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generated by its commutators as a not necessarily closed ideal 
if and only if every element is a finite sum of products of pairs 
of commutators.
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1. Introduction

The commutator of two elements x and y in a ring is defined as [x, y] := xy − yx, 
and it is an elementary fact that the ideal generated by all commutators is the smallest 
ideal whose associated quotient ring is commutative. We study rings that are ‘very 
noncommutative’, in the sense that they are generated by their commutators as an 
ideal; equivalently, these are the rings that admit no nonzero ring homomorphism to a 
commutative ring.

A related property that has been studied is that of being additively generated by 
commutators [23,32]. This is however a much more restrictive condition, as for example 
the matrix algebras Mn(Z) for n ≥ 2 do not satisfy it, while they are easily seen to be 
generated by their commutators as an ideal.

For a unital ring, we show in Theorem 3.4 that being generated by its commutators 
as an ideal implies that every element is a sum of products of pairs of commutators, and 
there even is a uniform bound (depending only on the ring) on the number of summands. 
We reproduce a particular case here:

Theorem A. Let R be a unital ring. Then the following are equivalent:

(1) The ring R is generated by its commutators as an ideal.
(2) The ring R is generated by its commutators as a ring.
(3) There exists N ∈ N such that for every a ∈ R there exist bj , cj , dj , ej ∈ R, for 

j = 1, . . . , N , such that

a =
N∑
j=1

[bj , cj ][dj , ej ].

The fact that (1) implies (3) in the above theorem is most surprising, for two reasons: 
First, it states that double-products are sufficient to generate R. And second, it also 
shows that there exists a uniform bound on the number of summands needed.

A result of Baxter [1, Theorem 1] asserts that a simple ring is either a field, or every of 
its elements is a sum of products of pairs of commutators. Theorem A recovers Baxter’s 
result in the unital case, and moreover shows that the minimal number of summands 
required is uniformly bounded.

Theorem A can be viewed as a Waring-type result, as we explain now. The classical 
Waring problem asks if for each k ≥ 1 there exists a uniform bound g(k) such that 
every integer can be written as a sum of at most g(k) many k-th powers of integers. 
This was solved positively by Hilbert in 1909, and since then numerous generalizations 
and variations of this problem have been considered. In the context of general rings, the 
Waring problem was introduced by Brešar in [6]; see also [30,10,11]. Here, given a unital 
ring R and a polynomial f ∈ Z〈x1, . . . , xd〉 in d noncommuting variables, one considers 
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the set f(R) := {f(a1, . . . , ad) : a1, . . . , ad ∈ R} and asks if there exists an integer N such 
that every element in R is a sum of at most N elements in f(R). The classical Waring 
problem is the case R = Z and f(x) = xk. Our results apply to the polynomial in four 
variables given by

f(a, b, c, d) = [a, b][c, d] = abcd− bacd− abdc + badc.

Theorem A shows that if a unital ring R is generated by f(R) then there is a constant 
N (depending only on R) such that every element is a sum of at most N elements in 
f(R).

The question of when a unital ring is generated by its commutators has also been 
studied in [14].

For not necessarily unital rings that are generated by their commutators as an ideal, 
we show in Theorem 3.5 that sums of products of commutators contain an ideal over 
which the ring is a radical extension. Here, a ring R is said to be a radical extension over 
a subring S ⊆ R if for every x ∈ R there exists n ≥ 1 with xn ∈ S. The following is a 
particular case of Theorem 3.5.

Theorem B. Let R be a (not necessarily unital) ring that is generated by its commutators 
as an ideal. Then for every a ∈ R, there exist n, m ≥ 1 and bj , cj , dj , ej ∈ R for j =
1, . . . , n such that

am =
n∑

j=1
[bj , cj ][dj , ej ].

Of course, unital rings are never radical extensions over proper ideals. By [21, Propo-
sition 2.2], C*-algebras have this property as well. Using these facts, we obtain the 
following characterization of when a C*-algebra is generated by its commutators; see 
Theorem 4.1.

Theorem C. Let A be a C*-algebra. Then the following are equivalent:

(1) The C*-algebra A is generated by its commutators as an ideal.
(2) The C*-algebra A is generated by its commutators as a ring.
(3) For every a ∈ A there exist n ∈ N and bj , cj , dj , ej ∈ A for j = 1, . . . , n such that

a =
n∑

j=1
[bj , cj ][dj , ej ].

If a C*-algebra is generated by its commutators as an ideal, then it admits no one-
dimensional irreducible representations. For unital C*-algebras, the converse also holds, 
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but there exist nonunital C*-algebras that admit no one-dimensional irreducible repre-
sentations which are not generated by their commutators as an ideal; see Example 4.4.

We note that, unless A is unital, it is not clear if there exists a uniform bound on the 
number of summands in part (3) of Theorem C; see Question 4.3.

Robert showed in [39, Theorem 3.2] that if a unital C*-algebra A admits no one-
dimensional irreducible representations, then every element is a sum of commutators 
with a sum of products of commutators. Theorem A strengthens Robert’s result by 
showing that it suffices to consider summands that are products of commutators; see 
Remarks 4.2. We point out that it is not clear that every commutator in a C*-algebra 
(let alone in a ring) is a sum of products of pairs of commutators; see Question 7.1. This 
and related questions are discussed in Section 7.

Our proofs rely on the theory of Lie ideals in associative rings, as developed by Herstein 
[25] and others in the 1950s and 1960s. In the context of C*-algebras, Lie ideals have 
been studied by Miers [33] and coauthors in the 1970s and 1980s, and more recently by 
Brešar, Kissin, and Shulman [9], and Robert [39].

In Section 5 we study the invariant ξ(R) that associates to a unital ring R gener-
ated by its commutators, the minimal N for which part (3) of Theorem A holds; see 
Definition 5.1. We obtain estimates for this invariant for matrix rings over arbitrary 
unital rings (Theorem 5.4), for division rings (Proposition 5.8), for semisimple1 rings 
(Corollary 5.11), as well as for unital rings that contain a direct sum of matrix rings 
(Theorem 5.15).

In Section 6, we specialize to unital C*-algebras and we obtain estimates for the in-
variant ξ for C*-algebras that are properly infinite (Example 6.1), have real rank zero 
(Theorem 6.3), or contain a unital copy of the Jiang-Su algebra Z (Theorem 6.4). The 
latter in particular applies to all C*-algebras covered by the Elliott classification pro-
gramme, as well as to the reduced group C*-algebras C∗

λ(Fn) of all nonabelian free 
groups.

In forthcoming work [22], we show that ξ(M) ≤ 2 for von Neumann algebras M that 
have no commutative summand, and that many such von Neumann algebras even satisfy 
the optimal value ξ(M) = 1. In [8], we show that ξ(Mn(D)) = 1 for every division ring 
D with infinite center and n ≥ 2, and we give an example of a commutative, unital ring 
R such that ξ(M2(R)) = 2.

We have written this paper with both ring theorists and operator algebraists in mind. 
To make it accessible to both communities, we have included some basic definitions 
and statements of useful results along the way. We also sometimes mention Lp-operator 
algebras, for which we refer the reader to [15] for an introduction.

1 In ring theory, a semisimple ring is usually defined to be an Artinian ring with trivial Jacobson radical. 
We will follow this convention in this paper.



218 E. Gardella, H. Thiel / Journal of Algebra 662 (2025) 214–241
Acknowledgments

The authors thank Matej Brešar, Tsiu-Kwen Lee and Leonel Robert for valuable 
comments on earlier versions of this paper. We also thank the referee for their valuable 
comments and suggestions.

2. A commutativity result

In this section, we study rings R satisfying 
[
[R, R], [R, R]2

]
= {0}, that is, rings 

where commutators commute with products of pairs of commutators. We show that a 
semiprime ring with this property is automatically commutative; see Theorem 2.3. For 
general rings, said condition implies that the commutator ideal is nil, meaning that each 
of its elements is nilpotent; see Corollary 2.4.

The results in this section are rather elementary and probably folklore in ring theory. 
Since we were not able to locate them in the literature, we give here complete proofs, but 
note that they could also be obtained by using either the theory of functional identities 
or the theory of polynomial identities.

Given elements x, y in a ring, we use [x, y] := xy − yx to denote the (additive) com-
mutator. Following the customary convention in algebra, when X and Y are subsets of a 
ring, we use [X, Y ] to denote the additive subgroup generated by the set of commutators 
[x, y] with x ∈ X and y ∈ Y . We sometimes consider just the set of commutators, and 
then we use the notation

[X,Y ]1 :=
{
[x, y] : x ∈ X, y ∈ Y

}
for given subsets X and Y of a ring.

Similarly, we use XY to denote the additive subgroup generated by the set {xy : x ∈
X, y ∈ Y }, and we write X2 for XX. If we want to specify the set of products, we use 
the notation

X • Y :=
{
xy : x ∈ X, y ∈ Y

}
for given subsets X and Y of a ring. Note that XY is therefore the additive subgroup 
generated by X • Y .

An ideal I ⊆ R in a ring is said to be prime if I �= R and whenever J1, J2 ⊆ R are 
ideals with J1J2 ⊆ I, then we have J1 ⊆ I or J2 ⊆ I. A ring R is prime if {0} is a 
prime ideal, that is, whenever I, J ⊆ R are ideals and IJ = {0}, then we have I = {0}
or J = {0}. (Equivalently, whenever a, b ∈ R satisfy aRb = {0}, then either a = 0 or 
b = 0.) Further, a ring R is semiprime if the intersection of all prime ideals in R is 
{0}. (Equivalently, whenever a ∈ R satisfies aRa = {0}, then a = 0.) We refer to [28, 
Section 10] for details.



E. Gardella, H. Thiel / Journal of Algebra 662 (2025) 214–241 219
An additive subgroup L of a ring R is said to be a Lie ideal if [R, L] ⊆ L, or equivalently 
[L, R] ⊆ L. Finally, recall that a ring R is said to have no 2-torsion if x ∈ R and 2x = 0
imply x = 0.

Proposition 2.1. Let R be a ring, and let L ⊆ R be a Lie ideal. Consider the following 
conditions:

(1) We have [L, R] = {0}, that is, L is a subset of the center of R.
(2) We have [L, L] = {0}.
(3) We have [L, L2] = {0}.

Then the implications ‘(1)⇒(2)⇒(3)’ hold. If R is semiprime, then the implication 
‘(3)⇒(2)’ holds. Moreover, if R is semiprime and has no 2-torsion, then all conditions 
are equivalent.

Proof. It is clear that (1) implies (2). If [L, L] = 0, namely if every element of L commutes 
with L, then clearly also every element of L commutes with products of elements of L, 
so (2) implies (3).

Assume that R is semiprime. We will show that (3) implies (2), using an argument 
inspired by the proof of [29, Lemma 1]. We first establish the following:

Claim: For every x, y ∈ L, we have [x, y]2 = 0. Using that y commutes with yx, we 
have yxy = yyx. Similarly, we have xxy = xyx. Using this at the last step, we get

[x, y]2 = xyxy − xyyx− yxxy + yxyx = x(yxy − yyx) − y(xxy − xyx) = 0,

which proves the claim.
Now, let x, y ∈ L and set u := [x, y]. We will show that u = 0. Let a ∈ R.
Claim: We have (ua)4 = 0. Applying the Jacobi identity, we have

[u, a] =
[
[x, y], a

]
=

[
x, [y, a]

]
+

[
y, [a, x]

]
. (2.1)

Since L is a Lie ideal, it follows that both [y, a] and [a, x] belong to L. Thus [x, [y, a]] and 
[y, [a, x]] belong to [L, L], and hence their squares are zero by the above claim. Further, 
[x, [y, a]] and [y, [a, x]] both belong to L (again because L is a Lie ideal), and they also 
belong to L2. In particular, they commute. Set s = [x, [y, a]] and t = [y, [a, x]], and note 
that s2 = t2 = 0 by the claim above. Using that s and t commute at the second step, it 
follows that

[u, a]3 (2.1)=
([
x, [y, a]

]
+

[
y, [a, x]

])3 = s3 + 3s2t + 3st2 + t3 = 0.

Using that u2 = 0 (by the claim) at the third step, one easily checks that

0 = [u, a]3ua = (ua− au)3ua = (ua)4,
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as desired.
It follows that {u} ∪uR is a right ideal of R that is nil of bounded index at most 4. By 

Herstein’s generalization of Levitzki’s theorem, [24, Lemma 1.1], it follows that u = 0; 
see also [28, Exercise 10.13].

Suppose that R is semiprime and has no 2-torsion. To show that (2) implies (1), 
assume that [L, L] = {0}. Let x ∈ L and a ∈ R. Since L is a Lie ideal, we have 
[x, a] ∈ L, and thus [x, [x, a]] = 0. Thus, [x, [x, R]] = {0}. By [25, Theorem 1], if M is a 
Lie ideal in a semiprime ring S without 2-torsion, and if y ∈ S satisfies [y, [y, M ]] = {0}, 
then [y, M ] = {0}. Applied to y = x and M = R, it follows that [x, R] = {0}. Thus, 
[L, R] = {0}, as desired. �

In Proposition 2.1, condition (2) need not imply (1) in semiprime rings with 2-torsion, 
as we show in the following example.

Example 2.2. Let F be a field of characteristic 2, set R := M2(F), the ring of 2-by-2
matrices over F , and

L :=
{(

μ λ
λ μ

)
: μ, λ ∈ F

}
.

Then R is semiprime and [L, L] = {0} (so that [L, L2] = 0 as well). Moreover, using that 
F has characteristic 2, a direct computation shows that L is a Lie ideal in R. On the 
other hand, since the center of R consists only of scalar multiples of the identity, we see 
that L is not contained in the center and thus [L, R] �= {0}.

We now specialize to the case that the Lie ideal is the commutator subgroup.
In preparation for the proof of the next result, let us recall that the characteristic 

of a ring R is defined as the smallest natural number n ∈ N with n ≥ 1 such that 
nR = {0}, and as 0 if no such n exists. Note that a prime ring R has characteristic n ≥ 1
if and only if there exists a ∈ R \ {0} with na = 0. Indeed, given any b ∈ R, we have 
aR(nb) = (na)Rb = {0}. Using that R is prime, we have a = 0 or nb = 0, but a �= 0 and 
so nb = 0. In particular, a prime ring has characteristic 0 if and only if it has no torsion.

Theorem 2.3. Let R be a semiprime ring. Then the following are equivalent:

(1) The ring R is commutative.
(2) We have 

[
[R, R], R] = {0}, that is, [R, R] is a subset of the center of R.

(3) We have 
[
[R, R], [R, R]2] = {0}.

(4) We have 
[
[R, R], [R, R]

]
= {0}.

Proof. It is clear that (1) implies (2), and that (2) implies (3). By Proposition 2.1, (3) 
implies (4).
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Let us show that (4) implies (1). To verify that R is commutative, let x, y ∈ R. We 
will show that [x, y] = 0. Since R is semiprime, the intersection of all of its prime ideals 
is {0}. Thus, to show that [x, y] = 0, it suffices to show that [x, y] belongs to every prime 
ideal of R. Let I ⊆ R be a prime ideal. Then the quotient ring Q := R/I is prime and 
satisfies 

[
[Q, Q], [Q, Q]

]
= {0}. In order to show that [x, y] = 0, we will show that Q is 

commutative. In other words, and this is indeed what we will do, we may assume that 
R is prime.

Let Z denote the center of R. Using that [R, R] is a Lie ideal of R satisfying 
[[R, R], [R, R]] = {0}, it follows from [29, Theorem 4] that [R, R] ⊆ Z, unless we have 
the following exceptional case: R has characteristic 2, Z �= {0}, and the localization 
RZ−1 of R at Z is isomorphic to the ring M2(F) of 2-by-2 matrices over the quotient 
field F of Z. We claim that the exceptional case cannot happen under our assumptions. 
Arguing by contradiction, assume that it does. Then F is a field of characteristic 2. The 
assumption 

[
[R, R], [R, R]

]
= {0} implies that 

[
[RZ−1, RZ−1], [RZ−1, RZ−1]

]
= {0} as 

well. Set S := M2(F) and

M :=
{(

e f
g e

)
: e, f, g ∈ F

}
.

Since [(
a b
c d

)
,

(
a′ b′

c′ d′

)]
=

(
bc′ − cb′ ∗

∗ cb′ − bc′

)
and F has characteristic 2, it follows that every commutator in S belongs to M . Further, 
for e, f, g ∈ F , we have

[(
e 0
g 0

)
,

(
0 1
0 0

)]
=

(
g e
0 g

)
, and

[(
e f
0 0

)
,

(
0 0
1 0

)]
=

(
f 0
e f

)
.

Thus, M is the commutator subgroup of S. In particular, the matrices 
( 0 1

0 0

)
and 

( 0 0
1 0

)
belong to M , but their commutator does not vanish. Thus, [M, M ] �= {0}. This shows 
that R is not of the exceptional case.

Thus, we have [R, R] ⊆ Z. We conclude that R ⊆ Z by [29, Lemma 7], and hence R

is commutative. �
Corollary 2.4. Let R be a ring such that 

[
[R, R], [R, R]2

]
= {0}. Then the commutator 

ideal of R is nil.

Proof. Let P denote the lower nilradical (or prime radical) of R. Then P is a nil ideal and 
R/P is semiprime; see [28, Definition 10.13]. It follows from Theorem 2.3 that R/P is 
commutative. Hence, the commutator ideal of R is contained in P and therefore nil. �
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3. Rings generated by commutators

In this section, we show that a unital ring is generated by its commutators as an ideal 
if and only if every element can be written as a sum of products of pairs of commutators. 
Moreover, we show that there is a universal bound on the number of summands required; 
see Theorem 3.4. In the general case of a not necessarily unital ring, we show that every 
element in the commutator ideal has a power that is a sum of products of pairs of 
commutators; see Theorem 3.5.

We actually work in the more general setting of algebras over rings, so we fix a unital 
commutative ring K and will consider K-algebras. The case of rings is obtained by 
specializing to K = Z.

Given a subset X ⊆ A in a K-algebra A and n ∈ N, we use∑
nX :=

{
x1 + x2 + . . . + xn ∈ A : x1, . . . , xn ∈ X

}
to denote the collection of elements in A that can be written as a sum of n elements 
from X.

A Lie ideal in a K-algebra A is a K-linear subspace L ⊆ A such that [A, L] ⊆ L. 
Given Lie ideals L, M ⊆ A, it is easy to show, using the Jacobi identity, that the subspace 
[L, M ] is a Lie ideal as well.

Given subsets X, Y ⊆ A, recall from the beginning of Section 2 that

[X,Y ]1 := {[x, y] : x ∈ X, y ∈ Y } and X • Y := {xy : x ∈ X, y ∈ Y }.

We further set X•2 := X • X.

Lemma 3.1. Let L, M be Lie ideals in a K-algebra A. Then

A[L,M ]A ⊆ A[L,M ].

Moreover, if L0 ⊆ L and M0 ⊆ M are subsets, and m, n ∈ N satisfy

[A,L0]1 ⊆
∑

nL0, and [A,M0]1 ⊆
∑

mM0,

then A • [L0, M0]1 • A ⊆
∑1+n+m

A • [L0, M0]1.

Proof. We only prove the quantitative statement since the proof of the non-quantitative 
statement is analogous. Let a, b ∈ A, let x ∈ L0, and let y ∈ M0. It follows from the 
Jacobi identity that[

[x, y], b
]

= −
[
[y, b], x

]
−

[
[b, x], y

]
=

[
[b, y], x

]
+

[
[x, b], y

]
,

and therefore
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a[x, y]b = a
[
[x, y], b

]
+ ab[x, y]

= a
[
[b, y], x

]
+ a

[
[x, b], y

]
+ ab[x, y] ∈

∑
1+n+mA • [L0,M0]1,

as desired. �
It is a folklore result from Lie theory that if L is a Lie ideal in an algebra, then the 

ideal generated by [L, L] is contained in L + L2; see, for example [39, Lemma 1.1]. We 
include the result together with a quantitative statement for future reference.

Lemma 3.2. Let L be a Lie ideal in a K-algebra A. Then

A[L,L]A ⊆ A[L,L] ⊆ L + L2.

Moreover, if L0 ⊆ L and n ∈ N satisfy [A, L0]1, [L0, A]1 ⊆
∑n

L0, then

A • [L0, L0]1 ⊆
∑

n(L0 + L•2
0 ), and A • [L0, L0]1 • A ⊆

∑
n(1+2n)(L0 + L•2

0 ).

Proof. We only prove the quantitative statement since the proof of the non-quantitative 
statement is analogous. Given a ∈ A and x, y ∈ L0, we have

a[x, y] = [ax, y] + [y, a]x ∈ [A,L0]1 + [L0, A]1 • L0 ⊆
∑

n(L0 + L•2
0 ).

Applying Lemma 3.1 at the first step with M0 = L0 and m = n, we obtain

A • [L0, L0]1 • A ⊆
∑

1+2nA • [L0, L0]1 ⊆
∑

n(1+2n)(L0 + L•2
0 ),

as desired. �
The next result is a variation of Lemma 3.2 that allows us to strengthen containment 

in L + L2 to containment in L2.

Lemma 3.3. Let L be a Lie ideal in a K-algebra A such that [A, L2] ⊆ L. (For example, 
this is automatically the case if L contains [A, A].) Then:

A[L,L2]A ⊆ A[L,L2] ⊆ L2.

Moreover, if L0 ⊆ L and m, n ∈ N satisfy [A, L0]1 ⊆
∑n

L0 and [L•2
0 , A]1 ⊆

∑m
L0, 

then

A • [L0, L
•2
0 ]1 ⊆

∑
(2n+m)L•2

0 , and A • [L0, L
•2
0 ]1 • A ⊆

∑
(2n+m)(1+3n)L•2

0 .

Proof. Again we only prove the quantitative statement. For a ∈ A and x, y ∈ L0, we 
have
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[a, xy] = [a, x]y + x[a, y] ∈
(∑

nL0

)
• L0 + L0 •

(∑
nL0

)
=

∑
2nL•2

0 .

Thus, setting M0 = L•2
0 , we get [A, M0]1 ⊆

∑2n
M0. Since [A, L0]1 ⊆

∑
nL0, it follows 

from Lemma 3.1 that

A • [L0, L
•2
0 ]1 • A ⊆

∑
(1+3n)A • [L0, L

•2
0 ]1. (3.1)

Given a ∈ A and x, y, z ∈ L0, using that [A, L•2
0 ]1 ⊆

∑2n
L•2

0 and [A, L•2
0 ]1 • L0 ⊆∑m

L•2
0 , we have

a[x, yz] = [ax, yz] + [yz, a]x ∈ [A,L•2
0 ]1 + [L•2

0 , A]1 • L0 ⊆
∑

(2n+m)L•2
0 .

Thus A • [L0, L•2
0 ]1 ⊆

∑ (2n+m)L•2
0 . Using this at the second step, we get

A • [L0, L
•2
0 ]1 • A

(3.1)
⊆

∑
(1+3n)A • [L0, L

•2
0 ]1 ⊆

∑
(2n+m)(1+3n)L•2

0 ,

as desired. �
Theorem 3.4. Let A be a unital K-algebra. Then the following are equivalent:

(1) We have A = A[A, A]A, that is, A agrees with its commutator ideal.
(2) The algebra A is generated by its commutators as a K-algebra.
(3) There exists N ∈ N such that for every a ∈ A there exist bj , cj , dj , ej ∈ A for 

j = 1, . . . , N such that

a =
N∑
j=1

[bj , cj ][dj , ej ].

Proof. It is clear that (3) implies (2), which in turn implies (1). To show that (1) im-
plies (3), assume that A = A[A, A]A. Set

L := [A,A], and I := A[L,L2]A.

We first show that I = A. To reach a contradiction, assume that I �= A. Using that 
A is unital, choose a maximal ideal J ⊆ A with I ⊆ J . Set B := A/J , which is a simple 
and unital K-algebra, and therefore a prime ring.

We claim that 
[
[B, B], [B, B]2

]
= {0}. To see this, let b1, . . . , b6 ∈ B. We want to 

show that 
[
[b1, b2], [b3, b4][b5, b6]

]
= 0. Let π : A → B denote the quotient map, and find 

a1, . . . , a6 ∈ A such that π(aj) = bj for all j = 1, . . . , 6. Then 
[
[a1, a2], [a3, a4][a5, a6]

]
belongs to I by definition (and since A is unital), and thus[

[b1, b2], [b3, b4][b5, b6]
]

= π
([

[a1, a2], [a3, a4][a5, a6]
])

= 0,
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as desired.
Thus, the prime ring B satisfies 

[
[B, B], [B, B]2] = {0}. Applying Theorem 2.3, we 

deduce that B is commutative. Since, by assumption, the algebra A is generated by its 
commutators as an ideal, the same is true for B. This is a contradiction, which shows 
that I = A.

Set L0 := [A, A]1. It follows that A is the linear span of A • [L0, L2
0]1 •A, and we obtain 

d ∈ N and aj , bj ∈ A and xj , yj , zj ∈ L0, for j = 1, . . . , d, such that

1 =
d∑

j=1
aj [xj , yjzj ]bj .

We claim that every element in A is a sum of at most 12d products of pairs of com-
mutators. To show this, note that [A, L0]1 ⊆ L0 and [A, L2

0]1 ⊆ L0. Applying Lemma 3.3
with m = n = 1 gives

A • [L0, L
2
0]1 • A ⊆

∑
12L•2

0 . (3.2)

Let a ∈ A. Then

a =
d∑

j=1
aaj [xj , yjzj ]bj ∈

∑
dA • [L0, L

•2
0 ]1 • A

(3.2)
⊆

∑
12dL•2

0 .

This verifies (3) for N := 12d, and finishes the proof. �
In Sections 5 and 6, we will study the minimal N for which (3) in Theorem 3.4 is 

satisfied.

We now turn to not necessarily unital rings and K-algebras. In this case, we show 
that every element in the commutator ideal has a power that is a sum of products of 
pairs of commutators.

Given a non-unital K-algebra A, we let Ã denote the unitization, which is given by 
Ã = K × A with coordinatewise addition and scalar multiplication, and multiplication 
defined as (λ, x)(μ, y) = (λμ, μx +λy+xy) for λ, μ ∈ K and x, y ∈ A. Then Ã is a unital 
K-algebra, with unit (1, 0), and the canonical map A → Ã identifies A with an ideal in 
Ã. If A is unital, we set Ã := A. See [5, Section 2.3] for details. The minimal unitization 
of a C*-algebra A agrees with this construction when A is viewed as a C-algebra.

Given a K-algebra A, the ideal generated by a subspace L is L + AL + LA + ALA, 
which agrees with ÃLÃ viewed inside Ã. Note that ALA is also an ideal in A, which, 
however, may not contain L if A is not unital.

Theorem 3.5. Let A be a K-algebra and consider the ideals

I := Ã
[
[A,A], [A,A]2

]
Ã and J := Ã[A,A]Ã.
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Then I ⊆ [A, A]2 ⊆ J , and J/I is nil. Thus, for every a, d ∈ Ã and b, c ∈ A, there 
exist n, m ≥ 1 and wj , xj , yj , zj ∈ A for j = 1, . . . , n such that

(
a[b, c]d

)m =
n∑

j=1
[wj , xj ][yj , zj ].

In particular, if A = Ã[A, A]Ã, then for every a ∈ A, there exist n, m ≥ 1 and 
bj , cj , dj , ej ∈ A for j = 1, . . . , n, such that

am =
n∑

j=1
[bj , cj ][dj , ej ].

Proof. That I is contained in [A, A]2 follows from Lemma 3.3, while the inclusion 
[A, A]2 ⊆ J is clear. Note that the quotient B := J/I satisfies 

[
[B, B], [B, B]2

]
= {0}

and is generated by its commutators as an ideal. It thus follows from Corollary 2.4 that 
B is nil, as desired. �
4. C*-algebras generated by commutators

In this section, we prove that if a C*-algebra is generated by its commutators as a (not 
necessarily closed) ideal, then every element is a sum of products of pairs of commutators; 
see Theorem 4.1.

We use Ã to denote the minimal unitization of a C*-algebra A; see the comments 
before Theorem 3.5. The (not necessarily closed) ideal generated by a subspace L ⊆ A is 
ÃLÃ. While in general it is not clear if ALA = ÃLÃ since L may not be a subset of ALA, 
for the special case L = [A, A] we showed in [21, Proposition 3.2] that [A, A] ⊆ A[A, A]A
and therefore A[A, A]A = Ã[A, A]Ã.

A character on a C*-algebra A is a one-dimensional, irreducible representation. 
(Equivalently, a nonzero homomorphism A → C.)

Theorem 4.1. Let A be a C*-algebra. Then the following are equivalent:

(1) We have A = Ã[A, A]Ã, that is, A is generated by its commutators as a (not neces-
sarily closed) ideal.

(2) We have A = A[A, A]A, that is, for every a ∈ A there exist n ∈ N and bj , cj , dj , ej ∈
A, for j = 1, . . . , n, such that

a =
n∑

j=1
bj [cj , dj ]ej .

(3) We have A = A
[
[A.A], [A.A]

]
A.
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(4) The C*-algebra A is generated by its commutators as a ring.
(5) We have A = [A, A]2, that is, for every a ∈ A there exist n ∈ N and bj , cj , dj , ej ∈ A, 

for j = 1, . . . , n, such that

a =
n∑

j=1
[bj , cj ][dj , ej ].

Moreover, these conditions imply:

(6) The C*-algebra A admits no character.

Moreover, (6) implies that A[A, A]A is dense in A, and thus all conditions are equivalent 
if A is unital.

Proof. By [21, Theorem 3.3], (1), (2) and (3) are equivalent. It is clear that (5) implies (4), 
which in turn implies (1).

Let us show that (1) implies (5). Thus, assuming that A = Ã[A, A]Ã, consider the 
ideal

I := Ã
[
[A,A], [A,A]2

]
Ã.

Applying Theorem 3.5, we obtain that

I ⊆ [A,A]2 ⊆ A,

and A/I is nilradical. Thus A is a radical extension over I. Since C*-algebras are never 
radical extension over proper ideals ([21, Proposition 2.2]), we get I = A, and hence 
A = [A, A]2, as desired.

We have seen that (1)-(5) are equivalent. It is easy to see that every character vanishes 
on commutators, which shows that (4) implies (6).

We will now show that (6) implies A[A,A]A = A. To reach a contradiction, assume 
that J := A[A,A]A is a proper subset of A, and thus a proper (closed, two-sided) 
ideal. The quotient A/J is a commutative C*-algebra and therefore admits a character. 
Composed with the quotient map A → A/J , we obtain a character for A, which is the 
desired contradiction.

The last claim follows from the fact that the only dense ideal in a unital C*-algebra 
is the C*-algebra itself, and hence (6) implies (2) in this case. �
Remarks 4.2. (1) It was shown in [7, Lemma 2.5] that a unital C*-algebra is generated 
by its commutators as an ideal if and only if it is generated by its commutators as an 
algebra, and if and only if it admits no characters. Theorem 4.1 refines and generalizes 
this result.
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(2) Let A be a unital C*-algebra that admits no characters. Robert showed in [39, 
Theorem 3.2] that every element in A can be written as

N∑
j=1

[aj , bj ] +
N∑
j=1

[cj , dj ][ej , fj ]

for some N ∈ N and elements aj , bj , cj , dj , ej , fj ∈ A, for j = 1, . . . , N . Theorem 4.1
shows that the summands [aj, bj ] are not necessary, and every element can be written 
as a sum of products of commutators.

It is not known if every commutator in a C*-algebra is a linear combination of products 
of pairs of commutators; see Question 7.1(c).

Question 4.3. Let A be a nonunital C*-algebra that is generated by its commutators 
as an ideal. Is there a uniform upper bound on the number of summands necessary in 
statement (3) in Theorem 4.1?

The following example was provided by Ozawa, who kindly allowed us to include it 
here. It shows that (6) does not imply (1)-(5) in Theorem 4.1 for nonunital C*-algebras. 
In the example, we use the C*-algebraic product of C*-algebras An for n ∈ N, which is 
defined as ∏

n∈N
An =

{
(an)n∈N : an ∈ An, sup

n∈N
‖an‖ < ∞

}
.

Example 4.4. By [40, Corollary 8.6], there exists a sequence (An)n∈N of unital, simple, 
infinite-dimensional C*-algebras An such that the product 

∏
n∈N An has a charac-

ter. We claim that for every m ≥ 1 and C > 1, there exists n = n(m, C) such 
that in An the following holds: If 1 =

∑m
j=1 aj [bj , cj ]dj for aj , bj , cj , dj ∈ An, then ∑m

j=1 ‖aj‖‖bj‖‖cj‖‖dj‖ > C.
Indeed, if this is not the case, then there exist m ≥ 1 and C > 1 such that for every 

n ∈ N there are an,j , bn,j , cn,j , dn,j ∈ An such that

1 =
m∑
j=1

an,j [bn,j , cn,j ]dn,j , and
m∑
j=1

‖an,j‖‖bn,j‖‖cn,j‖‖dn,j‖ ≤ C.

One may arrange that ‖an,j‖ = ‖bn,j‖ = ‖cn,j‖ = ‖dn,j‖ for each n and j. It follows that

aj := (an,j)n, bj := (bn,j)n, cj := (cn,j)n, and dj := (dn,j)n

are bounded sequences and thus belong to 
∏

n∈N An. Then 1 =
∑m

j=1 aj [bj , cj ]dj in ∏
n∈N An, which contradicts that 

∏
n∈N An has a one-dimensional irreducible represen-

tation.
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For m ∈ N, consider the natural number n(m, m3) as in the claim for m = m and C =
m3. Let us consider the direct sum B :=

⊕
m An(m,m3). Since each summand An(m,m3)

has no character, neither does B. On the other hand, we claim that B does not agree 
with its commutator ideal. To see this, assume that the element e := ( 1

m )m∈N belongs 
to the commutator ideal. Then there exist r ∈ N and sequences ak = (am,k)m∈N , bk =
(bm,k)m∈N , ck = (cm,k)m∈N , dk = (dm,k)m∈N ∈ B with e =

∑r
k=1 ak[bk, ck]dk. Choose 

m such that m ≥ r and m2 ≥
∑r

k=1 ‖ak‖‖bk‖‖ck‖‖dk‖. In the quotient An(m,m3) of B, 
we have

1
m =

r∑
k=1

am,k[bm,k, cm,k]dm,k, and
r∑

k=1

‖am,k‖‖bm,k‖‖cm,k‖‖dm,k‖ ≤ m2,

a contradiction to the choice of n(m, m3).

Given a C*-algebra A, we use A0 to denote the set of self-adjoint elements in A that 
vanish under every tracial state on A. A self-commutator in A is an element of the form 
[x∗, x] for some x ∈ A. Clearly, every self-commutator belongs to A0, and consequently 
every norm-convergent sum 

∑∞
j=1[x∗

j , xj ] belongs to A0. It was shown by Cuntz and 
Pedersen, [13], that all elements of A0 arise this way.

Thus, every element in A0 can be approximated in norm by finite sums of self-
commutators. However, the following example shows that there is no uniform bound 
on the number of summands needed – even if A is unital. This should be contrasted with 
Theorem 3.4.

Example 4.5. Based on examples by Pedersen and Petersen [34], Bice and Farah showed 
in [2, Theorem 2.1] that for each m there exist a unital C*-algebra B and an element 
b ∈ B0 that is not a limit of sums of m self-commutators.

Robert showed that this phenomenon can even be accomplished in a simple C*-algebra 
for all m simultaneously: By [38, Theorem 1.4], there exists a simple, separable, unital 
C*-algebra A with a unique tracial state τ that contains contractive elements am ∈ A0, 
for m ≥ 1, satisfying 

∥∥am −
∑m

j=1[x∗
j , xj ]

∥∥ ≥ 1 for all x1, . . . , xm ∈ A.
Let us see that dist(a4m, 

∑m[A, A]1) = 1. Since a4m is contractive, it suffices to 
show that dist

(
a4m, 

∑m[A, A]1
)
≥ 1. To reach a contradiction, assume that there is 

c ∈
∑m[A, A]1 with ‖a4m − c‖ < 1. Then 

∥∥a4m − 1
2 (c + c∗)

∥∥ < 1. Note that 1
2 (c + c∗) is 

a self-adjoint element in 
∑2m[A, A]1. It follows from [31, Theorem 2.4] (and its proof), 

that every self-adjoint element in 
∑k[A, A]1 is a sum of at most 2k self-commutators, 

for every k ∈ N. Thus, a4m has distance strictly less than 1 to a sum of at most 4m
self-commutators, which is the desired contradiction.

It follows that A0 is not contained in the closure of 
∑m[A, A]1 for any m ∈ N. 

On the other hand, since A is unital, by Theorem 3.4 there exists N ∈ N such that 
A =

∑N [A, A]•21 .
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5. Bounds on the number of commutators for rings

In Theorem 3.4 we have seen that if a unital ring R is generated by its (additive) 
commutators, then there exists N ∈ N such that R =

∑N [R, R]•21 , where [R, R]1 de-
notes the set of commutators in R, and [R, R]•21 denotes the set of products of pairs of 
commutators. We define the invariant ξ(R) as the minimal N with this property; see 
Definition 5.1. We show that ξ(Mn(S)) ≤ 2 for the ring Mn(S) of n-by-n matrices over 
an arbitrary unital ring S and n ≥ 2; see Theorem 5.4. For matrix algebras over a field F , 
we prove that ξ(Mn(F)) = 1, which amounts to showing that every matrix is a product 
of two matrices of trace zero; see Example 5.5.

We then show that every noncommutative division ring D satisfies ξ(D) ≤ 2
(Proposition 5.8), and deduce that ξ(R) ≤ 2 for every semisimple ring R that has no 
commutative summand (Corollary 5.11).

In Lemma 5.13, we develop a method to obtain good bounds for ξ(R) for a unital ring 
R from the existence of special elements in a unital subring of R. Using this, we prove 
that ξ(R) ≤ 3 as soon as R admits a unital ring homomorphism from a direct sum of 
matrix rings; see Theorem 5.15.

Definition 5.1. Given a unital ring R generated by its commutators, we set

ξ(R) := min
{
N ∈ N : R =

∑
N [R,R]•21

}
.

Remarks 5.2. (1) In [37], Pop shows that a unital C*-algebra A admits no tracial states 
if and only if there exists n such that A =

∑n[A, A]1, and in this case he defines the 
invariant ν(A) as the minimal number n such that A =

∑n[A, A]1. Our invariant ξ is 
defined analogously.

(2) For a K-algebra A over a unital, commutative ring K, it would arguably be more 
natural to define ξ(A) as the smallest N such that every element of A is a K-linear
combination of (at most) N elements in [A, A]•21 . Since the set [A, A]•21 is K-invariant, 
this alternative definition agrees with the one given above.

(3) In [39, Example 3.11], Robert shows that for every N ∈ N there exists a unital 
C*-algebra A such that not every element of A can be expressed as a sum of N elements 
in [A, A]•21 , that is, such that ξ(A) > N .

Question 5.3. What are the possible values ξ(R) for unital rings R? What are the possible 
values for unital, simple rings?

The rest of this work is concerned with finding upper bounds for ξ(R) for different 
classes of rings R. We begin with matrix rings. In [32, Theorem 15], Mesyan showed that 
for every unital ring S and n ≥ 2, every matrix in Mn(S) with trace zero is a sum of 
two commutators. Based on his ideas, we show that every matrix in Mn(S), regardless 
of its trace, is a sum of two products of pairs of commutators.
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Theorem 5.4. Let S be a unital ring and let n ≥ 2. Then ξ(Mn(S)) ≤ 2.

Proof. Assume first that n = 2. Given x, y ∈ S, we have

[(
1 0
0 0

)
,

(
0 x
−y 0

)]
=

(
0 x
y 0

)
∈ [M2(S),M2(S)]1.

Further, we have

[(
0 1
0 0

)
,

(
0 0
1 0

)]
=

(
1 0
0 −1

)
∈ [M2(S),M2(S)]1. (5.1)

Therefore, given any a, b, c, d ∈ S, we have

(
a b
c d

)
=

(
1 0
0 −1

)(
0 b
−c 0

)
+
(

0 1
1 0

)(
0 d
a 0

)
∈
∑

2[M2(S),M2(S)]•21 .

Assume now that n ≥ 3. For j, k = 1, . . . , n, let ej,k ∈ Mn({0, 1}) ⊆ Mn(S) denote 
the standard matrix unit. Let a ∈ Mn(S) and set

x :=
n−1∑
j=1

ej+1,j , y :=
n−1∑
j=1

ej,j+1, and c := a + xay + . . . + xn−1ayn−1.

As shown in the proof of [32, Theorem 15], one can readily check that

[cy, x] = a− cen,n.

Note that the entries of the matrix a − cen,n agree with those of a in the first n − 1
columns.

Using block-diagonal matrices with blocks 
( 0 1

0 0

)
and 

( 0 0
1 0

)
and using the identity in 

(5.1), we see that the diagonal matrix d with entries 1, −1, . . . , 1, −1, 0 (for n odd) and 
with entries 1, −1, . . . , 1, −1, 0, 0 (for n even) is a commutator in Mn(S). Moreover, we 
have [cy, x]d = ad, so ad is a product of two commutators. Set pn = 1 if n is odd and 
pn = 2 if n is even. Note that ad is an arbitrary matrix in Mn(S) whose last pn-many 
columns are zero.

We have shown that every matrix whose last pn-many columns are zero is a product 
of two commutators in Mn(S). Analogously, every matrix whose first pn-many columns 
are zero is also a product of two commutators. Since n ≥ 3, every matrix is a sum of two 
such matrices, thus concluding the proof. �

For matrix algebras over a field F , we have the optimal estimate ξ(Mn(F)) = 1.
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Example 5.5. Let F be a field, and let n ≥ 2. For characteristic 0, it was shown by Wu 
in [46, Theorem 5.12] that every matrix in Mn(F) is a product of two (additive) commu-
tators. Botha showed in [4, Theorem 4.1] that the same holds in positive characteristic.

Thus, we have ξ(Mn(F)) = 1. This means that the image of the polynomial 
f(a, b, c, d) = [a, b][c, d] in Mn(F) is all of Mn(F). In particular, this verifies the L’vov-
Kaplansky conjecture for this polynomial, for all fields, and for all n ≥ 2. We refer the 
reader to the survey [27] for background on the L’vov-Kaplansky conjecture.

Example 5.6. Let R be a unital ring that admits a surjective inner derivation, that is, 
we have R = {[a, x] : x ∈ R} for some element a ∈ R. This clearly implies that every 
element in R is a product of two commutators and thus ξ(R) = 1. Examples of such 
rings include the algebra of endomorphisms on an infinite-dimensional vector space, and 
the Weyl algebras over fields of characteristic 0; see [44, Examples 1.1].

This means that the polynomial f(a, b, c, d) = [a, b][c, d] is surjective on unital rings 
admitting a surjective inner derivation. Much more generally, Vitas showed in [44, The-
orem 1.2] that A = f(A) for every nonzero multilinear polynomial f on a unital algebra 
A over a field such that A admits a surjective inner derivation.

Let S be a unital ring and let n ≥ 2. While every matrix of trace zero in Mn(S) is a 
sum of two commutators by [32, Theorem 15], it was shown by Rosset and Rosset in [42]
that not every matrix of trace zero in Mn(S) is necessarily a commutator. In forthcoming 
work [8], we show that the answer to the following question is ‘Yes’.

Question 5.7. Do there exist a unital ring S and n ≥ 2 such that ξ(Mn(S)) = 2?

Recall that a division ring, being simple, is generated by its commutators as an ideal 
if and only if it is not commutative (that is, not a field).

Proposition 5.8. Let D be a noncommutative division ring. Then

D = [D,D]1 + [D,D]1 • [D,D]1 = [D,D]1 • [D,D]1 + [D,D]1 • [D,D]1,

and in particular ξ(D) ≤ 2.

Proof. It is clear that [D, [D, D]1]1 ⊆ [D, D]1. We claim that also [D, [D, D]1]1 ⊆
[D, D]•21 . To see this, let r, s, t ∈ D. If [s, t] = 0, then [r, [s, t]

]
= 0 ∈ [D, D]•21 . If [s, t] �= 0, 

then

[r, [s, t]
]

= [r[s, t]−1, [s, t]
]
[s, t] ∈ [D,D]•21 .

By Theorem 2.3, we have 
[
[D, D], [D, D]

]
�= {0}. Since every nonzero element in D is 

invertible, this shows that there exist a ∈ D and v, w ∈ [D, D]1 such that 1 = a[v, w]. 
Now, given any d ∈ D, we have
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d = da[v, w] = [dav, w] + [w, da]v ∈
[
D, [D,D]1

]
1 + [D,D]1 • [D,D]1.

By the previous comments, the above is contained both in [D, D]1 + [D, D]1 • [D, D]1
and in [D, D]1 • [D, D]1 + [D, D]1 • [D, D]1, as desired. �

It was shown by Harris in [23] that there exist division rings D with D = [D, D]1, 
hence also D = [D, D]•21 . In that case, we have ξ(D) = 1.

Question 5.9. Do we have ξ(D) = 1 for every noncommutative division ring D?

Question 5.10. Do we have ξ(Mn(D)) = 1 for every n ≥ 2 and every (noncommutative) 
division ring D?

Recall that a ring is said to be semisimple if it is Artinian (namely, if it has no infinite 
descending sequence of left or right ideals), and its Jacobson radical is trivial.

Corollary 5.11. Let R be a semisimple ring which is generated by its commutators as an 
ideal. Then ξ(R) ≤ 2. If R is additionally finite-dimensional over an algebraically closed 
field, then ξ(R) = 1.

Proof. Since R is semisimple, by the Artin–Wedderburn Theorem there exist m, n1, . . . ,
nm ∈ N and division rings D1, . . . , Dm such that R ∼=

⊕m
j=1 Mnj

(Dj). Since Mnj
(Dj) is 

simple for all j = 1, . . . , m, it follows that R is generated by its commutators as an ideal 
if and only if for all j with nj = 1, the division ring Dj is not commutative, that is, if and 
only if no summand Mnj

(Dj) is a field. Applying Theorem 5.4 for the summands with 
nj ≥ 2, and Proposition 5.8 for the summands with nj = 1, we deduce that ξ(R) ≤ 2.

If R is additionally finite-dimensional over an algebraically closed field F , then R ∼=⊕m
j=1 Mnj

(F) for some integers nj ≥ 1. In this case, R is generated by its commutators 
if and only if nj ≥ 2 for every j, in which case ξ(R) = 1 by Example 5.5. �

We now turn to estimates relating the invariant ξ of a ring and a subring. The following 
is a first crude estimate that can probably be improved.

Proposition 5.12. Let R be a unital ring, and let S ⊆ R be a subring with 1 ∈ S. Then 
ξ(R) ≤ 15ξ(S)3.

Proof. Set M0 := [S, S]1 and N := ξ(S). We clearly have [M0, S]1 ⊆ M0. Moreover, we 
claim that [M •2

0 , S]1 ⊆
∑2

M •2
0 . To see this, let s ∈ S and x, y ∈ M0. Then

[s, xy] = [s, x]y + x[s, y] ∈ M •2
0 + M •2

0 ,

as desired. Using the above, it follows from Lemma 3.1 that

S • [M0,M
•2
0 ]1 • S ⊆

∑
4S • [M0,M

•2
0 ]1. (5.2)
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Note also that S =
∑N

M •2
0 immediately implies that

S • [S, S]1 =
∑

N2
S • [M •2

0 ,M •2
0 ]1. (5.3)

Using unitality of S and the identity [ab, cd] = a[b, cd] + [a, cd]b at the fourth step, we 
get

S =
∑

N [S, S]1 • [S, S]1 ⊆
∑

NS • [S, S]1
(5.3)=

∑
N3

S • [M •2
0 ,M •2

0 ]1 (5.4)

=
∑

N3 (
S • [M0,M

•2
0 ]1 + S • [M0,M

•2
0 ]1 • S

) (5.2)
⊆

∑
5N3

S • [M0,M
•2
0 ]1.

Set L0 := [R, R]1. We have [R, L0]1 ⊆ L0 and [L•2
0 , R]1 ⊆ L0, and therefore R •

[L0, L•2
0 ]1 ⊆

∑3
L•2

0 by Lemma 3.3. Using that M0 ⊆ L0 and using the above at the last 
step, we get

R = R • S
(5.4)
⊆

∑
5N3

R • S • [M0,M
•2
0 ]1 ⊆

∑
5N3

R • [L0, L
•2
0 ]1 ⊆

∑
15N3

L•2
0 .

Thus, R =
∑15N3

[R, R]1 • [R, R]1 and therefore ξ(R) ≤ 15ξ(S)3. �
If R is a unital ring that contains a unital subring of the form 

⊕m
j=1 Mnj

(Sj) for unital 
rings Sj and nj ≥ 2, then Proposition 5.12 and Theorem 5.4 show that ξ(R) ≤ 120. We 
now present a method that can be used to obtain a much better bound, and which we 
will use in Theorem 5.15 to verify that ξ(R) ≤ 3.

Lemma 5.13. Let R be a unital ring, let S ⊆ R be a subring with 1 ∈ S, and let m, n ∈ N.

(1) If 1 ∈
∑m

S •
[
[S, S]1, [S, S]1

]
1, then R =

∑m (
[R, R]1 + [R, R]1 • [R, R]1

)
. In 

particular, if there exist a ∈ S and u, v ∈ [S, S]1 with 1 = a[u, v], then R =
[R, R]1 + [R, R]1 • [R, R]1.

(2) If 1 ∈
∑n

S •
[
[S, S]1, [S, S]•21 ], then ξ(R) ≤ 3n. In particular, if there exist a ∈ S

and u, v, w ∈ [S, S]1 such that 1 = a[u, vw], then ξ(R) ≤ 3.

Proof. Set L0 := [R, R]1, and note that [R, L0]1, [L0, R]1 ⊆ L0 and [L•2
0 , R]1 ⊆ L0.

(1). Using the assumption at the first step, and Lemma 3.2 at the second step, we get

R =
∑

mR • [L0, L0]1 ⊆
∑

m(L0 + L•2
0 ) =

∑
m([R,R]1 + [R,R]1 • [R,R]1).

(2). Using the assumption at the first step, and Lemma 3.3 at the second step, we get

R =
∑

nR • [L0, L
•2
0 ]1 ⊆

∑
3nL•2

0 =
∑

3n[R,R]1 • [R,R]1. �
We will need to know that matrix algebras over Z contain certain special commutators.
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Lemma 5.14. Let n ≥ 2. Then the integral matrix ring Mn(Z) contains matrices u, v, w ∈
[Mn(Z), Mn(Z)]1 such that [u, v] is invertible and v = vw.

Proof. Suppose n = 2. Set

u :=
(

0 1
0 0

)
=

[(
0 1
0 0

)
,

(
0 0
0 1

)]
v :=

(
0 0
1 0

)
=

[(
0 0
1 0

)
,

(
1 0
0 0

)]
.

One checks that

[u, v] =
[(

0 1
0 0

)
,

(
0 0
1 0

)]
=

(
1 0
0 −1

)
,

which is invertible. Since one may also readily check that v = v[u, v], we may take 
w = [u, v].

Suppose n = 3. Consider

u :=
(0 0 1

1 0 0
0 0 0

)
=

[(1 0 0
0 2 0
0 0 0

)
,

(0 0 1
1 0 0
0 0 0

)]
,

v :=
(0 0 0

1 0 0
0 1 0

)
=

[(0 0 0
1 0 0
0 1 0

)
,

(2 0 0
0 1 0
0 0 0

)]
.

Then

[u, v] =
[(0 0 1

1 0 0
0 0 0

)
,

(0 0 0
1 0 0
0 1 0

)]
=

( 0 1 0
0 0 −1
−1 0 0

)

is readily seen to be invertible. Moreover, setting

w :=
(1 0 0

0 1 0
0 0 −2

)
=

[(0 1 0
0 0 2
0 0 0

)
,

(0 0 0
1 0 0
0 1 0

)]
,

one checks that vw = v as well.
Suppose that n ≥ 4. Find k, � ∈ N such that n = 2k + 3�. One can find the desired 

matrices in Mn(Z) as block-diagonal matrices using k blocks in M2(Z) and � blocks in 
M3(Z). We omit the details. �
Theorem 5.15. Let R be a unital ring, and suppose that there exist unital rings S1, . . . , Sm

and natural numbers n1, . . . , nm ≥ 2 such that 
⊕m

j=1 Mnj
(Sj) embeds unitally into R. 

Then

R = [R,R]1 + [R,R]1 • [R,R]1, and R =
∑

3[R,R]1 • [R,R]1.

In particular, ξ(R) ≤ 3.
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Proof. Set S :=
⊕m

j=1 Mnj
(Sj). Without loss of generality, we assume that S is a subring 

of R. Applying Lemma 5.14 in each summand Mnj
(Sj) and adding them, we find a ∈ S

and u, v, w ∈ [S, S]1 such that 1 = a[u, v] = a[u, vw]. The result now follows from 
Lemma 5.13. �
Question 5.16. In the setting of Theorem 5.15, does one have ξ(R) ≤ 2?

Remark 5.17. Theorem 5.15 applies in particular to matrix rings and shows that for 
every unital ring S and n ≥ 2, every element in Mn(S) is a sum of a commutator with a 
product of two commutators. Similarly, one can show that R = [R, R]1 +[R, R]1 • [R, R]1
whenever R is a noncommutative division ring, or a semisimple ring without commutative 
summands.

6. Bounds on the number of commutators for C∗-algebras

In this section, we prove estimates for the invariant ξ(A) in the case that A is a unital 
C*-algebra. We show that ξ(A) ≤ 3 if A is properly infinite (Example 6.1), or has real 
rank zero (Theorem 6.3). We prove the estimate ξ(A) ≤ 6 whenever the Jiang-Su algebra 
Z embeds unitally into A, in particular for all Z-stable C*-algebras; see Theorem 6.4.

A unital C*-algebra A is said to be properly infinite if there exist mutually orthogonal 
projections p, q ∈ A and isometries s, t ∈ A satisfying ss∗ = p and tt∗ = q. Equivalently, 
and with O∞ denoting the infinite Cuntz algebra, there is a unital embedding O∞ → A; 
see [3, Proposition III.1.3.3].

Example 6.1. Let A be a unital, properly infinite C*-algebra. Then

A =
∑

2[A,A]1 = [A,A]1 + [A,A]1 • [A,A]1 =
∑

3[A,A]1 • [A,A]1,

so in particular ξ(A) ≤ 3. Indeed, the first equality was shown by Pop; see [37, Remark 3]. 
The two last equalities follow from Theorem 5.15 using that A admits a unital embedding 
of the Cuntz algebra O∞, which in turn admits a unital embedding of M2(C) ⊕M3(C).

It would be interesting to compute ξ(A) for some particular cases of properly (or even 
purely) infinite C*-algebras. For example:

Question 6.2. What is ξ(O∞)?

For Cuntz algebras On with finite n, a smaller upper bound can be given. Indeed, for 
n ≥ 2 it is well-known that On contains a unital copy of Mn(C). (Indeed, if s1, . . . , sn
denote the canonical isometries generating On, one can readily check that {sjs∗k : j, k =
1, . . . , n} is a system of matrix units, so it generates a (unital) copy of Mn(C).) It follows 
that On is isomorphic to the ring of n-by-n matrices over a unital ring, and therefore 
ξ(On) ≤ 2 by Theorem 5.4.
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The same argument applies to the Lp-versions Op
n of the Cuntz algebras introduced in 

[36] and studied in [17,12], thus giving ξ(Op
n) ≤ 2 for every p ∈ [1, ∞) and every natural 

number n ≥ 2. We do not know whether ξ(Op
n) = 1.

A unital C*-algebra is said to have real rank zero if the self-adjoint elements with finite 
spectrum are dense among all self-adjoint elements. See [3, Section V.3.2] for details.

Theorem 6.3. Let A be a unital C*-algebra of real rank zero that admits no characters. 
Then ξ(A) ≤ 3 and

A = [A,A]1 + [A,A]1 • [A,A]1.

Proof. Set B := M2(C) ⊕ M3(C). By [35, Proposition 5.7], the unit of A is weakly 
divisible of degree 2, that is, there exists a unital homomorphism B → A; see [35, 
Page 164, Lines 10ff]. It follows that A contains a unital copy of B, or one of its unital 
quotients M2(C) or M3(C). Now the result follows from Theorem 5.15. �

We now turn to C*-algebras that admit an embedding of the Jiang-Su algebra Z, 
which is a unital, simple, separable, nuclear C*-algebra with unique tracial state and 
without nontrivial idempotents; see [41, Example 3.4.5]. There are plenty of C*-algebras 
that contain Z unitally but which do not contain any matrix subalgebras, so that 
Theorem 5.15 does not apply to them. One such example is given by the reduced group 
C*-algebra C∗

λ(Fn) of the free group; see Example 6.5.
We will need the so-called dimension drop algebra Z2,3, which is given by

Z2,3 =
{
f : [0, 1] → M2(C) ⊗M3(C) continuous:

f(0) ∈ M2(C) ⊗ 1,

f(1) ∈ 1 ⊗M3(C)

}
.

It is known that Z contains Z2,3 as a unital subalgebra.
A unital C*-algebra is said to be Z-stable if A is ∗-isomorphic to the C*-algebraic 

tensor product A ⊗Z. Such algebras clearly admit a unital embedding of Z, and therefore 
of Z2,3.

The Jiang-Su algebra and Z-stable C*-algebras play a crucial role in Elliott’s classi-
fication program of simple, nuclear C*-algebras. For a general overview, as well as the 
statement of the recent classification theorem and corresponding references, we refer the 
reader to Winter’s ICM proceedings [45].

Theorem 6.4. Let A be a unital C*-algebra that admits a unital ∗-homomorphism Z2,3 →
A. Then ξ(A) ≤ 6. This applies in particular to all unital, Z-stable C*-algebras.

Proof. We claim that there exist a, b ∈ Z2,3 and q, r, s, x, y, z ∈ [Z2,3, Z2,3]1 such that

1 = a[q, rs] + b[x, yz].
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Once we prove this, the fact that ξ(A) ≤ 6 will follow from part (2) of Lemma 5.13 with 
n = 2.

Use Lemma 5.14 with n = 3 to find u, v, w ∈ [M3(Z), M3(Z)]1 and e ∈ M3(Z) satis-
fying 13 = e[u, vw]. Define functions a, q, r, s : [0, 1] → M2(C) ⊗M3(C) by

a(t) = t
1
2 (12 ⊗ e), q(t) = t

1
4 (12 ⊗ u), r(t) = t

1
8 (12 ⊗ v), and s(t) = t

1
8 (12 ⊗ w).

Denote by h ∈ Z2,3 the function given by h(t) = t16. One readily checks that a, q, r, s
belong to Z2,3; that q, r, s are commutators in Z2,3, and that h = a[q, rs].

Similarly, using Lemma 5.14 with n = 2, we find u′, v′, w′ ∈ [M2(Z), M2(Z)]1 and 
e′ ∈ M2(Z) satisfying 12 = e′[u′, v′w′]. Define b, x, y, z : [0, 1] → M2(C) ⊗M3(C) by

b(t) = (1 − t) 1
2 (e′ ⊗ 13), x(t) = (1 − t) 1

4 (u′ ⊗ 13),

y(t) = (1 − t) 1
8 (v′ ⊗ 13), and z(t) = (1 − t) 1

8 (w′ ⊗ 13).

One readily checks that b, x, y, z belong to Z2,3; that x, y, z are commutators in Z2,3, and 
that 1 − h = b[x, yz]. It follows that 1 = a[q, rs] + b[x, yz], as desired. �

Although the primary interest in the theorem above is to Z-stable C*-algebras, it also 
gives information for certain reduced group C*-algebras:

Example 6.5. Let G be a discrete group containing a nonabelian free group. Then 
ξ(C∗

λ(G)) ≤ 6. Indeed, it was shown in [43, Proposition 4.2] that C∗
λ(F2) contains a 

unital copy of Z, and the assumptions on G guarantee that C∗
λ(F2) embeds unitally into 

C∗
λ(G). Now the assertion follows from Theorem 6.4.
The C*-algebras here considered often contain no nontrivial idempotents, and hence 

no matrix subalgebras, for example for G = Fn. In such situations, Theorem 5.15 is not 
applicable.

The methods we have developed to show that ξ(C∗
λ(Fn)) ≤ 6 do not seem to give any 

information about the Lp-versions F p
λ (Fn) of these group algebras introduced by Herz in 

[26] and further studied, among others, in [18–20]. It would be interesting to find explicit 
upper bounds for ξ(F p

λ (Fn)).

7. Outlook

We end this paper with some questions for future work. Given a C*-algebra A, consider 
the following properties:

(1) We have A = A[A, A]A.
(2) We have A = [A, A]2.
(3) We have [A, A] =

[
[A, A], [A, A]2

]
.
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(4) We have A[A, A]A = [A, A]2.
(5) We have [A, A] ⊆ [A, A]2.

Then the implications ‘(1)⇔(2)⇒(3)⇒(4)⇒(5)’ hold. Indeed, (1) and (2) are equivalent 
by Theorem 4.1. To show that (2) implies (3), assume that A = [A, A]2. Given a, b, c ∈ A, 
we have [ab, c] = [a, bc] + [b, ca] and thus

[A,A] =
[
[A,A]2, A

]
⊆

[
[A,A], [A,A]A

]
+

[
[A,A], A[A,A]

]
⊆

[
[A,A], A

]
⊆

[
[A,A], [A,A]2

]
.

To show that (3) implies (4), first note that the inclusion [A, A]2 ⊆ A[A, A]A holds 
in general, since the ideal A[A, A]A contains [A.A] by [21, Proposition 3.2]. Further, 
assuming that [A, A] = [[A, A], [A, A]2], using Lemma 3.3 at the second step, we get

A[A,A]A = A
[
[A,A], [A,A]2

]
A ⊆ [A,A]2.

Finally, we see that (4) implies (5), again using that [A, A] ⊆ A[A, A]A.
If A is commutative, then (2) does not hold, while (3) is satisfied. Thus, (3) need 

not imply (2), but it remains unclear if (3)-(5) are equivalent. In fact, it is possible 
that (3)-(5) are always true.

Question 7.1. Let A be a C*-algebra.
(a) Do we have [A, A] =

[
[A, A], [A, A]2

]
?

(b) Do we have A[A, A]A = [A, A]2?
(c) Do we have [A, A] ⊆ [A, A]2?

For C*-algebras that are generated by their commutators as an ideal (or more 
generally, C*-algebras for which the commutator ideal is closed), all subquestions of 
Question 7.1 have a positive answer. Further, by passing to the closed ideal generated by 
commutators, one may assume that the C*-algebra has no character. Thus, Question 7.1
is only unclear for C*-algebras that have no character but are not generated by their 
commutators as an ideal, such as the one described in Example 4.4.

Remark 7.2. Assume that a C*-algebra A satisfies [A, A] ⊆ [A, A]2. We claim that the 
commutator ideal I := Ã[A, A]Ã is semiprime, that is, an intersection of prime ideals. 
To see this, we note that I is idempotent, that is, I = I2. Indeed, the inclusion I2 ⊆ I

is clear, and conversely we have

I = Ã[A,A]Ã ⊆ Ã[A,A]2Ã ⊆ Ã[A,A]Ã[ÃA,A]Ã = I2.

Since an ideal in a C*-algebra is idempotent if and only if it is semiprime by [16, Theo-
rem A], the claim follows.
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