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Abstract—It is essential to be able to identify hidden anomalies
in order to fully automate optical networks. This requires specific
features from the application programming interfaces (APIs)
used by the control plane and network monitoring solution.
One of the solutions, Transport API (TAPI), utilizes advanced
techniques in telemetry streaming. The update policy in TAPI
enables key performance indicators (KPIs) to be transmitted only
when changes are detected. In this paper, we explore how the
update policy configuration of TAPI and the use of unsupervised
learning (UL) interact in detecting previously unseen anomalies.
Results reveal various trade-offs that network operators need to
consider, including compute and time overhead, as well as the
overall accuracy of UL.

Index Terms—Machine Learning, Optical networks, Unsuper-
vised learning.

I. INTRODUCTION

Optical network automation aims to minimize (or ideally
eliminate) human involvement in optical network operations.
More recently, with the introduction of disaggregated optical
networks, network automation became even more desirable
due to the shift in the complexity of controlling and harmo-
nizing an increasing number of devices. In general, network
automation is implemented through a loop that periodically,
or upon external events, collects the current network status,
performs data processing, and takes decisions to be applied in
the network.

Network automation requires two critical application pro-
gramming interfaces (APIs) to interact with devices: control
and monitoring. In terms of control, Transport API (TAPI) has
been one of the standards to define messages to be exchanged
between the network controller and optical devices in order
to retrieve the current configuration, or push configuration
changes. Several works in the literature already explored the
possibilities and benefits of TAPI to control optical devices
[1], [2]. However, only recently TAPI established interfaces
to target monitoring. TAPI streaming telemetry builds on top
of gRPC remote procedure call (gRPC) and gRPC network

This work has been funded by the German Federal Ministry of Education
and Research and by Sweden’s innovation agency VINNOVA within the
EUREKA cluster CELTIC-NEXT project AI-NET-PROTECT (#16KIS1279K)
and (2020-03506), respectively.

management interface (gNMI), enabling efficient and flexi-
ble telemetry configurations [3]. One key feature of TAPI
streaming telemetry is the possibility to set the update policy,
which once enabled, avoids the transmission of redundant
monitoring values, transmitting data only when the monitored
value changes. With streaming telemetry, the control plane
can subscribe to updates from network devices in a flexible
manner. In particular, protocols based on gRPC have shown
low latency and low network overhead [4], [5].

Once the data is collected, it needs to be processed by
the control plane. Machine learning (ML) is one of the most
regarded techniques for the processing of telemetry data for
network automation [6]. There are three techniques from ML
that can be used for processing of telemetry data. supervised
learning (SL) allows for precise classification or regression of
values, but require a dataset for training that includes all ex-
pected conditions. The requirement of a dataset makes SL not
suitable for anomaly detection where, ideally, the algorithm
needs to detect never-seen-before anomalies. semi-supervised
learning (SSL) is more suitable for anomaly detection, as it
separates samples among normal and anomalous. However, it
also requires a training dataset containing examples of normal
operating conditions, requiring re-training if/when the normal
operating conditions change. This is also not ideal for the
continuous monitoring of lightpaths, since the introduction or
removal of co-propagating lightpaths may drastically change
the normal operating conditions of the monitored lightpath.
Finally, unsupervised learning (UL) uses a moving window
of samples collected from the network to characterize normal
operating conditions, and differentiate from anomalies at their
start, i.e., when anomalous samples are a minority.

Previous works already studied the use case of telemetry
streaming for soft-failure detection [5], [7]. Literature shows
that UL are the most suitable ones for anomaly detection in
optical networks. However, the area still lacks a comprehensive
study of the trade-offs presented by using UL to process
streaming telemetry data.

In this work, we study how the specific characteristics of
the data collected by TAPI streaming telemetry impact on
the application of UL for anomaly detection on established
lightpaths. We discuss the characteristics of the data collected,
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Fig. 1. System architecture; (a) overview; (b) anomaly detection automation loop.

in particular with respect to the update policy. Moreover, we
assess how the hyperparameters of a well-known UL algorithm
impact the performance of the entire process. The results
reveal that the update policy impacts the processing overhead
of the data. Moreover, there is a trade-off in the overall
anomaly detection accuracy depending on the hyperparameters
and how long the network operator is willing to wait to trigger
mitigation actions.

II. MONITORING LOOP BASED ON TAPI STREAMING
TELEMETRY

The TAPI employs RESTCONF for communication with
control plane components, utilizing the representational state
transfer (REST) protocol with JavaScript object notation
(JSON) payloads for various operations. While this is suitable
for the exchange of configuration messages, it is not as appro-
priate for the continuous exchange of telemetry data [4]. TAPI
v2.5 [3] addresses this limitation by outlining requirements for
efficient telemetry data exchange, focusing on factors such as
data volume, streaming techniques, data sources, and related
entities. In particular, Section 6.1 of [3] further recommends a
solution with the protocol, encoding format, and data structure
necessary for effective streaming of performance data.

The recommendations given by TAPI streaming telemetry
can be summarized into three main points: (i) gNMI/gRPC-
based telemetry streaming with protobuf as the encoding for-
mat, (ii) TLS v1.3 based encryption for data exchange, and (iii)
a unified data model for subscription requests and responses
to ensure consistency across multiple domains. Within the
standard, the subscription request includes: (i) device target,
(ii) sample interval, (iii) xpath to denote the key performance
indicator (KPI) to stream, and (iv) update policy (true/false).
By enabling the update policy, redundant transmission of
performance data is avoided unless there is an actual change,
leading to a significant reduction in telemetry traffic. This is
because numerous duplicate values are not reported. This is
in contrast to REST, where periodic requests and responses
are exchanged. Conversely, in gNMI/gRPC streaming, the
subscription request is sent only once, while performance

data is continuously streamed over the channel reducing the
telemetry traffic.

Fig. 1 presents an overview of the system architecture
considered in this paper. In Fig. 1(a), the centralized software-
defined networking (SDN) controller exchanges information
with optical line system (OLS) domain controller(s), using
the RESTCONF-based TAPI interface for control messages,
and the gRPC/gNMI-based TAPI streaming telemetry for
obtaining telemetry data. The OLS domain controller controls
and monitors the optical infrastructure, and stream telemetry
information to SDN controller with TAPI-compliant gRPC
messages. The controller stores received samples in a time-
series database (DB). Periodically, the UL anomaly detection
automation loop illustrated in Fig. 1(b) is triggered [8]. The
detector queries the cache (if available) and the DB for
recent samples, according to a predefined observation window.
Queried samples are processed and forwarded for the UL
anomaly inference in ML module. If an anomaly is detected,
ML module raises an alert and notifies the mitigation module
for further actions.

In this paper, we investigate how the update policy impacts
the implementation of the data preprocessing performed by
the detector in Fig. 1(b).In particular, we discuss the trade-
offs that arise from this decision, i.e., how this impacts the
retrieval of data from the time-series DB located in the data
plane, and the processing cost of the loop.

III. UNSUPERVISED ANOMALY DETECTION IN OPTICAL
NETWORKS

The anomaly detection pipeline considered in this paper
is part of the network automation procedures that run in the
background for each lightpath. The procedure is presented in
Algorithm 1 and takes 3 inputs: the lightpath r for which it
should be run, the window w denoting how many historical
samples are accounted for detecting anomalies, and list of
measured KPIs K for the lightpath r. In general, the algorithm
assumes the existence of a cache where recent samples are
stored and a DB where all measurements are collected. Each
sample in the cache corresponds to the set of measurements
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Algorithm 1 Anomaly detection pipeline for single lightpath
Require: r - lightpath, w window size, K - list of names of measured KPIs

1: procedure ANOMALYDETECTION(r, w, K)
2: cs← queries cache for entries related to lightpath r
3: if cs is empty then
4: tsw ← timestamp for measurements taken w-th iterations ago
5: for k ∈ K do tsk ← the latest timestamp for KPI k stored in the DB such that it is before or equal to tsw
6: tsq ← select the earliest timestamp from tsk for k ∈ K
7: s← query all measurements in the DB equal or at timestamp tsq related to lightpath r
8: reshape s to dense format and fill missing KPI values with values from preceding ones
9: leave w latest samples in s

10: add s to cache
11: else
12: tsq ← timestamp of the latest sample in the cache
13: ns← query all measurements in the DB after the timestamp tsq related to lightpath r
14: reshape ns to dense format and fill missing KPI values with values from preceding ones (including values from

last cached sample)
15: add ns to cache
16: remove oldest samples from the cache such that there is at most w samples in it
17: s← latest w samples of cs ∪ ns
18: normalize s
19: anom← UL(s)
20: if enough anomalies anom detected, raise alert

related to r taken in a single timestamp, i.e., a dense format.
Measurements to the DB are added only when a value moni-
tored for r changes, i.e., a sparse format.

In line 2, the algorithm queries the cache for samples related
to lightpath r. If cache is empty (lines 3–10), it queries the DB
for measurements to fill up the cache. In line 4, timestamp tsw
is retrieved from the DB for measurements that were taken w
iterations ago. However, as the measurements in the DB are
stored in sparse format, values for some KPIs may be missing
at timestamp tsw. Therefore, in line 5, the algorithm checks
for each KPI k ∈ K what was the latest timestamp tsk with
measurement that was stored before or at the timestamp tsw.
Line 6 selects the earliest timestamp tsq from all collected
timestamps tsk. Selecting such timestamp assures that it is
possible to infer all KPI values at timestamp tsw. In line 7,
the measurements are queried from the DB since timestamp
tsq . Next, they are reshaped to dense format and missing KPI
values for each timestamp are inferred from the values for
the preceding timestamp (line 8). Next, we extract the latest
w samples (line 9) and store them in the cache (line 10).
The stored samples s are processed further in the algorithm
to detect the anomaly (lines 18–20)

If cache contains samples related to lightpath r, it is possible
to use those samples for anomaly detection and reduce the
number of samples that need to be queried from the database
(lines 11–17). In such a case, in line 12, the algorithm checks
what is the latest timestamp tsq stored in the cache. Line 13
queries the DB for the measurements since timestamp tsq .
In line 14, the retrieved measurement values are reshaped to
the dense format, and missing values are restored from the last
cached sample (if needed). Next, the algorithm adds the newly

acquired samples to the cache (line 15), and the oldest ones
are removed (line 16) such that the cache contains at most w
samples related to lightpath r. In line 17, the latest w samples
are selected from the union of the samples queried from the
cache and the ones created from new measurements.

Values in the samples are normalized by, e.g., removing
the mean and scaling to the unit variance according to the
previously collected values (line 18). In line 19, the UL
algorithm is run to assign samples to clusters. Samples that are
not belonging to any of the clusters are detected as anomalies.
In line 20, if enough number of anomalies has been detected
in the window, the algorithm raises an alert.

Enabling the update policy in TAPI allows prevents con-
secutive duplicate values from being transmitted. Such a
behavior allows for storing data telemetry data in the DB
in a sparse data format where some values may be missing
for some timestamps. However, standard anomaly detection
methods assume that all features are present [9]. Therefore,
the missing values resulting from sparse telemetry data need
to be addressed before applying UL algorithms.

Missing values in ML can be handled by deletion or impu-
tation. The deletion can be performed either list-wise or pair-
wise. In list-wise deletion, cases with missing features are re-
moved. In pair-wise deletion, subset of features are considered
during analysis, and cases with missing variables in that subset
are omitted. In imputation, missing values are replaced by
predicted values (e.g., simple imputation with mean/median,
regression imputation, hot-deck, expectation maximization,
ML-based imputation) [10], [11]. In the considered architec-
ture, restoring exact missing feature values based on the values
from preceding timestamps is possible. Such operation is of
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O(fn) complexity, where f is the number of features and n is
the number of samples (timestamps). Restoring original values
in the given architecture can be motivated two-fold. Firstly,
the accuracy of clustering with missing values drops as the
number of missing values increases. Missing value mitigation
techniques aim to maximize relative loss in performance when
compared to a model with full data [9]. Secondly, applying any
data imputation or deletion method is of at least O(fn) order,
which is also the complexity of restoring the correct values.

IV. PERFORMANCE ASSESSMENT

In this section, we first describe the scenario under which
our use case of UL anomaly detection is executed. Then, we
present the results from the experiments.

A. Scenario

The data collection for normal operating conditions was
performed over a testbed infrastructure, similar to the one
reported in [12]. The infrastructure is controlled by a propri-
etary OLS domain controller, which implements TAPI control
and streaming telemetry. The infrastructure is composed of
three reconfigurable optical add-drop multiplexers (ROADMs).
Each ROADM is connected to two optical terminals (OTs).
The OLS domain controller is connected to a version of the
ETSI TeraFlowSDN controller (Release 2) which has been
enhanced with TAPI streaming telemetry capabilities. Upon
receiving new samples, the controller stores them in a time-
series database.

We load the system with two lightpaths. Then, we estab-
lished a third lightpath which is our channel under test (CUT).
The CUT is monitored through the subscription-based TAPI
streaming telemetry. We monitor 5 signal parameters, namely,
signal-to-noise ratio (SNR), chromatic dispersion compensa-
tion (CDC), carrier frequency offset, differential group delay
(DGD), and Q-factor. We run two sets of experiments, with
and without the transmission of repeated values. The anomaly
considered is caused by the introduction of an attenuation
imposed by a variable optical attenuator (VOA).

We run the UL-based anomaly detection pipeline synchro-
nized with the data collection, i.e., we run the pipeline for
every new telemetry collection period. During each execution,
the pipeline needs to retrieve the respective data from the
database, execute the UL algorithm, and report the result, as
described in the previous section. The implementation is based
on the density-based spatial clustering of applications with
noise (DBSCAN) algorithm [13], which receives as input a
set of latest samples for each lightpath, and identifies if an
anomaly is present. DBSCAN works under the assumption
that, at the beginning of an anomaly, anomalous samples
will be present in lower quantity among the samples, and
their anomalous properties will make it possible to distinguish
normal from anomalous samples. In this work, we assume
that 10 anomalous samples are present in the dataset, while the
remainder of the samples are composed by samples under nor-
mal operating conditions. There are three hyperparameters in
DBSCAN. The parameter ϵ defines the distance between two
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(UD).

samples for them to be considered neighbors. The parameter
M defines the minimum number of neighbors that a sample
needs to have to be considered a normal sample. Finally, w
represents the window size, i.e., the number of samples to be
analyzed by DBSCAN.

Two dimensions of the scenario were evaluated. The first
dimension analyzes the impact of adopting a cache. In this
case, we assess the performance with and without a cache that
maintains a sample window. Intuitively, we expect the cache to
substantially reduce the time taken to retrieve the samples. The
second dimension is related to whether or not repeated values
are saved to the database. In this case, the TAPI streaming
telemetry agent in TeraFlowSDN may or may not save the
sample value, depending on the update policy adopted in the
TAPI streaming telemetry configuration.

We assess the performance of the pipeline, and its trade-offs,
with the following KPIs:

1) Data retrieval time [ms]: the time taken to retrieve the
information from the database.

2) CPU time per hour: the number of required CPUs per
hour to retrieve the information from the database.

3) True positive rate (TPR): the number of correctly clas-
sified anomalous samples divided by the total number
of anomalous samples.

4) True negative rate (TNR): the number of samples cor-
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rectly flagged as normal divided by the total number of
normal samples.

5) f1-score: the harmonic mean of the model response to
false positives and false negatives.

B. Results

Fig. 2 shows the time taken by the controller to retrieve
a given number of samples necessary to execute the UL
algorithm. The average time taken to retrieve the data from the
database is 75 ms. However, the difference in time from the
cases with the update policy enabled and disabled are minor,
in the range of 3%. More importantly, the time to retrieve
the samples doubles when we move from 50 to 300 samples.
Although the time increases relatively slow with respect to
the number of samples, i.e., 2× the time vs. 6× the number
of samples, this increase is significant once the number of
lightpaths to be monitored increases, or when the frequency
at which we analyze the lightpaths increases.

Meanwhile, the time taken to retrieve data from the cache is
very low, i.e., below 3.7 ms on average. Interestingly, the time
does not vary substantially with the number of samples. How-
ever, the differences between having update policy enabled and
disable are quite relevant. When the update policy is disabled,
i.e., it receives every update regardless of the value, the time
to retrieve samples decreases by nearly 50% in comparison to
the update policy enabled.

Fig. 3 shows CPU time per hour as a function of number
of lightpaths and probing frequency. We consider up to 2,500
updates per second, which represents approximately the case

where a 50-nodes optical topology has one lightpath per node-
pair, receiving updates once per second. In particular, for more
loaded system, the number of required CPUs increases from
5 to 10 when cache is considered and the update policy is
enabled.

Fig. 4 shows the impact that the window size (w) has on
the overall performance of the UL anomaly detection. Fig. 4(a)
shows the f1 score, which represents a harmonic mean of the
model response to false positives and false negatives. We can
see that the higher the M , the higher the f1 score. Moreover,
the f1 score saturates with a window size of 60. However, we
need to further analyze the interplay between TPR and TNR
to understand the impact of deciding M .

Fig. 4(b) shows the TPR, which represents the ability of the
UL model to correctly detect positive samples (anomalies).
The counterpart to true positives are the false negatives,
which are detrimental to the operation of optical networks
because they may leave issues unaddressed, potentially leading
to the disruption of lightpaths. In this case, the higher the
M in DBSCAN, the more neighbors a sample needs to be
considered normal. This results in a lower number of false
negatives. However, when the window size increases, the
higher number of normal samples make it more likely to
have anomalous samples categorized as normal, leading to a
decrease in the overall metric. Therefore, if false negatives
are the most detrimental type of error in the particular optical
network setting, a high M combined with a low window size
might yield the best trade-off.

Fig. 4(c) shows the TNR, which represents the ability
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Fig. 4. Performance of DBSCAN with ϵ = 1.7, number of anomalies=20, for different minimum number of neighbours (M ) and various window sizes (w)
in terms of (a) f1-score, (b) true positive rate (TPR), and (c) true negative rate (TNR).
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of the UL model to correctly detect normal samples (non-
anomalies). Their counterpart, false positives, are detrimental
to the operation of optical networks because they may incur
additional overhead in the form of unnecessary reconfigura-
tions to address incorrectly detected anomalies. In our case,
the lower the M , the less neighbors a sample needs to be
considered normal. The results show that the best window size
is between 100 and 200 samples. Therefore, if false positives
are the most detrimental type of error in the optical network
setting at hand, a window size in the range of 100-200 is more
suitable, combined with a low value of M .

Another important aspect is the time taken to detect an
anomaly, which directly impacts the network reaction time.The
proposed algorithm alerts the mitigator module when a large
enough number of anomalies is detected [14]. Fig. 5 presents
the impact that the number of anomalies has on the overall
performance of the UL anomaly detection. Fig. 5(a) depicts the
f1 score for various settings of M . Intuitively, the performance
increases with the number of anomalies, up to the point where
it is higher than the value of M . In such a case, there are
enough neighbour samples to consider anomalies as normal
and categorize them as a normal cluster in UL. Fig. 5(b) shows
the model response to detect anomalies, i.e., TPR. Similarly
to f1, there is increasing trend up to the point where number
of anomalies exceeds the required number of neighbours M
to consider samples as normal ones. Fig. 5(c) shows the
model response to detect normal samples, i.e., TNR. With the
increase of anomalies the performance decreases, which can
be justified that as increasing number of anomalies increase
the chance that some of them are miss-classified. Therefore, if
higher confidence for anomaly detection is required in current
optical network settings, setting higher reacting threshold for
number of detected anomalies increases f1 score. At the same
time, this increases the time that the anomalies affects the
system performance.

It is important to mention that the results shown in this paper
are representative of the general trends when adopting UL
for anomaly detection. However, the specific hyperparameter
values and their respective performance will vary depending
on the use case. Therefore, a hyperparameter tuning campaign
will be needed for each specific network scenario.

V. CONCLUSIONS

This paper investigated the trade-offs that network opera-
tors need to consider when implementing UL-based anomaly
detection over TAPI telemetry streaming. We detail the imple-
mentation of an algorithm for anomaly detection, considering
the case where a cache exists to store samples of the moni-
tored lightpaths. Intuitively, adopting a cache can substantially
decrease the data retrieval time for each monitored lightpath.
More importantly, the analysis reveals that there is a beneficial
range in the number of samples to be analyzed by the UL.
Presenting more samples may have a detrimental impact in
terms of false positives and false negatives presented by the
UL algorithm. Moreover, despite the trade off between TPR
and TNR of UL models, it may be possible to increase overall

f1 score and accuracy by using more advanced methods, such
as, clustering ensemble.
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