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Abstract
Let X be a reduced complex space of pure dimension. We consider divergent integrals
of certain forms on X that are singular along a subvariety defined by the zero set of
a holomorphic section of some holomorphic vector bundle E → X . Given a choice
of Hermitian metric on E we define a finite part of the divergent integral. Our main
result is an explicit formula for the dependence on the choice of metric of the finite
part.

Keywords Finite part of divergent integral · Regularization · Current · Meromorphic
continuation

Mathematics Subject Classification 32C30 · 32A27

1 Introduction

Let X be a reduced complex analytic space of pure dimension n and let V ⊂ X be an
analytic subvariety. Consider an (n, n)-form ω which is smooth in X \ V with singu-
larities along V and such that suppω is compact in X . We are interested in studying
finite parts of the divergent integral

∫
X ω, inspired by the process of regularization

and renormalization in perturbative quantum field theory. In general, the finite part of
a given divergent integral is not uniquely defined, rather, it depends on the choice of
regularization data. It is a fundamental problem to describe this dependence.

In this paper we consider the setting when the variety V is the vanishing locus of a
global holomorphic section s : X → E of some holomorphic vector bundle E → X .
Given a (smooth) Hermitian metric ‖ · ‖ on E we consider the space As,‖·‖(X) of
smooth differential forms ω on X \ V such that for each compact subset K ⊂ X there
exists some integer N ≥ 0 such that ‖s‖2Nω extends to a smooth form across V ∩ K .
Let As(X) be the union over metrics of all such As,‖·‖(X). Note that if s defines a
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Cartier divisor, then |s|2/‖s‖2 is smooth and non-vanishing for any two metrics ‖ · ‖
and | · | on E . Thus, in that case we have that As,‖·‖(X) = As,|·|(X) = As(X). In the
general case |s|2/‖s‖2 is only locally bounded and there may be different conformal
classes As,‖·‖(X) ⊂ As(X).

Any ω ∈ Ap,q
s (X) defines a current on X\V , that is, a continuous linear functional

on the space Dn−p,n−q(X \ V ) of test forms on X\V of complementary bidegree, by

ξ �→
∫

X
ω ∧ ξ.

To find a current extension of ω across V , following a classical idea, we consider the
function

�‖·‖(λ) =
∫

X
‖s‖2λω ∧ ξ, (1.1)

defined for Re λ sufficiently large. Differentiation under the integral sign shows that
�‖·‖(λ) is holomorphic forRe λ 
 0. It is clear that if there exists a metric ‖ · ‖ on E
such that ‖s‖2Nω is smooth for some N ≥ 0, then for any other metric |·| on E , |s|2Nω

is locally bounded. Thus (1.1) is defined and holomorphic for any ω ∈ Ap,q
s (X) and

any choice of Hermitian metric on E if Re λ 
 0. It is well known that (1.1) has a
meromorphic continuation to C, see, e.g., [2, 8]. The Laurent series of �‖·‖(λ) about
the origin is of the form

�‖·‖(λ) =
κ∑

j=0

1

λ j
〈μ j (ω), ξ 〉 + O(λ),

where 0 ≤ κ ≤ n and μ j (ω) are currents on X . Moreover, suppμ j (ω) ⊆ V for
j ≥ 1. See Theorem 4.1 below for details. It follows that μ0(ω) = ω as currents on
X\V . Thus μ0(ω) is a current extension of ω across V . For ω of top degree, and with
suppω ⊂⊂ X , it is therefore natural to define the finite part of

∫
X ω as

fp
∫

X
ω := 〈μ0(ω), 1〉. (1.2)

This definition depends on the choice of metric on E , as well as on the choice of
section s defining V . In this paper our focus is the metric dependence, keeping the
section fixed. In some situations, however, a change of sections can be realized a
change of metrics, see Example 5.1 below. The following theorem is the main result
of this article. It describes the metric dependence of μ j (ω) for each j = 0, . . . , κ .

Theorem 1.1 Let ω ∈ Ap,q
s (X). For any two Hermitian metrics ‖ · ‖ and | · | on E, let

μ
‖·‖
j (ω) and μ

|·|
j (ω) denote the currents defined by the coefficient of the − j th order

term in the Laurent series expansion around 0 of �‖·‖ and �|·|, respectively. We have
that

μ
|·|
j (ω) =

n− j∑

�=0

1

�!
(

log
|s|2
‖s‖2

)�

μ
‖·‖
j+�(ω). (1.3)
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A version of this theorem, in the special case when X and V are smooth, is a central
result in [12–14], see Example 1.3 below and the paragraph preceding it. There are
also partial results in [12–14] in the case when V is a normal crossings divisor. The
key idea of the proof is to consider a particular function of two complex parameters,
see (3.1), and use it to interpolate between the functions �‖·‖ and �|·|.

Note that the factor log |s|2
‖s‖2 appearing in (1.3) is locally integrable, but not smooth in

general. Thismeans that the products on the right-hand side of (1.3) are not canonically
defined. However, the proof of Theorem 1.1 shows that these products have a natural

meaning. In the special case where s defines a Cartier divisor, log |s|2
‖s‖2 is smooth and

the products on the right hand side of (1.3) are canonically defined. An immediate
consequence of this is the following result, which generalizes some results in [13, 14].

Corollary 1.2 Assume that s defines a Cartier divisor, and let κ be the order of the pole
of �‖·‖(λ) at 0. Then κ and μ

‖·‖
κ (ω) are independent on the choice of metric.

There is another standard way to regularize divergent integrals, such as
∫
X ω, which

is to introduce a cut-off parameter ε > 0, integrate ω over the locus {‖s‖2 ≥ ε} and
then study the asymptotic behavior of the integral as ε → 0. For ω ∈ Ap,q

s (X),
ξ ∈ Dn−p,n−q(X), and any smooth Hermitian metric ‖ · ‖ on E , we let

I‖·‖(ε) =
∫

‖s‖2≥ε

ω ∧ ξ. (1.4)

The functions I‖·‖(ε) and �‖·‖(λ) are related via the Mellin transform. If the limit of
I‖·‖(ε) as ε → 0 exists, we find that

lim
ε→0

I‖·‖(ε) = 〈μ‖·‖
0 (ω), ξ 〉.

On the other hand, if limε→0 I‖·‖(ε) does not exist, then, using standard techniques
we find that

I‖·‖(ε) = 〈μ‖·‖
0 (ω), ξ 〉 + | log ε |q

ε p
φ(ε) + O(εδ), (1.5)

for some δ > 0, p, q ∈ N and φ ∈ C 0([0,∞)) such that φ(0) �= 0. Clearly φ depends
on ω and ξ , see Theorem 6.1 below for a more precise formula.

For ω of top degree with suppω ⊂⊂ X we have defined a finite part of
∫
X ω in

(1.2). Another natural definition of a finite part of
∫
X ω is as the limit as ε → 0 of

I‖·‖(ε) (with ξ = 1) after having subtracted possible divergent terms. In view of (1.2)
and (1.5) we find that they are the same, that is,

lim
ε→0

(

I‖·‖(ε) − | log ε |q
ε p

φ(ε)

)

= fp
∫

X
ω. (1.6)

Since the finite part extracted from I‖·‖(ε) is the same as the one coming from�‖·‖(λ),
the metric dependence of the former thus is given by Theorem 1.1. Proving this metric
dependence directly, without considering�‖·‖(λ), seems, to the author, more involved.
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1.1 Relations to Previous Results

This work is inspired by work by Felder–Kazhdan in [12, 13], where the authors
investigate finite parts of divergent integrals of differential forms with singularities
along a submanifold Y in the real setting. The singularities considered are determined
by a conformal class of non-negative Morse–Bott functions. These are smooth non-
negative functions vanishing precisely onY with non-degenerateHessian in the normal
directions of Y . They consider regularizations of

∫
X ω that closely resemble our �‖·‖

andI‖·‖ and they investigate the dependence on the representativeMorse–Bott function
within a given conformal class. This is similar to the way we consider the spaces
As,‖·‖(X) and describe the metric dependence given a section s.

Example 1.3 Let X be a (complex) manifold, V a (complex) submanifold and suppose
that s defines the radical ideal of V . Then κ ≤ 1 and

μ
|·|
0 (ω) − μ

‖·‖
0 (ω) = log

|s|2
‖s‖2μ1(ω),

which is a version of a main result in [12–14]. Note that μ1(ω) here is independent of
the choice of metric.

The formula for μ
|·|
0 (ω) − μ

‖·‖
0 (ω) follows directly from Theorem 1.1 and Corol-

lary 1.2 if κ ≤ 1. The fact that κ ≤ 1 follows from Theorem 4.1 (i) below, since
Vsing = ∅ = Xsing.

Example 1.4 Suppose X is a compact complex manifold and let ω = α ∧ β̄, where α

and β aremeromorphic forms of bidegree (n, 0), that is, locally of the formα = fα/gα

and β = fβ/gβ where fα and fβ are holomorphic (n, 0)-forms and where gα and gβ

are holomorphic functions. Then ω ∈ As(X), where s = gαgβ locally. The problem
of extracting a finite part of

∫
X ω arises in perturbative superstring theory, see [17,

Section 7.6]. This problem is considered in [12] in the case where V is a smooth
hypersurface and in [13] when V has normal crossings singularities.

Meromorphic functions of the form (1.1) also appear in a number theoretic context
in [10, Section 4]. More precisely, in [10, Section 4] it is assumed that E is a line
bundle and ω is of the form ‖s‖−2cdV , for a volume form dV on X , where c is the
corresponding integrability threshold. An explicit expression for the corresponding
measure μκ(ω) is given in [10, Proposition 4.3], when the divisor D cut out by s has
simple normal crossings, expressed in terms of the Clemens complex of D.

2 Preliminaries

2.1 Smooth Forms on Reduced Complex Analytic Spaces

We will briefly mention how one defines smooth forms on spaces with singularities,
specifically reduced analytic spaces. Recall that an analytic subspace (Z ,OZ ), or
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simply Z when there is no risk of confusion, of a domain 
 ⊆ C
n , is a ringed space

where Z is given by the common vanishing locus of a collection of holomorphic
functions f1, . . . , fk : 
 → C and where the structure sheaf OZ = O
/JZ , where
JZ is the ideal sheaf generated by f1, . . . , fk . The space (Z ,OZ ) is reduced if JZ

is radical. For Z reduced, Zreg is the set of points z such that Z is a manifold in a
neighborhood of z, and Zreg is dense in Z . When Z is reduced, we define the sheaf
EZ of smooth forms on Z as the quotient sheaf E
/NZ ,
, where E
 is the sheaf of
smooth forms on 
, andNZ ,
 ⊆ E
 is the subsheaf of forms whose pullback to Zreg
vanishes.

A reduced analytic space (X ,OX ) is a ringed space such that for any point x ∈
X there exists a local model consisting of an open neighborhood U of x and an
isomorphism of ringed spaces U → Z where Z ⊂ 
 ⊆ C

n is a reduced analytic
subspace. The sheaf of smooth forms EU on U , as defined above, is independent of
the choice of local model. For a reduced analytic space X , the sheaf of smooth forms
EX is defined as the sheaf obtained from gluing the sheaves of smooth forms on the
local models of X . For a more substantial treatment, see, e.g., [9, 11].

2.2 Currents

On a smooth manifold M of real dimension n, a current ν of degree k is a continuous
linear functional ξ �→ 〈ν, ξ 〉 on the space Dn−k(M) of smooth (n − k)-forms with
compact support. We define the current dν, where d is the exterior derivative, by
duality; for ξ ∈ Dn−k−1(M) we let

〈dν, ξ 〉 := (−1)k+1〈ν, dξ 〉. (2.1)

Thus d takes k-currents to (k + 1)-currents.
If M is a complex manifold the complex structure induces a decomposition of the

spaces of smooth differential k-forms into bigraded (p, q)-forms, and the exterior
derivative decomposes as d = ∂ + ∂̄ . By duality, the space of k-currents have a similar
decomposition into bigraded objects: A current of bidegree (p, q) on M acts trivially
on the spaceDn−p′,n−q ′

(M) of compactly supported forms of bidegree (n− p′, n−q ′)
when (p′, q ′) �= (p, q). For a (p, q)-current ν, we define the (p+1, q) and (p, q+1)
currents ∂ν and ∂̄ν by

〈∂ν, ξ 〉 := (−1)p+q+1〈ν, ∂ξ 〉 and 〈∂̄ν, ξ 〉 := (−1)p+q+1〈ν, ∂̄ξ 〉,

respectively.
We define the support supp ν of a (p, q)-current ν as the smallest closed subset

U ⊂ M such that 〈ν, ξ 〉 = 0 for each ξ ∈ Dn−p,n−q(M\U ).
For a (p, q)-current ν and a smooth (p′, q ′)-form β, we define the (p + p′, q +

q ′)-current ν ∧ β by
〈ν ∧ β, ξ 〉 := 〈ν, β ∧ ξ 〉, (2.2)

for ξ ∈ Dn−p−p′,n−q−q ′
(M). We let β ∧ ν := (−1)(p+q)(p′+q ′)ν ∧ β.
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  325 Page 6 of 27 L. Svensson

If X is a reduced analytic space, a current on X is a continuous linear functional
on the spaceD(X) of smooth forms with compact support. The properties of currents
presented above all generalize to this setting. For a modification f : Y → X of X ,
and a current ν on Y , we define the push-forward f∗ν of ν by

〈 f∗ν, ξ 〉 := 〈ν, f ∗ξ 〉, (2.3)

for ξ ∈ D(X). Recall that f : Y → X is a modification if it is proper and there
exists a subvariety V ⊂ Y of codimension ≥ 1 such that Y\V → X\ f (V ) is a
biholomorphism. The push-forward operator is continuous and commutes with ∂ and
∂̄ . If β is a smooth form on X we have that

β ∧ f∗ν = f∗( f ∗β ∧ ν). (2.4)

We can generalize this product as follows: Suppose that β is generically smooth on
X with f ∗β smooth on Y . Moreover, let μ be a current on X such that μ = f∗ν for
some current ν on Y . Then we define

β ∧ f ,ν μ := f∗(π∗β ∧ ν). (2.5)

Note that, if β is smooth, β ∧ f ,ν μ = β ∧ μ by (2.4). Also note that the product
in (2.5) is ill-defined in general since it depends on the choice of modification f and
current ν. As hinted at in the introduction, products of the type (2.5) appear when
we look at the metric dependence of the currents μ j (ω), cf. Theorem 1.1 and the
subsequent comments. However, as it turns out, there are canonical choices of f and
ν in this case, see the proof of Theorem 1.1 below.

The following example shows that β ∧ f ,ν μ may be non-zero even though μ = 0.

Example 2.1 Consider the blowup of C
2 at the origin, π : Bl0C2 → C

2, where

Bl0C
2 = {

(z1, z2, [w0 : w1]) ∈ C
2
z × P

1[w] : z1w1 − z2w0 = 0
}
, (2.6)

and π is the restriction of the natural projection � : C
2 × P

1 → C
2 to Bl0C2. Let

β = i

2π
∂∂̄ log(|z1|2 + |z2|2).

Then β̃ = π∗β = ωFS(w)|Bl0C2 , that is, the Fubini–Study form on P
1[w], extended to

C
2
z × P

1[w] and restricted to Bl0C2.
One way to see this is as follows: Away from the origin, π is a biholomorphism, so

β and β̃ are related via a holomorphic change of coordinates. The Fubini–Study form
on P

1 with homogeneous coordinates [w0 : w1] is given by

ωFS = i

2π
∂∂̄ log(|w0|2 + |w1|2).
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Away from z1 = 0 and [w0 : w1] = [0 : 1] we see from (2.6) that

z2
z1

= w1

w0
.

Since ∂∂̄ log |g|2 = 0 if g is holomorphic and non-vanishing it follows that

ωFS = i

2π
∂∂̄ log(|w0|2 + |w1|2) = i

2π
∂∂̄ log(|z1|2 + |z2|2).

By a symmetrical argument, ωFS = i
2π ∂∂̄ log(|z1|2 +|z2|2) away from z2 = 0 and

[w0 : w1] = [1 : 0].
Now, let ν = [E] be the integration current for the exceptional divisor E = π−1(0)

on Bl0C2. Then, e.g., by the dimension principle, μ := π∗ν = 0. However, for
ξ ∈ D0,0(C2), we have by (2.3) and (2.5) that

〈β ∧π,ν μ, ξ 〉 = 〈β̃ ∧ [E], π∗ξ 〉 =
∫

E
ωFS π∗ξ = ξ(0)

∫

E
ωFS = ξ(0).

Thus, we conclude that ϕ ∧π,ν μ = δ0, where δ0 is the Dirac distribution.

3 Meromorphic Continuation

In this section we show the existence of meromorphic continuations of functions,
closely related to (1.1), which we will make use of in the proof of Theorem 1.1. Recall
that X is a reduced analytic space, E → X is a holomorphic vector bundle, and s is a
holomorphic section of E with V = {s = 0}.
Proposition 3.1 Let ω ∈ An,n

s (X) with suppω ⊂⊂ X, and let | · | and ‖ · ‖ be two
Hermitian metrics on E. Then the function

(λ, τ ) �→
∫

X
‖s‖2λ

( |s|
‖s‖

)2τ
ω, (3.1)

a priori defined and holomorphic for Re λ 
 0, has a meromorphic continuation to
C
2, and there is a discrete subset P ⊂ Q ∩ (−∞, N ], for some N ≥ 0, such that the

polar locus ⊆ P × Cτ .

One can show Proposition 3.1 using Bernstein–Sato theory in a standard way, see,
e.g., [6–8]. We choose here instead to use Hironaka’s theorem to reduce the proof to
an elementary calculation. The Hironaka resolution of singularities theorem asserts
the existence of (smooth) modifications π : X̃ → X such that π∗s defines a normal
crossings divisor. That is, X̃ is smooth and π∗s is a monomial in suitable local holo-
morphic coordinates. This approach using Hironaka’s theorem is common in residue
calculus, see, e.g., [1].
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Note that |s|2/‖s‖2 is not only locally bounded but everywhere positive. Thus we
can find constantsC1,C2 > 0 such thatC1 < |s|2/‖s‖2 < C2 on suppω. This implies
that (3.1) is defined and holomorphic for any τ ∈ C provided that Re λ 
 0.

Our proof of Proposition 3.1 relies on the following lemma.

Lemma 3.2 Let � be a smooth compactly supported function on C
n
z , let v and w be

smooth positive functions defined in a neighborhood of supp�, let 1 ≤ κ ≤ n and let
m1, . . . ,mκ be positive integers. Then, for any non-negative integer N, the function

�(τ, λ) =
∫

Cn
|zm1
1 . . . zmκ

κ |2(λ−N )vλwτ�dz ∧ dz̄,

where dz ∧ dz̄ = dz1 ∧ z̄1 ∧ · · · ∧ dzn ∧ dz̄n , is holomorphic for Re λ 
 0, and
has a meromorphic continuation to C

2. Moreover, there is a discrete subset P ⊂
Q ∩ (−∞, N ] such that the polar locus is contained in P × Cτ , ∀�, v,w.

A computation similar to the following proof can be found in [14]. We provide our
adapted version for future reference.

Proof of Lemma 3.2 For Re λ 
 0, we have that

∂2

∂z1∂ z̄1
|zm1
1 |2λ = m2

1λ
2 |zm1

1 |2λ
|z1|2 .

By an induction argument it follows that

|zm1
1 . . . zmκ

κ |2(λ−N ) = h(λ)

λ2κ

∂
2N

∑κ
j=1 m j

∂zNm1
1 ∂ z̄Nm1

1 · · · ∂zNmκ
κ ∂ z̄Nmκ

κ

|zm1
1 . . . zmκ

κ |2λ, (3.2)

where

h(λ) =
κ∏

i=1

1

m2
i

Nmi−1∏

j=1

1

(miλ − j)2
. (3.3)

By writing

∂2N
∑κ

i=1 mi

∂zNm1
1 ∂ z̄Nm1

1 · · · ∂zNmκ
κ ∂ z̄Nmκ

κ

= P P̄ where P = ∂N
∑κ

i=1 mi

∂zNm1
1 · · · ∂zNmκ

κ

,

(3.2) then becomes

|zm1
1 . . . zmκ

κ |2(λ−N ) = h(λ)

λ2κ
P P̄|zm1

1 . . . zmκ
κ |2λ. (3.4)

Using (3.4) and integration by parts, and the fact that (P P̄)∗ = P P̄ , we find that

123
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�(λ, τ) = h(λ)

λ2κ

∫

Cn
|zm1
1 . . . zmκ

κ |2λP P̄(vλwτ�)dz ∧ dz̄, (3.5)

for Re λ 
 0. The integral on the right-hand side of (3.5) is an analytic function of
(λ, τ ) for Re λ > −ε for a small enough ε > 0, and h(λ) is a meromorphic function
on Cλ with poles at

λ = 1

mi
,
2

mi
, . . . ,

Nmi − 1

mi
, i = 1, . . . , κ.

It follows that �(λ, τ) can be meromorphically continued to {Re λ > −ε} × Cτ .
For any integer M ≥ 0 andRe λ 
 0, it follows from (3.2) by changing λ to λ+M

and N to N + M that

|zm1
1 . . . zmκ

κ |2(λ−N ) = hM (λ)

λ2κ
PM P̄M |zm1

1 . . . zmκ
κ |2(λ+M), (3.6)

where

hM (λ) =
κ∏

i=1

1

m2
i

(N+M)mi−1∏

j=1

1

(mi (λ + M) − j)2
, (3.7)

and

PM = ∂(N+M)
∑κ

i=1 mi

∂z(N+M)m1
1 · · · ∂z(N+M)mκ

κ

.

Analogously to (3.5) we then have that

�(λ, τ) = hM (λ)

λ2κ

∫

Cn
|zm1
1 . . . zmκ

κ |2(λ+M)PM P̄M (vλwτ�)dz ∧ dz̄, (3.8)

for Re λ 
 0. The integral on the right-hand side of (3.8) is an analytic function of
(λ, τ ), now for Re λ > −M − ε, and hM (λ) is a meromorphic function on Cλ with
poles at

λ = 1

mi
− M,

2

mi
− M, . . . ,

(N + M)mi − 1

mi
− M, i = 1, . . . , κ.

Since M is arbitrary, it follows that �(λ, τ) has a meromorphic continuation to C
2.

We also see that there is a discrete subset P ⊆ Q∩ (−∞, N ], such that the polar locus
of �(λ, τ) is contained in P × Cτ , independent of v,w and �. ��
Proof of Proposition 3.1 We note that we can find constants C1,C2 > 0 such that
C1 < |s|2/‖s‖2 < C2 on suppω, and that (3.1) is analytic forRe λ sufficiently large.
Let π : X̃ → X be a modification such that X̃ is smooth and π∗s defines a normal
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crossings divisor on X̃ . Since π is a biholomorphism outside a set of measure 0 we
have, for Re λ 
 0,

∫

X
‖s‖2λ

( |s|
‖s‖

)2τ
ω =

∫

X̃
‖π∗s‖2λ

( |π∗s|
‖π∗s‖

)2τ
π∗ω. (3.9)

We can find an open cover {Uj } such that, in each Uj , there are local holomorphic
coordinates z = (z1, . . . , zn) such that eitherπ∗ω is smoothor there is some1 ≤ κ ≤ n
such that ‖π∗s‖2 = |zm1

1 . . . zmκ
κ |2e−φ and |π∗s|2 = |zm1

1 . . . zmκ
κ |2e−ψ for some

m1, . . . ,mκ ≥ 1 and φ,ψ ∈ C∞(Uj , R). It follows that ‖π∗s‖2λπ∗ω is smooth for
Re λ sufficiently large. Thus, we can find an integer N ≥ 0 such that

π∗ω = �dz ∧ dz̄

|zm1
1 . . . zmκ

κ |2N , (3.10)

where � is a smooth function. By introducing a partition of unity (ρ j ) subordinate to
{Uj } we find that the right-hand side of (3.9) is a finite sum of terms of the form

∫

Cn
|zm1
1 . . . zmκ

κ |2(λ−N )e−λφe−τ(ψ−φ)ρ j�dz ∧ dz̄.

Note that the constants κ,m1, . . . ,mκ depend on the local chart Uj , although we
have suppressed this dependence in the notation. The proof now follows byLemma3.2,
with v = e−φ and w = e−(ψ−φ). By the uniqueness of meromorphic continuation, it
is independent of the particular choice of modification. ��

4 The Currents �j(!) Associated with 0‖·‖

In this section we prove the following theorem, which is a collection of know results
together with applications of classical ideas, see, e.g., [2, 3, 6–8, 12–14], and also,
e.g., [1, 5, 15, 16] and references therein for analogous results in residue theory. We
supply details of the proof for completeness, and to gather and organize these results
and techniques in our setting.

Theorem 4.1 Let ω ∈ Ap,q
s (X), ξ ∈ Dn−p,n−q(X) and let ‖ · ‖ be a Hermitian metric

on E.

(i) The function

�‖·‖(λ) =
∫

X
‖s‖2λω ∧ ξ,

a priori defined and holomorphic for Re λ 
 0, extends to a meromorphic
function on C with polar set contained in Q. Moreover, there exists a κ ≤ n such
that the Laurent series expansion of �‖·‖ in a neighborhood of 0 is given by

κ∑

j=0

1

λ j
〈μ j (ω), ξ 〉 + O(λ), (4.1)
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whereμ j (ω) are currents on X satisfying suppμκ(ω) ⊆ suppμκ−1(ω) ⊆ · · · ⊆
suppμ1(ω) ⊆ suppμ0(ω) = suppω. Moreover, suppμ1(ω) ⊆ V and if s
defines the radical ideal of V then suppμ j (ω) ⊆ Vsing ∪ (Xsing ∩ V ) for j ≥ 2.

(ii) Suppose that ω ∈ As,‖·‖(X). Then we have that dω,
d‖s‖2
‖s‖2 ∧ω ∈ As,‖·‖(X), and,

for any j ,

dμ j (ω) = μ j (dω) + μ j+1

(
d‖s‖2
‖s‖2 ∧ ω

)

. (4.2)

4.1 Proof of Theorem 4.1 (i)

To begin with we consider the case where ω is of top degree and s defines a normal
crossings divisor. We have the following lemma.

Lemma 4.2 Suppose that X is a manifold and that s defines a normal crossings divisor
with support V = {s = 0}. Let ω ∈ An,n

s (X) and ‖ · ‖ be any Hermitian metric on E.
For any test function ξ ∈ D0,0(X) we let

�‖·‖(λ) =
∫

X
‖s‖2λωξ,

for Re λ 
 0. Then �‖·‖ has a meromorphic continuation to Cλ with polar set given
by a discrete subset P ⊂ Q ∩ (−∞, N ] for some N ≥ 0 independent of ‖ · ‖ and
ξ . Moreover, there exists a 0 ≤ κ ≤ n such that the Laurent series expansion of �‖·‖
around 0 is given by

�‖·‖(λ) =
κ∑

j=0

1

λ j
〈μ j (ω), ξ 〉 + O(λ),

where μ j (ω), for j = 0, . . . , κ , are (n, n)-currents on X satisfying suppμκ(ω) ⊆
suppμκ−1(ω) ⊆ · · · ⊆ suppμ1(ω) ⊆ suppμ0(ω) = suppω, suppμ1(ω) ⊆ V and
suppμ j (ω) ⊆ Vsing for j ≥ 2.

Proof The statement that �‖·‖ has a meromorphic continuation with the prescribed
polar set follows immediately from Proposition 3.1 by setting τ = 0.

Now, consider the Laurent series expansion of �‖·‖(λ) around λ = 0,

�‖·‖(λ) =
N0∑

j=0

1

λ j
c j + O(λ),

where c j ∈ C, for some N0 ≥ 0. Since being a current is a local property, we may
assume that ξ has support in some neighborhood where we can find local holomorphic
coordinates z = (z1, . . . , zn) such that ‖s‖2 = |zm1

1 . . . zmκ
κ |2e−φ for some 1 ≤ κ ≤ n
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and φ ∈ C∞(supp ξ, R). Since ‖s‖2λω is smooth for Re λ sufficiently large, we can
find an integer N ≥ 0 and a smooth function � such that ω is given by the right-
hand side of (3.10). Thus, in a neighborhood of λ = 0 we know from the proof of
Lemma 3.2, cf. (3.5), that we may write

�‖·‖(λ) = h(λ)

λ2κ
I (λ),

where h(λ) is given by (3.3), and where

I (λ) =
∫

X
|zm1
1 . . . zmκ

κ |2λP P̄
(
e−λφ�ξ

)
dz ∧ dz̄, (4.3)

with P as in the proof of Lemma 3.2. In particular, both h, and I are holomorphic in
a neighborhood of 0. We have that

c j = Res
λ=0

{
λ j−1�‖·‖(λ)

}
= Res

λ=0

{
1

λ2κ− j+1 h(λ)I (λ)

}

= 1

(2κ − j)!
d2κ− j

dλ2κ− j

(
h(λ)I (λ)

)∣∣
∣
λ=0

= 1

(2κ − j)!
2κ− j∑

�=0

(
2κ − j

�

)

h(�)(0)I (2κ− j−�)(0). (4.4)

Let k = 2κ − j − �, and consider I (k)(0). A standard computation with Leibniz
rule gives that

I (k)(0) = dk

dλk
I (λ)

∣
∣
λ=0

=
k∑

r=0

(
k

r

)

(−1)r
∫

Cn

(
log |zm1

1 . . . zmκ
κ |2)k−r

P P̄
(
φr�ξ

)
dz ∧ dz̄

=
k∑

r=0

(
k

r

)

(−1)r
∫

Cn

(
log |zm1

1 |2 + · · · + log |zmκ
κ |2)k−r

P P̄
(
φr�ξ

)
dz ∧ dz̄.

By the multinomial theorem we have that

(
log |zm1

1 |2 + · · · + log |zmκ
κ |2)k−r =

∑

α∈Zκ≥0|α|=k−r

(k − r)!
α1! · · · ακ !

κ∏

t=1

(
log |zmt

t |2)αt .
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We see that if k − r < κ , each multi-index α will contain at least one 0 entry.
Suppose, for simplicity, that α1 = 0 for a given term. Then we clearly have that

∂

∂z1

κ∏

t=1

(
log |zmt

t |2)αt = ∂

∂z1

κ∏

t=2

(
log |zmt

t |2)αt = 0.

If k − r < κ , it follows that

∫

Cn

(
log |zm1

1 |2 + · · · + log |zmκ
κ |2)k−r

P P̄
(
φr�ξ

)
dz ∧ dz̄ = 0

by integration by parts; thus, I (k)(0) = 0 if k < κ . From (4.4) it follows that c j = 0
if 2κ − j < κ , that is, for j > κ . Thus, we have that

�‖·‖(λ) =
κ∑

j=1

1

λ j
c j + O(λ).

We see from (4.4) and the expansion of I (k)(0) that c j , for each j = 0, . . . , κ ,
consists of a finite sum of integrals of the form

∫

Cn

(
log |zm1

1 |2 + · · · + log |zmκ
κ |2)k−r

P P̄
(
φr�ξ

)
dz ∧ dz̄.

Since (log |zm1
1 |2+· · ·+ log |zmκ

κ |2)k−r is locally integrable inC
n , it follows by the

product rule that c j consists of a finite sum of integrals, where the integrands consist
of derivatives on the test function ξ multiplied by L1

loc-functions. This immediately
implies that c j defines the action of an (n, n)-current μ j (ω) on ξ described by c j =
〈μ j (ω), ξ 〉.

In [14] it is shown that suppμ j (ω) ⊆ suppμ j−1(ω) for each j = 1, . . . , κ . For
convenience we sketch an argument. Let

Ik,r =
∑

α∈Zκ≥0|α|=k−r

(k − r)!
α1! . . . ακ !

∫

Cn

κ∏

t=1

(
log |zmt

t |2)αt P P̄
(
φr�ξ

)
dz ∧ dz̄. (4.5)

Then

I (k)(0) =
k∑

r=0

(
k

r

)

(−1)r Ik,r . (4.6)
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By the above,weknow that Ik,r = 0 if k−r < κ . If k−r = κ , thenpartial integration
shows that each term in the right-hand side of (4.5) except for the α = (1, . . . , 1) term
vanishes. It follows that

Ik,r = κ!
∫

Cn

κ∏

t=1

mt
∂2

∂zt∂ z̄t

(
log |zt |2

) ∂2N
∑κ

i=1 mi−2κ

∂zNm1−1
1 · · · ∂ z̄Nmκ−1

κ

(
φr�ξ

)
dz ∧ dz̄,

where ∂2

∂zt ∂ z̄t
log |zt |2 is to be regarded as a distribution. Thus, if k−r = κ , by repeated

use of the Poincaré–Lelong formula,

∂∂̄ log |z j |2 = −2π i[z j = 0],

for j = 1, . . . , κ , we have that

Ik,r = κ!(−2π i)κ
κ∏

t=1

mt

∫

{z1=···=zκ=0}
∂2N

∑κ
i=1 mi−2κ

∂zNm1−1
1 · · · ∂ z̄Nmκ−1

κ

(
φr�ξ

)
dz′ ∧ dz̄′,

where dz′ ∧ dz̄′ = dzκ+1 ∧ dz̄κ+1 ∧ · · ·∧ dzn ∧ dz̄n . By (4.4) and (4.6) it follows that

cκ = h(0)Iκ,0,

whence suppμκ(ω) ⊆ {z1 = · · · = zκ = 0} ∩ supp�. Similarly, by (4.4) and (4.6) it
follows that

cκ−1 = 1

(κ + 1)!h(0)Iκ+1,0 − 1

κ!h(0)Iκ+1,1 + 1

κ!h
′(0)Iκ,0.

From (4.5), setting k = κ + 1 and r = 1, we find that only the term with
α = (1, . . . , 1) gives a non-zero contribution to Iκ+1,1. Thus, by the same argument
as above, Iκ+1,1 is an integral over the locus {z1 = · · · = zκ = 0}. Look-
ing at the expression for Iκ+1,0, we find that the only terms that contribute are
α = (2, 1, . . . , 1), (1, 2, 1, . . . , 1), . . . , (1, . . . , 1, 2). Consider for example the term
with α = (2, 1, . . . , 1),

(Iκ+1,0)α = (κ + 1)!
2!

∫

Cn

(
log |zm1

1 |2)2
κ∏

t=2

log |zmt
t |2 ∂2N

∑κ
i=1 mi

∂zNm1
1 · · · ∂ z̄Nmκ

κ

(
�ξ

)
dz ∧ dz̄

= (κ + 1)!
2!

∫

Cn

(
log |zm1

1 |2)2
κ∏

t=2

∂2

∂zt∂ z̄t

(
log |zmt

t |2)×
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× ∂2N
∑κ

i=1 mi−2(κ−1)

∂zNm1
1 ∂ z̄Nm1

1 ∂zNm2−1
2 · · · ∂ z̄Nmκ−1

κ

(
�ξ

)
dz ∧ dz̄

= (κ + 1)!
2! (−2π i)κ−1

κ∏

t=1

mt

∫

{z2=···=zκ=0}
(
log |z1|2

)2×

× ∂2N
∑κ

i=1 mi−2(κ−1)

∂zNm1
1 ∂ z̄Nm1

1 ∂zNm2−1
2 · · · ∂ z̄Nmκ−1

κ

(
�ξ

)
dz′ ∧ dz̄′,

where dz′ ∧ dz̄′ = dz1 ∧ dz̄1 ∧ dzκ+1 ∧ dz̄κ+1 ∧ · · · ∧ dzn ∧ dz̄n . Thus, (Iκ+1,0)α is
an integral over the locus {z2 = · · · = zκ = 0}. By symmetry, it follows that Iκ+1,0 is
an integral over the locus

κ⋃

i=1

⋂

j �=i

{z j = 0},

whence

suppμκ−1(ω) ⊆
κ⋃

i=1

⋂

j �=i

{z j = 0} ∩ supp�.

Furthermore, since the integral Iκ,0 appears in both the expression for cκ and cκ−1,
we have that

suppμκ(ω) ⊆ suppμκ−1(ω)

By analogous arguments for k − r = κ + 2, . . . , 2κ we find that

suppμ j (ω) ⊆
κ⋃

�1,...,� j=1
�1<···<� j

{z�1 = · · · = z� j = 0},

and that suppμ j (ω) ⊆ suppμ j−1(ω) for each j = 1, . . . , κ .
It is clear that �‖·‖ is holomorphic if supp ξ ⊆ X \ V . Thus, suppμ j (ω) ⊆ V for

j = 1, . . . , κ . It follows that μ0(ω) is a current extension of ω across V , and we have
that suppμ0(ω) = suppω. It is shown in [14] that if V is smooth and s defines the
radical ideal of V then κ ≤ 1. Thus, if supp ξ ⊆ X\Vsing, �‖·‖ has at most a pole of
order 1 at λ = 0. This implies that suppμ j (ω) ⊆ Vsing for j ≥ 2. ��
Now we generalize Lemma 4.2 to ω ∈ Ap,q

s (X). In this setting, we note that ω ∧ ξ ∈
An,n

s (X) for any ξ ∈ Dn−p,n−q(X). Lemma 4.2 then implies that there is some
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0 ≤ κ ≤ n and currents μ j (ω ∧ ξ) with compact support, for 0 ≤ j ≤ κ , which
depend on ω (a priori on ω ∧ ξ ) such that

�‖·‖(λ) =
κ∑

j=0

1

λ j
〈μ j (ω ∧ ξ), 1〉 + O(λ).

For ω ∈ Ap,q
s (X) we then define

〈μ j (ω), ξ 〉 := 〈μ j (ω ∧ ξ), 1〉. (4.7)

It is clear from the definition of μ j (ω ∧ ξ) that (4.7) defines a linear functional on
Dn−p,n−q(X). Furthermore, if ω ∈ An,n

s (X), it follows by Lemma 4.2 that, if ξ is a
test function, μ j (ωξ) = ξμ j (ω), which agrees with (4.7).

To see that (4.7) defines a (p, q)-current μ j (ω), it remains to check continuity.
Since being a current is a local statement, we may assume that ξ has support in a small
neighborhood with local coordinates z = (z1, . . . , zn) and that

ξ =
∑

J ,K

ξJ K dz J ∧ dz̄K ,

where the sum is over all multi-indices J ,K consisting of ordered subsets of {1, . . . , n}
of size n − p and n − q, respectively. Since μ j (ω) is a linear functional, we can fix
some indices (J , K ) and consider 〈μ j (ω), ξJ K dz J ∧ dz̄K 〉. By (4.7), we have

〈μ j (ω), ξJ K dz J ∧ dz̄K 〉 = 〈μ j (ω ∧ ξJ K dz J ∧ dz̄K ), 1〉
= 〈ξJ Kμ j (ω ∧ dz J ∧ dz̄K ), 1〉
= 〈μ j (ω ∧ dz J ∧ dz̄K ), ξJ K 〉,

where we used that μ j (ωξ) = ξμ j (ω) for ω ∈ An,n
s (X) and ξ ∈ D0,0(X). Since we

know that μ j (ω∧dz J ∧dz̄K ) is a continuous linear functional onD0,0(X), it follows
that μ j (ω) is a continuous linear functional on Dn−p,n−q(X).

Thus, Lemma 4.2 holds for ω ∈ Ap,q
s (X) with μ j (ω) defined as in (4.7). We have

the following formula.

Lemma 4.3 Let ω ∈ Ap,q
s (X). For each j = 0, . . . , κ , μ j (ω) satisfies

μ j (ω) ∧ ξ = μ j (ω ∧ ξ), (4.8)

for any smooth (p′, q ′)-form ξ .

Proof Let η ∈ Dn−p−p′,n−q−q ′
(X). Since μ j (ω) is a (p, q)-current, by (2.2) we have

that

〈μ j (ω) ∧ ξ, η〉 = 〈μ j (ω), ξ ∧ η〉.
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By (4.7) we have

〈μ j (ω), ξ ∧ η〉 = 〈μ j (ω ∧ ξ ∧ η), 1〉.

Since ω ∧ ξ ∈ Ap+p′,q+q ′
s (X), again by (4.7), we have that

〈μ j (ω ∧ ξ ∧ η), 1〉 = 〈μ j (ω ∧ ξ), η〉.

Thus, 〈μ j (ω) ∧ ξ, η〉 = 〈μ j (ω ∧ ξ), η〉 for all η which proves the lemma. ��
Proof of Theorem 4.1 (i) Let π : X̃ → X be a modification such that X̃ is smooth and
π∗s : X̃ → π∗E defines a normal crossings divisor. As in the proof of Proposition 3.1,
with τ = 0, we have, for Re λ 
 0,

�‖·‖(λ) =
∫

X
‖s‖2λω ∧ ξ =

∫

X̃
‖π∗s‖2λπ∗ω ∧ π∗ξ.

Since π∗ω ∧ π∗ξ ∈ An,n
π∗s(X̃), by Lemma 4.2 �‖·‖(λ) has a meromorphic contin-

uation to Cλ, with polar set given by a discrete subset P ⊂ Q ∩ (−∞, N ] for some
N ≥ 0. Moreover, there is some 0 ≤ κ ≤ n such that, in a neighborhood of λ = 0,

�‖·‖(λ) =
κ∑

j=1

1

λ j
〈μ j (π

∗ω ∧ π∗ξ), 1〉 + O(λ),

where μ j (π
∗ω ∧ π∗ξ) define (n, n)-currents on X̃ . By (4.7) we may write

�‖·‖(λ) =
κ∑

j=1

1

λ j
〈μ j (π

∗ω), π∗ξ 〉 + O(λ),

where μ j (π
∗ω) are (p, q)-currents on X̃ . Since π is proper, by (2.3) we have that

〈μ j (π
∗ω), π∗ξ 〉 = 〈μ j (ω), ξ 〉,

where
μ j (ω) := π∗μ j (π

∗ω) (4.9)

is a current on X , for each j = 0, . . . , κ .
By Lemma 4.2 we have that suppμ0(π

∗ω) = suppπ∗ω, suppμ1(π
∗ω) ⊆ π−1V ,

and suppμκ(π∗ω) ⊆ · · · ⊆ suppμ2(π
∗ω) ⊆ (π−1V )sing. Furthermore, it follows

immediately by taking direct images that suppμ0(ω) = suppπ∗μ0(π
∗ω) = suppω,

and suppμκ(ω) ⊆ · · · ⊆ suppμ0(ω).
It is shown in [14] that if X is smooth, and V is a submanifold, then �‖·‖(λ) has

a pole of order at most 1 at the origin. Thus, it follows that suppμ1(ω) ⊂ V and
suppμ j (ω) ⊆ Vsing ∪ (Xsing ∩ V ) for each j ≥ 2. ��
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Apriori Lemma4.3 holds in the casewhen X is smooth and s defines a normal crossings
divisor. The corresponding statement in the general setting follows by Lemma 4.3 and
(2.4).

4.2 Proof of Theorem 4.1 (ii)

Lemma 4.4 For ω ∈ As,‖·‖(X) we have that dω, d‖s‖2
‖s‖2 ∧ ω ∈ As,‖·‖(X).

Proof Since ω ∈ As,‖·‖(X), for each compact K ⊂ X we can find an integer N ≥ 0
such that ‖s‖2Nω extends smoothly across V ∩ K . Thus, we may write

ω = ω̃

‖s‖2N ,

where ω̃ is smooth across K ∩ V . On X \ V we have that

dω = d
ω̃

‖s‖2N = dω̃

‖s‖2N − N
d‖s‖2
‖s‖2 ∧ ω̃

‖s‖2N .

Since dω̃ and d‖s‖2 are smooth across V ∩ K , it is clear that

‖s‖2(N+1)dω = ‖s‖2dω̃ − Nd‖s‖2 ∧ ω̃

extends smoothly across V ∩ K . It is also clear that ‖s‖2(N+1) d‖s‖2
‖s‖2 ∧ ω extends

smoothly across V ∩ K . ��
Remark 4.5 For ω ∈ As,‖·‖(X) and | · | some different metric on E , it is not true in

general that d|s|2
|s|2 ∧ ω ∈ As(X). However, we can always find an integer N ≥ 0 such

that |s|2N d|s|2
|s|2 ∧ ω extends to a locally bounded form on X , and for a modification

π : X̃ → X such that π∗s defines a divisor, the pullback of |s|2N d|s|2
|s|2 ∧ ω is smooth

for large N , that is, π∗
(
d|s|2
|s|2 ∧ ω

)
∈ Aπ∗s(X̃).

Proof of Theorem 4.1 (ii) Let ξ ∈ Dn−p,n−q(X). Then ∃N ≥ 0 such that ‖s‖2Nω

extends smoothly across V ∩ supp ξ . Using integration by parts and Stokes’ theorem,
we have, for Re λ 
 0,

∫

X
‖s‖2λω ∧ dξ = (−1)p+q+1

∫

X
d(‖s‖2λω) ∧ ξ

= (−1)p+q+1λ

∫

X
‖s‖2λ d‖s‖

2

‖s‖2 ∧ ω ∧ ξ

+ (−1)p+q+1
∫

X
‖s‖2λdω ∧ ξ.
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By Lemma 4.4, dω,
d‖s‖2
‖s‖2 ∧ ω ∈ As(X). Thus, by Theorem 4.1 (i), and by unique-

ness of meromorphic continuation, we obtain the following equality of Laurent series
expansions about 0,

κ∑

j=0

1

λ j
〈dμ j (ω), ξ 〉 =

κ ′
∑

j=1

1

λ j−1 〈μ j

(
d‖s‖2
‖s‖2 ∧ ω

)

, ξ 〉

+
κ ′′
∑

j=0

1

λ j
〈μ j (dω), ξ 〉 + O(λ),

where we have used (2.1) on the left-hand side. Collecting the terms by order in λ, we
obtain the equality (4.2) for each j . ��

5 Proof of Theorem 1.1

In this section we give the proof of our main result, Theorem 1.1.

Proof of Theorem 1.1 Recall that ω ∈ As(X) and that ‖ · ‖ and | · | are two smooth
Hermitian metrics on E . Let ξ be a test form of complementary bidegree to ω and
consider

�(λ, τ) =
∫

X
‖s‖2λ

( |s|
‖s‖

)2τ
ω ∧ ξ.

By Proposition 3.1, �(λ, τ) is holomorphic if Re λ 
 0 and extends to a mero-
morphic function on C

2. Furthermore, there is a discrete subset P ⊂ Q ∩ (−∞, N ],
for some N ≥ 0 such that the polar locus of �(λ, τ) lies in P × Cτ .

Suppose first that X is smooth and that s defines a normal crossings divisor. Then
|s|2/‖s‖2 is a smooth positive function on X . By Theorem 4.1 (i), for each fixed τ ∈ C

and Re λ 
 0, there is some κ ′ ≤ n such that

∫

X
‖s‖2λ

( |s|2
‖s‖2

)τ

ω ∧ ξ =
κ ′

∑

j=0

1

λ j
〈μ‖·‖

j

(( |s|2
‖s‖2

)τ

ω

)

, ξ 〉 + F(λ, τ ), (5.1)

where λ �→ F(λ, τ ) is meromorphic inCλ, holomorphic for λ near 0 and F(0, τ ) = 0.
By Lemma 4.3 we have that

κ ′
∑

j=0

1

λ j
〈μ‖·‖

j

(( |s|2
‖s‖2

)τ

ω

)

, ξ 〉+ F(λ, τ ) =
κ ′

∑

j=0

1

λ j
〈
( |s|2

‖s‖2
)τ

μ
‖·‖
j (ω), ξ 〉+ F(λ, τ ).

(5.2)
The left hand side of (5.1) is meromorphic by Proposition 3.1 with polar set P×Cτ .

Each term in the sum in the right hand side of (5.2) is meromorphic inC
2 with polar set
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{0} × Cτ . It follows that F(λ, τ ) is meromorphic in C
2 with polar set (P \ {0}) × Cτ .

On the line τ = λ in C
2 we obtain an equality of meromorphic functions

∫

X
|s|2λω ∧ ξ =

κ ′
∑

j=0

1

λ j
〈
( |s|2

‖s‖2
)λ

μ
‖·‖
j (ω), ξ 〉 + F(λ, λ),

where F(0, 0) = 0, and F(λ, λ) is holomorphic for λ near 0. Thus, the sum on the
right hand side contains the principal part of the Laurent series expansion of the left
hand side around λ = 0. But, by Theorem 4.1 (i), the Laurent series expansion of the
left hand side is given by

κ∑

j=0

1

λ j
〈μ|·|

j (ω), ξ 〉 + O(λ),

for some κ ≤ n. Thus, since

( |s|2
‖s‖2

)λ

=
∞∑

�=0

λ�

�!
(

log
|s|2
‖s‖2

)�

,

by uniqueness of Laurent series expansions we have that

μ
|·|
j (ω) =

κ ′− j∑

�=0

1

�!
(

log
|s|2
‖s‖2

)�

μ
‖·‖
j+�(ω). (5.3)

It immediately follows that κ ′ = κ , that is, κ is independent of the metric when s
defines a divisor, and, as a consequenceμκ(ω) := μ

|·|
κ (ω) is independent of the choice

of metric.
Now, for the general case: Let π : X̃ → X be a modification such that X̃ is smooth

and π∗s defines a normal crossings divisor. Then (5.3) holds with ω and s replaced
by π∗ω and π∗s, respectively. In view of (4.9), we have that μ

|·|
j (ω) = π∗μ|·|

j (π∗ω)

for j = 0, . . . , κ and μ
‖·‖
j (ω) = π∗μ‖·‖

j (π∗ω) for j = 0, . . . , κ ′. It follows that, for
each j = 0, . . . , κ ,

μ
|·|
j (ω) = π∗

κ ′− j∑

�=0

1

�!
(

log
|π∗s|2
‖π∗s‖2

)�

μ
‖·‖
j+�(π

∗ω) =
κ ′− j∑

�=0

1

�!
(

log
|s|2
‖s‖2

)�

μ
‖·‖
j+�(ω),

(5.4)
where

(

log
|s|2
‖s‖2

)�

μ
‖·‖
j+�(ω) := π∗

((

log
|π∗s|2
‖π∗s‖2

)�

μ
‖·‖
j+�(π

∗ω)

)

according to (2.5). ��
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Note that if κ > κ ′, even though μ
‖·‖
j+�(ω) = 0 for � > κ ′ − j , this does not

immediately imply that

(

log
|s|2
‖s‖2

)�

μ
‖·‖
j+�(ω) = 0,

for κ ′ − j < � ≤ κ − j , cf. Example 2.1. Thus, it is not clear in general whether
κ(≤ n) is independent of the choice of metric, unless V = {s = 0} is a hypersurface,
in which case log |s|2

‖s‖2 is smooth.
The dependence of the currents μ j (ω) on the choice of section defining V is, in

fact, essentially described by Theorem 1.1, in a sense which we try to illustrate with
the following example.

Example 5.1 Suppose that V is a hypersurface and that there are (holomorphic) line
bundles E and F over X . Assume that their corresponding sections s : X → E and
σ : X → F satisfy V = {s = 0} = {σ = 0} and are such that σ and s⊗k define the
same divisor, for some k ∈ N. Moreover, let | · |E and | · |F be Hermitian metrics on
E and F , respectively, and suppose that ω ∈ As(X) = Aσ (X).

Themetric |·|E naturally induces ametric |·|E⊗k on E⊗k satisfying |s⊗k |2
E⊗k = |s|2kE .

Thus, since σ and s⊗k define the same divisor, we have that

|σ |2F
|s⊗k |E⊗k

= |σ |2F
|s|2kE

is a smooth positive function on X . Thus, we can define a new metric ‖ · ‖E on E by

‖v‖2E := |v|2E
|σ |2/kF

|s|2E
,

for v ∈ H0(X , E). For Re λ 
 0, we then have that

∫

X
|σ |2λF ω ∧ ξ =

∫

X
|s⊗k |2λE⊗k

( |σ |2F
|s⊗k |2

E⊗k

)λ

ω ∧ ξ

=
∫

X
|s|2kλE

( |σ |2F
|s|2kE

)λ

ω ∧ ξ =
∫

X
‖s‖2kλE ω ∧ ξ.

Thus, we see that the change of sections, from s to σ , can be realized as a change
in metrics on E , keeping the section s fixed, after a possible rescaling of λ.

6 Asymptotic Expansion of I‖·‖(�)

Recall that I‖·‖(ε) is given by (1.4), where ω ∈ As(X), ξ ∈ D(X), s is a holomorphic
section of E such that {s = 0} = V and ‖·‖ is a smooth Hermitian metric on E . In this
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section we relate the asymptotic expansion of I‖·‖(ε) to the Laurent series expansion
(4.1) of �‖·‖(λ).

Theorem 6.1 Let P ⊂ Q denote the polar set of�‖·‖(λ) and let P+ = P∩{Re λ > 0}.
We have that

I‖·‖(ε) = 〈μ‖·‖
0 (ω), ξ 〉 +

κ∑

j=1

1

j !
(
log ε−1) j 〈μ‖·‖

j (ω), ξ 〉

+
∑

p∈P+
Res
λ=p

{
ε−λλ−1�‖·‖(λ)

}
+ O(εδ), (6.1)

for some δ > 0.

As we show below,

Res
λ=p

{
ε−λλ−1�‖·‖(λ)

}
= ε−p

2�p−1∑

j=0

1

j !
(
log ε−1) j c2�p−1− j

where �p ∈ N and where the c2�p−1− j are independent of ε. If V is a hypersurface, the
existence of an asymptotic expansion of I‖·‖(ε) of this form follows from [3, Theorem
4.3.1]. The proof of that theorem is based on [4] and the existence of Bernstein–Sato
polynomials. It is reasonable to expect that Theorem 6.1 can be proven in a similar
way. We have instead chosen to use the fact that I‖·‖(ε) and �‖·‖(λ) are related via
the Mellin transform.

The first observation is that �‖·‖(λ) satisfies a certain growth condition.

Lemma 6.2 The function �‖·‖(λ) is rapidly decreasing in Im λ, in the sense that the
product λ��‖·‖(λ), for any � ∈ N, is a bounded function when λ = α + iβ and
|β| → ∞, locally uniformly in α.

The following proof is an adaptation of the proof of Lemma 6.1 in [1].

Proof Let π : X̃ → X be a modification such that X̃ is smooth and π∗s defines a
normal crossings divisor. Recall that then

�‖·‖(λ) =
∫

X̃
‖π∗s‖2λπ∗ω ∧ π∗ξ.

Locally in X̃ we can choose coordinates such that
‖π∗s‖2λ = |zm1

1 , . . . , zmκ
κ |2λe−λφ , for some 1 ≤ κ ≤ n, m1, . . . ,mκ ≥ 1, and φ a

local weight associated to ‖ · ‖, and

π∗ω = � dz ∧ dz̄

|zm1
1 , . . . , zmκ

κ |2N ,
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for some smooth function � and some integer N ≥ 0. By introducing a partition of
unity {ρ j } on X̃ , �‖·‖(λ) can be written as a finite sum of terms of the form

∫

Cn
|zm1
1 . . . zmκ

κ |2(λ−N )e−λφ�π∗ξρ j dz ∧ dz̄.

Notice that κ , m1, . . . ,mκ , N , φ and � all depend on j .
Consider the (non-holmorphic) change of variables, σ1 = e−φ/2m1 z1, σ� = z� for

2 ≤ � ≤ n. We have that dσ� = dz� for 2 ≤ � ≤ n, and

dσ1 = e−φ/2m1dz1 − 1

2m1
e−φ/2m1 z1

n∑

�=1

(
∂φ

∂z�
dz� + ∂φ

∂ z̄�
dz̄�

)

.

It follows that

dσ ∧ dσ̄ = e−φ/m1

(

1 − 1

m1
Re z1

∂φ

∂z1

)

dz ∧ dz̄.

We can take ρ j to be such that dσ ∧ dσ̄ �= 0 on supp ρ j . We then have that

∫

Cn
|zm1
1 . . . zmκ

κ |2(λ−N )e−λφ�π∗ξρ j dz ∧ dz̄ =
∫

Cn
|σm1
1 · · · σmκ

κ |2(λ−N )�̃π∗ξρ j dσ ∧ dσ̄ ,

where

�̃ =
(

1 − 1

m1
Re z1

∂φ

∂z1

)−1

e−(N−1/m1)φ�,

is smooth on supp ρ j . Following the steps in the proof of Lemma 3.2, for any positive
integer M we have by (3.6) that

∫

Cn
|σm1

1 · · · σmκ
κ |2(λ−N )�̃π∗ξρ j dσ ∧ dσ̄ = hM (λ)

λ2κ

∫

Cn
|σm1

1 · · · σmκ
κ |2(λ+M)×

× PM P̄M
(
�̃π∗ξρ j

)
dσ ∧ dσ̄ ,

where

PM P̄M = ∂2(N+M)
∑κ

i=1 mi

∂σ
(N+M)m1
1 · · · ∂σ̄

(N+M)mκ
κ

,

and where hM (λ) is given by (3.7). Notice that

|hM (λ)|
|λ|2κ = O

(
|λ|−2(N+M)

∑κ
i=1 mi

)
,
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for |λ| 
 0. For λ = α + iβ with α > −M , the integral

∫

Cn
|σm1

1 · · · σmκ
κ |2(λ+M)PM P̄M

(
�̃π∗ξρ j

)
dσ ∧ dσ̄

is finite, and it clearly remains finite if we let |β| → ∞, locally uniformly in
α. Thus, for |β| 
 0, |�‖·‖(α + iβ)| = O(|β|−2(N+M)

∑κ
i=1 mi ). As M was chosen

arbitrarily, it follows that (α+ iβ)��‖·‖(α+ iβ) is a bounded function when |β| → ∞
for any � ∈ N. ��

Asmentioned, the functions�‖·‖(λ) andI‖·‖(ε) are related via theMellin transform.
The Mellin transform of a function f defined on R+ is given by

{M f }(λ) =
∫ ∞

0
ελ−1 f (ε)dε.

Notice that if | f (ε)| � ε−N for some N ≥ 0 as ε → 0 and f (ε) = 0 if ε 
 0, then
{M f }(λ) is holomorphic for Re λ 
 0.

If a function ϕ : C → C is holomorphic in the strip a < Re λ < b, and if it tends to
zero uniformly as |Im λ| → ∞, forRe λ = c, where c ∈ (a, b), such that its integral
along such a line is absolutely convergent, then ϕ has an inverse Mellin transform,
given by

{M−1ϕ}(ε) = 1

2π i

∫ c+i∞

c−i∞
ε−λϕ(λ)dλ.

Lemma 6.3 We can find an integer N ≥ 0 such that |I‖·‖(ε)| � ε−2N as ε → 0;
additionally we have that I‖·‖(ε) = 0 for ε 
 0. For Re λ 
 0, we have that

{MI‖·‖}(λ) = 1

λ
�‖·‖(λ).

This relation between the two regularization methods considered is well known. It
frequently appears in the context of residue theory, see [1, 15, 16], but it has also been
recognized in the context of divergent integrals, see, e.g., [3, 13].

Proof Since ω ∈ As(X) we can find an integer N ≥ 0 such that ω = ω̃/‖s‖2N where
ω̃ is bounded on supp ξ . Thus,

|I‖·‖(ε)| ≤
∫

‖s‖2≥ε

|ω̃ ∧ ξ |
‖s‖2N � 1

ε2N
.

Since ω̃ ∧ ξ has compact support, I‖·‖(ε) = 0 for ε 
 0.
By Fubini’s theorem
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{MI‖·‖}(λ) =
∫ ∞

0
ελ−1

∫

‖s‖2≥ε

ω ∧ ξ dε

=
∫

X

∫ ‖s‖2

0
ελ−1dε ω ∧ ξ = 1

λ

∫

X
‖s‖2λω ∧ ξ = 1

λ
�‖·‖(λ),

for Re λ 
 0. ��
By Lemma 6.2 and 6.3 it follows that I‖·‖(ε) can be recovered from �‖·‖(λ) via the
inverse Mellin transform as follows,

I‖·‖(ε) = {M−1λ−1�‖·‖(λ)
}
(ε) = 1

2π i

∫ c+i∞

c−i∞
ε−λλ−1�‖·‖(λ)dλ, (6.2)

for c 
 0. With (6.2), we are ready to prove Theorem 6.1.

Proof of Theorem 6.1 It follows from Theorem 4.1 (i) that ε−λλ−1�‖·‖(λ) defines a
meromorphic function with polar set P contained in Q ∩ (−∞, N ] for some N ≥ 0.
Let δ > 0 such that �‖·‖(λ) has no poles in the interval [−δ, 0) and let c 
 1 such
that (6.2) holds. Let B = {−δ < Re λ < c} ⊂ C and let ∂B be the positively oriented
boundary of B. By the Residue theorem and Lemma 6.2 we have that

1

2π i

∮

∂B
ε−λλ−1�‖·‖(λ)dλ =

∑

p∈P∩B

Res
λ=p

{
ε−λλ−1�‖·‖(λ)

}
. (6.3)

By a straightforward computation

1

2π i

∮

∂B
ε−λλ−1�‖·‖(λ)dλ = 1

2π i

∫ c+i∞

c−i∞
ε−λλ−1�‖·‖(λ)dλ + O(εδ).

Thus, by (6.2) and (6.3), it follows that

I‖·‖(ε) =
∑

p∈P∩B

Res
λ=p

{
ε−λλ−1�‖·‖(λ)

}
+ O(εδ). (6.4)

Let P+ = P ∩ {Re λ > 0}; we write
∑

p∈P∩B

Res
λ=p

{
ε−λλ−1�‖·‖(λ)

}
= Res

λ=0

{
ε−λλ−1�‖·‖(λ)

}
+

∑

p∈P+
Res
λ=p

{
ε−λλ−1�‖·‖(λ)

}
,

where, by Theorem 4.1 (i), we have that

Res
λ=0

{
ε−λλ−1�‖·‖(λ)

}
=Res

λ=0

{ ∞∑

�=0

1

�!λ
�−1( log ε−1)�

( κ∑

j=0

λ− j 〈μ‖·‖
j (ω), ξ 〉+O(λ)

)}

= Res
λ=0

{ κ∑

j=0

〈μ‖·‖
j (ω), ξ 〉

j∑

�=0

1

�!λ
�− j−1( log ε−1)� + O(1)

}
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=
κ∑

j=0

1

j !
(
log ε−1) j 〈μ‖·‖

j (ω), ξ 〉.

Theorem 6.1 now follows in view of (6.4). ��
We can look more closely at the residues

Res
λ=p

{
ε−λλ−1�‖·‖(λ)

}
,

for p ∈ P+. Following the proof of Lemma 4.2 and Theorem 4.1, let π : X̃ → X be
a modification such that X̃ is smooth and π∗s defines a normal crossings divisor. By
introducing a partition of unity, �‖·‖(λ) can be written as a finite sum of terms of the
form

h(λ)

λ2κ
I (λ),

where h(λ) is given by (3.3) and I (λ) by (4.3). Since I (λ)/λ2κ is holomorphic on
Re λ > 0, by inspection of (3.3), we find that (λ − p)2�p�‖·‖(λ) is holomorphic in a
neighborhood of p, where

�p = #
{
(i, j) : i ∈ {1, . . . , κ}, j ∈ {1, . . . , Nmi − 1}, j

mi
= p

}
≥ 1 for p ∈ P+.

Thus, we have that

Res
λ=p

{
ε−λλ−1�‖·‖(λ)

}
= Res

λ=p

{

ε−p
∞∑

j=0

1

j !
(
log ε−1) j (λ − p) j−2�p

(λ − p)2�p�‖·‖(λ)

λ

}

= Res
λ=p

{

ε−p
∞∑

j=0

1

j !
(
log ε−1) j (λ − p) j−2�p

∞∑

k=0

ck (λ − p)k
}

,

where

ck = 1

k!
dk

dλk

(
(λ − p)2�p�‖·‖(λ)

λ

)∣
∣
∣
∣
λ=p

.

We obtain

Res
λ=p

{
ε−λλ−1�‖·‖(λ)

}
= ε−p

2�p−1∑

j=0

1

j !
(
log ε−1) j c2�p−1− j .

The coefficients c2�p−1− j can be interpreted as the action of currents similar toμ
‖·‖
j (ω)

on ξ .
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