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Abstract
The increasing global focus on energy conservation and environmental sus-
tainability has highlighted the critical role of reducing greenhouse gas (GHG)
emissions, particularly from the transportation sector. Battery Electric Ve-
hicles (BEVs) have emerged as a key solution, driven by stringent regula-
tory targets and rising consumer demand for sustainable mobility. However,
achieving widespread adoption of BEVs requires addressing challenges such
as "range anxiety," which stems from the limited driving range due to high
energy consumption, particularly for thermal management.

This thesis explores optimizing Thermal Energy Management (TEM) sys-
tems in BEVs to enhance energy efficiency and extend vehicle range. A novel
control-oriented, system-level model is developed for a state-of-the-art Flex-
ible Thermal Energy Management (FTEM) system, integrating HVAC and
heat pump functionalities. The research focuses on applying distributed op-
timization techniques, leveraging Model Predictive Control (MPC) and the
Alternating Direction Method of Multipliers (ADMM), to achieve real-time
energy savings. The proposed methods target significant reductions in energy
consumption, particularly under varying environmental conditions, making
BEVs more competitive in the mass market.

This work contributes to the broader transition to zero-emission transporta-
tion by demonstrating advanced TEM strategies that improve both vehicle
performance and sustainability.

Keywords: BEV, TEM, HVAC, Heat Pump, ADMM
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CHAPTER 1

Background

1.1 Introduction

Global awareness and concern about energy conservation and environmental
sustainability have grown significantly over the last decade. Human activities
that produce Greenhouse Gas (GHG) emissions have severely impacted the
environment [1]–[4]. In the European Union, more than 20 % of GHG emis-
sions are attributed to transport activities, with passenger vehicles accounting
for 50 % of those emissions [4], [5]. In the USA, transport activities contribute
to over 28 % of GHG emissions, with passenger vehicles responsible for 56 %
of those emissions [6], [7]. The carbon dioxide (CO2) contributes the vast
majority among these GHG gases [8].

To curb these emissions and promote sustainability, many governments have
implemented measures to reduce emissions. The European Union has set strin-
gent targets to achieve a 100 % reduction in CO2 emissions from cars and vans
by 2035. Both the US and the European Union have set net zero emissions by
2050. Zero-emission vehicles (ZEVs) would help to achieve these targets, as
they produce no direct exhaust emissions of pollutants or greenhouse gases.
This includes electric vehicles (EVs), hydrogen fuel cell vehicles, and any other
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Chapter 1 Background

vehicles that do not emit pollutants from their onboard power source. Among
ZEVs, battery electric vehicles (BEVs) are considered the future of passen-
ger vehicles. BEVs are projected to dominate the largest automotive markets
by 2035 due to various government regulations and increasing customer de-
mand for sustainable mobility [9]. It is estimated that by 2032, global sales
of BEVs will account for around 34 % of overall passenger vehicle sales [10].
To be on track to reach CO2 net neutrality by 2050, BEV sales must increase
significantly [11].

To increase sales, BEVs must be competitive in the mass market, and con-
sumers must perceive them as viable alternatives to combustion vehicles. One
of the most desirable features consumers seek in BEVs is a longer driving
range [12]. However, the challenge of reduced driving range, known as "range
anxiety," represents a significant concern for potential BEV owners [13]. While
equipping the vehicle with a bigger battery could increase the driving range,
this solution would raise the vehicle’s cost, diminishing its competitiveness
with conventional vehicles. Therefore, improving system efficiency is a more
cost-effective way to enhance the driving range of BEVs.

30%15%

55%

Heating
Auxiliary
Traction Energy

Figure 1.1: Energy consumption distribution in an electric vehicle.

The typical energy consumption of a BEV is shown in Fig. 1.1 [14]. Most
energy consumption is due to traction demand, the energy required to move
the vehicle. The second highest energy consumption is attributed to auxiliary
loads, which include high voltage loads like heating, ventilation, and air con-
ditioning (HVAC), battery cooling or heating, and electric drive cooling. The
rest is low voltage loads such as horns, wipers, lamps, and infotainment sys-
tems. The energy consumption of high-voltage auxiliary loads is significantly
higher than that of low-voltage auxiliary loads and highly depends on the cli-
mate. Extreme weather conditions lead to increased energy use to maintain
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Figure 1.2: Impact of the thermal energy consumption on the range at different
ambient temperatures. NEDC - New European Driving Cycle, WLTC
- Worldwide Harmonised Light Vehicles Test Cycle.

cabin thermal comfort and required operating conditions.
In a test conducted on a small electric vehicle, the impact of the HVAC

system on energy consumption was analyzed at different ambient temper-
atures [15]. The results showed that high-voltage auxiliary power demand
varies significantly with temperature. When the HVAC system was on, the
vehicle’s range decreased significantly compared to when it was off during
the same drive cycle as shown in Fig. 1.2. In particular, in harsh weather
conditions, high-voltage auxiliary energy consumption can reduce the electric
range by 30-35% [15]. This increased energy consumption is due to cabin and
battery heating. Unlike internal combustion engine (ICE) vehicles, which use
waste heat from the engine for cabin heating, BEVs lack this heat source. The
battery pack in a BEV needs to be heated to maintain optimal performance, as
lithium-ion batteries operate best within a specific temperature range. Cold
temperatures can significantly reduce battery efficiency, power output, and
charging capability, and may even cause permanent damage. Heating the
battery ensures efficient energy absorption, faster charging rates, and over-
all safety, especially in cold weather conditions. The battery pack, weighing
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around 400 kg in mid-sized passenger vehicles, requires significant energy to
heat, which is drawn from the battery itself, thus reducing the vehicle’s range.

This challenge has driven innovation in thermal energy management (TEM)
systems for BEVs, with the primary objective to meet the thermal demands
of the vehicle’s passenger cabin, battery, and electric drive (ED). The de-
velopment of TEM systems has evolved over the years. In the early face
of BEV adaptation, the focus was on developing separate component-level
systems, such as battery thermal management systems (BTMS), HVAC sys-
tems, and motor cooling. However, recent advancements in TEM technology
have led to integrated systems in modern vehicles. These systems encompass
HVAC and heat pumps, efficiently transferring thermal energy among the pas-
senger cabin, battery, and electric drivetrain. This innovative design utilizes
waste heat from the electric drivetrain, achieving higher energy efficiency com-
pared to traditional setups [16]–[19]. Notably, vehicles like the Tesla Model
Y, Polestar 2, Volvo XC 40, and Zeekr incorporate TEM systems with HVAC
coupled with heat pumps.

Recently a new system offering greater flexibility and potentially higher
efficiency compared to existing TEM systems has been introduced, which is
expected to be featured in future Zeekr vehicles. We will be referring to such
a system as the Flexible Thermal Energy Management (FTEM) system. Un-
like traditional HVAC systems with heat pumps, the FTEM system relocates
the HVAC unit from the vehicle’s interior to the front compartment, which
enhances air disposal flexibility. Additionally, it incorporates an extra fan
within the HVAC unit, streamlining the refrigerant loop and reducing the
overall refrigerant usage. As a result, the FTEM system not only simplifies
the refrigerant circuit but also holds the potential for superior energy effi-
ciency. While the FTEM system’s architectural design is inherently efficient,
further optimization of its operation for specific scenarios could lead to even
greater efficiency improvements.

1.2 Research scope
This research aims to study and enhance the efficiency of the FTEM system,
focusing on optimizing its performance to reduce energy consumption while
maintaining the necessary thermal conditions for the vehicle’s components.
The primary objectives are outlined as follows:
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1.3 Literature Review

• Develop a control-oriented model for the FTEM system. This involves
developing a simple mathematical model that accurately depicts the
behavior of the physical system.

• Develop a real-time implementable controller for the FTEM system.
This involves creating a control strategy that can dynamically adjust
the system’s operations based on real-time data inputs. The controller
must be robust and computationally efficient to be feasible for vehicle
implementation. By developing a model-based solution, we ensure that
the developed methods apply to other BEV thermal systems.

• Achieve a significant reduction in energy consumption of the FTEM
system. The target is to reduce energy consumption by 5-15 % through
the optimization of critical components such as the compressor, coolant
pump, and blower fans.

• Achieve an even greater reduction in energy consumption for autonomous
vehicles, aiming for a 7-22 % decrease. This research will explore specific
strategies to optimize the thermal management system for autonomous
driving conditions, including the use of predictive algorithms that can
anticipate and respond to changes in thermal loads and environmental
conditions more effectively.

By achieving these objectives, the research aims to contribute significantly
to the development of more efficient and sustainable thermal management sys-
tems for electric vehicles, supporting the broader transition to zero-emission
transportation.

1.3 Literature Review
Extensive studies have focused on energy-saving strategies for HVAC systems
in conventional vehicles [20]–[25] and fewer studies carried out specifically for
BEV. Optimization methods have shown promising results in reducing energy
consumption in BEVs. For instance, Pontryagin’s maximum principle was
investigated to optimize the BTMS in [26]. Additionally, Model Predictive
Control (MPC) has emerged as a promising method for the energy-optimized
control of automotive air conditioning systems [27]–[32]. These studies demon-
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strate that utilizing such optimal control methods can further reduce the en-
ergy consumption of TEM systems, enhancing the overall efficiency of BEVs.

In BEVs, the focus has primarily been on component-level energy consump-
tion reduction, such as BTMS [26], [33], [34] and HVAC systems [27], [29], [32],
[35]–[38]. This approach is insufficient for modern TEM systems, where BTMS
and HVAC are integrated. Some studies have examined integrated systems
in Hybrid Electric Vehicles (HEVs)[30], [31], but these do not fully reflect the
modern BEV setup, making their approaches less applicable. For example, in
[30], [31], the authors considered a simple setup to cool the battery by blowing
cold air from the cabin.

Only a few studies have proposed energy reduction for modern TEM sys-
tems [39]–[41]. For instance, [39], [40] propose component-level energy reduc-
tion for HVAC with heat pumps, focusing on cabin cooling and heating, but
lack comprehensive system-level thermal management. Developing a holistic
system-level TEM increases control complexity, which can be mitigated by
balancing computational simplicity with an accurate system-level depiction of
HVAC and heat pump operations. In contrast, a recent study [41] considers
the complete TEM system of BEVs, but its computational complexity hinders
real-time application.

One approach to solving such complex problems is to implement a dis-
tributed method. Distributed solutions are useful in software optimization
problems and are necessary in problems with physically distributed architec-
ture. In modern automotive electrical architecture, various Electronic Control
Units (ECUs) control different mechanical parts of the vehicle. These ECUs
communicate via FlexRay or Controller Area Network (CAN), robust proto-
cols designed for real-time data exchange in automotive environments. A dis-
tributed approach can spread the computational load across multiple ECUs,
enhancing the system’s efficiency and feasibility for real-time applications.

In a distributed approach, each ECU can manage a specific component or
set of components, such as the BTMS, cabin HVAC, or power electronics
cooling. This distributed method allows for parallel processing, significantly
reducing the overall computational burden on any single ECU. Furthermore,
advanced communication protocols like FlexRay or CAN ensure synchronized
and reliable data exchange between ECUs, enabling coordinated control ac-
tions across the vehicle.

Implementing a distributed TEM also opens the possibility for modular up-
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grades and scalability. As new technologies and components are developed,
they can be integrated into the existing system with minimal disruption, sim-
ply by adding or updating the relevant ECUs. This flexibility is particularly
valuable in the fast-evolving landscape of electric vehicle technology.

In summary, while component-level energy reduction strategies offer some
benefits, a holistic system-level approach is essential for maximizing the energy
efficiency of BEVs. Addressing the computational challenges of such a system
through distributed methods and advanced communication protocols can pave
the way for effective real-time TEM implementations, ultimately enhancing
vehicle efficiency and extending driving range.

1.4 Major Contributions
This thesis presents significant advancements in the field of TEM systems for
BEVs. The following key contributions have been made:

• A Control-Oriented, System-Level Model: This thesis developed
a comprehensive model for a novel TEM architecture. The same model
could be reused for other TEM systems.

• Distributed Optimal Control Framework: Presented a distributed
optimization framework utilizing MPC with the Alternating Direction
Method of Multipliers (ADMM).

• Energy-Saving Strategies: Demonstrated the potential of the pro-
posed control model to develop energy-saving strategies for TEM sys-
tems. We investigated the effects of uncertainty in predicted passenger
data and formulated energy-efficient strategies to address these uncer-
tainties.

1.5 Thesis outline
This thesis is structured as follows: Chapter 1 introduces the research, out-
lining its motivation and objectives. Chapter 2 provides an overview of the
FTEM system and its key components. Chapter 3 focuses on the development
and validation of the control-oriented model used in the research. Chapter
4 presents the distributed optimization approach, specifically utilizing the

9
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ADMM. Chapter 5 discusses the implementation of the distributed MPC for
the FTEM system. Chapter 6 showcases the simulation results and their anal-
ysis. Finally, Chapter 7 concludes the thesis by summarizing the findings and
proposing potential directions for future research.
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CHAPTER 2

System Overview

This chapter describes the thermal energy management system such as FTEM
and its working principles. The FTEM system comprises three main circuits:
the battery coolant circuit, the ED coolant circuit, and the refrigerant circuit.
Each of these circuits plays a different role in managing the thermal energy
within the system.

• The battery coolant circuit, represented by the blue line in Fig. 2.1,
consists of a coolant pump, a cooling plate, and a chiller. This circuit
primarily functions to regulate the battery’s temperature.

• The ED coolant circuit, shown in yellow in Fig. 2.1, includes components
such as the motor, a water-cooled condenser (WCC), an ED coolant
pump, and a radiator. This circuit absorbs heat generated by the in-
verter, DC-to-DC converter, and motor. Additionally, it draws heat
from the refrigerant within the WCC and dissipates it through the ra-
diator with the aid of a fan.

• The refrigerant circuit, depicted in green in Fig. 2.1, comprises a com-
pressor, a WCC, a condenser, a chiller, an evaporator electronic expan-
sion valve (EEXV), a chiller electronic expansion valve (CEXV), and an
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evaporator.

Battery Coolant Circuit
ED Coolant Circuit
Refrigerant Circuit

Chiller

Compressor

B
at
te
ry

WCC

Battery Coolant
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ED Coolant
Pump
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FromAmbient
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From Cabin
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Condenser
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Fan

Cond Fan
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Figure 2.1: The thermal energy management system (FlexiEffi TEM) at Zeekr
Technology Europe. The components are abbreviated as follows: EXV
for Electronic expansion valve, WCC for Water cooled condenser, Evap
for Evaporator, ED for electric drive, and Cond for Condenser.

The FTEM system uses two 4-way valves to exchange heat between the
circuits, allowing it to operate in different modes. In the mode considered
here, the battery is cooled via a chiller, transferring heat from the battery
coolant to the refrigerant. The ED is cooled using a radiator fan, transferring
heat from the ED coolant to the ambient air. Depending on the requirements,
the system can switch to alternate modes where the battery coolant is cooled
at the radiator and the ED coolant at the chiller.

This study focuses on the battery cooling and refrigeration circuits, partic-
ularly under hot climate conditions where both the cabin and battery need to
be cooled.

2.1 Refrigeration circuit
The HVAC system within the FTEM encompasses three primary functions:
heating, ventilation, and air conditioning. The ventilation function main-
tains a fresh interior atmosphere by expelling stale air and preventing carbon
monoxide buildup from the exhaust. It achieves this by drawing in outside air

12



2.1 Refrigeration circuit

through ducts and a cabin filter, purifying the air before it reaches the pas-
senger compartment. Air conditioning in the FTEM system is accomplished
through a vapor compression refrigeration system. This system integrates re-
frigeration with air distribution and temperature control to cool, heat, clean,
and dehumidify the air inside the vehicle.

The principle of heat transfer within the HVAC system relies on moving heat
from a low-temperature region to a high-temperature region due to pressure
differences, a process known as refrigeration. The refrigerant fluid absorbs
heat in its liquid state and becomes gaseous through evaporation. Its boiling
point varies with pressure: increasing the pressure raises the boiling point
while decreasing it lowers the boiling point. This pressure manipulation al-
lows heat removal from low-temperature regions by adjusting the refrigerant’s
boiling point.

The refrigeration system operates on a vapor compression cycle, which in-
cludes four distinct processes: compression, condensation, expansion, and
evaporation, as illustrated in Fig. 2.2. These processes are facilitated by seven
major components in the FTEM system: the compressor, WCC, condenser,
two expansion valves, evaporator, and chiller. These components are inter-
connected by tubes, forming a closed system.

Compressor
The compressor is a mechanical device that circulates the refrigerant gas
throughout the system. It compresses the refrigerant in its gaseous state,
thereby increasing its temperature and pressure. In Fig. 2.2(a), the 2-3 seg-
ment represents the compression process where the refrigerant pressure rises.
The TS diagram in Fig. 2.2(b) illustrates the corresponding refrigerant tem-
perature increase during this process. The compressor power is nonlinear and
dependent on the speed, compression ratio, and mass flow rate. The power
consumed by the compressor can be estimated using the theory in [33], i.e.,

Pcomp = ṁref · (h3 − h2)
ηisen

(2.1)

ṁref = Vcomp · ηcomp · ωcomp · ρref · 2π/60 (2.2)

where ṁref is refrigerant mass flowrate, Vcomp is compressor cylinder volume,
ηcomp is the volumetric efficiency of the compressor, ωcomp is the compressor
speed, ρref is the density of the refrigerant, ηisen is the isentropic efficiency of
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Figure 2.2: The Pressure-Enthalpy and Temperature-Entropy charts illustrate the
thermodynamic properties of a refrigerant, depicting enthalpy and en-
tropy changes throughout the various phases of the vapor compression
cycle.

the compressor, h3 is the refrigerant enthalpy at the exit of the compressor
and h1 is the refrigerant enthalpy at the inlet of the compressor.

To estimate power consumption, manufacturers often provide datasheets
that include information on pressure rise, mass flow rate, and power consump-
tion at different speeds based on physical tests. Power consumption can then
be estimated by fitting a polynomial curve to the given data, as demonstrated
in [30], [42].

In this study, we have considered the following state variables and control
input for the compressor component:

xcompressor =
[
Refrigerant pressure at the inlet of the compressor
Refrigerant temperature at the inlet of the compressor

]
ucompressor =

[
Mass flow rate at the compressor

]
.

Water-Cooled Condenser
The WCC is a heat exchanger where heat is transferred between the refrig-
erant and the electric drive coolant. During this heat exchange process, the
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2.1 Refrigeration circuit

refrigerant releases heat to the coolant. Depending on the amount of heat re-
moved from the refrigerant, it may exit the WCC in either a two-phase state
(a mixture of liquid and vapor) or in a vapor phase.

Condenser
The condenser is a heat exchanger where the refrigerant is cooled, causing it
to transition from a gas or two-phase state to a liquid. In Fig. 2.2(a), the
3-4 segment represents the condensation process where the refrigerant loses
enthalpy to change from vapor to liquid at constant pressure and temperature.
This occurs when ambient air is blown across the condenser, filled with hot
refrigerant.

Expansion Valve
The FTEM system uses two electronic expansion valves: one for the chiller
and one for the evaporator. The function of the expansion valve is to reduce
the pressure of the refrigerant, allowing it to evaporate easily in the evaporator
and the chiller and reach a superheated state before entering the compressor.
An adiabatic process occurs within the expansion valve, meaning the energy
content of the refrigerant does not change as it passes through the valve,
which is represented by segment 4-1 in Fig 2.2(a). In the model, we consider
the mass flow rate through the expansion valves as the control input for this
component

uEXV =
[
Mass flow rate at the evaporator EXV
Mass flow rate at the chiller EXV

]
.

Evaporator
The evaporator is a heat exchanger where heat from the cabin air or ambient
air is absorbed into the refrigerant. As the refrigerant moves through the evap-
orator tube, it absorbs heat, which causes it to evaporate while simultaneously
cooling the air. The cooled air is then vented back into the cabin, ensuring a
comfortable interior temperature. This evaporation process is represented by
the 1-2 segment in Fig. 2.2(a).
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Chiller
The chiller operates similarly to the evaporator, where heat is absorbed from
either the battery coolant or the ED coolant into the refrigerant, depending
on the mode of operation.

Blower fan
The FTEM system features two blowers, one for the evaporator and one for
the condenser. Air is blown over these heat exchangers using the blowers,
facilitating convective heat transfer between the refrigerant and the air. The
power consumption of the condenser blower Pcondfan and evaporator blower
fan Pevapfan , can be estimated similarly to the compressor. In the model, we
consider the following control inputs for this component,

ublower =
[
Air mass flow rate at the condenser blower
Air mass flow rate at the evaporator blower

]
.

2.2 Battery Coolant Circuit
In the mode of operation considered in this study, the battery is actively cooled
using a chiller. However, depending on the cooling demand, the battery can
also be cooled using a radiator in other operational modes. The battery pack
is positioned on a cooling plate, and for this study, it is assumed that the
opposite side of the cooling plate is perfectly insulated. The battery coolant
pump is responsible for circulating the coolant throughout the circuit, and its
power consumption Ppump can be estimated using similar methods as those
used for the compressor and fan.

In recent years, various BTMS have been developed, including air-based,
liquid-based, refrigerant-based, phase change materials, and heat pipes sys-
tems [43]. The FTEM system specifically employs a liquid-based BTMS,
featuring a cooling plate located beneath the battery pack to facilitate effi-
cient heat transfer. The primary sources of heat within the battery are Joule
heating, which arises from internal resistance, and reversible heat effects [44]–
[48]. Additionally, a secondary source of heat generation is attributed to the
bus bar resistance, as the bus bar connects different cell modules within the
battery pack.
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Accurately modeling the rate of change in battery temperature involves
calculating the heat retained in the battery pack after the coolant has absorbed
the heat energy. This is determined by subtracting the heat removed by
the coolant from the total heat generated within the battery. Dividing this
retained heat by the mass and specific heat capacity of the battery pack
provides an estimate of the rate of temperature change.

In the model, we have considered the following as the state and control
variable for the battery circuit,

xbattery =
[
State of charge
Battery temperature

]
ubattery =

[
Coolant mass flow rate at the pump

]
dbattery =

[
Traction power demand

]
.

Here dbattery captures the traction power demand over the complete drive
cycle, allowing the model to account for real-world driving conditions that
affect the battery’s thermal behavior.

2.3 Cabin System
Passenger thermal comfort in a vehicle cabin is influenced by several factors,
including clothing, journey duration, cabin air temperature, and external cli-
mate conditions. While some of these factors are difficult to control, cabin
air temperature is crucial in determining comfort, as it directly impacts the
heat exchange between the passenger and the surrounding environment [49].
For this analysis, we assume thermal comfort is achieved when the cabin air
temperature stabilizes at a specified setpoint temperature.

The cabin air temperature is influenced by various factors, including the
heat rejected by the passenger, the heat transferred from interior surfaces,
and the heat transferred from interior parts, such as the steering wheel, seats,
dashboard, and floor carpet, as depicted in Fig. 2.3. Different materials used
for interior surfaces, such as window glass and door panels, can result in
different temperatures due to their distinct thermal properties. Similarly, the
steering wheel, dashboard, and seats may have different temperatures based
on the materials used in their construction. To simplify the problem, a lumped
thermal mass is assumed for all interior parts, resulting in all parts being at
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Battery Cooling Plate

Solar Load

Qac

Tca

Qm
Qsrf

Qh

Ta

Figure 2.3: Cabin setup with a passenger where Tca is cabin air temperature, Ta is
the ambient air temperature, Qh is the heat rate rejected by passenger
due to metabolism, Qsrf is the heat transfer rate of the interior surface
of the cabin, Qac is the air conditioning load and Qm is the heat transfer
rate of the interior mass like steering wheel, dashboard and seats.

the same temperature. Additionally, it is assumed that the interior surfaces
have the same thermal properties, leading to the same temperature for the
interior surface. The state and disturbance variables for the cabin are defined
as follows,

xcabin =

Cabin air temperature
Cabin interior surface temperature
Cabin interior mass temperature


dcabin =

[
Ambient air temperature
Re-circulation door position

]
.

Here, the ambient air temperature and re-circulation door position are con-
sidered disturbance variables as they introduce external and operational vari-
ability to the system.

2.4 Overview of Model Variables
This section provides a consolidated overview of the state, control, and distur-
bance variables used in the developed model, summarizing the key parameters
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that define the FTEM system’s dynamics. Below is a detailed summary of
these variables.

The state vector x(t) includes the following variables:

x(t) =



Refrigerant pressure at the inlet of the compressor
Refrigerant temperature at the inlet of the compressor

Cabin air temperature
Cabin interior surface temperature
Cabin interior mass temperature

State of charge of the battery
Battery temperature


The control vector u(t) consists of the following variables:

u(t) =



Mass flow rate at the compressor
Mass flow rate at the evaporator EXV

Mass flow rate at the chiller EXV
Air mass flow rate at the condenser blower
Air mass flow rate at the evaporator blower

Coolant mass flow rate at the pump


The disturbance vector d(t) is defined as:

d(t) =

Ambient air temperature
Traction power demand
Occupant information


The nonlinear dynamics governing the system are expressed as:

ẋ(t) = f (x(t), u(t), d(t))

A detailed description of the modeling approach, including the cooling sys-
tems and heat generation processes, is explained in paper A.

2.5 Model Validation
Model validation is a critical step in ensuring that the developed model can
accurately predict system behavior under various operating conditions. This is
particularly important for models intended for use in model-based controllers,
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Table 2.1: Comparison of Model Results with GT-SUITE
RMSE [%]

Cabin air temperature 1.54
Battery temperature 0.70
Compressor power 4.51
Coolant pump power 0.03
Evaporator fan power 0.48
Condenser fan power 0.05

where accuracy directly impacts performance and reliability. The validation
process aims to establish confidence in the model’s predictive capabilities by
comparing its outputs with those from a high-fidelity simulation tool and
experimental data.

In this study, the developed model is validated against results from GT-
SUITE, a high-fidelity simulation tool widely used in automotive engineering.
GT-SUITE offers a comprehensive set of features for modeling complex ther-
mal and fluid systems, making it a suitable benchmark for validation. The
GT-SUITE results have been previously validated against physical system
data, ensuring their accuracy and reliability.

The validation process involves comparing key performance indicators such
as temperature profiles, pressure drops, and energy consumption rates be-
tween the developed model and GT-SUITE. Statistical methods, including
mean absolute error (MAE) and root mean square error (RMSE), are used to
quantify the differences and assess the model’s accuracy.

The results in Table 2.1 show that the developed model has high accu-
racy compared to the GT-SUITE results, demonstrating its reliability and
robustness. These findings are further discussed and validated in the Model
Validation section of Paper A.

2.6 Controller Objective and Purpose
The goal of this thesis is to develop an optimal controller designed to minimize
the energy consumption of the FTEM system while ensuring that the thermal
demands of the vehicle are met. Achieving this goal requires a systematic ap-
proach to control, where various energy-consuming components of the system
are optimized simultaneously while adhering to essential constraints.
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This objective can be formulated mathematically through an objective func-
tion. The objective function, denoted as J(x(t), u(t)), is a comprehensive
expression that aggregates the energy consumption of key components along
with penalties for deviating from desired thermal conditions. Specifically, the
function is designed to minimize the total energy consumption while main-
taining the required thermal comfort in the vehicle cabin and the optimal
temperature range for the battery.

The objective function J(x(t), u(t)) is structured as follows:

J(x(t), u(t)) = Compressor Energy Consumption
+ Condenser Fan Energy Consumption
+ Evaporator Fan Energy Consumption
+ Coolant Pump Energy Consumption
+ Cabin Air Temperature Deviation Penalty
+ Battery Temperature Deviation Penalty.

The optimization process must satisfy several constraints to ensure practical
and feasible control actions. These constraints include:

• State Constraints:

x(t) ∈ [xmin(t), xmax(t)], ∀t ∈ [0, T ]. (2.3)

The state constraints ensure that the system’s state variables, such as
temperatures and energy levels, remain within specified bounds through-
out the operation. The time horizon [0, T ] represents the entire duration
over which the system is constrained, beginning at the initial time t = 0
and concluding at the final time t = T .

• Control Constraints:

u(t) ∈ [umin(t), umax(t)], ∀t ∈ [0, T ]. (2.4)

Control constraints limit the range of control inputs, such as fan and
compressor mass flow rate, ensuring that these actions remain within
realistic and practical limits.

• General Inequality Constraints:

g
(
x(t), u(t)

)
≤ 0, ∀t ∈ [0, T ]. (2.5)
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These constraints represent additional operational and safety limitations
that must be adhered to during the optimization process, such as ensur-
ing the system does not exceed its thermal capacity.

The optimal control problem (OCP) integrates these elements into a cohe-
sive framework that systematically minimizes the cost function, considering
the dynamic behavior of the FTEM system and the impact of control decisions
over time. The problem is formulated as a nonlinear optimization problem:

min
u

V (x(T )) +
∫ T

0
J (x(τ), u(τ)) dτ (2.6a)

s.t. ẋ(t) = f (x(t), u(t), d(t)) , ∀t ∈ [0, T ) (2.6b)
x(t) ∈ [xmin(t), xmax(t)], ∀t ∈ [0, T ] (2.6c)
u(t) ∈ [umin(t), umax(t)], ∀t ∈ [0, T ) (2.6d)
g(t)

(
x, u

)
≤ 0, ∀t ∈ [0, T ) (2.6e)

x(0) = x0, x(T ) ∈ Xf . (2.6f)

In this formulation, the objective function (2.6a) aims to minimize the total
cost, which includes both the terminal cost V (x(T )) and the running cost
J(x(τ), u(τ)) integrated over the time horizon [0, T ]. The system dynamics
(2.6b) describe the evolution of the state x(t) over time, governed by the
nonlinear function f(x(t), u(t), d(t)), with the initial state x(0) = x0 and the
final state x(T ) ∈ Xf , which has to reside withing the final set Xf .
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CHAPTER 3

Optimal Solution for Distributed System

This chapter provides a brief overview of the theory behind the optimization
method used in this thesis.

The OCP presented in equation (2.6) is a centralized optimization prob-
lem where a single decision-making entity controls the entire system. This
centralized entity optimizes a global objective function while considering all
relevant constraints and variables. The OCP is initially formulated in con-
tinuous time, requiring the solution of continuous-time differential equations
and integration over continuous time horizons. However, directly solving such
continuous problems is mathematically challenging and computationally in-
tensive. To address these challenges, the continuous problem is discretized,
breaking it down into a finite number of steps. This process allows for the
application of numerical optimization techniques, making the problem more
manageable for digital computation and real-time control. The discretized
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problem for (2.6) is formulated as follows:

min
uk

Ṽ (xN ) +
N−1∑
k=0

J̃ (xk, uk) (3.1a)

s.t. xk+1 = f̃ (xk, uk, dk) , ;∀k ∈ 0, . . . , N − 1 (3.1b)
xk ∈ [xmin(k), xmax(k)], ∀k ∈ 0, . . . , N (3.1c)
uk ∈ [umin(k), umax(k)], ∀k ∈ 0, . . . , N − 1 (3.1d)
gk(xk, uk) ≤ 0, ∀k ∈ 0, . . . , N − 1 (3.1e)
x0 = x(0), xN ∈ Xf . (3.1f)

where the objective function (3.1a) consists of the terminal cost Ṽ (xN ) and the
running cost J̃ (xk, uk), The system dynamics are discretized using methods
such as the Euler method or the Runge-Kutta method.

The discretized nonlinear optimal control problem described in equation
(3.1) can be effectively solved using MPC. MPC is widely used in real-time
control applications due to its ability to explicitly handle system constraints,
and optimize performance over a receding time horizon. MPC operates by
solving an optimization problem at each discrete time step, using the current
state of the system as the initial condition.

The primary advantage of a centralized approach is its capacity to opti-
mize the entire system holistically, leading to solutions that are optimal and
consistent. However, centralized optimization presents significant challenges,
particularly in terms of the complexity of real-time implementation and the
substantial computational burden. To overcome these issues, a distributed
optimization approach can be adopted, which reduces the computational load
and complexity. When implemented correctly, distributed optimization can
achieve results comparable to those of centralized optimization.

The distributed optimization approach involves breaking down the large,
complex problem into smaller optimization tasks, which are then executed by
different ECUs or computational units operating in coordination. Distributed
optimization offers several key advantages. First, it enhances scalability; as
the system grows in complexity or incorporates new components, the optimiza-
tion tasks can be further subdivided and distributed across additional ECUs,
ensuring that no single processing unit is overburdened. Second, it increases
flexibility and modularity, allowing new technologies and components to seam-
lessly integrate into the existing system with minimal disruption—achieved by
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simply updating or adding the relevant ECUs. This modularity is particularly
valuable in the rapidly evolving field of electric vehicle technology. Addi-
tionally, distributed optimization supports parallel processing, where multiple
ECUs can perform computations simultaneously, potentially addressing some
of the slower convergence issues often associated with distributed methods.

In light of these advantages, this thesis delves into distributed optimization
employing the ADMM approach, aiming to develop a controller that could be
implemented in real-time.

3.1 Distributed Optimization

Distributed optimization refers to a class of optimization methods where a
large problem is divided into smaller subproblems that are solved indepen-
dently. One effective method within distributed optimization is the ADMM.

ADMM is an optimization algorithm that decomposes a large optimization
problem into smaller subproblems, which can be solved independently, either
in parallel or sequentially. The algorithm works by iteratively updating the
solutions to these subproblems while coordinating them through a combina-
tion of local updates and global information sharing. Each iteration involves
solving subproblems for each distributed component and then updating dual
variables to enforce consensus among the subproblems. This process contin-
ues until convergence criteria are met, resulting in an optimized solution that
satisfies the constraints and objectives of the original centralized problem [50].
The ADMM algorithm solves problems in the form:

minimize M(p) + N(q)
subject to Ap + Bq = c

(3.2)

with variables p ∈ Rn and q ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp.
The augmented Lagrangian for the problem (3.2) can be written as [50]

Lρ(p, q, λ) = M(p) + N(q) + λ⊤(Ap + Bq − c) + ρ

2∥Ap + Bq − c∥2
2. (3.3)

where λ represents the dual variable, and ρ > 0 is a penalty parameter. The
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Subsystem A Subsystem B

xA

xB

Figure 3.1: Coupled dynamical system with subsystems A and B, each requiring
information from the other.

ADMM algorithm consists of the following iterations:

pk+1 := arg min
p

Lρ(p, qk, λk) (3.4)

qk+1 := arg min
q

Lρ(pk+1, q, λk) (3.5)

λk+1 := λk + ρ(Apk+1 + Bqk+1 − c). (3.6)

The algorithm consists of three main steps in each iteration: the p-minimization
step (3.4), the q-minimization step (3.5), and the dual variable update (3.6).
For each iteration, the primal and dual variables are updated and shared be-
tween the steps. The iterations continue until the exit criterion ∥Apk+1 +
Bqk+1 − c∥ <= tolerance is satisfied.

Let us now explore how we can utilize the ADMM method for a system
where the dynamics are coupled. A distributed, dynamical, coupled, nonlin-
ear system is shown in Fig 3.1, where for didactic reasons we consider only
two subsystems. The system dynamics of the centralized system 2.6b can be
rewritten as x(t) = [xA(t), xB(t)]⊤, and the state and control vectors stacked
as f(·) = [fA(·), fB(·)]⊤ and u(t) = [uA(t), uB(t)]⊤, respectively. The dot (·)
notation is used to represent a function that depends on more than 2 variables.
Subsystem dynamics are described as:

ẋA(t) = fA (xA(t), uA(t), dA(t), xB(t)) (3.7)
ẋB(t) = fB (xB(t), uB(t), dB(t), xA(t)) (3.8)

where xA and uA are the state variable and control variables of subsystem A
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and xB and uB are the state variable and control variables of subsystem B.
These subsystems’ dynamics are coupled, as subsystem A requires information
from subsystem B to solve its dynamics, and vice versa.

The dynamically coupled OCP for the centralized MPC scheme can be de-
composed into individual subsystems using dual decomposition in conjunction
with an augmented Lagrangian formulation [51]. This decomposition is facil-
itated by introducing local copies of the coupling variables and additional
coordination variables. These steps allow the augmented Lagrangian to be
expressed in a decomposable form, enabling a distributed solution approach
based on the ADMM.

The local copies are defined as

l(t) = [lB(t), lA(t)]⊤ (3.9)

where lB represents a vector of the local copy of states xB for subsystem A and
lA represents a vector of the local copy of states xA for subsystem B. Using
these local copies we can rewrite the subsystem dynamics (3.7) and (3.8) as
follows:

ẋA(t) = fA (xA(t), uA(t), dA(t), lB(t)) (3.10)
ẋB(t) = fB (xB(t), uB(t), dB(t), lA(t)) . (3.11)

Since each subsystem only has access to copies of the true variables from the
other subsystem, a negotiation process is required to reach a consensus on the
common values of these local variables [51]. This negotiation is facilitated by
introducing coordination variables ci for each of the local copies and imposing
consistency constraints

ci(t)− xi(t) = 0, i ∈ {A, B}, (3.12a)
ci(t)− li(t) = 0. (3.12b)

For simplicity, in the following, the dependency of variables on time t and
the planning horizon τ ∈ [0, T ] is omitted from the notation. Furthermore,
to streamline the notation, we introduce the stacking notation for the co-
ordination variable c = [cA, cB ]⊤ and for multipliers λ = [λi]i∈A,B with
λi = [λci

, λli
]⊤. Based on (3.3), we can express the augmented Lagrangian
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for this decomposition as

Lρ(x, u, l, c, λ) = J(x, u) +
∑

i∈{A,B}

∫ T

0

(
λ⊤

ci
(ci − xi) + ρ

2∥ci − xi∥2

+λ⊤
li

(li − xi) + ρ

2∥li − xi∥2
)

dτ (3.13)

where the consistency constraints in equations (3.12) are incorporated into
the cost function using the dual variables λci

and λli
, which correspond to

the constraints (3.12a) and (3.12b), respectively.
The augmented Lagrangian can be discretized for each subsystem over the

time horizon τ ∈ [0, T ], resulting in the following NLP for subsystem

min
uA,lB

Lρ (x(k), u(k), l(k), c(k), λ(k))

s.t. xA(k + 1) = f̃A (xA(k), uA(k), dA(k), lB(k)) , (3.14)
xA(k) ∈ [xA,min(k), xA,max(k)] , ∀k = 0, 1, . . . , N (3.15)
uA(k) ∈ [uA,min(k), uA,max(k)] , ∀k = 0, 1, . . . , N − 1 (3.16)
gA (xA(k), uA(k)) ≤ 0, ∀k = 0, 1, . . . , N − 1 (3.17)
xA(0) = xA,init. (3.18)

where k denotes the discretized time steps. Similarly, for subsystem B,

min
uB ,lA

Lρ (x(k), u(k), l(k), c(k), λ(k))

s.t. xB(k + 1) = f̃B (xB(k), uB(k), dB(k), lA(k)) , (3.19)
xB(k) ∈ [xB,min(k), xB,max(k)] , ∀k = 0, 1, . . . , N (3.20)
uB(k) ∈ [uB,min(k), uB,max(k)] , ∀k = 0, 1, . . . , N − 1 (3.21)
gB (xB(k), uB(k)) ≤ 0, ∀k = 0, 1, . . . , N − 1 (3.22)
xB(0) = xB,init. (3.23)

To solve these NLPs efficiently, an ADMM-based iterative solution process
is employed, which allows for effective coordination between subsystems while
ensuring convergence to the optimal solution. The overall solution process
involves solving the NLPs for Subsystems A and B iteratively, as outlined
below:

1. Initialization: Begin with initial guesses for the control variables uA

and uB , the local copies lA and lB , and the coordination variables cA

and cB and initialize the dual variables λci
and λli

for each subsystem.
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2. Local Optimization: Independently solve the NLP for each subsystem
(3.14) and (3.19) to minimize the augmented Lagrangian with respect
to the control variables uA and uB , as well as the local copies lA and lB .

3. Dual Variable Update: Update the dual variables λci
and λli

based
on the latest solutions of the local copies and coordination variables.

4. Coordination Variable Update: Minimize the augmented Lagrangian
with respect to the coordination variable using new values from step 2.

5. Consensus Check: Evaluate the consistency constraints to determine
whether convergence has been achieved. If the constraints are satisfied
within a specified tolerance, the algorithm converges; otherwise, return
to the local optimization step.

6. Iteration: Repeat the local optimization, dual variable update, and
coordination variable update steps until convergence.

A similar approach is utilized for the FTEM system considering the battery
coolant circuit and refrigeration circuit as subsystems, where the dynamics
are coupled. This is explained in detail in the Distributed MPC section of
paper B.
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CHAPTER 4

Summary of included papers

This chapter provides a summary of the included papers.

4.1 Paper A
Prashant Lokur, Nikolce Murgovski, Mikael Larssonn
Control-oriented Model for Thermal Energy Management of Battery
Electric Vehicles
.

This paper presents a control-oriented model for a novel architectural Ther-
mal Energy Management (TEM) system in Battery Electric Vehicles (BEVs)
and evaluates energy-saving strategies, including the use of predicted pas-
senger information while meeting all thermal demands of the system. The
research addresses the challenge of developing a model suitable for real-time
control that balances simplicity with accuracy, enabling efficient control strate-
gies to minimize energy consumption. The model, specifically designed for the
TEM system in BEVs, balances computational simplicity and the accuracy re-
quired for real-time control. Validation against high-fidelity GT-SUITE sim-
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ulations shows a root mean square error of 1.54 % for cabin air temperature
and 0.70 % for battery temperature. The model is leveraged to explore energy
reduction strategies, demonstrating a 5.7 % reduction in energy consumption
during a cool-down scenario in high ambient temperatures. The methodology
involves developing a control-oriented model based on the governing physi-
cal laws of the system, with key simplifications to ensure real-time feasibility.
This model captures the dynamics of critical components such as the com-
pressor, fans, pump, battery thermal system, and cabin thermal system. The
model is validated against a high-fidelity simulation tool for both accuracy
and behavior and is subsequently employed in an optimal control problem
to explore various energy-saving strategies, demonstrating its effectiveness for
optimization.

4.2 Paper B
Prashant Lokur, Nikolce Murgovski, Kristian Nicklasson
Distributed Model Predictive Controller for Thermal Energy Manage-
ment System of Battery Electric Vehicles
Published in 2023 62nd IEEE Conference on Decision and Control (CDC),
pp. 8363-8368, Jan. 2024.
©2023 IEEE DOI: 10.1109/CDC49753.2023.10384273 .

This paper presents a Distributed Model Predictive Controller (DMPC)
for the TEM system in BEVs using the ADMM. The primary challenge ad-
dressed is the complexity of real-time TEM control in BEVs, arising from the
inherent nonlinearities and high computational demands of centralized control
approaches. To overcome this, the paper proposes a DMPC approach that de-
couples the TEM system into separate battery and HVAC subsystems. By
leveraging the ADMM method, the approach enables efficient parallel compu-
tations and significantly reduces implementation complexity, making real-time
control feasible while enhancing energy efficiency. The DMPC strategy results
in a 2.21 % energy savings compared to a conventional rule-based method.
The paper also develops a distributed optimization framework tailored to the
nonlinear TEM system, demonstrating how to decouple the interdependent
dynamics of the battery and HVAC subsystems using local copies of coupled
variables. An ADMM-based DMPC algorithm is applied to iteratively solve
the optimization problem, with coordination variables ensuring subsystem
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consistency. The proposed approach is validated through simulations under
extreme temperature conditions, showing superior performance and effective-
ness compared to centralized MPC and rule-based strategies.
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CHAPTER 5

Concluding Remarks and Future Work

This thesis addresses the critical challenge of optimizing TEM systems for
BEVs by developing and implementing a distributed control approach for a
novel TEM architecture. The research focuses on enhancing energy efficiency
while maintaining system performance, particularly under varying environ-
mental conditions. Through the introduction of a control-oriented, system-
level model tailored to a state-of-the-art FTEM system, the framework devel-
oped in this thesis can be extended to various TEM systems.

The core contribution of this thesis lies in the development of a holistic
control-oriented model and the application of distributed optimization tech-
niques, specifically leveraging MPC and ADMM. The distributed approach
effectively addresses the computational complexity associated with real-time
control in TEM systems. By decoupling the problem into smaller subproblems,
the proposed method facilitates parallel processing across multiple ECUs,
thereby enhancing scalability and modularity. This approach not only re-
duces the computational burden but also improves the system’s flexibility,
allowing for the seamless integration of new technologies and components.

Simulation results validate the effectiveness of the proposed distributed
MPC method, demonstrating its ability to achieve substantial energy sav-
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ings while maintaining thermal comfort within the vehicle. The thesis also
explores the potential for further energy optimization through the integration
of predictive information, such as vehicle occupancy, which has shown promis-
ing results in reducing energy consumption in autonomous vehicle scenarios.

In conclusion, this research contributes to the broader goal of advancing
zero-emission transportation by developing a distributed TEM control frame-
work that optimizes energy usage in BEVs. The findings of this thesis pave
the way for future research focused on extending the distributed control ap-
proach to other FTEM subsystems, exploring hierarchical control structures,
and integrating predictive data for even greater energy efficiency. Ultimately,
the methodologies developed here offer a significant step forward in making
BEVs more energy-efficient, reliable, and attractive to consumers, thereby
supporting the transition to a more sustainable transportation ecosystem.

The current research, conducted in the attached papers, considered only hot
climatic conditions and a few driving scenarios. A natural extension of this
work would be to broaden the framework to accommodate various climatic
conditions, ensuring that the controller remains robust and stable across di-
verse environments. Additionally, exploring alternative methods within dis-
tributed optimization could further enhance system performance or reduce
implementation complexity for real-time applications. Finally, incorporating
more advanced predictive data, such as weather forecasts and climate condi-
tions along travel routes, will enable the controller to better anticipate and
adapt to environmental changes, ultimately improving energy efficiency and
overall system performance.
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