
Building efficient CNNs using Depthwise Convolutional Eigen-Filters
(DeCEF)

Downloaded from: https://research.chalmers.se, 2024-09-27 08:17 UTC

Citation for the original published paper (version of record):
Yu, Y., Scheidegger, S., McKelvey, T. (2024). Building efficient CNNs using Depthwise
Convolutional Eigen-Filters (DeCEF). Neurocomputing, 609.
http://dx.doi.org/10.1016/j.neucom.2024.128461

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Neurocomputing 609 (2024) 128461

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Building efficient CNNs using Depthwise Convolutional Eigen-Filters
(DeCEF)
Yinan Yu a,c,d,∗, Samuel Scheidegger c,d, Tomas McKelvey b

a Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden
b Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
c Asymptotic AI, Gothenburg, Sweden
d Lumilogic, Gothenburg, Sweden

A R T I C L E I N F O

Communicated by A. Mukherjee

Keywords:
Convolutional neural network
Low rank approximation
Subspace method
Network complexity
Efficient network
Deep learning

A B S T R A C T

Deep Convolutional Neural Networks (CNNs) have been widely used in various domains due to their impressive
capabilities. These models are typically composed of a large number of 2D convolutional (Conv2D) layers
with numerous trainable parameters. To manage the complexity of such networks, compression techniques
can be applied, which typically rely on the analysis of trained deep learning models. However, in certain
situations, training a new CNN from scratch may be infeasible due to resource limitations. In this paper, we
propose an alternative parameterization to Conv2D filters with significantly fewer parameters without relying
on compressing a pre-trained CNN. Our analysis reveals that the effective rank of the vectorized Conv2D
filters decreases with respect to the increasing depth in the network. This leads to the development of the
Depthwise Convolutional Eigen-Filter (DeCEF) layer, which is a low rank version of the Conv2D layer with
significantly fewer trainable parameters and floating point operations (FLOPs). The way we define the effective
rank is different from previous work, and it is easy to implement and interpret. Applying this technique is
straightforward – one can simply replace any standard convolutional layer with a DeCEF layer in a CNN. To
evaluate the effectiveness of DeCEF layers, experiments are conducted on the benchmark datasets CIFAR-10 and
ImageNet for various network architectures. The results have shown a similar or higher accuracy using about
2/3 of the original parameters and reducing the number of FLOPs to 2/3 of the base network. Additionally,
analyzing the patterns in the effective rank provides insights into the inner workings of CNNs and highlights
opportunities for future research.
1. Introduction

Deep CNN is one of the most commonly used data-driven tech-
niques. Typically, the large number of trainable parameters in deep
learning models result in high demands on the computational power
and memory capacities, which requires renting or purchasing expensive
infrastructure for training. The high power consumption during training
and inference is not environmentally friendly [1]. Moreover, the size
of the network and the number of FLOPs play an important role for
the inference process, where a small edge device may be used with
restrictions on the complexity of the runtime. Therefore, building an ef-
ficient network is beneficial in terms of saving computational resources
and reducing the overall cost for deep learning while achieving similar
performances.

∗ Corresponding author at: Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden.
E-mail address: yinan@chalmers.se (Y. Yu).

1 Although not being the main focus of this work, the proposed method can also be applied as a compression technique derived from a pre-trained network.
This aspect is elaborated in Appendix B.

One topic on constructing an efficient CNN is the Neural Archi-
tecture Search (NAS), where the focus is to search for an optimal
architecture given certain criteria. In this paper, however, we assume
that the wiring of the layers is pre-determined. Our focus is on how to
improve the efficiency of a CNN for a given architecture.

The literature primarily highlights two strategies to achieve this.
The first strategy is to take a trained network and reduce the most
insignificant parameters. This refers to as compression or pruning in the
literature. This is often a reasonable approach since many applications
are using pre-trained networks as backbones in their networks.

However, this strategy depends on the availability of a reusable
pre-trained network. Since the significance of network weights is often
data-dependent, factors such as variations in data, restrictive licensing,
https://doi.org/10.1016/j.neucom.2024.128461
Received 25 October 2022; Received in revised form 11 April 2023; Accepted 21 A
vailable online 3 September 2024
925-2312/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a
ugust 2024

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
mailto:yinan@chalmers.se
https://doi.org/10.1016/j.neucom.2024.128461
https://doi.org/10.1016/j.neucom.2024.128461
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2024.128461&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Y. Yu et al. Neurocomputing 609 (2024) 128461
Fig. 1. The density histogram (y-axis∈ [0, 1]) of the effective rank (x-axis∈ [1, 9]) estimated using Eq. (2) in Procedure 1 for DenseNet-121 trained on ImageNet. The statistics are

computed over all input channels 𝑖 in that layer. We see the decreasing trend of the effective ranks with respect to the depth of the network.
or other constraints can make it impractical to reuse a pre-trained net-
work. This makes training a neural network from scratch unavoidable.
Nonetheless, training the original network from scratch may not be
feasible due to the potentially high resource requirements. In this case,
after the overall architecture is established, one may re-parameterize
the CNN to make it more efficient before training. That is, the network
is still aimed to accomplish what the original CNN is supposed to
achieve but with significantly fewer trainable parameters and FLOPs.
The approximation is on the functional level instead of relying on
trained parameters. This is the main focus of this work.1

The main hypothesis for finding an efficient re-parameterization
strategy is that there is significant redundancy in Conv2D layers, which
means that it may be sufficient to express a Conv2D layer with fewer
parameters in order to achieve similar performances. One of the most
commonly used function approximation techniques is the subspace low
rank representation [2–4]. It is a family of very well studied and widely
used techniques in the area of signal processing and machine learning.
To put it in the context of CNN, the main idea is to rearrange the
trainable variables into a vector space and find a subspace spanned by
the most significant singular vectors of these variables. This new rep-
resentation typically results in fewer trainable variables and inference
FLOPs during runtime with potentially better robustness.

There are two key steps involved to achieve this approximation: (1)
find a representative vector space for each layer, and (2) estimate
the effective rank without training. To find a representative vector
space for Conv2D filters in a CNN, we have designed experiments
where we observe that 1) vectorized Conv2D filters exhibit low rank
behaviors, and (2) the effective ranks are different for each layer and
they have a decreasing tendency with respect to the depth of the
network. Given these observations, we propose a new convolutional
filter DeCEF. DeCEF is parameterized by a new hyperparameter we
call rank, where a full rank DeCEF is equivalent to a Conv2D filter,
whereas a rank one DeCEF is equivalent to a depthwise separable
convolutional layer. To avoid the common problem of over-tuning, we
use a rule-based approach for finding the ranks, where the rules are pre-
determined by cross-validation on a small dataset trained on a small
network. The rules are then applied to larger datasets and networks
without further adjustments or tuning.

The paper is organized as follows. First, to motivate our work, we
present the experiments and methodologies being used to observe and
2
analyze the low rank behaviors in several trained CNNs in Section 2.1.
We then propose the definition of a new type of filter parameterization
DeCEF in Section 2.2. To further illustrate the advantages of using a
DeCEF layer, we show two key properties, robustness and complexity,
in Section 2.3. In Section 2.4, we present the training strategies for
DeCEF. In Section 4, we show experiments to evaluate the effective-
ness of DeCEF. First, we run ablation studies on the smaller dataset
CIFAR-10 using DeCEF to gain empirical insights of its behaviors in Sec-
tion 4.2. To further evaluate the two properties of DeCEF, we conduct
experiments using the benchmark network ResNet-50 on ImageNet for
comparing complexity versus accuracy. Moreover, in Section 4.3, we
run further experiments on two additional popular network architec-
tures DenseNet and HRNet. These results are also compared to other
state-of-the-art model reduction techniques in Section 4.3.

2. DeCEF layers

2.1. Motivation

First, let us formally define what a layer is in this context.

Definition 1. In the scope of this paper, a Conv2D layer (or a layer
for short)

 =
{

𝐰(𝑖)
𝑗 ∈ Rℎ×ℎ ∶ 𝑖 = 1⋯ 𝑐in, 𝑗 = 1⋯ 𝑐out

}

is a set of trainable units that are characterized by the following
attributes: (1) number of input channels 𝑐in; (2) number of output
channels 𝑐out, and (3) parameterization: 𝐰(𝑖)

𝑗 ∈ Rℎ×ℎ, i.e. the Conv2D
filter.

Note that there are multiple layers in a network, but we ignore
the layer index in this definition for simplicity. When multiple layers
appear in the same context, we use 𝑙 to denote the indexed layer,
where the subscript 𝑙 ∈ {1,… , 𝐿} is the layer index and 𝐿 is the depth2

2 To clarify, this depth refers to the depth of the network. The depthwise in
DeCEF refers to the depth (i.e. input channels) of a layer, which is a different
concept.

Y. Yu et al. Neurocomputing 609 (2024) 128461
Fig. 2. Effective rank (cf. Eq. (3)) versus layer depth. In these networks, we observe decreasing trend of the effective ranks when a network goes deeper. In this figure, we show

this effect in the networks VGG, ResNet and DenseNet.
of the network. In addition, we denote 𝐾 ∶= ℎ2. Note that in practice,
the filter shape may be rectangular. Moreover, for the sake of both
consistency and convenience, we use 𝑖 and 𝑗 to denote the input channel
index and the output channel index, respectively.

Our motivation of this work has originated from the low rank
behaviors we have observed in the vectorized filter parameters, so let
us start with this experimental procedure to illustrate our findings.

Procedure 1. Observing low rank behaviors

• Apply vectorization �̄�(𝑖)
𝑗 ∶= vec(𝐰(𝑖)

𝑗) ∈ R𝐾 and compute the truncated
Singular Value Decomposition (SVD):

�̄�(𝑖)𝐒(𝑖)𝐕(𝑖)T =
[

�̄�(𝑖)
1 ⋯ �̄�(𝑖)

𝑐out

]

, (1)

where matrices �̄�(𝑖) and 𝐕(𝑖) are the left and right singular matrix,
respectively; and 𝐒(𝑖) is a diagonal matrix that contains the singular
values in a descending order. The implementation of this procedure is
well supported by any linear algebra libraries in most programming
languages.

• Identify the effective rank for each input channel 𝑖:

𝑟 =∣ {𝐒(𝑖)[𝑘, 𝑘] ∶ 𝐒(𝑖)[𝑘, 𝑘] ≥ 𝛾𝐒(𝑖)[1, 1],
𝑖

3
𝑘 = 1,… ,min(𝐾, 𝑐out), 𝛾 ∈ [0, 1]} ∣ (2)

where |⋅| denotes the cardinality of a set and 𝐒[𝑘, 𝑘] is the 𝑘th diagonal
element of matrix 𝐒.

• The effective rank of one layer 𝑙:

𝑟𝑙 =∣ {𝑠𝑙 ∶ 𝑠𝑙 ≥ 𝛾, 𝑘 = 1,… ,min(𝐾, 𝑐out), 𝛾 ∈ [0, 1]} ∣ (3)

where 𝑠𝑙 = E𝑖

(

𝐒(𝑖)[𝑘,𝑘]
𝐒(𝑖)[1,1]

)

and the expected value can be estimated by

averaging over all input channels 𝑖.

To illustrate the empirical values, examples can be found in Figs. 1
and 2. Fig. 1 shows the density histogram of singular values computed
using Eq. (1). The histogram is calculated from all input channels in
each convolutional layer with 𝐾 > 1. The maximum ranks of the layers
in these example networks are min(𝐾, 𝑐out) = 𝐾, where 𝐾 = 9. Similar
low rank behaviors can be observed in Fig. 2.

To summarize what we have observed:

(1) the vectorized Conv2D filters in a trained CNN exhibit low rank
properties (cf. Fig. 1);

(2) the effective ranks of vectorized filters show a decreasing ten-
dency when the network goes deeper (cf. Fig. 2);

Y. Yu et al.

G
a
r

2

b
b
c
D

D

w

𝐰

w

𝐮

f
e

i

2

T
s

P

Neurocomputing 609 (2024) 128461
(3) the effective ranks of vectorized filters converge over training
steps (see video in supplementary material).

iven these observations, we propose a new layer called DeCEF as
n alternative parameterization to Conv2D layers for the purpose of
educing the redundancy.

.2. Definition

In this section, we introduce the definition of DeCEF followed
y its two properties. Generally speaking, subspace techniques bring
etter robustness to the learning system due to their reduced model
omplexity. Motivated by these observations and analyses, we define a
eCEF layer as follows:

efinition 2 (DeCEF Layer). A DeCEF layer is defined by

𝛩 =
{

𝐰(𝑖)
𝑗 ,𝐰(𝑖)

𝑗 ∈ Rℎ×ℎ, 𝑖 = 1⋯ 𝑐in, 𝑗 = 1⋯ 𝑐out

}

ith the following parameterization

(𝑖)
𝑗 =

𝑟
∑

𝑘=1
𝑎(𝑖)𝑘,𝑗𝐮

(𝑖)
𝑘 , 𝑟 ∈ [1, ℎ2] (4)

here 𝑎(𝑖)𝑘,𝑗 ∈ R and 𝐮(𝑖)𝑘 ∈ Rℎ×ℎ, which satisfies

̄ (𝑖)𝑇𝑙 �̄�(𝑖)𝑚 =

{

1 if 𝑙 = 𝑚
0 otherwise

or �̄�(𝑖)𝑘 = vec(𝐮(𝑖)𝑘) ∈ Rℎ2 . The parameters 𝐮(𝑖)𝑘 ∈ Rℎ×ℎ are called the
igen-filters.

Note that for the sake of clarity, we use 𝛩 to denote the DeCEF layer,
nstead of the generic notation in Definition 1.

.3. Properties

In this section, we present two key properties of the DeCEF layer.
hese properties are then empirically evaluated in the experiment
ection.

roperty 1. Complexity (one layer)

• Number of trainable parameters (𝑁)

– 𝑁(Conv2D): 𝑐in𝑐outℎ2

– 𝑁(DeCEF): : 𝑁𝑢 +𝑁𝑎, where

– Eigen-filters: 𝑁𝑢 = 𝑐inℎ2𝑟
– Coefficients: 𝑁𝑎 = 𝑐in𝑐out𝑟

For 𝑟 = ℎ2, it is trivial to randomly initialize eigen-filters that span
the whole ℎ2 dimensional vector space and hence the eigen-filters do
not need to be trainable, i.e. 𝑁𝑢 = 0 and 𝑁𝑎 = 𝑐in𝑐outℎ2. Therefore,
Conv2D and DeCEF are equivalent for 𝑟 = ℎ2.
For 𝑟 < ℎ2, 𝑁(DeCEF)< 𝑁(Conv2D) if 𝑟 ≤

⌊

𝑐outℎ2

𝑐out+ℎ2

⌋

.

Example. Given 𝑐in = 𝑐out = 128 and ℎ = 3, we have 𝑁(Conv2D)=
147456. If 𝑟 ≤ 8 < ℎ2 = 9, then 𝑁(DeCEF) < 𝑁(Conv2D). For 𝑟 = 8,
𝑁(DeCEF)= 140288 and for 𝑟 = 4, 𝑁(DeCEF)= 70144.

• FLOPs (𝐹)
We count the multiply-accumulate operations (macc) and we do not
include bias in our calculations. Given the dimension of the input layer
𝐻 ×𝑊 × 𝑐in, let 𝑡 =

⌊

𝐻
𝑠𝑡𝑟𝑖𝑑𝑒

⌋

×
⌊

𝑊
𝑠𝑡𝑟𝑖𝑑𝑒

⌋

,

– 𝐹 (Conv2D): 𝑡ℎ2𝑐in𝑐out
– 𝐹 (DeCEF): 𝑡𝑐in𝑟

(

ℎ2 + 𝑐out
)

Example.Given 𝐻 = 𝑊 = 100, 𝑐in = 128, 𝑐out = 128 and ℎ = 3
with 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, we have 𝐹 (Conv2D)= 1.47 GFLOPs. For 𝑟 = 8,
𝐹 (DeCEF)= 1.40 GFLOPs. For 𝑟 = 4, 𝐹 (DeCEF)= 0.70 GFLOPs.
4
Property 2. Robustness

Lemma 1. Let 𝛥𝐈𝑖 be an additive perturbation matrix and 𝐰(𝑖)
𝑗 ∈ Rℎ×ℎ

be a filter parameterized by Eq. (4), which is learned from some training
process. Let

�̄�(𝑖) =
[

�̄�(𝑖)0 ,… , �̄�(𝑖)𝑟
]

. (5)

If �̄�(𝑖)T�̄�(𝑖) = 𝐈 and ‖

‖

‖

𝐚(𝑖)𝑗
‖

‖

‖2
≤ 𝜖, ∀𝑖, 𝑗,

‖

‖

‖

‖

‖

∑

𝑖
𝛥𝐈𝑖 ∗ 𝐰(𝑖)

𝑗

‖

‖

‖

‖

‖∞

≤ 𝜖ℎ𝑟
∑

𝑖

‖

‖

𝛥𝐈𝑖‖‖2 . (6)

Proof. See Appendix A. □

Robustness in this context is indicated by the propagation of the
additive perturbation between input and output feature maps. Lemma 1
shows that when (1) �̄�(𝑖)T�̄�(𝑖) = 𝐈, i.e. the vectorized filters are orthonor-
mal, and (2) ‖‖

‖

𝐚(𝑖)𝑗
‖

‖

‖2
≤ 𝜖, i.e. the coefficients are bounded by 𝜖, the effect

of the perturbation on the output is bounded by Eq. (6).
The rank 𝑟 of the eigen-filters is a hyperparameter that yields a

trade-off between the robustness and the representational power of a
DeCEF layer. In this work, we use a rule based approach for choosing
this hyperparameter.

2.4. Training algorithms

In this section, we show how to construct and train a network
composed of DeCEF layers.

2.4.1. The optimization problem
Given a network architecture with a set of layers =

{

1 ⋯ 𝐿
}

. Denote the index set of the network using =
{1,… , 𝐿}. Let =

{

𝛩𝑚1
⋯ 𝛩𝑚𝑆

}

⊆ be a set of DeCEF layers
with index set = {𝑚1,… , 𝑚𝑆}. Let ̃ = ⧵ be the rest of the
layers in the network. Let 𝑓 () be an objective function and 𝜆𝛷(̃) be
a regularization term applied to the set ̃, where 𝜆 > 0 is the multiplier.
The optimization problem is formulated as:

min 𝑓 () + 𝜆𝛷(̃)
subject to �̄�𝑙

(𝑖)T�̄�𝑙
(𝑖) = 𝐈 (7)

‖

‖

‖

𝐚(𝑖)𝑙,𝑗
‖

‖

‖2
≤ 𝜖, ∀𝑙 ∈

2.4.2. Relaxed regularization
Finding an exact optimal DeCEF layer is an NP-hard problem due

to the orthonormality constraint. Therefore, we approximate the con-
straint by the following regularizations. For a given DeCEF layer 𝑙, we
have:

𝛷1 ∶ 𝜆1
‖

‖

‖

�̄�(𝑖)T�̄�(𝑖) − 𝐈‖‖
‖2

(8)

𝛷2 ∶ 𝜆2
‖

‖

‖

𝐚(𝑖)𝑗
‖

‖

‖2
, 𝐚(𝑖)𝑗 =

[

𝑎(𝑖)1,𝑗 ,… , 𝑎(𝑖)𝑟,𝑗
]

(9)

Note that the layer index 𝑙 is neglected.
The loss function of the whole network is then written as:

𝑓 () + 𝜆𝛷(̃) + 𝜆1𝛷1() + 𝜆2𝛷2() (10)

where 𝛷𝑖() =
∑

𝑙∈ 𝛷
𝑙
𝑖 , 𝑖 = 1, 2.

2.4.3. Deterministic rule-based hyperparameters
Hyperparameters are chosen based on deterministic rules to avoid

complex hyperparameter tuning and to increase reproducibility. These
rules are determined using a transfer learning approach. First, we find
the hyperparameters in DeCEF using cross-validation on a small dataset
CIFAR-10, where cross-validation is affordable. Then we establish a de-
terministic rule for each hyperparameter. These rules are then directly
applied to the larger dataset ImageNet without tuning. There are three
sets of hyperparameters h1 ∼ h3:

Y. Yu et al.

2

o
t
p

3

t

i
i
d
r
e
t
I
s
o
p
s
i
h
i
N
e
a
i
p
c
t
o
c
p
i
i
d
p
t
r

a
[
v
e
i
t
[
s

b
r
r
c
h
B
b
o
t
i
o
c
s

Neurocomputing 609 (2024) 128461
h1: Ranks 𝑟 (Algorithm 1): The observation of singular values from
several networks shows that the effective ranks typically have
a decreasing trend with respect to the depth, i.e., layers at the
beginning of the network often have higher rank, and vice versa.
The idea of choosing the rank before training a network is to find
a monotonically decreasing function given the increasing depth
(cf. Fig. 2). In this paper, we adopt two alternative routines
for choosing the rank in each layer: linear decay (simple) and
logarithmic decay (aggressive). Let 𝑙 be the depth index of a layer
and 𝐾 = ℎ2. Denote 𝑙max = max(𝑙) and 𝑙min = min(𝑙).

– Linear decay: �̂�𝑖 =
⌊

𝐾 − 𝑙(𝐾−1)
𝑙max−𝑙min

⌋

.

– Logarithmic decay: �̂�𝑖 =
⌊

𝐾−1
𝑙𝑜𝑔2(𝑙+1)

⌋

.

h2: Regularization coefficients (Algorithm 1, cf. Eqs. (8), (9)): 𝜆1 =
10−4𝑟 and 𝜆2 = 10−4.

h3: Singular value threshold to determine the effective rank (cf. Eqs.
(2), (3)): 𝛾 = 0.3.

A note on the rank function. Our observation indicates that the effective
ranks of Conv2D layers have a decreasing tendency, which motivates
us to choose a rank function that is decreasing over the depth of the
network to approximate this behavior and enable the possibility of
training a DeCEF network from scratch. Interestingly, this observation
seems to be related to recent research on layer convergence bias [5],
which states that shallower layers are carrying lower frequency in-
formation and they tend to converge sooner than deeper layers. A
possible explanation for the decreasing rank function is that allowing
a broader range of frequency components to pass from earlier layers to
deeper layers grants the latter more freedom to learn high-frequency
information. Since the most significant eigen-filters can be interpreted
as low frequency components, if the ranks of shallower layers were set
too low, high frequency information will be filtered out by the low rank
approximation, and therefore will not be passed onto deeper layers for
learning.

2.4.4. Training algorithm
The training algorithm is summarized in Algorithm 1.

Algorithm 1 (DeCEF Training Strategy).

• Step 1: Choose a network topology fully or partially composed
of DeCEF layers. For example, one can replace all Conv2D layers
with DeCEF layers.

• Step 2: Choose hyperparameters 𝑟, 𝜆1, 𝜆2.
• Step 3: Initialization for each DeCEF layer (𝑘 = 1,⋯ , 𝑟):

– Eigen-filters 𝐮(𝑖)𝑘 :

– Generate random matrices: 𝐀(𝑖) ∈ R𝐾×𝑟.
– Compute the truncated SVD: 𝐀(𝑖) = �̄�(𝑖)�̄�(𝑖)�̄�(𝑖)T.
– Reshape each column in �̄�(𝑖) into matrix 𝐮(𝑖)𝑘 ∈ R𝐾 .

– Coefficients 𝑎(𝑖)𝑘,𝑗 : randomly initialized from a normal distri-
bution.

Step 4: Forward and backward paths:

– Forward 𝐈𝑙 → 𝐈𝑙+1: for each out channel 𝑗,

𝐈𝑗𝑙+1 =
𝑐in
∑

𝑖=1

𝑟
∑

𝑘=1
𝑎(𝑖),𝑙𝑘,𝑗 𝐮

(𝑖),𝑙
𝑘 ∗ 𝐈𝑖𝑙

– Backward: backpropagation with the loss function described
in Eq. (10).
5
.5. Refactor a Conv2D network into DeCEF

There are such use cases where a pre-trained CNN is available and
ne needs to reduce the runtime complexity of the network. This is not
he focus of this work but we also propose a compression algorithm
resented in Appendix B.

. Related work

To compare to the state-of-the-art techniques, in this section, we list
he following existing approaches.

Subspace techniques: The first category is the Low-Rank Approx-
mation (LRA) technique. There are mainly two different approaches
n the existing literature: (1) Separable bases: Jaderberg et al. [6]
ecomposes the 𝑑 × 𝑑 filters into 1 × 𝑑 and 𝑑 × 1 filters to construct
ank-1 bases in the spatial domain. In later work, Tai et al. [7], Lin
t al. [8], presents closed form solutions that significantly improves
he efficiency over previous iterative optimization solvers are proposed.
oannou et al. [9] introduces a novel weight initialization that allows
mall basis filters to be trained from scratch, which has achieved similar
r higher accuracy than the conventional CNNs. Yu et al. [10] pro-
oses a SVD-free algorithm that uses the idea that filters usually share
mooth components in a low-rank subspace. Alvarez and Salzmann [11]
ntroduces a regularizer that encourages the weights of the layers to
ave low rank during the training. More recently, Yang et al. [12]
ntroduced SVD training, a method to achieve low-rank Deep Neural
etworks (DNNs) that avoids costly singular value decomposition at
very step. The Generalized Depthwise-Separable convolution [13] is
n efficient post-training approximation for 2D convolutions in CNNs,
mproving throughput while preserving robustness. Yin et al. [14] pro-
oses an ADMM-based framework for tensor decomposition in model
ompression, formulating tensor train decomposition as an optimiza-
ion problem with tensor rank constraints and iteratively solving it to
btain high-accuracy tensor train-format DNN models for CNNs and Re-
urrent Neural Networks (RNNs). Li et al. [15] introduces a two-phase
rogressive genetic algorithm, PSTRN, which leverages the discovery of
nterest regions in rank elements to efficiently determine optimal ranks
n tensor ring networks. Recently, Chen et al. [16] proposes joint matrix
ecomposition for CNN compression, leveraging shared structures to
roject weights into the same subspace, and offers three decomposi-
ion schemes with SVD-based optimization for improved compression
esults.

(2) Filter vectorization: Some existing work implements the low rank
pproximation by vectorizing the filters. For instance, Denton et al.
17] stacks all filters for each output channel into a high dimensional
ector space and approximates the trained filters using SVD. Wen
t al. [18] presents a regularization to enforce filters to coordinate
nto lower-rank space, where the subspaces are constructed from all
he input channels for each given output channel. Later, Peng et al.
19] proposed a decomposition focusing on exploiting the filter group
tructure for each layer.

Pruning: Pruning refers to techniques that aim at reducing the num-
er of parameters in a pre-trained network by identifying and removing
edundant weights. This is a very invested topic in the attempt to
educe the model complexity. Although being different from our use
ase, we list the state-of-the-art pruning techniques in this section to
ave a more complete view on model reduction techniques. In Optimal
rain Damage by LeCun et al. [20], and later in Optimal Brain Surgeon
y Hassibi et al. [21], redundant weights are defined by their impact
n the objective function, which are identified using the Hessian of
he loss function. Other definitions of redundancy have been proposed
n subsequent work. For instance, Anwar et al. [22] applies pruning
n the filter-level of CNNs by using particle filters to propose pruning
andidates. Han et al. [23] introduces a simpler pruning method using a
trong L2 regularization term, where weights under a certain threshold

Y. Yu et al.

h
r
v
u

p
i
t
v
a
s
T
u
t
b
m
o
D

4

4

o

4

v
1

Neurocomputing 609 (2024) 128461
are removed. Molchanov et al. [24] uses Taylor expansion to approxi-
mate the influence in the loss function by removing each filter. Hu et al.
[25] iteratively optimizes the network by pruning unimportant neurons
based on analysis of their outputs on a large dataset. Li et al. [26]
identifies and removes filters having a small effect on the accuracy.
Aghasi et al. [27] prunes a trained network layer-wise by solving a
convex optimization program. Liu et al. [28] takes wide and large
networks as input models, but during training insignificant channels are
automatically identified and pruned afterwards. More recently, Luo and
Wu [29], Luo et al. [30] analyzes the redundancy of filters in a trained
network by looking at statistics computed from its next layer. He et al.
[31] proposes an iterative LASSO regression based channel selection
algorithm. Huang et al. [32] removes filters by training a pruning agent
to make decisions for a given reward function. Yu et al. [33] poses the
pruning problem as a binary integer optimization and derives a closed-
form solution based on final response importance. Lin et al. [34] prunes
filters across all layers by proposing a global discriminative function
based on prior knowledge of each filter. Tung and Mori [35] combines
network pruning and weight quantization in a single learning frame-
work that performs pruning and quantization jointly. Zhang et al. [36]
first formulate the weight pruning problem a nonconvex optimization
problem constraints specifying the sparsity requirements and optimize
using the alternating direction method of multipliers. Other work, such
as Zhuang et al. [37], uses discrimination-aware losses into the network
to increase the discriminative power of intermediate layers. Huang and
Wang [38] adds a scaling factor to the outputs and then add sparsity
regularizations on these factors. He et al. [39] compresses CNN models
by pruning filters with redundancy, rather than those with ‘‘relatively
less’’ importance. Lin et al. [40] proposes a scheme that incorporates
two different regularizers which fully coordinates the global output and
local pruning operations to adaptively prune filters. Later, Lin et al.
[41], proposed an effective structured pruning approach that jointly
prunes filters as well as other structures in an end-to-end manner by
defining a new objective function with sparsity regularization which is
solved by generative adversarial learning. Ding et al. [42] proposes a
novel optimization method, which can train several filters to collapse
into a single point in the parameter hyperspace which can be trimmed
with no performance loss. Liu et al. [43] proposes a meta network,
which is able to generate weight parameters for any pruned structure
given the target network, which can be used to search for good-
performing pruned networks. You et al. [44] introduce gate decorators
to identify unimportant filters to prune. Molchanov et al. [45] prunes
filters by using Taylor expansions to approximate a filter’s contribution.
Ding et al. [46] finds the least important filters to prune by a binary
search. Luo and Wu [47] proposes an efficient channel selection layer
to find less important filters automatically in a joint training manner.
Lin et al. [48] proposes a method that is mathematically formulated to
prune filters with low-rank feature maps. He et al. [49] introduces a
differentiable pruning criteria sampler. Ding et al. [50] proposes a re-
parameterization of CNNs to a remembering part and a forgetting part.
The former learns to maintain the performance and the latter learns
for efficiency. Liu et al. [51] proposes a layer grouping algorithm to
find coupled channels automatically. Shi et al. [52] uses an effective
estimation of each filter, i.e., saliency, to measured filters from two
aspects: the importance for prediction performance and the consumed
computational resources. This can be used to preserve the prediction
performance while zeroing out more computation-heavy filters.

Architectural design: Effort has been put into designing a smaller
network architecture without loss of the generalization ability. For
instance, He et al. [53] achieves a higher accuracy in [53,54] com-
pared to other more complex networks by introducing the residual
building block. The residual building blocks adds an identity mapping
that allows the signals to be directly propagated between the layers.
Iandola et al. [55] introduces SqueezeNet and the Fire module, which
is designed to reduce the number of parameters in a network by in-

troducing 1 × 1 filters. By utilizing dense connections pattern between

6
blocks, Huang et al. [56] manages to reduce the number of required
parameters. Xie et al. [57] proposed a multi-branch architecture which
exposes a new hyperparameter for each block to control the capacity of
the network. Other work, like MobileNet [58,59] and EfficientNet [60]
specifically focus on builing architectures suitable for devices with low
compute capacity, such as mobile phones. By a design that maintains
a high-resolution representation throughout the whole network, Wang
et al. [61] achieves good accuracy and performance in HRNet.

Compression: Deep Compression, by Han et al. [62], reduces the
storage size of the model using quantization and Huffman encoding
to compress the weights in the network. Other work on reducing the
memory size of models is done by binarization. In XNOR-Net by Raste-
gari et al. [63], the weights are reduced to a binary representation and
convolutions are replaced by XNOR operations. More recently, Suau
et al. [64] proposed to analyze filter responses to automatically select
compression methods for each layer.

Weight sharing: Another approach to reduce the number of pa-
rameters in a network is to share weights between the filters and
layers. Boulch [65] share weights between the layers in a residual
network operating on the same scale.

Depthwise separable convolutions: introduced by Chollet [66],
ave shown to be a more efficient use of parameters compared to
egular Conv2Ds Inception like architectures. Depthwise separable con-
olutions have also been used in other work, e.g., [31], where it was
sed to gain a computational speed-up of ResNet networks.

Our focus: We observe and analyze the Conv2D from a different
erspective compared to the previous subspace techniques. More specif-
cally, (i) we vectorize the filters instead of using separable basis in
he original vector space [6,7,9,10]; (ii) we do not concatenate these
ectorized filters into a large vector space [17–19], which achieves
better modularity compared to the concatenated vectors. Our per-

pective is motivated by the empirical evidence from our experiments.
his opens up new opportunities and provides new analytical tools for
nderstanding the design of convolutional networks with respect to
heir subspace redundancies. In our experiments, we choose a popular
ase network (ResNet) and compare our experimental results to various
odifications of the same base network. We also conduct tests on

ther more recent network architectures such as HRNet-W18-C and
enseNet-121 for further comparison and validation.

. Experiments and results

.1. Hardware

For training and experiments, Nvidia Tesla V100 SXM2 with 32GB
f GPU memory are used.

.2. Dataset CIFAR-10: Ablation study

Dataset: To empirically study the behavior of DeCEF, we conduct
arious experiments on the standard image recognition dataset CIFAR-
0 by Krizhevsky and Hinton [67]. Benchmark: We use ResNet-32 as

the base net for comparison. ResNet-32 has three blocks, where the last
block (block-3) in ResNet-32 has the most filters. Since our goal is to
reduce the amount of trainable parameters and FLOPs, we mainly vary
the structure in block-3 in our experiments.

Experiments: We design four experiments as follows.

Experiment 1. varying rank 𝑟 and 𝑐out. For a layer with input channels
𝑖 = 1,… , 𝑐in and output channels 𝑗 = 1,… , 𝑐out, the filters in the DeCEF
layer is expressed as 𝐰(𝑖)

𝑗 =
∑𝑟

𝑘=1 𝑎
(𝑖)
𝑘,𝑗𝐮

(𝑖)
𝑘 . We empirically show that

DeCEF layers achieve higher accuracy with significantly lower number
of parameters. In this experiment, we vary two hyperparameters: (1)
the rank 𝑟 of each filter in the DeCEF layer, and (2) the number of
output channels 𝑐out. We compare the accuracy versus the number

of parameters in different types of layers (Conv2D and DeCEF with

Y. Yu et al.

a

E
𝛷
c
I
m
c
t

E
p
t

Neurocomputing 609 (2024) 128461
Fig. 3. Accuracy versus number of parameters on CIFAR-10.

Fig. 4. DeCEF layer with trainable vs. frozen bases on CIFAR-10.

different hyperparameters). As shown in Fig. 3, with a lower number
of parameters, DeCEF achieves a better accuracy with low rank tech-
niques. Moreover, when we increase the number of output channels,
DeCEF shows a even more promising result with fewer parameters in
total.

Experiment 2. trainable vs. frozen eigen-filters. In Algorithm 1, the eigen-
filters in DeCEF layers are trained simultaneously using backpropa-
gation. In this experiment, we investigate the impact of this training
process and try to understand if it is sufficient to use random basis
vectors as eigen-filters. We initialize the eigen-filters according to Algo-
rithm 1 and freeze them during training. The comparison between the
accuracies achieved by frozen and trainable eigen-filters can be found
in Fig. 4. By using frozen eigen-filters, the network has a fewer number
of trainable parameters for the same rank. With a low rank (𝑟 < 5), the
ccuracy is degraded without training.

xperiment 3. with or without 𝛷1 regularization. To study the effect of
1 introduced in Eq. (8), some experiments can be found in Fig. 4. We

an see that with a high rank, the regularization needs to be applied.
n our experiment, we use 𝜆1 = 10−4𝑟 and 𝜆2 = 10−4, where 𝜆1 is the
ultiplier of the constraint on the eigen-filters and 𝜆2 is on the subspace

oefficients. The reason for having the multiplier 𝑟 in 𝜆1 is to suppress
he growth of the cost when 𝑟 becomes large.

xperiment 4. comparison to related work. In this experiment, we im-
lement Algorithm 1 (DeCEF-ResNet-32) to compared to the state-of-
he-art techniques. We vary the number of output channels 𝑐out in the

last ResNet block for comparison, where we see that having fewer
eigen-filters with more output channels yields a better result.

Results: The results are presented in terms of the estimated mean
and the standard deviation of the classification accuracy on the testing
set with 10 runs for each experimental setup, which are shown in Figs. 3
and 4. The accuracy is then presented with respect to the number
of trainable parameters for each network structure. For DeCEF layers,
there are nine data points in each presented result, which correspond to
7
different layer ranks in block-3 𝑟3 ∈ {1,… , 9}. In addition, the number
of trainable parameters in DeCEF layers is also varied by using differ-
ent numbers of output channels in block-3, i.e., 𝑐out ∈ {64, 96, 128}.
We then vary 𝑐out in ResNet-32 block-3 (𝑐out ∈ {16, 20, 24,… , 128})
to have a comparable result. We compare the accuracy achieved by
DeCEF-ResNet-32 Fig. 5.

4.3. Dataset ImageNet (ILSVRC-2012)

To further compare our algorithms to the state-of-the-art, we use
the standard dataset ImageNet (ILSVRC-2012) by Deng et al. [69].
ImageNet has 1.2M training images and 50 k validation images of 1000
object classes, commonly evaluated by Top-1 and Top-5 accuracy. We
use the networks ResNet-50 v2 [54], DenseNet-121 [56] and HRNet-
W18-C [61] as the base networks. The results are visualized in Figs. 6
and 7 for Top-1 and Top-5 accuracy, respectively.

The hyperparameters used in DeCEF-ResNet-50 are determined by
the deterministic rules presented in h1, h2 and h3. For each setup,
we have five runs and report the average accuracy and its standard
deviation. From the experiments, we see the trade-off between the two
rank decay mechanisms: linear decay is less aggressive, which yield to
a better accuracy, whereas logarithmic decay reduce a greater number
of FLOPs while still having a decent accuracy. To further validate
DeCEF, we run the same experiments on three commonly used base
networks. The results are reported in Tables 2 and 3 to compare with
the corresponding base network and state-of-the-art model reduction
techniques.

4.4. Comparison to related work

Various configurations of the DeCEF method are compared to re-
lated work on two different datasets, CIFAR-10 and ImageNet.

For CIFAR-10, the DeCEF-ResNet-32 (32, 64, 128) configuration
achieves competitive accuracy while having fewer parameters and
lower computational complexity than comparable competitive meth-
ods, such as HRank ResNet-110 [48] and SASL ResNet-110 [52].

The DeCEF-ResNet-32 (24, 48, 96) configuration also demonstrates
comparable accuracy compared to SASL ResNet-56 and HRank ResNet-
56 with significantly fewer parameters and lower computational re-
quirements, and superior accuracy compared to GBN-40 [44] with
similar complexities. Among pruning and subspace approximation tech-
niques, ResRep ResNet-110 [50] outperforms DeCEF in terms of ac-
curacy and complexity (94.19%, 108 MFLOPS vs. 94.62%, 105.68
MFLOPS). However, as ReRep is a channel pruning technique, it can
be easily combined with DeCEF to achieve better efficiency.

On the ImageNet dataset, the DeCEF-ResNet-50 (log decay) con-
figuration showcases competitive accuracy while maintaining fewer
parameters and lower computational complexities compared to al-
ternative methods such as Taylor-FO-BN-91% [45] fewer parameters
than ShaResNet-101 and ShaResNet-152 (FLOPs not reported), and
lower computational complexities than GFP ResNet-50 1 [51] (param-
eters not reported). The model has similar complexities as GBN-60
while achieving a higher accuracy. Additionally, the DeCEF-HRNet-
W18-C (log decay) configuration achieves competitive accuracy with
significantly fewer parameters and superior computational efficiency
compared to ResRep ResNet-50 1, ResRep ResNet-50 2, GBN-50, and
SSS-ResNetXt-38 [38].

Based on these observations, the DeCEF method shows promise in
enhancing model efficiency, making it a valuable approach to consider
in deep learning model development.

Combining DeCEF with state-of-the-art deep learning models that
achieve high accuracy with relatively low computational requirements
(GFLOPs) such as the EfficientNet family [60], InceptionResNetV2 [71],
Xception [66], and Inception V3 [72] (by, for example, replacing the
depthwise convolutional layers with DeCEF layers) could potentially

Y. Yu et al. Neurocomputing 609 (2024) 128461
Table 1
Comparison to state-of-the-art model reduction techniques on CIFAR-10.
Network Acc. Std. No. param. MFLOPs

(a) DeCEF vs. baseline network

DeCEF-ResNet-32 (32, 64, 128)0 94.19% (0.18%) 533.00 k 108.00
DeCEF-ResNet-32 (24, 48, 96)1 93.64% (0.16%) 311.00 k 64.72
ResNet-1102 [53] 93.57% 1.72M 252.89
ResNet-563 [53] 93.03% 850.00 k 125.49
ResNet-324 [53] 92.49% 467.00 k 69.00
DeCEF-ResNet-32 (16, 32, 64)5 92.45% (0.17%) 148.00 k 32.42

(b) Related work

ResRep ResNet-1106 [50] 94.62% 105.68
C-SGD-5/8 ResNet-1107 [42] 94.44% 98.91
HRank ResNet-110 18 [48] 94.23% 1.04M 148.70
SASL ResNet-1109 [52] 93.99% 1.17M 122.15
SFP ResNet-110 20%10 [68] 93.93% 182.00
SFP ResNet-56 10%11 [68] 93.89% 107.00
SASL ResNet-5612 [52] 93.88% 689.35 k 80.44
SFP ResNet-110 30%13 [68] 93.86% 150.00
Bi-JSVD0.7 ResNet-16 11.9914 [16] 93.84% (0.09%) 930.78 k 373.00
SFP ResNet-110 10%15 [68] 93.83% 216.00
SASL* ResNet-11016 [52] 93.80% 786.04 k 75.36
ShaResNet-16417 [65] 93.80% 930.00 k
LFPC ResNet-11018 [49] 93.79% 101.00
SFP ResNet-56 30%19 [68] 93.78% 74.00
FPGM-only 40% ResNet-11020 [39] 93.74% 121.00
ResRep ResNet-56 121 [50] 93.73% 59.09
LFPC ResNet-56 122 [49] 93.72% 66.40
GAL-0.1 ResNet-11023 [41] 93.59% 1.65M 205.70
SASL* ResNet-5624 [52] 93.58% 538.90 k 53.84
ResNet-110-pruned-A25 [26] 93.55% 1.68M 213.00
HRank ResNet-56 126 [48] 93.52% 710.00 k 88.72
FPGM-only 40% ResNet-5627 [39] 93.49% 59.40
SFP ResNet-56 20%28 [68] 93.47% 89.80
C-SGD-5/8 ResNet-5629 [42] 93.44% 49.13
GBN-4030 [44] 93.43% 395.25 k 50.07
GAL-0.6 ResNet-5631 [41] 93.38% 750.00 k 78.30
NISP-11032 [33] 93.38% 976.10 k
HRank ResNet-110 233 [48] 93.36% 700.00 k 105.70
SFP ResNet-56 40%34 [68] 93.35% 59.40
LFPC ResNet-56 235 [49] 93.34% 59.10
SFP ResNet-32 10%36 [68] 93.22% 58.60
RJSVD-1 ResNet-16 17.7637 [16] 93.19% (0.04%) 628.38 k 350.00
HRank ResNet-56 238 [48] 93.17% 490.00 k 62.72
ResNet-56-pruned-A39 [26] 93.10% 770.10 k 112.00
GBN-3040 [44] 93.07% 283.05 k 37.27
ResNet-56-pruned-B41 [26] 93.06% 733.55 k 90.90
ResNet-110-pruned-B42 [26] 93.00% 1.16M 115.00
NISP-5643 [33] 92.99% 487.90 k 81.00
ADMM TT ResNet-3244 [14] 92.87% 97.29 k
FPGM-mix 40% ResNet-3245 [39] 92.82% 32.30
GAL-0.5 ResNet-11046 [41] 92.74% 950.00 k 130.20
ResRep ResNet-56 247 [50] 92.67% 27.82
SVD ResNet-32 Spatial Hoyer48 [12] 92.66% 26.72
HRank ResNet-110 349 [48] 92.65% 530.00 k 79.30
LFPC ResNet-3250 [49] 92.12% 32.70
nin-c3-lr51 [9] 91.78% 438.00 k 104.00
GAL-0.8 ResNet-5652 [41] 91.58% 290.00 k 49.99
PSTRN-S ResNet-3253 [15] 91.44% 180.00 k
HRank ResNet-56 354 [48] 90.72% 270.00 k 32.52
SFP ResNet-32 20%55 [68] 90.63% 49.00
SFP ResNet-32 30%56 [68] 90.08% 40.30
Table 2
Comparison to the base networks on ImageNet.

Layers Rank decay Top-1 Top-5 params (G)FLOPs

ResNet-50
Conv2D None 76.47% 93.21% 25.56M 3.80
DeCEF Linear 76.61% 93.22% 17.27M 2.90
DeCEF Logarithmic 76.46% 93.24% 16.64M 2.50

DenseNet-121
Conv2D None 74.81% 92.32% 79.79M 2.83
DeCEF Linear 74.85% 92.61% 72.10M 2.81
DeCEF Logarithmic 74.40% 91.89% 62.92M 2.11

HRNet-W18-C
Conv2D None 77.00% 93.50% 21.30M 3.99
DeCEF Linear 76.17% 92.99% 9.490M 2.55
DeCEF Logarithmic 75.11% 92.47% 7.05M 1.27
8

Y. Yu et al.

a

Neurocomputing 609 (2024) 128461
Fig. 5. Ball chart for CIFAR-10, where the size of the ball indicates the number of trainable parameters. For papers that have not reported the FLOPs, we use a cross instead of
ball to represent them. The exact values are reported in Table 1. The number in each ball is the network ID, which is indicated as the superscript of each entry in Table 1.
Fig. 6. Ball chart for ImageNet Top-1 accuracy with the same set up as Fig. 5. The corresponding values can be found in Table 3.
Fig. 7. Ball chart for ImageNet Top-5 accuracy with the same set up as Fig. 5. The corresponding values can be found in Table 3.
improve both performance and efficiency, as these models primarily
focus on architectural designs.

Moreover, exploring the integration of channel pruning techniques
like those employed in ResRep with DeCEF could serve as a potential
future direction, further boosting the efficiency and accuracy of these
configurations.

5. Conclusion and future work

In this paper, we propose a new methodology to observe and
analyze the redundancy in a CNN. Motivated by our observations of
the low rank behaviors in vectorized Conv2D filters, we present a
layer structure DeCEF as an alternative parameterization to Conv2D

filters for the purpose of reducing their complexity in terms of trainable

9
parameters and FLOPs. Our experiments have shown that in a convolu-
tional layer with filter size ℎ × ℎ, it is not necessary to have more than
ℎ2 eigen-filters given the training strategy in Section 2.4.

In terms of the accuracy-to-complexity ratio, it is beneficial to
use more coefficients (i.e. output channels) with fewer eigen-filters in
DeCEF layers. The DeCEF layer is simple to implement in most deep
learning frameworks using depthwise separable convolutions with a
new training strategy. With the deterministic rules for choosing the
effective ranks, it is easy to design and reproduce the results. From our
observations, the underlying subspace structure is a commonly shared
property among different network architectures and topologies, which
provides insights into the design and analysis of CNNs.

For future work, we plan to delve deeper into this low-rank structure
to optimize the selection of effective ranks by exploring more advanced

Y. Yu et al. Neurocomputing 609 (2024) 128461
Table 3
Comparison to state-of-the-art model reduction techniques on ImageNet.

Network Top-5 Acc. Std. Top-1 Acc. Std. No. param. GFLOPs

(a) DeCEF vs. baseline network

HRNet-W18-C0 [61] 93.50% 77.00% 21.30M 3.99
DeCEF-ResNet-50 (lin decay)1 93.22% (0.07%) 76.61% (0.06%) 17.27M 2.90
ResNet-502 [54] 93.21% 76.47% 25.56M 3.80
DeCEF-ResNet-50 (log decay)3 93.24% (0.05%) 76.46% (0.05%) 16.64M 2.50
DeCEF-HRNet-W18-C (inferred rank)4 93.04% 76.30% 12.06M 2.61
DeCEF-HRNet-W18-C (lin decay)5 92.99% 76.17% 9.49M 2.55
DeCEF-HRNet-W18-C (log decay)6 92.47% 75.11% 7.05M 1.27

(b) Related work

EfficientNet-B77 [60] 96.84% 84.43% 64.10M
EfficientNet-B68 [60] 96.90% 84.08% 41.00M
EfficientNet-B59 [60] 96.71% 83.70% 28.50M
EfficientNet-B410 [60] 96.26% 82.96% 17.70M
NASNetLarge11 [70] 96.00% 82.50% 84.90M
EfficientNet-B312 [60] 95.68% 81.58% 10.80M
InceptionResNetV213 [71] 95.25% 80.26% 54.30M
EfficientNet-B214 [60] 94.95% 80.18% 7.80M
EfficientNet-B115 [60] 94.45% 79.13% 6.60M
Xception16 [66] 94.50% 79.00% 22.86M
ResNet152V217 [54] 94.16% 78.03% 58.30M
InceptionV318 [72] 93.72% 77.90% 21.80M
ShaResNet-15219 [65] 93.86% 77.77% 36.80M
DenseNet20120 [56] 93.62% 77.32% 18.30M
ResNet101V221 [54] 93.82% 77.23% 42.60M
EfficientNet-B022 [60] 93.49% 77.19% 4.00M
ShaResNet-10123 [65] 93.45% 77.09% 29.40M
GFP ResNet-50 124 [51] 76.95% 3.06
ResNet15225 [53] 93.12% 76.60% 58.40M
Taylor-FO-BN-91%26 [45] 76.43% 22.60M 3.27
ResNet10127 [53] 92.79% 76.42% 42.70M
GFP ResNet-50 228 [51] 76.42% 2.04
MetaPruning 0.85 ResNet-5029 [43] 76.20% 3.00
GBN-6030 [44] 92.83% 76.19% 17.42M 2.25
DenseNet16931 [56] 93.18% 76.18% 12.60M
ResNet-50 GAL-0.5-joint32 [41] 90.82% 76.15% 19.31M 1.84
ResRep ResNet-50 133 [50] 92.90% 76.15% 1.67
ResNet50V234 [54] 93.03% 75.96% 23.60M
SSS-ResNetXt-4135 [38] 93.00% 75.93% 12.40M 3.23
SASL36 [52] 92.82% 75.76% 1.91
AOFP-C137 [46] 92.69% 75.63% 2.58
ResRep ResNet-50 238 [50] 92.55% 75.49% 1.44
Taylor-FO-BN-81%39 [45] 75.48% 17.90M 2.66
SSS-ResNet-4140 [38] 92.61% 75.44% 25.30M 3.47
MetaPruning 0.75 ResNet-5041 [43] 75.40% 2.00
ShaResNet-5042 [65] 92.59% 75.39% 20.50M
MobileNetV2(alpha = 1.4)43 [59] 92.42% 75.23% 4.40M
ResNet-50 Variational44 [73] 92.10% 75.20% 15.30M
GBN-5045 [44] 92.41% 75.18% 11.91M 1.71
SASL*46 [52] 92.47% 75.15% 1.67
AOFP-C247 [46] 92.28% 75.11% 1.66
ResNet-50 FPGM-only 30%48 [39] 92.40% 75.03% 2.23
SSS-ResNetXt-3849 [38] 92.50% 74.98% 10.70M 2.43
ResNet-50 HRank 150 [48] 92.33% 74.98% 16.15M 2.30
DenseNet12151 [56] 92.26% 74.97% 7.00M
DCP52 [37] 92.32% 74.95% 12.41M 1.69
ResNet5053 [53] 92.06% 74.93% 23.60M
MobilenetV254 [59] 74.70% 6.90M 0.58
MobileNetV2(alpha = 1.3)55 [59] 92.12% 74.68% 3.80M
SFP56 [68] 92.06% 74.61% 2.19
SSS-ResNetXt-35-A57 [38] 92.17% 74.57% 10.00M 2.07
C-SGD-5058 [42] 92.09% 74.54% 1.71
Taylor-FO-BN-72%59 [45] 74.50% 14.20M 2.25
LFPC60 [49] 92.04% 74.46% 1.60
NASNetMobile61 [70] 91.85% 74.37% 4.30M
SSS-ResNet-3262 [38] 91.91% 74.18% 18.60M 2.82
GFP ResNet-50 363 [51] 73.94% 1.02
Pruned-9064 [29] 91.60% 73.56% 23.89M 3.58
MetaPruning 0.5 ResNet-5065 [43] 73.40% 1.00
ShaResNet-3466 [65] 90.58% 73.27% 13.60M
SSS-ResNetXt-35-B67 [38] 91.58% 73.17% 8.50M 1.55
Pruned-7568 [29] 91.27% 72.89% 21.47M 3.19
NISP-50-A69 [33] 72.75% 18.63M 2.76

(continued on next page)
10

Y. Yu et al. Neurocomputing 609 (2024) 128461
Table 3 (continued).
GDP 0.770 [34] 91.05% 72.61% 2.24
ResNet-34-pruned-A71 [26] 72.56% 19.90M 3.08
ResNet-34-pruned-C72 [26] 72.48% 20.10M 3.37
NISP-34-A73 [33] 72.29% 15.74M 2.62
ResNet-50 SSR-L2,0 A74 [40] 91.73% 72.29% 15.50M 1.90
ResNet-34-pruned-B75 [26] 72.17% 19.30M 2.76
ResNet-50 SSR-L2,1 A76 [40] 91.57% 72.13% 15.90M 1.90
NISP-50-B77 [33] 72.07% 14.36M 2.13
ThiNet-7078 [30] 90.67% 72.04% 16.94M 4.88
ResNet-50 HRank 279 [48] 91.01% 71.98% 13.77M 1.55
GDP 0.680 [34] 90.71% 71.89% 1.88
SSS-ResNet-2681 [38] 90.79% 71.82% 15.60M 2.33
Taylor-FO-BN-56%82 [45] 71.69% 7.90M 1.34
NISP-34-B83 [33] 71.65% 12.17M 2.02
ResNet-50 SSR-L2,0 B84 [40] 91.19% 71.47% 12.00M 1.70
MobileNetV2(alpha = 1.0)85 [59] 90.14% 71.34% 2.30M
ResNet-50 SSR-L2,1 B86 [40] 91.29% 71.15% 12.20M 1.70
ThiNet-5087 [30] 90.02% 71.01% 12.38M 3.41
GDP 0.588 [34] 90.14% 70.93% 1.57
Pruned-5089 [29] 90.03% 70.84% 17.38M 2.52
MobileNet(alpha = 1.0)90 [58] 89.50% 70.42% 3.20M
MobileNetV2(alpha = 0.75)91 [59] 89.18% 69.53% 1.40M
ResNet-50 GAL-1-joint92 [41] 89.12% 69.31% 10.21M 1.11
ResNet-50 HRank 393 [48] 89.58% 69.10% 8.27M 0.98
GreBdec (VGG-16)94 [10] 89.06% 68.75% 9.70M
ThiNet-3095 [30] 88.30% 68.42% 8.66M 2.20
MobileNet(alpha = 0.75)96 [58] 88.24% 68.41% 1.80M
GreBdec (GoogLeNet)97 [10] 88.11% 68.30% 1.50M
d-
strategies, such as integrating learnable rank functions. For instance,
in certain network architectures, the effective rank shows an initial
increase followed by a rapid decrease – a phenomenon we aim to
account for in our approach. Moreover, since the DeCEF layer can
be implemented by the depthwise separable convolutions with a new
training strategy, a second future direction is to modify and train
the traditional depthwise separable convolutional layers in well-known
networks using DeCEF to reduce the model complexity. Finally, during
the experiments, we have come up with several hypotheses regarding
the low rank behaviors in deep neural networks that we plan to explore.
In particular, we will investigate the convergence properties, such as
speed and stability with respect to initialization for the subspaces in
different layers to better understand and interpret a CNN from this
perspective.

CRediT authorship contribution statement

Yinan Yu: Methodology development, Software implementation,
Experimental design and analysis, Writing. Samuel Scheidegger: Metho
ology development, Software implementation, Experimental design
and analysis, Writing. Tomas McKelvey: Methodology development,
Results analysis, Review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgment

This work is partially funded by the Chalmers Artificial Intelligence
Research Centre (CHAIR) through the Vermillion project.
11
Appendix A. Proof of Lemma 1

Proof. For each input channel 𝑖, given an additive perturbation matrix
𝛥𝐈𝑖, let �̃�𝑖 = 𝐈𝑖 + 𝛥𝐈𝑖. Given optimal parameters of kernel 𝑗 expressed
as 𝐰(𝑖)

𝑗 =
∑𝑟

𝑘=1 𝑎
(𝑖)
𝑘,𝑗𝐮

(𝑖)
𝑘 , which are learned from the training data, the

output of the convolutional layer is

𝐈𝑗 =
∑

𝑖

(

𝐈𝑖 + 𝛥𝐈𝑖
)

∗ 𝐰(𝑖)
𝑗 =

∑

𝑖

(

𝐈𝑖 + 𝛥𝐈𝑖
)

∗
𝑟
∑

𝑘=1
𝑎(𝑖)𝑘,𝑗𝐮

(𝑖)
𝑘

=
∑

𝑖
𝐈𝑖 ∗

𝑟
∑

𝑘=1
𝑎(𝑖)𝑘,𝑗𝐮𝑘 +

∑

𝑖
𝛥𝐈𝑖 ∗

𝑟
∑

𝑘=1
𝑎(𝑖)𝑘,𝑗𝐮

(𝑖)
𝑘

= 𝐈∗𝑗 +
∑

𝑖
𝛥𝐈𝑖 ∗

𝑟
∑

𝑘=1
𝑎(𝑖)𝑘,𝑗𝐮

(𝑖)
𝑘

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
perturbation term

where 𝐈∗𝑗 denotes the optimal feature map. By using the infinity norm
to characterize the effect of the perturbation, we have:

‖

‖

‖

𝐈∗𝑗 − 𝐈𝑗
‖

‖

‖∞
=

‖

‖

‖

‖

‖

∑

𝑖
𝛥𝐈𝑖 ∗

𝑟
∑

𝑘=1
𝑎(𝑖)𝑘,𝑗𝐮

(𝑖)
𝑘

‖

‖

‖

‖

‖∞

(A.1)

≤
∑

𝑖

‖

‖

‖

‖

‖

𝛥𝐈𝑖 ∗
𝑟
∑

𝑘=1
𝑎(𝑖)𝑘,𝑗𝐮

(𝑖)
𝑘

‖

‖

‖

‖

‖∞

(A.2)

From Young’s inequality:

(A.1) ≤
∑

𝑖

‖

‖

𝛥𝐈𝑖‖‖2
‖

‖

‖

‖

‖

𝑟
∑

𝑘=1
𝑎(𝑖)𝑘,𝑗𝐮

(𝑖)
𝑘

‖

‖

‖

‖

‖2

≤
∑

𝑖

‖

‖

𝛥𝐈𝑖‖‖2
‖

‖

‖

‖

‖

𝑟
∑

𝑘=1
𝑎(𝑖)𝑘,𝑗𝐮

(𝑖)
𝑘

‖

‖

‖

‖

‖2

≤
∑

𝑖

‖

‖

𝛥𝐈𝑖‖‖2
𝑟
∑

𝑘=1

|

|

|

𝑎(𝑖)𝑘,𝑗
|

|

|

‖

‖

‖

𝐮(𝑖)𝑘
‖

‖

‖2

≤
∑

𝑖

‖

‖

𝛥𝐈𝑖‖‖2
𝑟
∑

𝑘=1

|

|

|

𝑎(𝑖)𝑘,𝑗
|

|

|

‖

‖

‖

𝐮(𝑖)𝑘
‖

‖

‖𝐹
(A.3)

≤
∑

‖

‖

𝛥𝐈𝑖‖‖2
‖

‖

‖

𝐚(𝑖)𝑗
‖

‖

‖1

𝑟
∑

‖

‖

‖

𝐮(𝑖)𝑘
‖

‖

‖𝐹
𝑖 𝑘=1

Y. Yu et al.

L

(

w

‖

‖

‖

‖

‖

A

f
f
t

A

Neurocomputing 609 (2024) 128461
where 𝐚(𝑖)𝑗 =
[

𝑎(𝑖)1,𝑗 ⋯ 𝑎(𝑖)𝑟,𝑗
]T

and ‖ ⋅ ‖𝐹 denotes the Frobenius norm.
et �̄�(𝑖)𝑘 = vect(𝐮(𝑖)𝑘), where vect(⋅) denotes the vectorization of a matrix.

If �̄�(𝑖)T�̄�(𝑖) = 𝐈, we have ‖

‖

‖

𝐮(𝑖)𝑘
‖

‖

‖𝐹
= 1 and hence

A.3) ≤
∑

𝑖
𝑟 ‖‖
‖

𝐚(𝑖)𝑗
‖

‖

‖1
‖

‖

𝛥𝐈𝑖‖‖2 ≤
∑

𝑖
𝑟ℎ ‖‖

‖

𝐚(𝑖)𝑗
‖

‖

‖2
‖

‖

𝛥𝐈𝑖‖‖2

here ℎ is the kernel size. If ‖‖
‖

𝐚(𝑖)𝑗
‖

‖

‖2
≤ 𝜖, ∀𝑖, 𝑗, then

∑

𝑖
𝛥𝐈𝑖 ∗ 𝐰(𝑖)

𝑗

‖

‖

‖

‖

‖∞

≤ 𝜖ℎ𝑟
∑

𝑖

‖

‖

𝛥𝐈𝑖‖‖2 □

ppendix B. Network compression using DeCEF layers

One application of DeCEF is to use it as a model reduction technique
or a pre-trained network. As discussed in the paper, this is not the main
ocus of DeCEF. Nevertheless, we propose an algorithm as follows for
his type of applications.

lgorithm 2 (DeCEFC-basenet).

Step 1: Analysis described in Procedure 1.
Step 2: For each layer, let �̄�(𝑖)𝑘 be the columns of �̄�(𝑖). Approximate
𝐰(𝑖)
𝑗 by 𝐰(𝑖)

𝑗 ≈
∑𝑟𝑖

𝑘=1 𝑎
(𝑖)
𝑘,𝑗𝐮

(𝑖)
𝑘 , where 𝐮(𝑖)𝑘 is obtained by reshaping �̄�(𝑖)𝑘

into a ℎ × ℎ matrix.
Step 3 (optional): Network fine-tuning by freezing the eigen-
filters and training the other trainable parameters.

Appendix C. Convergence video

In this supplementary material, we include videos (in the file called
‘‘effective_rank_converge_video.zip’’) to show some examples of how
the effective ranks (cf. Eq. (2) in the paper) in each layer converge
over training epochs. The title of each video indicates the layer index,
i.e. the larger the index, the deeper the layer is. The network and data
used here are the DenseNet-121 and ImageNet, respectively.

In the video, the leftmost rectangular box shows the singular values
computed from all the output channels (filters) for each input channel.
Each row in this figure contains the singular values for one input
channel. The image in the middle is the histogram density of the
effective rank. Each frame in this video shows the singular values and
effective ranks computed from one epoch. Finally, the image on the
right shows the convergence of this effective rank over raining epochs.
Note that due to the limit on the file size, we only show the convergence
for every fourth layer.

Appendix D. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.neucom.2024.128461.

References

[1] S. Luccioni, Y. Jernite, E. Strubell, Power Hungry Processing: Watts Driving the
Cost of AI Deployment?, Association for Computing Machinery, New York, NY,
USA, 2024, http://dx.doi.org/10.1145/3630106.3658542.

[2] P. Belhumeur, J. Hespanha, D. Kriegman, Eigenfaces vs fisher faces recognition
using class specific linear projection, IEEE Trans. Pattern Anal. Mach. Intell. 19
(1997) 711–720.

[3] I.T. Jolliffe, Principal Component Analysis, Springer-Verlag, 1986.
[4] G. Golub, C. van Loan, Matrix Computations, third ed., Johns Hopkins Press,

1996.
[5] Y. Chen, A. Yuille, Z. Zhou, Which layer is learning faster? A systematic

exploration of layer-wise convergence rate for deep neural networks, in: The
Eleventh International Conference on Learning Representations, 2023, URL:
https://openreview.net/forum?id=wlMDF1jQF86.

[6] M. Jaderberg, A. Vedaldi, A. Zisserman, Speeding up convolutional neural
networks with low rank expansions, in: Proceedings of the British Machine Vision
Conference, BMVA Press, 2014, http://dx.doi.org/10.5244/C.28.88.
12
[7] C. Tai, T. Xiao, Y. Zhang, X. Wang, et al., Convolutional neural networks with
low-rank regularization, 2015, arXiv preprint arXiv:1511.06067.

[8] S. Lin, R. Ji, C. Chen, D. Tao, J. Luo, Holistic cnn compression via low-rank
decomposition with knowledge transfer, IEEE Trans. Pattern Anal. Mach. Intell.
41 (12) (2018) 2889–2905.

[9] Y. Ioannou, D. Robertson, J. Shotton, R. Cipolla, A. Criminisi, Training cnns
with low-rank filters for efficient image classification, 2015, arXiv preprint
arXiv:1511.06744.

[10] X. Yu, T. Liu, X. Wang, D. Tao, On compressing deep models by low rank and
sparse decomposition, in: The IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2017.

[11] J.M. Alvarez, M. Salzmann, Compression-aware training of deep networks, in:
Advances in Neural Information Processing Systems, 2017, pp. 856–867.

[12] H. Yang, M. Tang, W. Wen, F. Yan, D. Hu, A. Li, H. Li, Y. Chen, Learning
low-rank deep neural networks via singular vector orthogonality regularization
and singular value sparsification, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, 2020.

[13] H. Dbouk, N. Shanbhag, Generalized depthwise-separable convolutions for adver-
sarially robust and efficient neural networks, in: A. Beygelzimer, Y. Dauphin, P.
Liang, J.W. Vaughan (Eds.), Advances in Neural Information Processing Systems,
2021.

[14] M. Yin, Y. Sui, S. Liao, B. Yuan, Towards efficient tensor decomposition-based
DNN model compression with optimization framework, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2021,
pp. 10674–10683.

[15] N. Li, Y. Pan, Y. Chen, Z. Ding, D. Zhao, Z. Xu, Heuristic rank selection with
progressively searching tensor ring network, Complex Intell. Syst. (2021) 1–15.

[16] S. Chen, J. Zhou, W. Sun, L. Huang, Joint matrix decomposition for deep
convolutional neural networks compression, Neurocomputing 516 (2023) 11–26,
http://dx.doi.org/10.1016/j.neucom.2022.10.021.

[17] E.L. Denton, W. Zaremba, J. Bruna, Y. LeCun, R. Fergus, Exploiting linear struc-
ture within convolutional networks for efficient evaluation, in: Z. Ghahramani,
M. Welling, C. Cortes, N.D. Lawrence, K.Q. Weinberger (Eds.), Advances in
Neural Information Processing Systems 27, Curran Associates, Inc., 2014, pp.
1269–1277.

[18] W. Wen, C. Xu, C. Wu, Y. Wang, Y. Chen, H. Li, Coordinating filters for faster
deep neural networks, in: The IEEE International Conference on Computer Vision,
ICCV, 2017.

[19] B. Peng, W. Tan, Z. Li, S. Zhang, D. Xie, S. Pu, Extreme network compression
via filter group approximation, in: Proceedings of the European Conference on
Computer Vision, ECCV, 2018, pp. 300–316.

[20] Y. LeCun, J.S. Denker, S.A. Solla, Optimal brain damage, in: D.S. Touretzky (Ed.),
Advances in Neural Information Processing Systems 2, Morgan-Kaufmann, 1990,
pp. 598–605.

[21] B. Hassibi, D.G. Stork, G.J. Wolff, Optimal Brain Surgeon and general network
pruning, in: IEEE International Conference on Neural Networks, Vol. 1, 1993,
pp. 293–299, http://dx.doi.org/10.1109/ICNN.1993.298572.

[22] S. Anwar, K. Hwang, W. Sung, Structured pruning of deep convolutional neural
networks, J. Emerg. Technol. Comput. Syst. 13 (3) (2017) 32:1–32:18, http:
//dx.doi.org/10.1145/3005348.

[23] S. Han, J. Pool, J. Tran, W.J. Dally, Learning both weights and connections for
efficient neural networks, in: Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 1, NIPS ’15, MIT Press,
Cambridge, MA, USA, 2015, pp. 1135–1143.

[24] P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz, Pruning convolutional neural
networks for resource efficient inference, 2016, arXiv preprint arXiv:1611.06440.

[25] H. Hu, R. Peng, Y.-W. Tai, C.-K. Tang, Network trimming: A data-driven neuron
pruning approach towards efficient deep architectures, 2016, arXiv preprint
arXiv:1607.03250.

[26] H. Li, A. Kadav, I. Durdanovic, H. Samet, H.P. Graf, Pruning filters for efficient
convnets, 2016, arXiv preprint arXiv:1608.08710.

[27] A. Aghasi, A. Abdi, N. Nguyen, J. Romberg, Net-trim: Convex pruning of deep
neural networks with performance guarantee, in: Advances in Neural Information
Processing Systems, 2017, pp. 3177–3186.

[28] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, C. Zhang, Learning efficient convolutional
networks through network slimming, in: Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 2736–2744.

[29] J.-H. Luo, J. Wu, An entropy-based pruning method for cnn compression, 2017,
arXiv preprint arXiv:1706.05791.

[30] J.-H. Luo, J. Wu, W. Lin, Thinet: A filter level pruning method for deep neural
network compression, in: Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 5058–5066.

[31] Y. He, X. Zhang, J. Sun, Channel pruning for accelerating very deep neural
networks, in: Proceedings of the IEEE International Conference on Computer
Vision, Vol. 2017-Octob, 2017, pp. 1398–1406, http://dx.doi.org/10.1109/ICCV.
2017.155, arXiv:arXiv:1707.06168v2.

[32] Q. Huang, K. Zhou, S. You, U. Neumann, Learning to prune filters in
convolutional neural networks, 2018, arXiv preprint arXiv:1801.07365.

[33] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V.I. Morariu, X. Han, M. Gao, C.-Y. Lin, L.S.
Davis, NISP: Pruning networks using neuron importance score propagation, in:
The IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018.

https://doi.org/10.1016/j.neucom.2024.128461
http://dx.doi.org/10.1145/3630106.3658542
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb2
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb2
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb2
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb2
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb2
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb3
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb4
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb4
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb4
https://openreview.net/forum?id=wlMDF1jQF86
http://dx.doi.org/10.5244/C.28.88
http://arxiv.org/abs/1511.06067
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb8
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb8
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb8
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb8
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb8
http://arxiv.org/abs/1511.06744
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb10
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb10
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb10
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb10
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb10
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb11
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb11
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb11
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb12
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb12
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb12
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb12
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb12
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb12
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb12
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb13
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb13
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb13
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb13
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb13
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb13
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb13
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb14
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb14
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb14
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb14
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb14
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb14
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb14
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb15
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb15
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb15
http://dx.doi.org/10.1016/j.neucom.2022.10.021
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb17
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb17
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb17
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb17
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb17
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb17
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb17
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb17
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb17
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb18
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb18
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb18
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb18
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb18
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb19
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb19
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb19
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb19
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb19
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb20
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb20
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb20
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb20
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb20
http://dx.doi.org/10.1109/ICNN.1993.298572
http://dx.doi.org/10.1145/3005348
http://dx.doi.org/10.1145/3005348
http://dx.doi.org/10.1145/3005348
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb23
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb23
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb23
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb23
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb23
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb23
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb23
http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/1607.03250
http://arxiv.org/abs/1608.08710
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb27
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb27
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb27
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb27
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb27
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb28
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb28
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb28
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb28
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb28
http://arxiv.org/abs/1706.05791
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb30
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb30
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb30
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb30
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb30
http://dx.doi.org/10.1109/ICCV.2017.155
http://dx.doi.org/10.1109/ICCV.2017.155
http://dx.doi.org/10.1109/ICCV.2017.155
http://arxiv.org/abs/arXiv:1707.06168v2
http://arxiv.org/abs/1801.07365
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb33
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb33
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb33
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb33
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb33

Y. Yu et al. Neurocomputing 609 (2024) 128461
[34] S. Lin, R. Ji, Y. Li, Y. Wu, F. Huang, B. Zhang, Accelerating convolutional
networks via global & dynamic filter pruning, in: IJCAI, 2018, pp. 2425–2432.

[35] F. Tung, G. Mori, Clip-q: Deep network compression learning by in-parallel
pruning-quantization, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 7873–7882.

[36] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, Y. Wang, A systematic
dnn weight pruning framework using alternating direction method of multipliers,
in: Proceedings of the European Conference on Computer Vision, ECCV, 2018,
pp. 184–199.

[37] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang, J. Zhu,
Discrimination-aware channel pruning for deep neural networks, in: Advances
in Neural Information Processing Systems, 2018, pp. 875–886.

[38] Z. Huang, N. Wang, Data-driven sparse structure selection for deep neural
networks, in: Proceedings of the European Conference on Computer Vision,
ECCV, 2018, pp. 304–320.

[39] Y. He, P. Liu, Z. Wang, Z. Hu, Y. Yang, Filter pruning via geometric median
for deep convolutional neural networks acceleration, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp. 4340–4349.

[40] S. Lin, R. Ji, Y. Li, C. Deng, X. Li, Toward compact convnets via structure-sparsity
regularized filter pruning, IEEE Trans. Neural Netw. Learn. Syst. 31 (2) (2019)
574–588.

[41] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, D. Doermann,
Towards optimal structured cnn pruning via generative adversarial learning, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 2790–2799.

[42] X. Ding, G. Ding, Y. Guo, J. Han, Centripetal sgd for pruning very deep
convolutional networks with complicated structure, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp. 4943–4953.

[43] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K.-T. Cheng, J. Sun, Metapruning:
Meta learning for automatic neural network channel pruning, in: Proceedings of
the IEEE International Conference on Computer Vision, 2019, pp. 3296–3305.

[44] Z. You, K. Yan, J. Ye, M. Ma, P. Wang, Gate decorator: Global filter pruning
method for accelerating deep convolutional neural networks, 2019, arXiv:1909.
08174.

[45] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, J. Kautz, Importance estimation
for neural network pruning, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR, 2019.

[46] X. Ding, G. Ding, Y. Guo, J. Han, C. Yan, Approximated oracle filter pruning
for destructive CNN width optimization, in: K. Chaudhuri, R. Salakhutdinov
(Eds.), Proceedings of the 36th International Conference on Machine Learning, in:
Proceedings of Machine Learning Research, vol. 97, PMLR, 2019, pp. 1607–1616.

[47] J.-H. Luo, J. Wu, Autopruner: An end-to-end trainable filter pruning method for
efficient deep model inference, Pattern Recognit. (2020) 107461.

[48] M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, L. Shao, HRank:
Filter pruning using high-rank feature map, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp. 1529–1538.

[49] Y. He, Y. Ding, P. Liu, L. Zhu, H. Zhang, Y. Yang, Learning filter pruning
criteria for deep convolutional neural networks acceleration, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR,
2020.

[50] X. Ding, T. Hao, J. Liu, J. Han, Y. Guo, G. Ding, Lossless cnn channel pruning via
gradient resetting and convolutional re-parameterization, 2020, arXiv preprint
arXiv:2007.03260. 1.

[51] L. Liu, S. Zhang, Z. Kuang, A. Zhou, J.-H. Xue, X. Wang, Y. Chen, W. Yang,
Q. Liao, W. Zhang, Group fisher pruning for practical network compression, in:
M. Meila, T. Zhang (Eds.), Proceedings of the 38th International Conference
on Machine Learning, in: Proceedings of Machine Learning Research, vol. 139,
PMLR, 2021, pp. 7021–7032.

[52] J. Shi, J. Xu, K. Tasaka, Z. Chen, SASL: Saliency-adaptive sparsity learning for
neural network acceleration, IEEE Trans. Circuits Syst. Video Technol. 31 (5)
(2021) 2008–2019, http://dx.doi.org/10.1109/TCSVT.2020.3013170.

[53] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
2016, pp. 770–778, http://dx.doi.org/10.1109/CVPR.2016.90.

[54] K. He, X. Zhang, S. Ren, J. Sun, Identity mappings in deep residual networks,
in: European Conference on Computer Vision, Springer, 2016, pp. 630–645.

[55] F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer,
Squeezenet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB
model size, 2016, arXiv preprint arXiv:1602.07360.

[56] G. Huang, Z. Liu, L. van der Maaten, K.Q. Weinberger, Densely connected
convolutional networks, 2016, arXiv:1608.06993.

[57] S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated residual transfor-
mations for deep neural networks, in: Proceedings - 30th IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, Vol. 2017-January,
2017, pp. 5987–5995, http://dx.doi.org/10.1109/CVPR.2017.634, arXiv:arXiv:
1611.05431v2.

[58] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.
Andreetto, H. Adam, Mobilenets: Efficient convolutional neural networks for
mobile vision applications, 2017, arXiv preprint arXiv:1704.04861.
13
[59] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.C. Chen, MobileNetV2: Inverted
residuals and linear bottlenecks, in: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520,
http://dx.doi.org/10.1109/CVPR.2018.00474, arXiv:arXiv:1801.04381v4.

[60] M. Tan, Q.V. Le, Efficientnet: Rethinking model scaling for convolutional neural
networks, 2019, arXiv preprint arXiv:1905.11946.

[61] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan, X.
Wang, et al., Deep high-resolution representation learning for visual recognition,
IEEE Trans. Pattern Anal. Mach. Intell. (2020).

[62] S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding, 2015, arXiv
preprint arXiv:1510.00149.

[63] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, XNOR-Net: ImageNet classi-
fication using binary convolutional neural networks, in: B. Leibe, J. Matas, N.
Sebe, M. Welling (Eds.), Computer Vision – ECCV 2016, Springer International
Publishing, Cham, 2016, pp. 525–542.

[64] X. Suau, L. Zappella, N. Apostoloff, Network compression using correlation
analysis of layer responses, 2018, arXiv:1807.10585.

[65] A. Boulch, Reducing parameter number in residual networks by sharing weights,
Pattern Recognit. Lett. 103 (2018) 53–59, http://dx.doi.org/10.1016/j.patrec.
2018.01.006.

[66] F. Chollet, Xception: Deep learning with depthwise separable convolutions, in:
The IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017.

[67] A. Krizhevsky, G. Hinton, Learning Multiple Layers of Features from Tiny Images,
Technical Report, Citeseer, 2009.

[68] Y. He, G. Kang, X. Dong, Y. Fu, Y. Yang, Soft filter pruning for accelerating deep
convolutional neural networks, 2018, arXiv preprint arXiv:1808.06866.

[69] J. Deng, W. Dong, R. Socher, L. Li, K. Li, L. Fei-Fei, ImageNet: A large-scale
hierarchical image database, in: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 248–255, http://dx.doi.org/10.1109/CVPR.2009.
5206848.

[70] B. Zoph, V. Vasudevan, J. Shlens, Q.V. Le, Learning transferable architectures for
scalable image recognition, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 8697–8710.

[71] S. Christian, I. Sergey, V. Vincent, A. Alexander, Inception-v4, inception-resnet
and the impact of residual connections on learning, 2017.

[72] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception
architecture for computer vision, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.

[73] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, Q. Tian, Variational convolutional
neural network pruning, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 2780–2789.

Dr. Yinan Yu is an Assistant Professor in the Computer
Science and Engineering Department at Chalmers Univer-
sity of Technology, Gothenburg, Sweden. Dr. Yu holds a
Master’s degree in Communication Engineering and a Ph.D.
in Machine Learning and Signal Processing. Her current
research focuses on automated machine learning for efficient
and interpretable training and human-in-the-loop natural
language processing, applied primarily to the industries of
automotive, smart manufacturing and healthcare.

Samuel Scheidegger received his B.Sc. degree in Mecha-
tronics and his M.Sc. degree in Systems, Control, and
Mechatronics from Chalmers University of Technology in
Gothenburg, Sweden, in 2013 and 2015, respectively. Since
then, he has worked in the automotive industry and co-
founded two AI start-up companies, including his current
position as CEO of Asymptotic AI and Lumilogic. He has
been actively conducting research in the fields of deep learn-
ing, computer vision, robotics, and autonomous systems. His
research interests include optimizing deep learning models
for computer vision tasks, with a focus on network optimiza-
tion, model compression, and alternative parameterizations,
as well as advancing technologies in various domains of
autonomous systems to enhance their performance.

Tomas McKelvey (Senior Member, IEEE) received the M.Sc.
degree in electrical engineering from Lund University, Lund,
Sweden, in 1991, and the Ph.D. degree in automatic control
from Linköping University, Linköping, Sweden, in 1995.,He
held research and teaching positions with Linköping Uni-
versity, from 1995 to 1999, where he became a Docent,
in 1999. From 1999 and 2000, he was a Visiting Re-
searcher with the University of Newcastle, Newcastle, NSW,

http://refhub.elsevier.com/S0925-2312(24)01232-3/sb34
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb34
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb34
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb35
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb35
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb35
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb35
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb35
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb36
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb36
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb36
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb36
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb36
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb36
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb36
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb37
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb37
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb37
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb37
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb37
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb38
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb38
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb38
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb38
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb38
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb39
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb39
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb39
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb39
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb39
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb40
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb40
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb40
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb40
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb40
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb41
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb41
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb41
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb41
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb41
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb41
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb41
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb42
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb42
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb42
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb42
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb42
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb43
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb43
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb43
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb43
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb43
http://arxiv.org/abs/1909.08174
http://arxiv.org/abs/1909.08174
http://arxiv.org/abs/1909.08174
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb45
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb45
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb45
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb45
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb45
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb46
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb46
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb46
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb46
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb46
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb46
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb46
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb47
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb47
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb47
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb48
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb48
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb48
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb48
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb48
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb49
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb49
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb49
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb49
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb49
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb49
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb49
http://arxiv.org/abs/2007.03260
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb51
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb51
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb51
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb51
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb51
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb51
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb51
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb51
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb51
http://dx.doi.org/10.1109/TCSVT.2020.3013170
http://dx.doi.org/10.1109/CVPR.2016.90
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb54
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb54
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb54
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1608.06993
http://dx.doi.org/10.1109/CVPR.2017.634
http://arxiv.org/abs/arXiv:1611.05431v2
http://arxiv.org/abs/arXiv:1611.05431v2
http://arxiv.org/abs/arXiv:1611.05431v2
http://arxiv.org/abs/1704.04861
http://dx.doi.org/10.1109/CVPR.2018.00474
http://arxiv.org/abs/arXiv:1801.04381v4
http://arxiv.org/abs/1905.11946
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb61
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb61
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb61
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb61
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb61
http://arxiv.org/abs/1510.00149
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb63
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb63
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb63
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb63
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb63
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb63
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb63
http://arxiv.org/abs/1807.10585
http://dx.doi.org/10.1016/j.patrec.2018.01.006
http://dx.doi.org/10.1016/j.patrec.2018.01.006
http://dx.doi.org/10.1016/j.patrec.2018.01.006
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb66
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb66
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb66
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb67
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb67
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb67
http://arxiv.org/abs/1808.06866
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb70
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb70
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb70
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb70
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb70
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb71
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb71
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb71
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb72
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb72
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb72
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb72
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb72
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb73
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb73
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb73
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb73
http://refhub.elsevier.com/S0925-2312(24)01232-3/sb73

Y. Yu et al. Neurocomputing 609 (2024) 128461
Australia. Since 2000, he has been with the Chalmers
University of Technology, Gothenburg, Sweden, where he
was a Full Professor and has been the head of the Signal
Processing Group, since 2006 and 2011, respectively. His
14
research interests include model-based and statistical signal
processing, system identification, and optimal control with
applications to radar systems, electrical power systems, and
vehicle propulsion systems.

	Building efficient CNNs using Depthwise Convolutional Eigen-Filters (DeCEF)
	Introduction
	DeCEF Layers
	Motivation
	Definition
	Properties
	Training algorithms
	The optimization problem
	Relaxed regularization
	Deterministic rule-based hyperparameters
	Training algorithm

	Refactor a conv2d network into scef

	Related Work
	Experiments and Results
	Hardware
	Dataset CIFAR-10: Ablation Study
	Dataset ImageNet (ILSVRC-2012)
	Comparison to related work

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	Appendix A. Proof of Lemma 1
	Appendix B. Network compression using DeCEF layers
	Appendix C. Convergence video
	Appendix D. Supplementary data
	References

