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ABSTRACT
Depthwise and pointwise convolutions have fewer parameters and
perform fewer operations than standard convolutions. As a result,
they have become increasingly used in various compact DNNs,
including convolutional neural networks (CNNs) and vision trans-
formers (ViTs). However, they have a lower compute-to-memory-
access ratio than standard convolutions, making their memory
accesses often the performance bottleneck.
This paper explores fusing depthwise and pointwise convolutions
to overcome the memory access bottleneck. The focus is on fusing
these operators on GPUs. The prior art on GPU-based fusion suffers
from one or more of the following: (1) fusing either a convolution
with an element-wise or multiple non-convolutional operators, (2)
not explicitly optimizing for memory accesses, (3) not supporting
depthwise convolutions. This paper proposes Fused Convolutional
Modules (FCMs), a set of novel fused depthwise and pointwise GPU
kernels. FCMs significantly reduce pointwise and depthwise con-
volutions memory accesses, improving execution time and energy
efficiency. To evaluate the trade-offs associated with fusion and
determine which convolutions are beneficial to fuse and the optimal
FCM parameters, we propose FusePlanner. FusePlanner consists of
cost models to estimate the memory accesses of depthwise, point-
wise, and FCM kernels given GPU characteristics. Our experiments
on three GPUs using representative CNNs and ViTs demonstrate
that FCMs save up to 83% of the memory accesses and achieve
speedups of up to 3.7x compared to cuDNN. Complete model imple-
mentations of various CNNs using our modules outperform TVMs’
achieving speedups of up to 1.8x and saving up to two-thirds of the
energy. FCM and FusePlanner implementations are open source:
https://github.com/fqararyah/Fusing_DW_and_PW_on_GPUs
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Figure 1: Operation count and memory accesses of a
standard, DSC (DW+PW), and fused convolutions. The

example is taken from MobileNet. All values are normalized
to the standard convolution values
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1 INTRODUCTION
Convolutions are core operators in many Deep Learning (DL) mod-
els, including Convolutional Neural Networks (CNNs) [14, 15, 20],
Vision Transformers (ViTs) [10, 13, 43, 45, 48, 49], and Graph Convo-
lutional Networks (GCNs) [33, 51]. Splitting a standard convolution
into depthwise (DW) and pointwise (PW) convolutions reduces the
model size and operation count [9, 15]. To give an example, XCep-
tion CNN, which uses DW and PW convolutions, has an accuracy
that surpasses ResNet-152’s [14] despite being roughly three times
smaller [9]. Hence, DW and PW convolutions are increasingly re-
placing standard convolutions in designing compact models that
achieve state-of-the-art accuracy [9, 15, 36, 37, 43, 49].

Figure 1 demonstrates the effect of splitting a standard convolu-
tion into depthwise separable convolution (DSC) [15], i.e. DW plus
PW, on the operation count, weights, and input and output sizes.
The DW and PW convolutions require fewer weights and perform
fewer operations than standard convolutions. In this example, the
DSC operations are 12% of the standard convolution operations.
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Similarly, the weights in DSC are reduced to 1.8% compared to
16% in standard convolution. However, their combined inputs and
outputs are larger. The net result is having fewer operations but
more memory access. In other words, DW and PW are more of-
ten memory-bound compared to standard convolutions [26]. As a
result, their memory accesses form a performance bottleneck on
most of the commonly used accelerators.

Operator fusion, or layer fusion, reduces off-chip memory ac-
cesses considerably compared to traditional layer-by-layer exe-
cution. In layer-by-layer execution, the convolution processes its
inputs completely and writes the results to the main memory. How-
ever, fusing layers allows the intermediate results to be processed
at finer granularity while on-chip [2, 6, 16, 50]. In the example
in Figure 1, fusion saves 50% of the off-chip memory accesses
of the DW and PW convolutions. Fusing a convolution with an
element-wise operation like normalization and non-linearity is
a common optimization applied by DL compilers like TVM [7]
and DNNVM [46]. However, due to complex input-output depen-
dencies among convolutions, fusing multiple convolutions could
incur numerous redundant computations or memory accesses [2].
Nonetheless, the prior art has demonstrated that when handling
the trade-offs properly, fusing convolutions is beneficial on custom
accelerators [2, 4, 6, 12, 16, 25, 28, 31, 34, 38, 42, 44, 46, 47, 50, 54].

As GPUs have been key accelerators in the resurgence of DL [20]
and are the most widely-supported accelerators by various DL
frameworks [1, 3, 18, 29], they are an ideal target of various op-
timizations including layer fusion. However, when it comes to
fusing multiple convolutions, GPU programming abstractions and
memory level access constraints make managing cross-convolution
dependencies challenging [2].

The prior art on layer fusion suffers from one or more of the
following limitations. First, on GPUs, they either consider fusing a
convolution and an element-wise or multiple non-convolutional op-
erators [7, 11, 17, 24], do not explicitly model and optimize memory
accesses, or do not support depthwise convolutions [41, 53]. Second,
the work targeting other accelerators is either tightly coupled to a
specific architecture or assumes complete hardware flexibility like
that offered by FPGAs [2, 25, 38, 42, 44].

In this paper, we propose Fused Convolutional Modules (FCMs),
a set of novel fused GPU kernels of DW and PW convolutions.
FCMs reduce global memory access considerably leading to im-
proved latency and energy efficiency. To evaluate fusion trade-offs
and decide when fusion gains outweigh its overheads, we propose
FusePlanner. Given a set of DW and PW convolutions and GPU
characteristics, FusePlanner’s cost models estimate the memory
accesses of depthwise, pointwise, and FCM kernels. FusePlanner
explores the feasible FCMs and layer-by-layer implementations and
suggests one that minimizes memory access. FCMs can be used as
library routines, and with FusePlanner they can be used to derive
complete CNN execution plans. Using FusePlanner-suggested FCM
and layer-by-layer implementations, we implement and evaluate
convolutional layers of state-of-the-art CNNs and ViTs on three
GPUs. We compare our implementation with CuDNN [8] based
implementations. Moreover, we compare the performance of full im-
plementations of the CNNs, based on FusePlanner-suggested FCM
and layer-by-layer kernels, to a DL compiler (TVM) [7] optimized
implementations. Our contributions are as follows:

• We propose Fused Convolutional Modules (FCMs), a set of
novel GPU kernels comprising DW and PW convolutions.
FCMs mitigate these convolutions’ memory access bottle-
neck leading to low-latency and energy-efficient execution.

• We propose FusePlanner, FusePlanner consists of cost mod-
els that estimate global memory accesses of DW, PW, and
FCM kernels given a GPU architecture. FusePlanner decides
which layers benefit from fusion and the implementation
parameters that minimize global memory accesses.

• We evaluate FCMs by comparing their performance to cus-
tom, and standard DL library-based (cuDNN) convolution
kernels from representative CNNs and ViTs on multiple
GPUs. We also compare end-to-end implementations of the
CNNs utilizing FCMs and FusePlanner-suggested layer-by-
layer implementations to TVM-optimized models.

The proposed FCMs achieve up to 1.8𝑥 speedup over custom
layer-by-layer implementations and up to 3.7𝑥 over the best cuDNN
implementations using representative CNNs and ViTs. FCMs save
up to 83% of the global memory accesses compared to CuDNN. End-
to-end implementations of four CNNs using the proposed kernels
achieve up to 1.8𝑥 speedup compared to TVM implementations and
save up to two-thirds of the energy per inference.

2 BACKGROUND AND MOTIVATION
2.1 CNNs and ViTs
Convolutional neural networks (CNNs) are feed-forward DNNs [22].
As the name suggests, the main layers in a CNN are the convolu-
tional layers. A convolutional layer has a set of trainable parameters
or weights grouped into filters. The filters are applied to multi-
dimensional arrays of input or intermediate results, extracting their
embedded features [23]. The inputs of a layer are known as input
feature maps (IFMs) and the outputs as output feature maps (OFMs).
Feature Maps (FMs), or activations, refer to both IFMs and OFMs.
FMs comprise a set of 2D slices known as channels.

Transformer models are based on a self-attention mechanism
that learns the relationships between elements of a sequence [39].
In vision transformers (ViTs), self-attention allows modeling con-
textual information of the full image and long-range dependencies
both in space and time [19]. This paper focuses on convolutional
ViTs that combine self-attention with convolutions [36, 43, 49].

2.2 Depthwise and pointwise convolutions
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Figure 2: Depthwise and pointwise convolutions

Depthwise (DW) and Pointwise (PW) convolutions optimize
DNNs’ size-accuracy trade-off [5, 9, 15, 32, 36, 37, 43, 52]. They
decouple the spatial and cross-channel correlations [9]. As Figure 2
shows, DW convolution is applied to the spatial dimensions,i.e.
width, and height, where one filter is applied to a single channel.
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Figure 3: Tiled Layer-by-Layer and fused convolutions

PW convolution is applied to the cross-channel dimension, where
its 1 × 1 filters span over all channels. DW and PW convolutions
are combined in various ways to build efficient modules or blocks,
including Depthwise Separable Convolutions (DSC) and inverted
residual with linear bottlenecks, or inverted residuals for short, [9,
15, 32, 37]. The DSC is composed of a DW followed by a PW layer.
The inverted residuals comprise three convolutional layers: PW-
DW-PW.

2.3 CUDA-Capable GPU architecture and
programming model overview

A GPU architecture consists of a scalable array of streaming mul-
tiprocessors (SMs) [27]. An SM is a Single-Instruction-Multiple-
Thread (SIMT) architecture that runs groups of parallel threads
called warps in a lockstep fashion. A CUDA kernel is processed by
a grid of threads. The grid consists of a set of thread blocks, threads
in a block run on the same SM. GPU has a memory hierarchy of
multiple levels with different access constraints. Each thread has
private local registers. Each SM has a low-latency L1 cache, and
a variable-sized portion of that cache is configurable to serve as
programmer-managed shared memory. The shared memory is visi-
ble to all threads in a block and has the same lifetime of the block.
The rest of the memory levels are globally accessible by threads of
the entire CUDA kernel.

2.4 Fusing Convolutions on GPUs
There are multiple algorithms to implement convolution on GPU.
We focus on the direct convolution implementation and use it as the
basis for the layer-by-layer and the fused kernels. This is because
other algorithms, including Winograde and FFT, require filters of
greater than 1 × 1 width and height, so they are not applicable
for PW convolution [21]. Moreover, Winograde, FFT, and GEMM
optimize the computation at the cost of more memory bandwidth
requirements, which does not suit PW and DW convolutions.

Figure 3a shows a simplified example of tiled DW and PW con-
volutions. For simplicity, each weight tile has only one filter and
computes a 2d tile of 3 × 3 of the OFMs. The DW convolution has
2×2 filters and 4×4 tile of the IFMs. On a GPU, assuming an Output
Stationary (OS) dataflow, each OFM tile gets assigned to a thread
block that runs on one of the GPU’s Streaming Multiprocessors
(SMs). In the layer-by-layer execution, each layer is implemented as
one or more CUDA kernels that process the IFMs and produce the
complete OFMs. Because the SMs’ L1/shared memory contents do
not outlive a single kernel, all the OFMs must be written back and
cannot be reused by the next layer. Note that because L1/shared
memory is private to an SM, the overlap regions among the IFM
tiles, in the case of DW, must be loaded multiple times depending
on the number of tiles sharing them.

Figure 3b shows two fusion examples. The first example (DWPW)
depicts a DW fusedwith its following PW, and the second (PWDW_R)
shows a PW fused with a following DW. The _R indicates that this
fusion entails redundant computations, as explained at the end of
the section. The fused layers are implemented as a single kernel. On
the one hand, unlike the layer-by-layer, the OFMs of the first layer,
which are intermediate results when fusing, can be directly reused
while in the L1/shared memory. This reduces the global memory
access. On the other hand, the fused implementation has its own
constraints and overheads. First, fusing convolutions enlarges the
working set compared to the layer-by-layer implementation. In the
layer-by-layer case, the working set consists of three tiles: OFMs,
IFMs, and filter tiles. In the fused case, there are five tiles: IFMs
of the first layer tile, OFMs of the second layer tile, two tiles of
both layers’ filters, and a tile of the intermediate results exchanged
between the two layers. Note that we show one filter in the figures
for simplicity, in practice a filter tile may contain hundreds or thou-
sands of filters. As more tiles compete for the L1/shared memory,
each has a smaller share. Smaller tiles lead to more overlapping,
less reuse, and more frequent access to the global memory. Second,
certain fusion cases restrict the viable tile sizes. For example, the
PW layer in the DWPW fusion case in Figure 3b requires at least
one element of each channel of the intermediate results to produce
one valid output. Consequently, the intermediate results and the
input tiles must contain all the channels. In other words, a DW
tiling similar to the one shown in Figure 3a is not feasible. Third,
the values located at the overlap regions of intermediate results
tiles must be redundantly computed. PWDW_R in Figure 3b shows
an example of this. Unlike the overlaps in the IFMs, the values at
the overlap in the intermediate results do not exist before the fused
kernel starts. They must be computed independently by the SMs
computing the overlapping tiles.

Searching for fused implementations of PW and DW convolu-
tions that minimize memory accesses, and consequently mitigate or
overcome their bottlenecks requires evaluating the gains and over-
heads of the feasible fusions compared to layer-by-layer execution.
We propose Fused implementations of PW and DW convolutions
and cost models that evaluate the discussed overheads and suggest
implementations that minimize the global memory accesses.

3 FUSED CONVOLUTIONAL MODULES (FCMS)
3.1 FCMs overview
DW and PW convolutions are commonly found in DNNs, e.g. CNNs
and ViTs, in the form of depthwise separable convolutions (DSC), or
inverted residuals (Section 2). Figure 4 shows a sequence of two DSC
blocks and a sequence of two inverted residuals. It depicts the three
possible PW and DW combinations. Fused Convolutional Modules
(FCMs) target such combinations, which are DWPW, PWDW,
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Figure 4: Possible FCMs in DNNs composed of Depthwise
Separable Convolutions and Inverted Residuals blocks

and PWPW. The PWDW FCM has two variants, one that requires
redundant computations (PWDW_R shown in Figure 3b), and one
that does not (PWDW). The PWDW does not require redundant
computations if there is no tiling across the width and height of an
IFM. An FCM combines up to 6 layers, two convolutional layers,
and the normalization and activation layers following each. As
Figure 4 shows, FCMs fuse layers of a single separable convolution
or inverted residual blocks, or layers belonging to two consecutive
blocks. All the FCM kernels adopt the efficient Output Stationary -
Local Weight Stationary (OS-LWS) dataflow [40].

3.2 FCM kernel structure

Listing 1: FCM kernels skeleton
,

1 __global__ void FCM_Skeleton(/* Parameters */) {
2 /* ******************** part 1******************** */
3 __shared__ fms_dt commBuffer[BUFFER_SIZE];
4 //Other declarations
5 /* ******************** part 2******************** */
6 // Prefetch fused layers weight tiles
7 if (/* Thread ID in loader thread IDs*/) {
8 // Prefetch weights to shared memory or
9 // registers
10 }
11 // Synchronize
12 /* ******************** part 3******************** */
13 // First layer core
14 if (/* Thread ID in Conv1 thread IDs*/) {
15 // Compute Conv -Norm -Activation
16 //Pack and write to commBuffer
17 }
18 // Synchronize
19 /* ******************** part 4******************** */
20 // Second layer core
21 if (/* Thread ID in Conv2 thread IDs*/) {
22 //Load second layer IFM tile from commBuffer
23 // Compute Conv -Norm -Activation
24 //Pack and write back to the OFMs
25 }
26 }

Listing 1 highlights the main parts of the skeleton of an FCM
kernel. The skeleton is divided into four main parts. Part1 (lines 2-4)
contains the declaration of the buffer used to communicate between
the first set of layers (convolution-normalization-activation) and
the second (commBuffer). The buffer is stored in an SM’s shared
memory. Sharedmemory banks are organized such that consecutive
words map to consecutive banks. The access patterns to these banks

are crucial to the kernel performance. To fully utilize these banks’
throughput, the data layout is selected based on the FCM layers
implementation to always have a linear addressing with a stride of
one, a conflict-free access pattern.

Part2 (lines 6-11) contains the prefetching of layer weights. The
weights are fetched ahead of computation in two scenarios. The
first scenario is when the implementation of either FCM’s two
convolutions does not access the weights contiguously by default
due to a mismatch between the convolution dataflow and loop
ordering, and the data layout of the weights buffer [24]. In such
cases, separating the weights load from the computation allows to
load weights contiguously. The second scenario is when warp-level
primitives are used. We use a warp-level primitive (__shfl_sync)
to exchange the weights between threads through registers rather
than shared memory.

In parts 3 and 4 (lines 13-24), if the weights have been fetched in
part 2, they are now loaded from the shared memory or shuffled
from other threads registers; otherwise, they are loaded from global
memory. Then, a fused convolution-normalization-activation op-
eration is applied. The implementations currently support both
INT8 and FP32 data types. In the case of INT8, __dp4a CUDA intrin-
sic four-way dot product with 32-bit accumulate is used. The first
convolution-normalization- activation of the FCM computes a tile
of the intermediate results and writes it to the shared commBuffer.
Then, the fused convolution-normalization-activation part reads
the intermediate results from the commBuffer, computes, and writes
back the FCM output to the OFMs buffer. Synchronization is neces-
sary between these two parts as different threads may participate
in each part. When using INT8, every four results are grouped, or
packed, into one 32-bit integer before writing to any buffer. The
weights are also packed, weight packing is done offline since the
weights do not change in inference.

4 FUSEPLANNER
FusePlanner aims to identify the FCMs and layer-by-layer imple-
mentations that minimize global memory access, given a set of
DW and PW layers and GPU specifications. Figure 5 shows an
overview of FusePlanner. It takes as inputs: (1) GPU number of SMs,
L1 size, and the portion configurable as shared memory; and (2) a
DAG representing a model or set of layers, their weight and FM
specifications, and the layers connectivity. We currently support
generating model DAGs from Tensorflow. FusePlanner has two
main components, layer-by-layer global memory access estimator
and FCMs global memory access estimator. FusePlanner does a first
pass over the layers and estimates their minimum global memory
access using the layer-by-layer global memory access estimator.
After that, it examines all the possible fusions and evaluates their
global memory access using the FCMs global memory access estima-
tor. Based on the layer-by-layer and FCM estimates, FusePlanner
outputs: (1) which layers are to be fused and which are not, (2)
which FCMs to use, and (3) the tiling that minimizes the global
memory access in each case. FusePlanner is used offline (before
inference) and is applied only once per model-GPU pair. In the
model implementation, the layers that the FusePlanner suggests to
fuse are replaced by calls to the corresponding FCM kernels.
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Figure 5: FusePlanner overview

4.1 Layer-by-layer global memory access
estimator

We propose fast and simple cost models to explore the search space
for implementation parameters that minimize global memory ac-
cess efficiently. To construct a simple cost model, we make two
assumptions that prune the search space by excluding implemen-
tations that do not perform well on GPUs. The first assumption
is that the data layout guarantees that threads in a warp access
consecutive memory locations and that the memory transactions
are naturally aligned [27]. The second assumption is that the imple-
mentation follows an Output Stationary-Local Weight Stationary
(OS-LWS) dataflow [40] and guarantees that the partial sums stay
in registers and that only the final results are written to the memory.
To ensure that, all the weights and IFM elements needed to produce
one OFM element must be in the same tile (Section 2.4). To prove
the effectiveness of this approach experimentally, we show that our
layer-by-layer implementations outperform CuDNN (Section 6.2).

The global memory accesses of kernels that meet the two dis-
cussed assumptions are estimated using Equations 2 and 3. Where
the overlap (described in Section 2.4) is obtained using Equation 1,
the postfix GMA stands for global memory access, Sz stands for size,
W for width, H for height, D for depth, and HW for ℎ𝑒𝑖𝑔ℎ𝑡 ×𝑤𝑖𝑑𝑡ℎ.
As the equations show, the OFMs are written once, because the
dataflow (OS-LWS) is a variant of OS. In the PW case, each weight
tile is convolved with all IFM tiles, and each IFM tile is convolved
with all filters. Hence, weights and IFMs memory accesses depend
on each other’s tiling. In the DW case, as at least one filter slice
must be assigned to each SM (to guarantee assumption 2), there
are no weight tiles splitting filters’ height and width. As a result,
the IFM elements, except the overlapping, are read only once. Fuse-
Planner explores the tile sizes that meet two constraints. The first
constraint is that the tiles fit into the L1 cache to avoid misses and
redundant loading. Note that the subset of these tiles stored on
the shared memory portion of the cache must also fit within that
portion. However, the implementation must guarantee that; this is
why it is not expressed in the equations. The second constraint is
that the number of OFM tiles is greater than or equal to the number
of GPU SMs. Having more OFM tiles than the number of GPU SMs
ensures that the GPU resources are not underutilized.

Overlap = ( ⌈ ChannelW
TileW

⌉ − 1) × (FilterW − Strides) × ChannelH +

(⌈ ChannelH
TileH

⌉ − 1) × (FilterH − Strides) × ChannelW
(1)

PwGMA = ⌈ WeightsSz
WeightsTileSz

⌉ × IFMsSz + OFMsSz + ⌈ OFMsSz
OFMsTileSz

⌉

× WeightsSz

where L1Sz ≥ IFMsTileSz + OFMsTileSz + WeightsTileSz

and #OFMsTiles ≥ #SMs

(2)

DwGMA = 2 × IFMsD × Overlap + IFMsSz + OFMsSz +

⌈ OFMsHW
OFMsTileHW

⌉ × WeightsSz

where L1Sz ≥ IFMsTileSz + OFMsTileSz + WeightsTileSz

and #OFMsTiles ≥ #SMs

(3)

4.2 FCMs global memory access estimator
Estimating an FCM global memory access is based on Equations 2
and 3, with two key differences. First, neither the OFMs of the
first convolutional layer of an FCM nor the IFMs of its second con-
tribute to the global memory accesses. This is because they are
now intermediate results communicated through the communica-
tion buffer. Secondly, the accesses of each of the two convolutional
layers are affected by the other. Equation 4 shows an example of
FCM’s global memory access estimation, a PWDW FCM in this case.
The equation again assumes that the fused kernel meets the two
assumptions described in the previous section. The equation shows
the mentioned two key differences. First, neither the OFMs of the
PW nor the IFMs of the DW layer contribute to the global memory
accesses. Secondly, the accesses to the first layer’s IFMs depend on
both layers’ weights tiles because the OFMs of the first layer are not
written to the global memory. Hence, when the second layer needs
them, they must be recomputed, which requires redundant loading
of the corresponding IFM elements. Finally, the overlap accesses
depend on both layers’ IFMs. As the equation shows, the overall
overlap is obtained by multiplying the PW IFMs depth, rather than
the DW IFMs depth, by DW IFM overlap. This is due to the same
reason, i.e. OFMs of the FCM’s first layer are not written to the
global memory, and the overlap in the second layer’s IFM elements
are obtained by loading the first layer’s IFMs and recomputing. The
equations of the other FCMs are constructed from the PW and DW
Equations 2, and 3 similarly.

PwDwGMA = (2 × PwIFMsD × DwOverlap + PwIFMsSz) × max (

⌈ PwWeightsSz
PwWeightsTileSz

⌉ , ⌈ DwWeightsSz
DwWeightsTileSz

⌉ ) +

⌈ DwOFMsSz
DwOFMsTileSz

⌉ × PwWeightsSz +

⌈ DwOFMsHW
DwOFMsTileHW

⌉ × DwWeightsSz

where L1Sz ≥ PwIFMsTileSz + DwOFMsTileSz + PwWeightsTileSz+
DwWeightsTileSz + CommBufferSz

𝑎𝑛𝑑 #FCM_OFMsTiles ≥ #SMs

(4)

The first constraint in Equation 4 is more restrictive in FCMs
than layer-by-layer, as five tiles rather than three compete for the
L1. And as the equation shows, simply having smaller tiles is not
always a solution as it may increase the overall memory accesses.
The effect of having two weight tiles per SM, compared to one
tile in the layer-by-layer case, is not crucial when fusing DW and
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Table 1: Used GPUs specifications
GPU Compute #SM CUDA L1/shared L2 Off-chip

Capability cores (KB) (MB) Memory
GTX-1660 7.5 22 1408 96 1.5 GDDR5
RTX-A4000 8.6 128 6144 128 4 GDDR6
Jetson AGX Orin 8.7 16 2048 192 4 LPDDR5

PW since DW weights are much smaller than PWs’ in most cases.
However, the effect becomes considerable when two PW layers are
fused. That is why PWPW fusion is less likely when the weights
use FP32 compared to INT8 (Table 2).

FusePlanner explores all tile sizes that meet the constraints in
Equations 2, 3, and 4 and identifies the ones that minimize the
global memory accesses for the layer-by-layer and all the possible
FCM cases. The explored tile sizes are restricted to multiples of the
warp size to avoid resource underutilization. FusePlanner suggests
fusing, when there is an FCM for which the minimum estimated
global memory accesses are less than those of its constituting layers.
Otherwise, a layer-by-layer implementation is suggested.

5 EXPERIMENTAL SETUP
5.1 Evaluation system
We use three GPUs, listed in Table 1, with different resources rep-
resenting different points in the compute continuum. We refer to
them as GTX, RTX, and Orin in the rest of the paper. Although the
evaluated GPUs belong to Ampere and Turing architectures, the
proposed modeling applies to other GPU architectures. CUDA-11.6
is used. CUDA events API is used to measure the execution time,
and nvidia-smi utility to measure the power consumption on GTX
and RTX and tegrastats on Orin. NVIDIA Nsight Compute is used to
quantify accesses to all memory levels and their throughput and to
categorize kernels into compute and memory-bound.

5.2 Workloads
We evaluate the proposed modules using PW and DW convolutions
from four representative CNN models and two ViTs. These are
MobileNet (Mob_v1) [15], MobileNetV2 (Mob_v2) [32], XCeption
(XCe) [9], ProxylessNAS (Prox) [5], CeiT [49], and CMT [13].
The evaluation is done with FP32 and INT8, the original and the
commonly used precision in inference, respectively. We do a fine-
grained evaluation using pairs of layers, or fusion cases, from these
DNNs that FusePlanner suggested. Table 2 lists these fusion cases
that we use in our experiments, from which DNNs they are selected,
and the ratios of redundant computations if there are any. These
cases represent the scenarios where FusePlanner suggests the same
fusion type across the three GPUs. A fusion case may occur in a
DNN once or multiple times. This is because DNNs usually contain
replicated blocks composed of layers of the same hyper-parameters.
For example, F1_8 in the INT8 case represents the second and third
layers of Mob_v1, but F2_8 represents five pairs of layers (pairs
located between layers 14-24). The fused layers, consequently the
FCMs, in the case of INT8 are not necessarily the same in the case
of FP32. For example, F1_8 is different from F1 in FP32. Changing
the bit-width changes the tile sizes causing FusePlanner to make
different choices.

5.3 Baselines
To demonstrate the effect of fusion on global memory access re-
duction and performance improvement of PW and DW convolu-
tions, we implement and compare the FCMs and layer-by-layer
kernels (LBL). To isolate the fusion effect, the LBL kernels have
similar dataflow and access patterns to their fused counterpart.
We compare the FCMs and LBL kernels to cuDNN [8]. cuDNN
gives the flexibility of choosing the convolution algorithms, we
compare against three cuDNN algorithms that yielded the best per-
formance on our workloads, namely GEMM, IMPLICIT_GEMM,
and IMPLICIT_PRECOMP_GEMM. We also do end-to-end evalua-
tions where the four CNNs, Mob_v1, Mob_v2, XCe, and Prox, are
fully implemented using our FCMs and LBL kernels and compared
with TVM [7]. TVM is an open-source and widely used end-to-
end deep learning compiler. We use cuDNN as the backend of our
TVM implementation to maintain consistency. TVM is configured
with the first generation of NNVM. The models are converted into
relay IR. TVM applies layer fusion between convolution and non-
convolution layers as a core optimization. Not all TVM models ran
successfully on all the GPUs after applying TVM’s offline graph
optimizations. Hence we ran auto-tuning for 20 iterations with the
hardware in the loopwhichwas sufficient for all models. TVMoffers
several tuning heuristic options, in our experiments, we compare
our results with the best TVM heuristic in each experiment. Note
that cuDNN and TVM implementations that we compare against
fuse a single convolutional layer with the normalization and acti-
vation layers following it. However, we refer to their execution as
layer-by-layer (LBL) since they do not fuse multiple convolutional
layers.

6 EVALUATION
6.1 Fusion effect: comparing FCMs to LBL
This section analyzes the effect of fusion using various workloads,
two precisions, and three GPUs. Figures 6 and 7 show the speedup
achieved as a result of the fusion in the 24 cases (Table 2) on the
three GPUs using FP32 and INT8 precision. FCMs outperform LBL
in 67 out of the 72 experiments. The maximum achieved speedup
using FP32 is 1.6𝑥 in the case of F8 on Orin and 1.8𝑥 using INT8
in the case of F1_8 on RTX. The average speedups are 1.3𝑥 and
1.4𝑥 using FP32 and INT8 respectively. Orin and RTX have the best
average speedups using FP32 and INT8, respectively. GTX has the
lowest speedups in both cases. In the rest of this section, we discuss
three factors that determine the speedup achieved by FCMs. We
then explore the fusion effect on different GPUs and finally with
different precisions.
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Figure 6: Speedup of FCMs over LBL using FP32
Factors that determine FCMs speedup: The first factor gov-

erning the effect of fusion on speedup is whether the fused kernels
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Table 2: Fusion cases and their ratios of redundant computations. F1-F12 using FP32, and F1_8-F12_8 using INT8.
DNN Mob_v1 Mob_v1 Mob_v2 Mob_v2 XCe XCe Prox Prox CeiT CeiT CMT CMT
FP32 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

PWDW_R PWDW_R DWPW PWDW_R PWDW_R PWDW_R DWPW PWDW_R PWDW PWDW_R PWDW PWDW_R
7% 13% - 18% 4% 7% - 10% - 16% - 13%

INT8 F1_8 F2_8 F3_8 F4_8 F5_8 F6_8 F7_8 F8_8 F9_8 F10_8 F11_8 F12_8
DWPW PWDW DWPW PWPW DWPW PWDW_R DWPW PWPW PWDW PWDW PWPW PWDW

- - - - - 15% - - - - - -

Table 3: Categorizing the FP32 LBL and FCMs into compute
(C) and memory-bound (M) based on Roofline analysis.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
GTX LBL M, M C, M M, M M, M C, M C, M M, M M, M C, M C, M C, M C, M

FCM C C M C C C M C C C C C
RTX LBL M, M C, M M, M M, M C, M C, M M, M M, M C, M C, M M, M C, M

FCM M C M M C C M M C C C C
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Figure 7: Speedup of FCMs over LBL using INT8

are memory- or compute-bound. In general, the memory access
reduction is translated to speedup for memory-bound but not for
compute-bound kernels. Table 3 shows which kernels fall under
each category. In the case of RTX, F1, 3, 4, 7, 8, and 11, which consist
of two-memory-bound layers, have higher speedups than the rest
(Figure 6). The average speedup of these six layers is 1.4𝑥 compared
to 1.1𝑥 for the other six. The same applies to GTX, the five cases
where both layers are memory-bound have an average speedup of
1.3𝑥 compared to 1.1𝑥 for the rest. Speedups among layers within
each category, compute-bound and memory-bound, are determined
by the amount of reduction in memory access time. Figure 8
shows the global memory access time of both FCM and LBL exe-
cutions normalized to that of LBL. For example, among the RTX
six FCMs where both layers are memory-bound, F4 has the highest
memory access reduction resulting in the highest speedup. And F12
has the highest memory access reduction resulting in the highest
speedup among the six cases where at least one layer is compute-
bound. However, there are some exceptions. The third factor, the
existence of redundant computations, explains these exceptions.
For example, on GTX, F7 has the highest speedup among FCMs
where both layers are memory-bound even though F4 experiences a
larger reduction of the memory access time. This is because, unlike
F7, F4 has 18% redundant computations (Table 2).

There are two cases where there is a non-negligible slowdown.
These cases are F2 on RTX and F6_8 on GTX. The reduction in
memory access is not translated into speedup in these cases. The
three factors discussed explain this slowdown. For example, in the
case of F2 on RTX (Figure 6) not both layers are memory-bound
(Table 3), the memory access reduction is relatively low (Figure 8),
and there are redundant computations (Table 2).

Speedup across GPUs: Orin and RTX have higher speedups
than GTX. Moreover, out of the five cases where FCMs do not
have speedup over LBL, three are on GTX compared to one on

Orin and One on RTX. One reason is that GTX has the smallest
L1/shared memory per SM (Table 1). This gives less room to the tiles
competing on this memory, including the communication buffer
(Section 4). Another reason is that GTX has fewer CUDA cores
(Table 1), making fewer LBL kernels memory-bound. Table 3 shows
examples of that. First, RTX has 6 out of 12 cases where both kernels
are memory-bound compared to 5 out of 12 on GTX. Secondly,
among the 5 memory-bound cases on both GPUs, 3 remain memory-
bound after fusion on RTX, namely F1, F4, and F8. As long as a
kernel is memory-bound, reducing global memory access time is,
ideally, purely translated into speedup. However, onGTX, these turn
into compute-bound when fused, meaning that their performance
benefited from the global memory access reduction only partially.
To summarise, our method identifies fusions that are advantageous
across different GPUs. However, the fusion effect on performance
varies depending on the GPU compute and memory resources.

Speedup and precision: Note that the FP32 FCMs are different
from the INT8 ones, but both precision’s FCMs are representative
of layers selected by FusePlanner given the same DNN models (Sec-
tion 5). Hence, we here comment on the general trends rather than
having case-by-case comparisons. The maximum and the average
speedups are higher using INT8 compared to FP32. This is mainly
because reducing the data size allows the L1/shared memory to fit
larger tiles (Section 4). This in turn permits fusion types that are not
feasible in FP32. For example, as Table 2 shows, the dominant FCM
using FP32 is PWDW_R which requires redundant computation,
but in INT8 there is only one PWDW_R. In other words, most INT8
fusions do not have redundant computations making the fusion
effect more apparent.

6.2 Comparison with CuDNN
Figure 9 shows a comparison between FCMs and CuDNN, and
the speedup of FCMs over the best cuDNN algorithms, namely
IMPL_PRECOMP_GEM. The maximum speedup is 3.7𝑥 , and the
average is 2𝑥 . Our LBL implementations also outperform CuDNN
in all cases and achieve a maximum speedup of 3𝑥 , and an aver-
age speedup of 1.5𝑥 . Although 50% of the speedup of FCMs over
CuDNN, on average, comes from the speedup of LBL over CuDNN;
the pure speedup resulted from fusing reaches up to 91% of the
overall speedup. When comparing cuDNN implementations, the
implicit GEMM implementations outperform direct GEMM. Im-
plicit GEMMs do not explicitly form the matrix that holds the
input data resulting in fewer memory accesses. Compared to im-
plicit IMPL_PRECOMP_GEM, the best among the three CuDNN
algorithms, our LBL implementations save up to 63% of the global
memory accesses, and FCMs save up to 83%. Generally speaking,
the results trend is similar to the one discussed in the previous
section. For example, in the cases where the pair is composed of
memory-bound layers on RTX and GTX, namely F1, 3, 4, 7, and 8,
FCMs have relatively high speedups over cuDNN. In addition, both
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RTX and Orin experience higher speedups compared to GTX. Both
FCMs and LBL outperform cuDNN in the INT8 case as well. This is
implicitly shown in the next section as we compare our results with
TVM implementations configured to use cuDNN in the backend.

6.3 End-to-end comparison with TVM
This section compares end-to-end CNN implementations based
on the proposed FCMs and FusePlanner-suggested LBL kernels to
TVM. In our end-to-end implementations, FusePlanner iterates over
the models’ DAGs and suggests which layers to fuse and the tiling
parameters that minimize the global memory access for both FCMs
and LBL kernels (Section 4). Then the CNNs are implemented ac-
cordingly. The fused layers range from 46-58% of the convolutional
layers of the four CNNs.

Figure 10a and 10b show the speedup of our implementations
over TVM for the four CNNs using FP32 and INT8. Our implemen-
tations constantly outperform TVM, achieving maximum speedups
of 1.6𝑥 and 1.8𝑥 and average speedups of 1.4𝑥 and 1.5𝑥 using FP32
and INT8, respectively. Different DNN GPU combinations have dif-
ferent speedups, but Mob_v1 has, on average, the highest speedup.
Mob_v1 has a simple linear structure, but TVM graph optimizations
are more impactful for DNNs with complex DAGs.

Figure 11a and 11b show the benefit of our implementations on
energy efficiency, i.e. energy per inference. They show the energy-
per-inference of our implementations normalized to that of TVM.
On average, our implementations consume 0.59 and 0.54 of the
energy consumed by TVM using FP32 and INT8 respectively. Using
FP32, The lowest energy consumption is 0.34 of TVM’s, which is the
case of Mob_v1 on Orin. Using INT8, the lowest is 0.35 of TVM’s in
the case of Mob_v2 on Orin. Generally speaking, RTX and Orin have
higher energy savings compared to GTX. An important observation
is that energy savings are, on average, higher than the reduction
in running time. This suggests that even when fusion does not
improve the latency considerably, e.g. in cases of compute-bound
convolutions, reducing the global memory access is still beneficial
as it reduces energy consumption.

7 RELATEDWORK
Layer-fusion is a key inter-layer optimization in many state-of-
the-art DNN accelerators [2, 6, 12, 16, 31, 34, 42, 44, 46, 47, 54]. It
enables processing the intermediate results immediately, which
eliminates the need to frequently access main memory [2, 6, 16].
Fusion is also used to maintain high throughput on heterogeneous
accelerators that process different CNN layers using multiple layer-
custom engines [30, 31, 34, 38, 44]. In sparse DNNs, where fewer
effectual operations and data-reuse opportunities are present within
a layer, fusion maintains a reasonable efficiency by offering higher
levels of reuse, and resource utilization [47].

The prior art has demonstrated the advantages of layer fusion
on DNN accelerators. However, each has its own shortcomings.
Alwani et al. [2] and Xiao et al. [44] proposals handle only linear
CNNs like AlexNet and VGG [20, 35]. Zheng et al. [54], Zhuang et
al. [55], and Jeong et al. [16] assume that fusion suffers from an
inherent limitation which is the amount of redundant computations
that scale with the number of fused layers. However, others [2, 6]
have shown that redundant computations can be avoided at the
cost of affordable extra buffering. Xing et al. [46] and Wei et al. [42]
optimize the execution time but do not consider minimizing DRAM
accesses as a main objective. Olyaiy et al. [28] proposed a fusing
technique that targets the bottleneck block structures, the proposed
technique reduces the multiplications by up to 20𝑥 at the cost of ex-
tra additions. FINN variants [4, 38] focus on aggressively quantized
models with binary or ternary weights and intermediate results.
Yang et al. [47] fuse layers of highly-sparse models. Other fusion
and pipelining proposals, e.g. [12, 25, 34], work at the granularity
of different inputs or batches. Working at such high granularity
increases the inference latency and the off-chip traffic. Convfu-
sion [41] proposes hardware-agnostic fusion but leaves supporting
DW convolution and SIMD to future work.

On GPUs, the most common forms of fusion fall under the cat-
egories described by TVM authors [7]. First, multiple injective, or
one-to-one e.g. add operators, are fused. Second, an injective op-
erator is fused with a reduction operator. Third, the convolution
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Figure 10: Speedup of CNN implementations using FCMs and FusePlanner suggested LBL kernels over TVMs’
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Figure 11: Energy efficiency of CNN implementations using FCMs and FusePlanner suggested LBL kernels compared to TVM

operator is fused with one or more element-wise operators like
normalization and non-linearity. Jia et al. [17] propose a technique
to fuse stages of the Winograd convolution algorithm. Li et al. [24]
propose to fuse softmax layer implementation to reduce its memory
accesses. Chimera [53] fuses multiple convolutions on GPUs but
does not support DW and the modeling of inter-block optimizations
and data movement estimations don’t directly apply to DW.

Unlike the prior art, in this work, we explore fusing DW and PW
convolutions to overcome memory access bottlenecks on GPUs.
We identify the fusion challenges and trade-offs given the GPU
architecture and propose cost models and a set of fused kernels
that minimize these convolutions’ global memory accesses leading
to low latency and energy-efficient inference.

8 CONCLUSION
Depthwise and pointwise convolutions are used to design compact
DNNs. However, they have a lower compute-to-memory access
ratio than the standard convolution, making their global memory
access often a bottleneck. This paper proposes fusion as a technique
to reduce these convolutions’ global memory accesses onGPUs lead-
ing to improvements in their efficiency. We propose a set of novel
fused convolutional modules (FCMs), GPU kernels composed of
fused depthwise and pointwise convolutions. We also propose Fuse-
Planner which consists of cost models to estimate global memory
access of layer-by-layer and FCM kernels. Given a GPU architec-
ture, FusePlanner decides when to fuse, and which FCMs to use.
Our experiments show that FCMs achieve up to 1.8𝑥 speedup over
a layer-by-layer implementation and up to 3.7𝑥 over cuDNN. End-
to-end implementations of four CNNs using the proposed kernels
achieve up to 1.8x speedup compared to TVM-optimized models
and consume as little as 34% TVM-optimized models energy.
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