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Abstract—We propose a framework to evaluate the random-
coding union bound with parameter s (RCUs) on the achievable
error probability in the finite-blocklength regime for a pilot-
assisted transmission scheme operating over an imperfectly
synchronized and memoryless block-fading waveform channel.
Unlike previous results, which disregard the effects of imperfect
synchronization, our framework utilizes pilots for both synchro-
nization and channel estimation. Additionally, we utilize the
saddlepoint approximation to provide a numerically efficient
method for evaluating the RCUs bound in this scenario. Our
numerical experiments verify the accuracy of the proposed
approximation. Moreover, when transmission blocks are received
synchronously, numerical results indicate that the number of pilot
symbols needed to estimate the fading channel gains to the level
of accuracy required in ultra-reliable low-latency communication
is also sufficient to acquire sufficiently good synchronization.
However, when the blocks are received asynchronously, there
can be a significant SNR penalty compared to the synchronous
case.

Index Terms—URLLC, pilots, synchronization, channel esti-
mation

I. INTRODUCTION

Ultra-reliable low-latency communications (URLLC) are
designed for mission-critical applications targeting 99.999%
reliability with end-to-end latency as low as 1 ms [1]. A
key feature of URLLC traffic is the frequent use of small
information payloads accompanied by short packets consisting
of a limited number of encoded symbols. In URLLC, there are
limitations on the signal duration and available bandwidth,
due to latency requirements and the need to orthogonalize
multiple-user transmissions to mitigate multi-user interference.
As a consequence, the conventional asymptotic performance
metrics commonly employed in the design of communication
systems, namely the ergodic and outage rates, are not suitable
for the short-packet regime [2]. Because of its relevance for
URLLC, the field of finite-blocklength information theory has
been studied extensively, particularly following the seminal
work [3], which offers a precise understanding of the tradeoff
between error probability and packet size, for a given SNR and
transmission rate, when operating with finite blocklengths.

In this paper, we focus on communication over memo-
ryless block-fading channels with imperfect synchronization,
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2018- 04359 and 2021-04970, NSF CCF-2008927, NSF CCF-2200221, ONR
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with the goal of understanding the impact of synchronization
accuracy on the overall system performance. Benchmarking
URLLC systems with such goals often requires the use of
approximation techniques, due to the computational expense
of evaluating finite blocklength bounds exactly.

The computationally efficient approximation proposed in
this paper is based on the saddlepoint method [4], which
is used to evaluate the random coding union bound with
parameter s (RCUs) proposed in [5]. This bound is well-
suited for communication over fading channels, as it can be
applied to both the optimal non-coherent maximum-likelihood
(ML) decoder and more practically significant decoders that
utilize pilot-assisted transmission (PAT) [6]. Specifically, the
decoder considered in this paper is the so-called scaled nearest-
neighbor (SNN) decoder [7], which minimizes the error proba-
bility when synchronization and channel estimation is perfect,
but is suboptimal otherwise. The evaluation of the RCUs
bound for URLLC scenarios can be computationally expen-
sive, and, for some applications, needs to be approximated by
methods similar to the one proposed in this paper [8].

Most existing approaches for benchmarking URLLC sys-
tems disregard synchronization errors. In these approaches, an
upper bound on the error probability is obtained by evaluating
the tail probability of a sum of independent random variables.
This allows for approximations such as the normal approxi-
mation [3], or the more accurate saddlepoint approximation
[9, Ch. XVI], [4, Ch. 6]. The saddlepoint approximation has
been applied to the case of an optimal ML decoder in [10], of
PAT transmission and SNN decoding over single-input single-
output (SISO) and multiple-input multiple-output (MIMO)
channels in [11], and of PAT transmission and SNN decoding
over massive MIMO for both single and multiple fading blocks
in [6], [8], [12]. In [13], the problem of joint synchronization
and decoding is analyzed from a finite-blocklength perspec-
tive. There, it is shown that one can achieve performance close
to the perfectly synchronized case even for an exponentially
large asynchronism level. However, asynchronism is modeled
only at symbol level, and imperfect synchronization results
only in a wrong estimate of the location of the transmitted
codeword.

In this paper, we consider the more practically relevant case
in which asynchronism is modeled on the waveform channel,
and imperfect synchronization yields also intersymbol inter-
ference after matched filtering and sampling. As we shall see,



this implies that the random variables that need to be analyzed
to obtain upper bounds on the error probability are, in general,
dependent, and the saddlepoint approximations provided in
[6], [8], [11], [12] are therefore not applicable. However, under
certain assumptions on the dependence between the random
variables, saddlepoint approximations can still be derived.

Contributions: We consider the problem of transmitting
short packets over a SISO memoryless block-fading waveform
channel with an unknown delay and analyze the impact of
imperfect synchronization and channel estimation on system
performance in the URLLC regime. Specifically, we design
a synchronization and channel estimation algorithm that can
be used both in cases of asynchronous and synchronous
reception of the fading blocks. We use the RCUs bound
for the case of PAT and SNN decoding to evaluate the
error probability achievable when using this (or any other)
algorithm, and also provide a novel saddlepoint approximation
for this bound, based on [4, Ch. 6], which is tailored to the
specific dependence between random variables that arises due
to imperfect synchronization. Finally, we provide numerical
results to illustrate the accuracy of the proposed approximation
and its usefulness in obtaining insights into the design of
URLLC links.

Notation: We denote random vectors and random scalars
by upper-case boldface letters such as X and upper-case
standard letters, such as X , respectively. Their realizations
are indicated by lower-case letters of the same font. To avoid
ambiguities, we use another font, such as R for rate, to
denote constants that are typically capitalized in the literature.
The circularly symmetric Gaussian distribution is denoted by
CN (µ, σ2), where µ and σ2 denote the mean and the variance,
respectively. The superscripts (·)T and (·)H denote transposi-
tion and Hermitian transposition, respectively. We write log(·)
to denote the natural logarithm, ∥·∥ stands for the ℓ2-norm,
P[·] for the probability of an event, E[·] for the expectation
operator, ∗ for the convolution operation, Q(·) for the Gaussian
Q-function, and Im for the m×m identity matrix, respectively.
Finally, for two functions f(n) and g(n), the notation f(n) =
o(g(n)) means that limn→∞ f(n)/g(n) = 0 and the notation
f(n) = O(g(n)) means that lim supn→∞ |f(n)/g(n)| < ∞.

II. SYSTEM MODEL

We consider pilot-assisted transmission of a uniformly dis-
tributed message over a SISO block-flat-fading channel with
unknown delay. The message to be transmitted is encoded
using a codebook C containing ⌈exp(nb(np + ns)R)⌉ code-
words, where nb is the number of available fading blocks,
np and ns are the number of pilot and data symbols in each
block, respectively, and R is the data transmission rate in nats
per channel use. Each codeword is the concatenation of nb
subcodewords, each comprising ns symbols.

We transmit vectors with length nc = ns + np over each of
the nb independent block-fading channels, with a pilot vector
inserted at the beginning of each subcodeword. The channel
gain is assumed to remain constant during the transmission
of a vector. At the receiver, we perform synchronization and

estimate the channel using the pilot symbols. The decoder
output is the codeword in the codebook that, after being scaled
with the channel estimate, is closest to the received vector,
sampled using the delay estimate, in Euclidean distance.

A. Signal Model

The np symbols within each transmitted vector are used to
form the continuous-time pilot signal x(p)(t) as follows

x(p)(t) =

np∑
k=1

x
(p)
k stp(t− (k − 1)tp), (1)

where x
(p)
k are deterministic symbols known to the receiver

with symbol energy ρ = |x(p)
k |2, and stp(t) is a square pulse

with normalized energy and support of size tp, i.e.,

stp(t)
.
=

{
1√
tp
, t ∈ [0, tp)

0, otherwise .
(2)

The data symbols for the ℓth fading block are sent after the
pilot symbols via the continuous-time signal

x
(d)
ℓ (t) =

ns∑
k=1

x
(d)
k,ℓstp(t− (k − 1)tp − nptp), (3)

where x
(d)
k,ℓ is the kth data symbol of the ℓth fading block,

with average energy ρ. The total continuous-time signal corre-
sponding to the ℓth vector is put through a flat-fading channel
to obtain the received continuous signal

Yℓ(t) = Hℓ

(
x(p)(t−Dℓ) + x

(d)
ℓ (t−Dℓ)

)
+ Zℓ(t), (4)

where Hℓ denotes the scalar random fading complex channel
gain for the ℓth fading block, Dℓ is the time delay for the ℓth
fading block, which we assume to be uniform in [0, dmax], and
Z1(t), . . . , Znb(t) are independent white complex Gaussian
processes with power spectral density N0. For simplicity, we
set N0 = 1.

Depending on the communication system, the receiver
may or may not receive all Yℓ(t) synchronously.1 We
therefore distinguish between the asynchronous case where
D1, . . . , Dnb are i.i.d. and the synchronous case where
D1 = · · · = Dnb = D. In the former case, information about
the pair (Dℓ, Hℓ) is found only in Yℓ(t), and the estimation
problem decouples into nb separate problems, one per block.
However, in the synchronous case, it will be advantageous to
jointly estimate (D,H1, . . . ,Hnb). We next introduce synchro-
nization and channel estimation algorithms for both cases.

B. Synchronization and Channel Estimation Phase

The receiver uses the knowledge of the pilot sequence to
estimate the propagation delays and the fading-block gains.
Throughout, we assume that the receiver employs synchroniza-
tion and channel estimation algorithms that take an upsampled

1For example, all Yℓ(t) are typically received synchronously when fre-
quency diversity is used, while asynchronous reception occurs when different
Yℓ(t) experience different delays due to the medium access protocol.



version of the received signal as the input. For a given upsam-
pling rate N, let ts be the sampling interval; then, tp = tsN
is the period of the pulses used to construct the continuous
time pilot and data signals. We also let x(p)

N,n = x
(p)
⌈n/N⌉ be the

nth element of the upsampled vector of pilot symbols, where
n = 1, . . . ,Nnp. In order to obtain an upsampled received
signal, we process and sample the received signal Yℓ(t) as

Y
(p)
m,ℓ = (Yℓ ∗ sts) (mts) , (5)

where m = 1, . . . ,M, and the sampling endpoint is chosen to
capture all pilot symbols as M = ⌈dmax/ts⌉+ npN.

We can now represent the upsampled signal vector as

Y
(p)
ℓ = Hℓ

[
x
(p)
N (Qℓ) x

(p)
N (Qℓ + 1)

] [1− Eℓ

ts
Eℓ

ts

]
+Zℓ +Cℓ

(6)
where Qℓ

.
= ⌊Dℓ/ts⌋, Eℓ

.
= Dℓ −Qℓts,

x
(p)
N (qℓ)

.
=

1√
N

[
0T
qℓ
, x

(p)
N,1, . . . , x

(p)
N,Nnp

,0T
M−qℓ−Nnp

]T
, (7)

Y
(p)
ℓ

.
= [Y

(p)
1,ℓ , . . . , Y

(p)
M,ℓ]

T , Zℓ ∼ CN (0M, IM), and Cℓ stands
for the interference from the data signal. We note that Dℓ =
Qℓts + Eℓ, where Qℓ ∈ Z and Eℓ ∈ [0, ts).

For simplicity, our algorithms are derived by considering the
ML estimators of the parameters in question in the case where
Cℓ = 0M, i.e., where no interference from the data symbols
is present. As we shall verify in Section IV, our assumption
incurs minimal loss.

1) Per-Block Synchronization for Asynchronous Reception:
In this case, the receiver uses the observation of Y (p)

ℓ for each
fading block in order to obtain the estimates Ĥℓ, Q̂ℓ, and Êℓ.
To do so, we pose the following minimization problem:

[Ĥℓ, Q̂ℓ, Êℓ] = arg min
h̄,q̄,ē

∥Y (p)
ℓ − h̄v(q̄, ē)∥2, (8)

where

v(q̄, ē)
.
=
[
x
(p)
N (q̄) x

(p)
N (q̄ + 1)

] [1− ē
ts

ē
ts

]
. (9)

For any given Y
(p)
ℓ = y

(p)
ℓ , the ML channel estimate for each

fading block h̄ℓ can be written as a function of q̄ and ē as

ĥℓ(q̄, ē) =
v(q̄, ē)Hy

(p)
ℓ

||v(q̄, ē)||2 . (10)

Substituting (10) into (8), we can estimate the delay parame-
ters as [14]

[q̂ℓ, êℓ] = arg max
q̄,ē

n(q̄, ē)

d(q̄, ē)
, (11)

where n(q̄, ē) =
∣∣∣v(q̄, ē)Hy

(p)
ℓ

∣∣∣2 and d(q̄, ē) = ∥v(q̄, ē)∥2.
The maximization in (11) follows from substituting the ex-
pression for ĥℓ in (10), for h̄ℓ in (8), and then expanding out
terms and removing terms not dependent on q̄ and ē from the
objective function.

For a fixed value of q̄, both n(q̄, ē) and d(q̄, ē) are second-
degree polynomials in ē, which implies that the objective

function in (11) is a rational function in ē. For a fixed value of
q̄, we find an extreme point of this function by differentiating
with respect to ē and setting the derivative to zero as

∂

∂ē

n(q̄, ē)

d(q̄, ē)
=

n′(q̄, ē)d(q̄, ē)− n(q̄, ē)d′(q̄, ē)

d(q̄, ē)2
= 0. (12)

If (12) has a solution ē⋆ in the range (0, ts), then (q̄, ē⋆) is a
candidate for (q̂ℓ, êℓ). We also consider the boundary points
(q̄, 0) and (q̄, ts) since they might be the solution of (12) in
the cases where no extreme point can be found in (0, ts), or
when a minimum point (instead of a maximum) is found.

We are now ready to introduce our delay and channel
estimation algorithm. Let Dℓ be the set of candidates for
d̂ℓ = q̂ℓts + êℓ. We construct Dℓ as follows: for each
q̄ ∈ {0, . . . , dmax/ts} we add q̄ts to Dℓ. Next, we find the
solutions ē⋆ for (12) for each q̄. If ē⋆ is in the range [0, ts),
we add q̄ts + ē⋆ to Dℓ. We then find d̂ℓ as the entry in Dℓ

that maximizes the objective function in (11). This estimate is
then used to evaluate the channel estimate ĥℓ from (10).

2) Joint Synchronization for Synchronous Reception: In this
case, since the delay is same for all fading blocks (i.e., Dℓ = D

for all ℓ), the receiver can use the observations of {Y (p)
ℓ }nb

ℓ=1

jointly. These observations are used to estimate the channel
gains Ĥ = [Ĥ1, . . . , Ĥnb ]

T and delay as

[Ĥ, Q̂, Ê] = arg min
h̄,q̄,ē

nb∑
ℓ=1

∥Y (p)
ℓ − h̄ℓv(q̄, ē)∥2. (13)

Following the same steps leading to (11), we obtain

[q̂, ê] = arg max
q̄,ē

nb∑
ℓ=1

∣∣v(q̄, ē)Hyℓ

∣∣2
∥v(q̄, ē)∥2 . (14)

The numerator and denominator of (14) have the same
polynomial structure as (11), and the same synchronization
and channel estimation algorithm described in Section II-B1
can be used, but now with only one set of candidates D.

C. Codeword Decoding Phase

The codeword decoding phase is based on a mismatch-
decoding approach, where the delay and channel estimates
returned by the algorithms described in Section II-B are treated
as perfect. The input-output relationship for the kth symbol in
the ℓth block, assuming that the synchronization is not off by
more than one symbol (i.e., |D̂ −D| ≤ tp) is2

Yk,ℓ =
(
Yℓ ∗ stp

)
(ktp + nptp + D̂ℓ) (15)

In the decoding process, the receiver seeks the codeword
in the codebook C closest to the received signal after scaling
each subcodeword with the corresponding channel estimate.
Hence, given the received vector and the channel estimates,
the decoded codeword x̂ = [x̂T

1 , . . . , x̂
T
nb
]T is determined as

x̂ = arg min
x̄=[x̄1,...,x̄nb ]∈C

nb∑
ℓ=1

∥yℓ − ĥℓx̄ℓ∥2, (16)

2We will omit the superscript (d) in the remainder of the paper to keep the
notation compact.



where yℓ = [y1,ℓ, . . . , yns,ℓ]
T and x̄ℓ is defined similarly. This

decoder, known as the mismatched SNN decoder [15], is not
optimal. However, it is practically relevant and the analysis of
its finite-blocklength error probability is tractable [6].

III. A NON-ASYMPTOTIC UPPER BOUND ON THE ERROR
PROBABILITY

We may evaluate the packet error probability ϵpep as

ϵpep = P
[∣∣∣D̂ℓ −Dℓ

∣∣∣ ≤ tp

]
ϵ1 + P

[∣∣∣D̂ℓ −Dℓ

∣∣∣ > tp

]
ϵ2, (17)

where ϵ1 and ϵ2 are the probability of erroneous packet
decoding when the synchronization is off by less than and
more than one symbol, respectively. When evaluating ϵpep, we
will assume, for simplicity, that the decoder cannot decode the
packet when synchronization is off more than one symbol, i.e.,
we will set ϵ2 = 1.

In the next section, we will present an RCUs bound for ϵ1
and its corresponding saddlepoint approximation.

A. The RCUs Finite-Blocklength Bound

The RCUs bound is obtained by a random-coding argument.
This means that instead of analyzing the performance of
a particular code, we evaluate the average error probability
averaged over a randomly constructed ensemble of codebooks.
In this paper, we consider an i.i.d. discrete ensemble in
which each symbol of every codeword is drawn independently
(and uniformly) from a constellation set with u elements
(e.g., u = 2 for BPSK) and power ρ. Although potentially
suboptimal, this choice is practically relevant and allows us
to evaluate the RCUs bound efficiently via a saddlepoint
approximation.

When the synchronization is off by less than one symbol
(i.e., |D̂ℓ −Dℓ| ≤ tp), (15) can be stated as

Yk,ℓ = Hℓ(∆ℓXk,ℓ + (1−∆ℓ)Xk+Λℓ,ℓ) + Zk,ℓ, (18)

where we define ∆ℓ
.
= 1−

∣∣∣D̂ℓ −Dℓ

∣∣∣ /tp, Λℓ
.
= sign(D̂ℓ−Dℓ),

and Zk,ℓ are i.i.d. zero-mean, unit-variance, complex Gaussian
random variables. Note that the lack of perfect synchroniza-
tion, i.e., ∆ℓ ̸= 1, yields intersymbol interference.

For our setup, the RCUs achievability bound ϵub on ϵ1 is
given by ϵ1 ≤ ϵub with

ϵub = EH,Ĥ,∆

[
ϵub

(
H, Ĥ,∆

)]
(19)

where H = [H1, . . . ,Hnb ]
T , ∆ = [∆1, . . . ,∆nb ]

T , and

ϵub

(
h, ĥ, δ

)
= P

[
logΥ

ncnb
+

1

ncnb

nb∑
ℓ=1

ns∑
k=1

ıs

(
Xk,ℓ;Yk,ℓ, ĥℓ

)
≤ R

∣∣∣∣H = h, Ĥ = ĥ,∆ = δ

]
. (20)

Here, Υ is a random variable that is uniformly distributed on
[0, 1] and independent of all other quantities, and ıs(x, y, ĥ)
is the so-called generalized information density [5]

ıs(x; y, ĥ)
.
= log

e−s|y−ĥx|2

EX̄

[
e−s|y−ĥX̄|2] , (21)

where X̄ is independent of all other random variables and
drawn uniformly from the constellation, and s > 0 is a
parameter that can be optimized to obtain a tighter bound.
No closed-form expression for the RCUs bound (19) is, in
general available. Numerical methods to evaluate it, such as
Monte-Carlo simulations, can be time consuming due to the
low target error probabilities of interest in URLLC. Next, we
introduce a saddlepoint approximation of (19) that allows for
an efficient computation.

B. A Saddlepoint Approximation on (20)
The saddlepoint method is a well-established tool to obtain

accurate approximations of tail probabilities involving sum
of random variables. Unfortunately, none of the saddlepoint
approximations for the RCUs bounds reported previously in
the literature [6], [8], [11], [12] apply to the setup considered
in this paper (see [14] for a detailed discussion). To obtain
the desired saddlepoint approximation, we exploit the property
that the random variables

{∑ns
k=1 ıs(Xk,ℓ;Yk,ℓ, ĥℓ)

}nb

ℓ=1
are

conditionally independent, given H = h, Ĥ = ĥ, and
∆ = δ. This allows us to perform a saddlepoint expansion
of the conditional error probability in (20) with respect to the
number of blocks nb. Specifically, let us fix δ, h, and ĥ, and
denote for convenience Iℓ

.
=
∑ns

k=1 ıs(Xk,ℓ;Yk,ℓ, ĥℓ). Note
that {Iℓ}nb

ℓ=1 is a family of independent, but not necessarily
identically distributed random variables.

Let us denote by φℓ(ζ) = E
[
e−ζIℓ

]
the MGF of −Iℓ and

by κℓ(ζ) = logφℓ(ζ) its cumulant generating function (CGF).
Let us also set κ(ζ) =

∑nb
ℓ=1 κℓ(ζ) as well as µ(ζ) .

= 1
nb

dκ(ζ)
dζ

and σ2(ζ)
.
= 1

nb

d2 κ(ζ)
dζ2 . In the next theorem, we present a

saddlepoint approximation on (20) (see [14, Thm. 1] for its
proof).

Theorem 1: Suppose that there exists a ζ0 > 0 such that

sup
|ζ|<ζ0

∣∣∣∣d4φℓ(ζ)

dζ4

∣∣∣∣ < ∞, ∀ℓ ∈ {1, . . . , nb} (22)

and also positive constants ml ≤ mu such that

ml ≤ σ2(ζ) ≤ mu (23)

holds for all nb ∈ N and for all |ζ| ≤ ζ0. Assume that there
exists a ζ ∈ [−ζ0, ζ0] satisfying −µ(ζ) = ncR. If ζ ∈ [0, 1]
then

P

[
logΥ +

nb∑
ℓ=1

Iℓ ≤ nbncR

]

= eκ(ζ)−nbζµ(ζ)

[
e

β2
ζ
2 Q(βζ) + e

β2
1−ζ
2 Q(β1−ζ) + o

(
1√
nb

)]
(24)

where βa = a
√

nbσ2(ζ). If ζ > 1, then

P

[
logΥ +

nb∑
ℓ=1

Iℓ ≤ nbncR

]

= eκ(1)−nbµ(ζ)

[
Ψnb(1, 1)−Ψnb(0,−1) +O

(
1√
nb

)]
(25)



where

Ψnb(a, b) = enba[−µ(1)−ncR+σ2(1)/2]

×Q

(
a
√
nbσ2(1)− b

nb(µ(1) + ncR)√
nbσ2(1)

)
. (26)

Finally, if ζ < 0, then

P

[
logΥ +

nb∑
ℓ=1

Iℓ ≤ nbncR

]
= 1−

(
eκ(ζ)−nbζµ(ζ)

)
×
[
e

β2
−ζ
2 Q(β−ζ)− e

β2
1−ζ
2 Q(β1−ζ) +O

(
1√
nb

)]
. (27)

The saddlepoint approximation is then obtained by neglect-
ing the o(·) and O(·) terms in (24), (25), and (27).

The main challenge when using this approximation is to
evaluate the MGF φℓ(ζ) = E

[
e−ζIℓ

]
, which is required

to determine κ(ζ) and its first and second derivatives. Note
that each Iℓ consists of the sum of ns random variables that,
in general, are dependent due to the intersymbol interference
caused by errors in the estimation of the propagation delay.
Inspired by [4, Ch. 9], we exploit the Markovian structure of
the dependence between these random variables to evaluate
φℓ(ζ) efficiently. The details of this evaluation can be found
in [14].

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we report numerical experiments illustrating
the performance of our synchronization method both in terms
of normalized mean square error (NMSE) and achievable
packet error probability. We also verify the accuracy of the
saddlepoint approximation.

Throughout, we shall consider the synchronous reception
case; we shall also assume that a BPSK constellation is used
for both pilot and data transmission, and that m-sequences [16,
Ch. 8] are used as pilot sequences. We assume that the Hℓ,
ℓ = 1, . . . , nb, are generated independently from a CN (0, 1)
distribution. We will analyze the performance of both the per-
block and the joint synchronization algorithms proposed in
Section II-B. Note that per-block synchronization, when ap-
plied to synchronous reception, achieves the same performance
as if the blocks were received asynchronously.

We first compare the NMSE incurred when estimat-
ing D with both the joint synchronization and per-block
synchronization. The NMSE for joint synchronization is
E[(D − D̂)2/tp

2], and for per-block synchronization, the
NMSE is E[(Dℓ − D̂ℓ)

2/tp
2] (which does not depend on

ℓ). In Fig. 1, we plot the NMSE as a function of the SNR
for the case N = 20, nb = 4, and np = 7. Recall that
both per-block and joint synchronizations were developed
by considering the ML estimators under the assumption that
Cℓ = 0M. In Fig. 1, we plot the NMSE for the delay
estimation as a function of the SNR for both the case of no data
interference (Cℓ = 0M) and data interference. We observe that
joint synchronization performs significantly better than per-
block synchronization. The gap in performance between joint

−10 −5 0 5 10 15 20 25 30
10−5

10−4

10−3

10−2

10−1

100

101

102

SNR ρ [ dB]

N
M

SE

per block sync. with data interf.
per block sync. without data interf.

−10 −5 0 5 10 15 20 25 30
10−5

10−4

10−3

10−2

10−1

100

101

102

SNR ρ [ dB]

N
M

SE

joint sync. with data interf.
joint sync. without data interf.

Fig. 1. NMSE for the delay estimation for both joint and per-block
synchronization for N = 20, nb = 4, np = 7.

and per-block synchronization is small at very low SNR, but
the performance gap increases as SNR increases, as expected.
We also observe that the impact of data interference on the
performance of our algorithm is minimal.3

In Fig. 2, we illustrate the impact of synchronization errors
on the packet error probability, upper bounded by substituting
the RCUs bound ϵub for ϵ1 and setting ϵ2 = 1 in (17). To
do so, we let σ2

d be the mean squared error incurred when
estimating D. In this analysis (and only in this analysis), we
assume the channel to be known at the receiver (i.e., ĥℓ = hℓ

for all ℓ), let D̂ ∼ N (D,σ2
d) (or D̂ℓ ∼ N (D,σ2

d) for the per-
block synchronization algorithm), where we allow σ2

d, which
corresponds to the mean square error for delay estimation,
to vary independently from any other system parameter, and
report an upper bound on the ϵpep as a function of σ2

d/t
2
p for

ρ ∈ {2.5, 6.5} dB, nbnc = 288, nb = 8, np = 0, and R =
30/288 = 0.104 bit per channel use. The parameter s of the
RCUs bound is optimized. Note that, since we assumed that
the {hℓ} are known to the receiver, once we fix σ2

d, the packet
error probability achieved using joint synchronization and per-
block synchronization synchronization coincide. We see from
the figure that to achieve an error probability ϵpep < 10−4 for
both values of ρ, it is enough that σ2

d/t
2
p is below 0.12 and

that the error probability deteriorates rapidly once this value
is exceeded.

Finally, we analyze in Fig. 3 the performance achievable
in the URLLC regime using the synchronization and channel
estimation algorithms introduced in Section II-B. Specifically,
we show the SNR sufficient to achieve an error probability
of 10−5 for nbnc = 288, N = 20, and R = 0.104 bit per
channel, as a function of the number of fading blocks nb
spanned by each codeword. We obtain each value of SNR
by optimizing over both the number of pilot symbols np and
the s parameter in the RCUs. We consider both per-block
and joint synchronization, and depict for reference also the
curve corresponding to perfect synchronization, but pilot-aided
estimation of the channel gain. For each scenario, we plot

3In [14], we also show that the NMSE for both synchronization methods
approaches the corresponding Cramér-Rao lower bounds.
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both the RCUs and its saddlepoint approximation. We observe
that the saddlepoint approximation provides an accurate and
numerically efficient approximation of the RCUs bound for the
parameters considered in the figure. This also suggests that the
conditions required for the saddlepoint approximation, given
in (22) and (23), hold in our setup.

We observe from the figure that per-block synchronization
requires up to 3.5 dB higher SNR than joint synchronization
to achieve the same error probability. We note that when
nb ≥ 4, the SNR gap between joint synchronization and
perfect synchronization but pilot-aided channel estimation is
no larger than 0.6 dB. This suggests that the pilot symbols
needed to estimate the fading coefficients in the perfect syn-
chronization, pilot-aided channel estimation case are sufficient
to also estimate the delay when the joint synchronization
algorithm is used.

V. CONCLUSIONS

We have presented an efficient method to evaluate an upper
bound on the error probability achievable over memoryless
block-fading channels, with pilot-assisted transmission for

channel estimation and synchronization. The method is based
on a novel saddlepoint approximation, which accounts for
the dependence across certain random variables arising in the
presence of synchronization errors.

Numerical experiments show that the proposed saddlepoint
approximation can be safely used to benchmark practically
relevant URLLC systems. We show how to use our approxima-
tion to determine the synchronization level required to achieve
the low error probabilities demanded in URLLC applications.
Moreover, our numerical results reveal that, when the fading
blocks are received synchronously and synchronization is
performed jointly over the blocks, the pilot symbols needed
for channel estimate are sufficient to acquire synchronization.
However, if we use per-block synchronization (which is un-
avoidable in the asynchronous case), there can be a significant
SNR penalty compared to the joint synchronization case.

REFERENCES

[1] “Study on physical layer enhancements for NR ultra-reliable and
low latency case (URLLC) (release 16),” 3GPP, Tech. Rep.,
Mar. 2019. [Online]. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3498

[2] G. Durisi, T. Koch, and P. Popovski, “Towards massive, ultra-reliable,
and low-latency wireless communication with short packets,” Proc.
IEEE, vol. 104, no. 9, pp. 1711–1726, Sep. 2016.

[3] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
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