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Abstract—We recently proposed a quantitative group testing
(GT) scheme with low-complexity peeling decoding based on
low-density parity-check (LDPC) codes. Based on finite length
simulations and a density evolution analysis we were able to
demonstrate that simple (dv, dc)-regular LDPC codes can be more
efficient for GT than existing generalized LDPC (GLDPC) code
constructions based on BCH component codes. Even larger gains
were numerically observed in combination with spatial coupling.
In this paper, we use vector admissible systems to prove threshold
saturation and compute the corresponding potential thresholds.

I. INTRODUCTION

Group testing (GT) is a technique of efficiently identifying
items of interest (which we call defective items) in a popula-
tion by testing items in groups. With GT much fewer tests are
needed to successfully identify all defective items compared
to naive individual testing of items, especially if the number of
defective items is much lower than the population size n. The
problem of GT has a close connection to the problem of error
correcting codes. This has led to the application of various
tools from coding theory to GT testing, one being the use of
sparse codes-on-graphs. It has been demonstrated that sparse
codes-on-graphs, in combination with low complexity peeling
decoding, are able to identify all defective items with high
probability for both non-quantitative [1], [2] and quantitative
GT [3], [4]. We consider noiseless non-adaptive, quantitative
group testing, in which the result of each test shows the exact
number of defective items.

In a previous work [5], we proposed a novel peeling decoder
for GT that allowed us to use simple low-density parity-
check (LDPC) codes instead of generalized LDPC (GLDPC)
codes based on t-error correcting codes [3], [4]. Despite of
losing the local error correction capability in this construction,
it is possible to take advantage of two extreme scenarios:
one when all items connected to a test are non-defective, and
the other when all items connected to a test are defective.
Based on this we were able to show that LDPC codes, with
t = 0, are more efficient for GT than GLDPC codes with
t > 0. As shown in Fig. 1, the LDPC scheme requires much
fewer tests than the GLDPC scheme for the same number
of defective items k. For example, for k = 800 the GLDPC
scheme requires slightly more than 8700 tests while the LDPC
scheme requires around 5400 tests. The gap is widening

This work was supported in part by the Excellence Center at Linköping-
Lund in Information Technology (ELLIIT). The simulations were partly
performed on resources provided by the Swedish National Infrastructure for
Computing (SNIC) at center for scientific and technical computing at Lund
University (LUNARC).
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Fig. 1. A comparison of GT based on LDPC- and GLDPC codes, showing
the total number of tests m required for a population size n = 216 [5].

with increasing k. Furthermore, we were able to show in [5]
that the performance can be improved further by applying
spatial coupling. The improvement increased with coupling
memory w, reaching a relatively stable value for higher w.
These numerical results suggested that threshold saturation
may occur for GT with LDPC codes.

In this work, we prove that threshold saturation indeed
occurs for the quantitative group testing scheme based on
LDPC codes. The proof is done by showing that the density
evolution (DE) recursions for GT with LDPC codes satisfy the
conditions for being a vector admissible system [6].

II. BACKGROUND: QUANTITATIVE GROUP TESTING
BASED ON LDPC CODES

In this section we summarize the scheme considered in [5].

A. System Model

We consider a population of n items represented by a binary
vector x = (x1, . . . , xn) where xi = 1 if item i is defective
and xi = 0 if it is not defective. Each item is defective with
probability γ. A GT scheme aims at recovering x using m
tests where m < n.

A GT scheme can be represented by an m × n adjacency
matrix A = (ai,j), where ai,j = 1 if item j participates in test
i and ai,j = 0 otherwise. We consider quantitative GT without
noise, where the result of each test gives the exact number of
defective items participating in the test. Collecting the results
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Fig. 2. Bipartite graph corresponding to the assignment matrix in (1).

of all tests in a vector s = (s1, . . . , sm), called the syndrome,
we have

s = xAT .

The assignment of items to tests can be conveniently rep-
resented by a bipartite graph consisting of n variable nodes
(VNs) corresponding to the n items and m constraint nodes
(CNs) corresponding to the m tests. An edge between VN j,
and CN i is drawn if item xj participates in test ci, i.e., if
ai,j = 1. In this work, we consider GT schemes based on
regular (dv, dc) bipartite graphs, where each VN is connected
to dv CNs and each CN is connected to dc VNs. Fig. 2 shows
the (2, 4) bipartite graph corresponding to a scenario with
n = 6 items and m = 3 tests with assignment matrix

A =

 1 1 0 1 0 1
0 1 1 1 1 0
1 0 1 0 1 1

 . (1)

We define the ratio of the number of tests m to the
population size n as the rate Ω. That is

Ω =
m

n
=

dv
dc

.

B. Peeling Decoding

Let d(ℓ)c be the degree of a CN c at iteration ℓ and s(ℓ) the
corresponding syndrome. The decoding algorithm is based on
the following observation: If s(ℓ) = 0, then all VNs connected
to c are non-defective and can be resolved. Furthermore, if
s(ℓ) = d

(ℓ)
c , then all VNs connected to c are defective and can

also be resolved. Otherwise, none of the connected VNs can
be resolved by considering c. The degree d

(ℓ)
c is updated by

removing all resolved items in previous iterations while s(ℓ) is
updated by subtracting the contribution of resolved defective
items in each CN. This is summarized in Algorithm 1.

C. Two Different Performance Measures

We consider two scenarios for evaluating the performance
of a GT scheme. In the first scenario, we fix the proportion γ
of defective items and evaluate the minimum rate Ωth at which
all defective items can be detected with high probability. This
corresponds to the conventional GT perspective, where the
number of defective items is fixed and the aim is to reduce the
total number of tests required for successful decoding. In the
second scenario, we fix the rate Ω and determine the highest
fraction γth of defectives that can be tolerated for successful
decoding. This scenario was first introduced in [5] and is more
closely related to the threshold definition in channel coding,
where the graph is fixed in terms of node degrees. In some

Algorithm 1 Decoding of LDPC code-based GT
Input: syndrome s, graph G (with m tests and n items)
Output: x

1: Initialization ℓ = 1, G1 = G, continue=TRUE,
2: xj = unresolved for j = 1 : n, s(1)i = si and d

(1)
ci = dc ∀i

3: while continue==TRUE do
4: found=FALSE
5: for i = 1 to m do
6: if s(ℓ)i = 0 then
7: Set all items connected to ci to 0
8: Peel the items set to 0 from the graph Gℓ

9: found=TRUE
10: else if s(ℓ)i = d

(ℓ)
ci then

11: Set all items connected to ci to 1
12: Peel the items set to 1 from the graph Gℓ

13: found=TRUE
14: end if
15: end for
16: ℓ = ℓ+ 1
17: if found==FALSE or Gℓ is empty then
18: continue=FALSE
19: end if
20: end while

applications, like multi-access communication [7], [8], this
corresponds to asking the question how much traffic a network
can tolerate for given channel resources.

D. Spatial Coupling for LDPC Code-Based GT

With spatial coupling, blocks of VNs are interconnected in
contrast to classical GT where each block is treated separately.
This is inspired by works on spatially coupled LDPC (SC-
LDPC) codes [9]–[11], which have shown to perform very
well. Each block can be seen as occupying a spatial position
τ , i.e., we have nb VNs and mb CNs at each spatial position.
The coupling is done as follows: each VN at spatial position τ
is connected to dv CNs at positions in the range [τ, τ+w] with
the positions chosen uniformly at random. The parameter w is
referred to as the coupling memory. Further, each CN at spatial
position τ is connected to dc VNs at positions in the range
[τ, τ−w]. The chain is terminated after L positions, L denoting
the coupling length. The degree of all VNs is kept constant
while the CNs at the edges have lower degrees compared to
the inner CNs. This also means that we have w more tests at
the end of the chain resulting in a slight increase in the rate
of the coupled scheme ΩSC given as

ΩSC =
(
1 +

w

L

)
Ω , (2)

with Ω = dv

dc
. The rate increase vanishes as L is increased.

The lower degree of the CNs at the boundaries of the coupled
chain yield a wave-like decoding effect where a decoding wave
propagates from the boundaries of the chain inward.
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III. DENSITY EVOLUTION

A. DE for uncoupled LDPC code based GT

It can be observed that a test or an item sends two possible
messages types, resolved or unresolved. If the message is
resolved it represents the actual value of the item, i.e., 0 or
1. It was shown in [5] that the DE equations for the decoder
discussed is given by

q
(ℓ)
0 =

dc−1∑
i=0

(
dc − 1

i

)
γi(1− γ)dc−1−i

(
1− p

(ℓ−1)
1

)i
(3)

q
(ℓ)
1 =

dc−1∑
i=0

(
dc − 1

i

)
γi(1− γ)dc−1−i

(
1− p

(ℓ−1)
0

)dc−1−i

(4)

p
(ℓ)
0 =

(
1− q

(ℓ−1)
0

)dv−1

(5)

p
(ℓ)
1 =

(
1− q

(ℓ−1)
1

)dv−1

. (6)

Here q
(ℓ)
0 and q

(ℓ)
1 are the probabilities that a CN sends

a message resolved to a non-defective and defective VN,
respectively, during iteration ℓ. While p

(ℓ)
0 and p

(ℓ)
1 are the

probabilities that a VN sends a message unresolved to a CN
given that the VN is non-defective and defective, respectively.
In this section we derive an alternative but equivalent set of DE
equations to those in [5]. The alternative equations are easier
to handle, especially for the proof of threshold saturation. Let
x
(ℓ)
0 be the probability that a message from a CN to a non-

defective VN is unresolved , and x
(ℓ)
1 be the probability that a

message from a CN to a defective VN is unresolved. Also, let
y
(ℓ)
0 be the probability that an item is non-defective and sends

a message unresolved to a CN, and y
(ℓ)
1 be the probability that

an item is defective and sends a message unresolved to a CN.
It can be observed that x(ℓ)

0 = 1 − q
(ℓ)
0 and x

(ℓ)
1 = 1 − q

(ℓ)
1 ,

while y
(ℓ)
0 = (1− γ)q

(ℓ)
0 and y

(ℓ)
1 = γp

(ℓ)
1 .

Proposition 1: The quantities y
(ℓ)
0 , y(ℓ)1 , x(ℓ)

0 , and x
(ℓ)
1 are

given by the following DE equations:

x
(ℓ)
0 =1−

(
1− y

(ℓ−1)
1

)dc−1

(7)

x
(ℓ)
1 =1−

(
1− y

(ℓ−1)
0

)dc−1

(8)

y
(ℓ)
0 =(1− γ)

(
x
(ℓ−1)
0

)dv−1

(9)

y
(ℓ)
1 =γ

(
x
(ℓ−1)
1

)dv−1

. (10)

Proof: A message from a CN c to a non-defective VN is
resolved if none of the defective items (if any) among all dc−1
other items sends a message unresolved, i.e., it is connected to
zero unresolved defective items. This happens with probability
(1−y

(ℓ−1)
1 )dc−1. We can then compute x

(ℓ)
0 as the complement

of this. Similarly, a message from a CN c to a defective VN
is resolved if it has no unresolved non-defective item among
the dc − 1 other items. This happens with probability (1 −
y
(ℓ−1)
0 )dc−1.

A non-defective item sends a message unresolved to a CN
if all of the incoming messages from the other dv − 1 CNs
are unresolved. Thus the probability that an item sends a
message unresolved given that it is non-defective is given by(
x
(ℓ−1)
0

)dv−1

, which when multiplied by (1 − γ) gives y
(ℓ)
0 .

The same reasoning applies for y(ℓ)1 .

B. DE for spatially coupled LDPC code based GT

Based on the description in Subsection II-D, the DE equa-
tions for GT based on spatially coupled LDPC codes are given
as

x
(ℓ)
0,τ = 1− 1

w + 1

w∑
j=0

(
1− y

(ℓ−1)
1,τ−j

)dc−1

(11)

x
(ℓ)
1,τ = 1− 1

w + 1

w∑
j=0

(
1− y

(ℓ−1)
0,τ−j

)dc−1

(12)

y
(ℓ)
0,τ = (1− γ)

1

w + 1

w∑
j=0

(
x
(ℓ−1)
0,τ+j

)dv−1

(13)

y
(ℓ)
1,τ = γ

1

w + 1

w∑
j=0

(
x
(ℓ−1)
1,τ+j

)dv−1

. (14)

IV. PROOF OF THRESHOLD SATURATION

In this section we provide a proof of threshold saturation for
the LDPC code-based GT scheme using the vector admissible
system as described in [6]. We first define a vector admissible
system and proceed to prove that the considered GT scheme
forms a vector admissible system. As mentioned in Section
II-C, the second scenario where Ω is fixed and γ is varied
is more in line with the threshold analysis for channel codes.
Hence it seems natural to use this scenario to prove threshold
saturation for GT. But as it turns out, we have to start with
the fixed γ scenario and then use the connection between the
two scenarios to prove threshold saturation.

A. Vector admissible system

Following [6], a vector recursion (f, g) is a vector admis-
sible system parameterized by ε ∈ [0, 1], if it fulfills the
following conditions: x(0) = 1 and

x(ℓ) = f
(
g(x(ℓ−1)); ε

)
. (15)

The vector-valued functions f (x) = [f1(x), · · · , fd(x)] and
g(x) = [g1(x), · · · , gd(x)] are twice continuously differ-
entiable, strictly increasing in all arguments (w.r.t. the partial
order). It is also assumed that f (x; 0) = f (0; ε) = g(0) = 0,
that f (1; ε) ∈ [0, 1)d and that g′(x) is symmetric positive
definite.

B. Scenario 1: Finding minimum Ω for fixed γ

We first consider the scenario where γ is fixed and the rate,
Ω is changed by changing dc (for a given dv). Since dc can
be varied from 1 (best) to ∞ (worst), we have to define a
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parameter ε(dc) such that ε(1) = 0 and ε(∞) = 1. The
function

ε(dc) = 1− 1

dc

satisfies these requirements.
We can rewrite the DE equations (8)–(10) as

f (y0, y1; dc) =
[
1− (1− y1)

dc−1, 1− (1− y0)
dc−1

]
(16)

g(x0, x1) =
[
(1− γ) · xdv−1

0 , γ · xdv−1
1

]
. (17)

Substituting ε into (16) we obtain

f (y0, y1; ε) =
[
1− (1− y1)

ε
1−ε , 1− (1− y0)

ε
1−ε
]

(18)

g(x0, x1) =
[
(1− γ) · xdv−1

0 , γ · xdv−1
1

]
. (19)

It can be shown that f (y0, y1; ε) is monotonically increasing
with y and ε for ε ∈ [0, 1] and f (0, 0; ε) = f (y0, y1; 0) = 0.
Furthermore,

g′(x) = (dv − 1)

[
(1− γ)xdv−2

0 0

0 γxdv−2
1

]
thus

|g′(x)| = (dv − 1)γ(1− γ)(x0x1)
dv−2 > 0

for x0, x1 > 0. This implies that g′(x) is positive definite. We
thus have a vector admissible system. We can then use the
equation [6]

U(x; ε) =

∫ x

0

((
z − f (g(z); ε)

)
Dg′(z)

)
· dz , (20)

to evaluate the potential threshold ε∗, defined as

ε∗ = sup{ε ∈ [0, 1] |min
x

U(x; ε) ≥ 0} . (21)

D is a positive diagonal matrix which we set to the identity
matrix in this case. The line integral for computing U(x; ε) in
(20) is path independent [6]. We can thus choose to compute
the integral along a straight line in the direction defined by
the vector from origin to x. That is, we have z parameterized
by λ as z(λ) and

z(λ) = λx =⇒ z1(λ) = λx1, z2(λ) = λx2 .

Hence we can write the potential function as [12]

U(x; ε) =

∫ 1

0

((
z(λ)−f (g(z(λ)); ε)

)
Dg′(z(λ))

)
·z′(λ)dλ .

(22)
The integral can be evaluated in closed form and is given in
(23) at the bottom of the page. Fig. 3 shows a 3 dimensional
plot of the potential function for dv = 6 with γ = 1%.
To compute ε∗, x1 and x2 are each incremented by a small
number ∆ from 0 to 1 thus forming a two dimension grid. The
value of U is computed for each point in the grid followed by
evaluation of the minimum. This is done for each value of ε.
The potential threshold is then determined using (21).

The coupled system is guaranteed to converge to the zero
point for all ε < ε∗. The minimum rate Ωth, required for a
coupled system can then be computed from ε∗ as

Ω∗
th =

dv
dc

= dv(1− ε∗) .

U(x; ε) = (1− γ)xdv−1
1

(
(1− ε)

1−(1−γxdv−1
2 )

1
1−ε

γxdv−1
2

+ (dv−1)
dv

x1 − 1

)
+ γxdv−1

2

(
(1− ε)

1−(1−(1−γ)xdv−1
2 )

1
1−ε

(1−γ)xdv−1
1

+ (dv−1)
dv

x2 − 1

)
(23)
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TABLE I
Ω∗

th IN % FOR γ = 1% WITH LDPC CODE-BASED GROUP TESTING

dv w = 0 w = 1 w = 2 w = 5 w = 10 Ω∗
th[%]

4 7.27 5.71 5.63 5.63 5.63 5.63
5 6.94 5.15 4.95 4.95 4.95 4.95
6 7.06 5.00 4.65 4.58 4.58 4.58
7 7.22 5.04 4.49 4.40 4.40 4.38
8 7.41 5.13 4.47 4.26 4.26 4.26
9 7.63 5.23 4.48 4.17 4.17 4.17

10 7.87 5.38 4.57 4.13 4.13 4.13
15 9.32 6.20 5.10 4.14 4.08 4.08
20 10.70 7.02 5.71 4.38 4.07 4.07
25 12.08 7.86 6.31 4.68 4.11 4.07

TABLE II
γ∗
th FOR Ω = 5% WITH LDPC CODE-BASED GROUP TESTING

dv w = 0 w = 1 w = 2 w = 5 w = 10 γ∗
th[%]

4 0.60 0.84 0.85 0.85 0.85 0.85
5 0.64 0.96 1.02 1.03 1.02 1.02
6 0.65 1.00 1.11 1.13 1.13 1.13
7 0.64 1.00 1.16 1.19 1.19 1.19
8 0.62 0.98 1.16 1.23 1.23 1.23
9 0.60 0.95 1.15 1.26 1.26 1.26
10 0.58 0.92 1.13 1.27 1.28 1.28
15 0.49 0.78 0.98 1.26 1.29 1.29
20 0.42 0.67 0.86 1.18 1.26 1.29
25 0.37 0.60 0.76 1.08 1.27 1.30

An upper bound on ε∗ corresponds to an upper bound on
dc, which in turn gives a lower bound on Ωth

1. Fig. 4 shows
the results of a plot of Ω∗

th versus γ for various values of
dv. The results show that Ω∗

th improves (gets smaller) with
increasing dv. We see a tendency to converge for higher values
of dv. We have not however, been able to ascertain whether
this corresponds to some fundamental limit.
C. Scenario 2: Finding maximum γ for fixed Ω

If we now examine the case where the rate Ω is fixed and
the proportion γ of defectives is varied we observe that (17)
can be rewritten as

fγ (x0, x1; γ) =
[
(1− γ) · xdv−1

0 , γ · xdv−1
1

]
(24)

gγ (y0, y1) =
[
1− (1− y1)

dc−1, 1− (1− y0)
dc−1

]
,

(25)

where the f (·) and g(·) have been exchanged due to change
in the parameter of interest from dc to γ. It can be observed
that fγ (x0, x1; γ) cannot satisfy the conditions for a scalar
admissible system since one part is increasing with γ while
another part is decreasing with γ.

We could, however, estimate the potential threshold γ∗

from the curve obtained by computing Ωth for a system with
variable rate as shown in Fig. 4. This is done by drawing a
horizontal line from the Ω axis to the curve and taking the γ
value at the point of intersection as the γ∗

th.

1It can be noted that only integer values of dc are admissible for the regular
graphs. If the value of Ω implies a non-integer dc, we take the closest lower
value of dc which corresponds to a slightly higher Ω.
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for a fixed γ = 1% for uncoupled (dashed) and coupled (solid) GT scheme.

V. RESULTS AND DISCUSSION

The results of DE are shown in Table I. Here γ = 1%,
L = 5000 and the coupling memory w is increased from
0 (uncoupled) to w = 10. The results are computed using
the recursions in (7)-(10) for the uncoupled case and (11)-
(14) for the coupled case. The value of dc is increased from
some small value (high rate) until the recursions are not able
to converge to the zero point. It can be seen that without
coupling the performance improves with dv to a peak at dv = 6
and then starts to degrade for larger dv. For all values of dv,
Ωth decreases with increasing w and tends to converge to the
threshold Ω∗

th, as predicted by threshold saturation proof.
In Table II we show the DE results for a fixed rate Ω = 5%

and L = 5000. We use the same DE equations but fix dv and
dc (thus fixing Ω) and increase γ. The results show the same
trend as in the fixed γ case. We have the uncoupled threshold
peaking at dv = 6, but a more consistent improvement with
increasing dv when coupling is applied.

Fig. 5 shows the results of simulations with finite block
length for Scenario 1 (fixed γ) for both the LDPC and GLDPC
code based GT. The block size for the uncoupled and coupled
case are both equal to 105. For the coupled case, we consider
w = 5, L = 200 and the decoding is done on the full
graph (not using a window decoder). It can be seen that even
without coupling the LDPC scheme outperforms the GLDPC
scheme and coupling widens the gap between the two more.
As predicted by the threshold analysis, the performance of
dv = 10 is poorer than dv = 6 without coupling, but this
changes with coupling where dv = 10 becomes better. This
is due to the fact that the performance with the uncoupled
case is constrained by the limits of the BP decoder. When
spatial coupling is introduced, the decoder can now attain a
performance close to the potential threshold, which is the true
limit of the code if decoded by an optimal decoder. In this
example, it can also be observed that for the GLDPC scheme,
the gain with coupling is smaller than for the LDPC scheme,
but the error floor is lowered significantly.
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