabilities (i.e., same negative log-likelihood) to all the target
compounds associated to the same source molecule. This uniform
assignment occurs because the model observes these target com-
pounds an equal number of times. This behavior is not ideal since
during inference we would like the probability of generating a target
molecule given a specific sourcemolecule, p(t∣s), to be proportional to
the similarity between the molecules. To mitigate this issue, we
introduce in Eq. (3), a regularization term to the loss in Eq. (2) which
penalizes the NLL if the order relative to a similarity metric is not
respected.

Ωððsi, tiÞ, ðsj ,tjÞÞ= maxð0, sign ðκðsi, tiÞ � κðsj, tjÞÞ ðNLLi � NLLjÞÞ, ð3Þ

where (si, ti) and (sj, tj) are two pairs fromP, and κ is an arbitrary kernel
function. The Tanimoto similarity was chosen as κ but our framework
is general so any valid kernel can be used. Note that the NLL is always
non-negative in this context. During training, we sample a batch of
source-target molecule pairs and compute the regularization term in
Eq. (3) for all themolecular pairs included in thebatch. Figure6depicts
an example of the ranking loss calculation. Finally, to train the model
wepropose the following loss function as a combination of Eqs. (2) and
(3)

L=
1
jPj

XjPj
i= 1

NLLi +
λ

jPjðjPj � 1Þ
XjPj�1
i = 1

XjPj
j = i+ 1

Ωððsi, tiÞ,ðsj, tjÞÞ, ð4Þ

where λ ≥0 is a hyper-parameter controlling the weight of the
regularization term.

The molecular similarity is in this study related to the notion of
precedence. Precedence is learnt by a transformermodel based on the
training data and represents the probability for a source compound to
be transformed into a specific target compound. The NLL can be used
as proxy for the precedencewhere a lowNLLmeans a high precedence
and vice versa. Figure7 illustrates anexamplewhere a nitrogen atom in
penicillin is replaced by a oxygen atom, phosphorus atom, or arsenic
atom, respectively. It is important to notice that the Tanimoto simila-
rities (calculated with the count version of ECFP4 fingerprints)
between Penicillin and the modified penicillin analogs are exactly the
same, while their NLLs are different, as the penicillin analog with an
arsenic atom has lower precedence than the penicillin analog with a
phosphorus atom, and the penicillin analog with a phosphorus atom
has lower precedence than the penicillin analog with an oxygen atom
and the penicillin analog with an oxygen has lower precedence than
penicillin itself. We can therefore expect that the penicillin analog with
an oxygen atom will be retrieved with a much higher precedence
(probability) during inference than the penicillin analogs with a
phosphorous atom or arsenic atom, respectively.

The implementation relies on Python 3.9 with the following
libraries: cupy-cuda11 10.6.0, lightning 2.0.1, MolVS 0.1.1, natsort 7.1.1,
numpy 1.24.4, pyyaml 6.0.1, rdkit 2022.9.7, scipy 1.10.1, torch 1.12.1, and
tqdm4.65.0. The datasets used in the paper are available at https://doi.
org/10.5281/zenodo.12818281. Source data are provided with
this paper.

Approximately exhaustive sampling of the chemical space
Two different techniques can be used to sample target molecules with
a molecular transformer: multinomial sampling (used e.g., by He et
al.24,25) and beam search34.Multinomial sampling allows fast generation
of compounds distributed according to their NLL. Given a source
compound s 2 X , the length L of the tokens in the SMILES string
associated with s, and V the vocabulary, i.e., the set of possible tokens,
the computationally complexity of multinomial sampling is O(L ⋅ ∣V∣).
However, multinomial sampling suffers from mode collapse i.e., the
same target compound might be sampled multiple times, and the
method is not deterministic, i.e., different runs produce different tar-
get compounds. Beam search is, in contrast to multinomial sampling,
deterministic but computationally more complex OðB � L � jV jÞ, where
B is the beam size. Beam search retains B unique SMILES strings sorted
by their corresponding NLL. Note that for both the techniques, the
complexity of the underlying transformer model impacts the perfor-
mance. This complexity arises because SMILES strings are generated
iteratively by feeding the transformer with n − 1 tokens to obtain the n-
th. In fact, for multinomial sampling, the model needs to compute the
probabilities of each token in the vocabulary, while for beam search,
we need to store the B SMILES subsequences with the most favorable
NLL. Similarly to multinomial sampling, we also need to compute the
probabilities of each token in the vocabulary for each subsequence.
Note that beam search is an approximate exhaustive search and it
might miss compounds with a favorable NLL.

Data preparation
Molecular structures were downloaded from PubChem as SMILES
strings. In total 102,419,980 compounds were downloaded (PubChem
dynamically grows. This number reflects the available compounds by
the end of December 2021). The dataset was pre-processed as follows:

• the SMILES strings were standardized usingMolVS (https://molvs.
readthedocs.io/en/latest) including the following steps: sanitize,
remove hydrogens, apply normalization rules, re-ionize acids, and
keep stereo chemistry;

• all duplicate structures were removed;
• all the compounds containing an isotopic label were removed.
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Starting from the set of pre-processed SMILES strings X (containing
102,377,734 SMILES strings), we constructed a dataset D= fðs,tÞ j s,t 2
P, κðs,tÞ≥0:5g containing all the pairs having a Tanimoto similarity
κ(s, t) ≥0.50. The Tanimoto similarity is calculated with the RDKit35

(version 2022.09.5) Morgan binary fingerprint (ECFP4) with radius
equals to 2, 1024 bits, calculated from the SMILES strings in X . The
number ofmolecular pairs inD is 217,111,386,586,which is only 0.002%
of the over 1016 possible molecular pairs). The Tanimoto similarity for
the molecular pairs can be computed efficiently by storing the
fingerprints in a binary matrix of size N × 128 bytes in the GPU
memory. In this way, the Tanimoto similarity among all the possible
pairs can be efficiently computedbyutilizingGPUparallelism. For each
SMILES string in X we can calculate the Tanimoto similarity at once
against all the other SMILES strings. The calculation of all molecular
pairs took 10 days on 16 A100 GPUs with 40GB of memory.

Starting from D, we constructed an additional dataset Dc where
we kept all the pairs having a ECFP4 Tanimoto similarity with counts
greater or equal than 0.50. The major advantage of Morgan finger-
prints with counts compared to their binary counterpart is their ability
to capture the frequency of a substructure within a molecule. Using
count fingerprints makes it possible to differentiate between mole-
cules having the same substructures but different frequency of them
and therefore a lower similarity value canbe assignedwhen comparing
the two molecules. Supplementary Fig. 2 shows an example of the
Tanimoto similarity between twomolecules with the binary and count

fingerprints. TheTanimoto similaritywith countfingerprints cannot be
computed as efficiently as for binary fingerprints, therefore we first
construct D and then refine it to obtain Dc, where for each pair D we
recomputed the Tanimoto similarity on fingerprints with count and
kept only those with values greater or equal than 0.50. Dc contains
173,911,600,788 pairs. In the “Results” section, we will show results for
both D and Dc.

Transformers receive a sequence of integers, therefore each
SMILES string is first tokenized and then translated into a specific
integer number. The tokens are collected into a dictionary where keys
are tokens and values are integers, that is

V = * : 0, ^: 1, $ : 2,<UNK> : 3, . . . , 1 : 48, . . . , C : 60,Cl : 61, . . .
� �

:

Note that V contains 4 special tokens: * is the padding token used to
enforce the same length of all SMILES, ˆ is the starting token, $ the
ending token, and <UNK> is the unknown token used at inference time
if a new token is observed. We constructed V from D which contains
455 different tokens. Supplementary Fig. 1 shows an example of the
SMILES string tokenization procedure.

Model training and sampling
Four transformer models were trained on D and Dc and with and
without ranking loss. In our experiments, we employed a standard
transformer model11,25 with the following key parameters:

Fig. 6 | Two pairs of molecules (s1, t1), (s2, t2) with Tanimoto similarity 0.71 and
0.76, respectively, are shown. The Tanimoto similarity is represented by κ in the
Figure, and s1 and s2 denote two source molecules, while t1 and t2 two targets
molecules. NLL1 and NLL2 are the negative log-likelihood associated with (s1, t1) and
(s2, t2), respectively. In the left example NLL2 > NLL1, therefore the regularization

term Ω (see Eq. (3)) is greater than 0. This indicates that NLL1 and NLL2 are incor-
rectly ordered, which we emphasize by enclosing Ω = 1.8 in a red box in the left
picture. In the right example NLL1 > NLL2. In this case, Ω = 0 as the similarities and
NLLshave the same rank-order, whichweemphasizeby enclosingΩ=0.0 in a green
box in the right picture.

DECODER

ENCODER

TRANSFORMER

target

source

DECODER

ENCODER

TRANSFORMERsource sampled target1

sampled target2

(a) (b)

target

Fig. 5 | Transformer training and inference flows are shown. The training is
depicted to left (a), while the inference to the right (b). a The transformer model
receives as input pairs of molecules consisting of a source molecule and a target
molecule (represented as SMILES strings). The SMILES associated to source and
targets are CC(Cc1ccc(Cl)cc1)NCC(O)C(N)=O and CC(Cc1ccc(O)cc1)NCC(O)C(N)
=O, respectively. The initial character of the target SMILES provided as input is the
starting token ˆ. The model is trained to transform a source molecule to a target

molecule by producing its next tokens (in parallel). The last character of the pro-
duced output is the ending token $. At training molecular pairs of source and
target molecules are used to train the transformer model. b At inference a source
molecule is transformed into several target molecules. In the figure, those are
sampled target1 and sampled target2 corresponding to SMILES CC(Cc1ccc(Cl)cc1)
NCC(O)C(N)=S and CC(Cc1ccc(Cl)cc1)NCC(F)C(N)=O, respectively.
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• Number of layers:

— Encoder layers: the model consists of N = 6 identical layers in
the encoder stack. Each encoder layer consists of two main sub-
layers: amulti-head self-attentionmechanism and a position-wise
fully connected feed-forward network.
—Decoder layers: Similarly, the decoder stack also containsN = 6
identical layers. Each decoder layer includes an additional sub-
layer for multi-head attention over the encoder’s output.

• Hidden dimension: the dimensionality of the input and output
vectors, denoted as dmodel was set to 256. This dimension is con-
sistent across all layers and serves as the size of the embeddings
and the internal representations within the model.

• Feed-forward network dimension: within each layer, the position-
wise feed-forward networks expand the dimensionality to
df f = 2048. This expansion is achieved through two linear
transformations with a ReLU activation in between.

• Number of attention heads: eachmulti-head attentionmechanism
is composed of h = 8 attention heads. The model splits the
dmodel = 256 into 8 subspaces of size 16. These heads allow the
model to focus on different parts of the input sequence
simultaneously.

• Dropout rate: to mitigate overfitting, a dropout rate of 0.1 was
applied to the output of each sub-layer before adding the residual
connection and layer normalization.

Every model was trained for 30 epochs, utilizing 8 A100 GPUs, with
each training cycle lasting for 30 days. During an epoch all the source-
target molecular pairs in the training set are included once. All models
were trained following the same strategy and using the same
hyperparameters as in ref. 25, including a batch size of 128, Adam
optimizer and the original learning rate schedule11 with 4000 warmup
steps. Due to the computational time required to train a model, we
could not optimize λ (see the “Transformer model with a regularized
loss function” section). However, while not necessarily optimal, the
value we chose for λ, i.e., λ = 10 already highlights (see the “Results”
section) the benefits from using the ranking loss when assessing the
overall quality of the models.

Once trained, themodels canbeused togenerate targetmolecules
conditioned on a source molecule by predicting one token at a time.
Initially, the decoder processes the start token along with the encoder
outputs to sample thenext token from theprobability distributionover
all the tokens in the vocabulary. The generation process iteratively
continues by producing the next token from the encoder outputs and
all the previous generated tokens until the end token is found or a

predefinedmaximumsequence length (128) is reached. To allow for the
sampling of multiple target molecules, beam search is used (see the
“Approximately exhaustive sampling of the chemical space” section),
and unless otherwise stated, a beam size of 1000 was used.

Evaluation setup
The model was evaluated on two publicly available datasets: the
Therapeutic Target Database (TTD)36 and ChEMBL-series which con-
sists of compound series from recent scientific publications extracted
from the ChEMBL database27. TTD contains clinically investigated drug
candidates, which we used to investigate exhaustive sampling of the
near-neighborhood for drug-like molecules. The compound series
from publications contains only novel molecules that were not part of
our training data, resulting in a out-of-distribution set of molecules
that we cluster into chemical series based on the publication that they
were extracted from.

Each dataset was pre-processed using the strategy described in
the “Model training and sampling” section, and compounds that con-
tained tokens not present in the vocabulary V (used to train the
models) were removed. A final filtering was applied to both datasets in
order to remove peptides and other non-drug-like small molecules.
Only compounds that satisfied all the following criteria were kept:

• Lipinski rule of five compliant37;
• molecular weight larger than 300 Dalton;
• less than eight ring systems.

The final TTD dataset contains 821 compounds, while the ChEMBL-
series dataset contains 2685 compounds distributed in 200 series with
5 to 60 compounds in each series. Both curated datasets are released
together with the code. Notably, compounds from ChEMBL-series
were selected to be distinct fromboth training setsD andDc, ensuring
no overlap in between the sets.

Evaluation metrics
To evaluate the impact of ranking loss (see Eq. (3)) on a fully trained
model we considered several metrics (for all of them the higher the
better):

• VALIDITY: the percentage of target compounds generated by the
transformer model that are valid according to RDKit. VALIDITY is
calculatedby averaging thepercentageof valid target compounds
sampled for each source compound;

• UNIQUENESS: the percentage of unique target compounds gen-
erated by the transformer model. In order to evaluate the
uniqueness, the generated valid target compounds are canoni-
calized with RDKit to identify duplicates; UNIQUENESS is

Penicillin - CC1(C)SC2C(NC(=O)Cc3ccccc3)C(=O)N2C1C(=O)O

S=1.000 - NLL=5.559 S=0.726 - NLL=9.144 S=0.726 - NLL=13.468 S=0.726 - NLL=20.199

Fig. 7 | Penicillin (used here as the source molecule) and its analogs where a
nitrogen atom (N) is replaced with an oxygen atom (O), phosphorus atom (P),
andarsenicatom(As), respectively.The areaenclosedwithin theorangecircles in
the lower part of the figure contains the atoms that differ from the penicillin. The
molecular similarity, denoted with S in the figure, between Penicillin and the
modified analogs are the same, while their corresponding NLLs (negative log-

likelihoods or precedence) are different. The molecular transformation from
penicillin to the analog with an arsenic atom has lower precedence (higher NLL)
than transforming penicillin to the analog with phosphorus and oxygen, respec-
tively. The derivative with an oxygen atom has the highest precedence after peni-
cillin. The Tanimoto similarity is denoted with the letter S on top of the penicillin
analogs in the lower part of the figure.
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calculated by averaging the percentage of valid unique target
compounds sampled for each source compound;

• TOP IDENTICAL: the number of cases where the target compound
with the lowest NLL is identical to the source compound. TOP
IDENTICAL allows to evaluate whether the ranking loss forces the
transformer model to generate the source compound as the
generated target compound with the lowest NLL. Note that,
κ(s, s) = 1 for all possible source compounds s. TOP IDENTICAL is
calculated by averaging over the source compounds;

• RANK SCORE: the Kendall’s tau score τ between the Tanimoto
similarity and the NLL for the top ten compounds sampled by
beam search. The score measures the correspondence between
the two rankings. The score have values in [−1, 1] range, where the
extremes denote perfect disagreement and agreement, respec-
tively. Given a source compound s and N generated compounds
t̂1, . . . ,̂tN from s, τ is computed as:

τ =
2

NðN � 1Þ
X
i<j

sign ðlogpðt̂j jsÞ � logpðt̂ijsÞÞ sign ðκðs,̂tjÞ � κðs,̂tiÞÞ: ð5Þ

• CORRELATION: the Pearson correlation coefficient between the
Tanimoto similarity and the NLL, which measures the linear cor-
relation between the Tanimoto Similarity and the NLL. It have
values in the [ − 1, 1] range, where the extremes denote perfect
disagreement and agreement, respectively. Given a set of pairs
P = fðxi, yiÞ j xi 2 R, yi 2 RgNi= 1 the Pearson correlation coefficient
is computed as:

ρ=
PN

i= 1ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1 ðxi � �xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1 ðyi � �yÞ2

q , ð6Þ

where �x (and similarly �y) is the average of all the xi, i.e.,
�x = 1=N

PN
i = 1 xi. CORRELATION is calculated by averaging over

all the sampled target compounds.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in the paper are available at https://doi.org/10.5281/
zenodo.12818281. Source data are provided with this paper.

Code availability
The code38 to reproduce the results of the paper is available at https://
github.com/MolecularAI/exahustive_search_mol2mol with https://doi.
org/10.5281/zenodo.12958255 and Code Ocean39. The implementation
relies on Python 3.9 with the following libraries: cupy-cuda11 10.6.0,
lightning 2.0.1, MolVS 0.1.1, natsort 7.1.1, numpy 1.24.4, pyyaml 6.0.1,
rdkit 2022.9.7, scipy 1.10.1, torch 1.12.1, and tqdm 4.65.0.
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