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Runtime Verification and Field-Based Testing for
ROS-Based Robotic Systems

Ricardo Caldas , Juan Antonio Piñera García , Matei Schiopu , Patrizio Pelliccione ,
Genaína Rodrigues , and Thorsten Berger

Abstract—Robotic systems are becoming pervasive and
adopted in increasingly many domains, such as manufacturing,
healthcare, and space exploration. To this end, engineering
software has emerged as a crucial discipline for building main-
tainable and reusable robotic systems. The field of robotics
software engineering research has received increasing attention,
fostering autonomy as a fundamental goal. However, robotics
developers are still challenged trying to achieve this goal given
that simulation is not able to deliver solutions to realistically
emulate real-world phenomena. Robots also need to operate in
unpredictable and uncontrollable environments, which require
safe and trustworthy self-adaptation capabilities implemented in
software. Typical techniques to address the challenges are run-
time verification, field-based testing, and mitigation techniques
that enable fail-safe solutions. However, there is no clear guidance
to architect ROS-based systems to enable and facilitate runtime
verification and field-based testing. This paper aims to fill in
this gap by providing guidelines that can help developers and
quality assurance (QA) teams when developing, verifying or
testing their robots in the field. These guidelines are carefully
tailored to address the challenges and requirements of testing
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robotics systems in real-world scenarios. We conducted (i) a
literature review on studies addressing runtime verification and
field-based testing for robotic systems, (ii) mined ROS-based
applications repositories, and (iii) validated the applicability,
clarity, and usefulness via two questionnaires with 55 answers
overall. We contribute 20 guidelines: 8 for developers and 12
for QA teams formulated for researchers and practitioners in
robotic software engineering. Finally, we map our guidelines
to open challenges thus far in runtime verification and field-
based testing for ROS-based systems and, we outline promising
research directions in the field. Guidelines website and replication
package: https://ros-rvft.github.io.

Index Terms—Field-based testing, runtime verification, robotic
systems, robot operating system (ROS), uncertainty, guidelines.

I. INTRODUCTION

ROBOTICS has become fundamental to societal advance-
ment, featuring applications that range from microma-

chinery for medicine and healthcare to space exploration and
navigation [1]. As robots become increasingly pervasive, the
role of software in robotic systems is rising significantly [2],
[3]. For instance, considering service robotics, studies have
shown that a significant amount of resources is spent on building
software rather than hardware [4]. The importance of software
can be explained by the need to deploy robots with high auton-
omy and self-adaptation capabilities, allowing robots to operate
under uncertainty [5], [6].

In the light of the growing recognition of software’s pivotal
role in robotics, software engineering is crucial for mission
specification [7], [8], [9], [10], system architecture definition
[11], [12], component design, implementation [13], [14], [15]
as well as verification and validation [16], [17], [18]. Achieving
autonomy, which minimizes human intervention, is a funda-
mental goal in robotics. However, despite the progress made,
robotic systems still face challenges in adapting to real-world
scenarios [19]. There is a need for instruments to deal with the
openness and uncertainty of robots’ operational environments –
requiring (self-) adaptiveness capabilities and specific quality
assurance techniques.

The toughest challenges in engineering software for robotics
are: achieving robustness, costly and slow quality assurance
provision processes, and lack of means to design dynamic
(self-)adaptation [3], [20]. Furthermore, current simulation so-
lutions are not able to emulate real-world phenomena in a
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sufficiently realistic manner, so developers prefer real-world
experimentation to simulation [3], [20]. The robotics domain
specificity is that (i) robots act in the real world, which intro-
duces all sorts of unexpected error cases that should be caught
and managed, (ii) the robots can change the environment itself
via actions, and (iii) due to uncertainty and high variability,
it is difficult to model real-world environments where robots
operate, especially those that involve humans [3], [20].

In this context, it is impractical or even impossible to have
robot’s correct behavior guarantees at design time. To collect
guarantees in robotics, quality assurance techniques must antic-
ipate faulty scenarios, in spite of the complexities of runtime.
Complexities arise from large input spaces, unpredictable cor-
ner cases, and lack of an oracle. Typical techniques to mitigate
such complexities include using heuristics (e.g., test coverage
[21]), or exploiting information available only at runtime [22],
[23]). It is unclear, however, how to systematically adopt such
techniques in a real-world setting.

ROS (Robot Operating System) is the de facto standard
for robot application development and it has revolutionized
robotics software engineering. However, there are still limited
advances in quality assurance methods for ROS-based sys-
tems. Alami et al. [24] studied the effects of standards and
practices of the ROS community contributing to quality assur-
ance practices, highlighting what the influencers to success-
ful adoption of quality assurance in the ROS community are.
Moreover, tooling such as HAROS [25] promotes property-
based testing of ROS applications by automatically deriving
test cases from requirements specified in formal properties
and the source code, which enables gaining confidence in
ROS applications. However, there are no reported guidelines
on available tooling and quality assurance techniques tack-
ling real-world complexities for gaining confidence in ROS-
based applications.

Our goal is to address this gap by establishing guidelines
that can help developers and quality assurance (QA) teams
when developing, verifying (runtime verification), or testing
their robots in the field. In fact, despite recent efforts in pro-
viding guidance to architecting ROS-based systems [26], there
is no clear guidance on how to design ROS-based systems to
enable and facilitate quality assurance with verification and
testing, especially at runtime. Our guidelines are tailored to
ROS-based systems. They are defined not only for QA teams but
also for developers. QA teams are responsible for the robotic
systems’ verification and validation. Developers are responsi-
ble for preparing software for field-based testing and runtime
verification. Our research questions are:

RQ1. What guidelines should robotics developers follow
to design ROS-based systems in order to enable and
facilitate runtime verification and field-based testing?

RQ2. What guidelines should quality assurance teams fol-
low to perform runtime verification and field-based
testing for ROS-based applications?

Fig. 1 illustrates our methodology. First, we systematically
reviewed the literature on runtime verification and field-based
testing of ROS-based systems. After we sketched the first drafts
of the guidelines, we performed specific searches on search

Fig. 1. Synthesis of 20 guidelines to runtime verification and field-based
testing.

engines and scientific databases tailored to the specific guide-
lines to complement knowledge gaps. We also performed an
in-depth analysis of repositories with open-source robotics ap-
plications that contain solutions to the challenges we identified.
Thereafter, we synthesized actionable guidelines and enriched
by concrete exemplars collected from the repositories through
an online questionnaire. Finally, we validated the guidelines’
applicability, clarity, and usefulness with robotics experts, in-
cluding active researchers and practitioners.

Our study results in 20 guidelines: 8 guidelines for developers
and 12 guidelines for QA teams. The catalogue of guidelines
is specifically designed to instruct practitioners in the field-
based testing of ROS-based systems, from both rigorous de-
velopment and real-world testing and verification lenses. These
guidelines are carefully crafted to address the challenges and
requirements of testing and verification of robotic systems in
real-world scenarios. Practitioners can identify best practices
and recommendations to simplify, facilitate, and make more
effective the verification and validation at runtime of their
ROS-based robotic systems. We offer an overview of existing
methods and tools for testing ROS-based systems, focusing
on how they address the challenges of field-based testing and
runtime verification.

Researchers can identify limitations, strengths, and gaps in
the research landscape. We relate the guidelines with open
challenges in runtime verification and field-based testing, and
discuss promising research directions in the field.

II. BACKGROUND

We introduce the Robot Operating System (ROS) (Sec-
tion II-A), runtime verification (Section II-B), and field-based
testing in robotics (Section II-C).

A. Robotic Systems Development Based on ROS

Robot Operating System (ROS) is an ecosystem for develop-
ing robotic systems. Mainly, ROS comprises a middleware for
interfacing fundamental robotic components (i.e., hardware, or
software) with the ambition to eliminate re-inventing the wheel
as a practice in robotics software engineering. ROS is used both
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in academia for teaching and research, and in industry, promot-
ing commercial-friendly policies. ROS is prominently backed
by a crescent and active open-source community. In the ROS
ecosystem, the software is organized into basic building blocks
called packages, that are meant to serve enough functionality to
be useful. Over time, distributions became very large, surpass-
ing 4000 packages in the ROS distribution Melodic Morenia.
Furthermore, many open-source packages are not part of the
official distributions.

A typical ROS-based system contains distributed resources
interacting with each other. This network of resources is called
the ROS Computation Graph, which is composed by four
main elements:

• Nodes are the main resources in a ROS computation graph.
They are processes that consume, process, and produce
data. They communicate with each other via message
passing. The other types of resources either hold shared
data (parameters) or serve as message-passing channels
(topics and services). Nodes should be specific and mod-
ular, rather than monolithic components. It is normal for
a single robot to have a network of many nodes.

• Topics is the most common message-passing mechanism.
It follows an asynchronous publish-subscribe model with
many-to-many connections. Publishers can send messages
at any time, independently of the number of active sub-
scribers. Subscribers, upon receiving a new message, are
alerted through a callback function. Both publishers and
subscribers utilize a message queue, the size of which is
user-determined.

• Services, which are offered as the second message-passing
option by ROS, facilitate synchronous one-to-one interac-
tions through remote procedure calls. This model distin-
guishes between a server (node providing the service) and
a client (node using the service).

• Parameters represent the last resource type, providing
data sharing among nodes without relying on direct mes-
saging or explicit communication. ROS maintains a local
parameter server, a shared key-value store, which is acces-
sible for reading and writing by any node or user, such as
through a command line.

ROS is currently migrating to ROS 2, which introduces
significant changes to managing the computation graph. This
requires effort from developers to migrate their applications. As
a result, some providers maintain their applications in previous
ROS distributions while implementing new ones in ROS 2. For
instance, MoveIt, a popular framework for robotics manipu-
lation, maintains two versions. In our paper, we distinguish
between ROS and ROS 2 when necessary. We believe that
eventually ROS 2 will become the standard.

B. Runtime Verification in Robotics

Runtime Verification (or Runtime Monitoring1) comprises
methods to analyze and check the dynamic behavior of com-
putational systems [27], [28]. Runtime verification ensures that

1There is no agreement in the community about which terminology is
correct.

Fig. 2. A classification of field-based testing strategies by Bertolino
et al. [34].

a property expressed with a formal language is not violated
at runtime. It consists of a lightweight, yet rigorous, formal
method that complements classical exhaustive verification tech-
niques (e.g., model checking and theorem proving) with a more
practical approach that analyses execution traces. At the price
of limited execution coverage, RV can give precise information
on the system’s runtime behavior.

We follow the taxonomy of Falcone et al. [29] to discuss
runtime verification in robotics. Runtime verification plays an
important role in checking robotic software. Typically, robotic
applications operate in uncertain environments, placing fun-
damental barriers to exhaustive verification. As such, runtime
verification turns out to be a promising direction for gathering
confidence in robotic systems.

In robotics, runtime verification may rely on reactive syn-
thesis for generating monitors from specified system proper-
ties [30]. Monitors check properties at runtime. For example,
monitors can be used to encode safety constraints that, upon
violation, may trigger reactive behaviors that engage the system
in a recovery mode [31]. Monitors check properties against
traces of execution, i.e., a finite sequence of observations that
represents the behavior of interest. The process of adding mon-
itors to the system is called instrumentation. For instance, in-
strumentation may be needed to collect UAV data (e.g., GPS
coordinates, attitude, and mission status), which is aggregated,
analyzed, and persisted [32]. The aggregated data can either be
checked on-the-fly (i.e., online monitoring) or in a post-mortem
analysis (i.e., offline monitoring). The post-mortem analysis is
an after-the-fact analysis technique that uses collected traces to
validate the robotic system, e.g., Brunner et al. [33] proposes
an architecture to robotics with an emphasis on post-mortem
analysis by combining execution history logs (a.k.a. traces),
Gantt charts, resource usage profiles, and task execution metrics
and statistics.

C. Field-Based Testing in Robotics

Field-based testing2 is a testing technique that uses (but is not
constrained to) information from the field (a.k.a. the real world).
We follow the definitions from Bertolino et al. [34]. As shown in
Fig. 2, field-based testing includes in-vivo testing, i.e., tests that
are executed in the production environment, and in-vitro testing,
i.e., tests that are executed in the development environment but
that are using data from the field.

2Please notice that Field Testing is different from Field-based Testing.
The former is part of the latter.
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Fig. 3. Overview of the activities to synthesizing guidelines according to
design science.

In-house Testing (in-vitro) uses information from the field
in tests conducted in the development environment. A typical
scenario of in-vitro testing is when developers collect an abnor-
mal behavior from runtime and want to better understand it by
experimenting with such a scenario in simulation.
Field Testing (in-vivo) refers to tests that are executed in the
production environment. Field tests may be divided into two
sub-categories: offline testing and online testing. Field testing,
as opposed to in-house testing, is desirable when the system
itself operates in environments subject to uncertainty, whereas
modeling and simulating the production environment is error-
prone and may lead to false results.

Offline Field Testing is performed in the production envi-
ronment on an instance of the system under test (SUT) that
is different from the operational one. Then, the testing team
may understand and validate the system by applying the desired
inputs in the replica. This approach minimizes interference in
the nominal operation of the system and may be more cost-
effective than online field testing.

Online Field Testing is performed in the production environ-
ment. Online field testing is closer to reality, reducing the effect
of uncertainty in the tests substantially. Other implications, such
as security, privacy, and safety may emerge from performing
online field testing.

III. METHODOLOGY

Our study contributes guidelines for development and quality
assurance involved with engineering ROS-based applications.
We focus on runtime verification and field-based testing to
validate ROS-based applications. Our target audience is mainly
practitioners and researchers interested in understanding the
state-of-the-art of testing and RV in ROS in the light of growing
recognition of software pivotal role in robotic software engi-
neering. We aim to deliver concrete scientific artifacts that can
be used by the ROS community [24].

We follow design science [35], [36], [37] to answer our re-
search questions. We perform three research cycles, as depicted
in Fig. 3. Each research cycle focuses on creating awareness
about the problem domain and possible solutions, synthesizing
a solution, and validating whether the solution mitigates the

problem. In the three cycles, we incrementally synthesized a
set of guidelines that answer our research questions.

First Cycle. The first cycle is devoted to establishing aware-
ness of the state-of-the-art of field-based testing and runtime
verification in robotics through existing surveys. Through a
literature review in Scopus, IEEE Xplore, and ACM DL, we
collected surveys that discuss runtime verification and field-
based testing. We, then, reviewed the surveys to define the
terminology to delimit the scope of the study and the search
strings that we would use in the next iteration. These surveys
also played a role in the identification of sketches of guidelines
(which should be considered as input for the second cycle)
and in the identification of challenges, which are discussed
in Section VI. The terminology and the search strings were
internally validated through peer reviews and discussions with
co-authors to consolidate the terminology and scope.

Second Cycle. We, then, used the search strings defined in
the previous cycle to perform a systematic literature review.
Then, we defined a template for describing the guidelines and a
first draft of the guidelines. More specifically, the data extracted
from surveyed papers has been used to identify an initial set of
guidelines. In this step, we identified 8 guidelines, 4 concerning
the developers’ activities and 4 concerning the quality assurance
team activities (as reported in the replication package [38]).
As presented later in the paper, the final set of guidelines is
much larger (20 guidelines) since some of this initial set of
guidelines have been split into more guidelines and new ones
have been added. As a preliminary validation step, we presented
a subset of the guidelines’ sketches at the Robotics Software
Engineering workshop3. We received feedback on the guide-
lines from three experts in robotics through a questionnaire and
subsequent discussion.

Third Cycle. The third cycle was devoted to consolidating
the set of guidelines and validating them with experts from
industry and academia. The comments from the expert eval-
uation in cycle 2 suggested to further extend the set of guide-
lines due to potential missing guidelines and to complement
the guidelines with concrete examples, e.g., “Can you provide
code examples?” or “Without examples I wonder how such a
specification pattern could look like.”. Thus, guided by such
comments, we decided to perform a specific search and to
mine online repositories. The rationale is that the SLR should
be complemented by specific searches and repositories mining
focused on finding additional papers, information, and concrete
examples in a specific topic or argument. For example, in the
initial set of 8 guidelines, we had only one guideline concerning
the specification of properties. The feedback from one of the
three external experts highlighted that there was the need of
more precision and standardized terms. Then, thanks to specific
searches and mining of repositories for property specification
in ROS-based systems, the single guideline on the specification
of properties has been refined into three guidelines, one focused
on logic-based languages, one on domain specific languages
and the third on scenario-based specification (SDB1, SBD2, and
SBD3). It is important to highlight that these specific searches

3https://rsemeeting.github.io/rse2022/

https://rsemeeting.github.io/rse2022/
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cannot be substituted by a refined SLR including more terms
(i.e., re-performing the second cycle of the methodology), since
the granularity of specific searches is different from the granu-
larity of the SLR.

To perform the specific searches and repositories mining,
we used the terminology from the second cycle and the feed-
back from the experts. Information on the specific searches we
made is available in the replication package [38]; specifically,
within the protocol for repositories mining, we provide tables
with the keywords used for the mining activity performed for
each guideline. We searched for repositories mentioned in the
documents in complement to repositories that touched upon
the theme of each guideline sketch. In the solution phase, we
then developed the final version of the guidelines, provided
exemplars for each of them, and clustered the guidelines as they
are presented in this paper. Finally, we validated the final set of
guidelines with practitioners and researchers. We designed and
distributed an online questionnaire to experts from industry and
academia, through the ROS community forum (namely ROS
Discourse), LinkedIn, X (Twitter), and to experts we met at
robotics and software engineering conferences. Before releas-
ing the questionnaire to the wider community, we performed a
pre-study with an experienced roboticist and active member of
the ROS community and two members with widely recognized
contributions to robotic software engineering from academia.
The results from the third cycle confirmed the relevance of the
guidelines and helped us to fine-tune them. This will be further
detailed in Section III-C.

In the reminder, we detail the steps that require further
explanation: the Systematic Literature Review of the second
cycle is described in Section III-A; the specific search and
repository mining step is described in Section III-B, and the
online survey and follow-up step of the third cycle is described
in Section III-C. All generated artifacts and information are
available in the replication package [38].

A. Systematic Literature Review

Given the lack of comprehensive scientific reports on run-
time verification and field-based testing in robotics, we used
a systematic literature review to identify the available and
relevant research [39]. To ensure a clear and thorough method-
ology, we established a protocol for our literature review, out-
lining our research goals, the process to be followed, data
extraction, and measures to mitigate threats to the validity of
our results. Detailed information is provided in the replication
package [38].
Research Goal. Characterize runtime verification (RV) and
field-based testing (FT) for building confidence in ROS-based
applications from the researchers’ perspective.
Process. Our search process started by defining relevant re-
search questions, which informed the creation of a search string
to be used in automatic search engines (i.e., IEEE Xplore,
ACM Digital Library, and Scopus). The search string was
composed of terms elicited from previous studies on run-
time verification tools [29] (lines 3-4) and field-based testing
[34] (lines 6-8).

Fig. 4. Literature review and quantities of studies.

( ros OR robot∗ operating system) AND
( runtime verification OR run−time verification OR
runtime assurance OR run−time assurance OR
online verification on−line verification OR
runtime monitoring OR run−time monitoring OR
runtime testing OR run−time testing OR
online testing OR on−line testing OR
field −based testing OR field testing OR in−vivo testing )

As shown in Fig. 4, the search resulted in 262 papers. We ap-
plied pre-filters in the search engine to only include papers from
Computer Science and Engineering and similar areas, reducing
the number of studies to 132 merged and unique papers. Then,
we used inclusion and exclusion criteria for screening for rele-
vance, resulting in 27 relevant studies.

The inclusion criterion tailors the study to ROS, indepen-
dently of the version or distribution, and the exclusion criteria
determine that studies should not be short papers, secondary
studies, or duplicated. We also exclude papers that are not from
Computer Science or Engineering.
Data Extraction. The screening phase and the research goals
were the basis for defining a classification scheme as a set
of categories that should be used for extracting data from
the resulting studies. The categories used in the scheme de-
fine the meta-information of the publications, the nature of
the assurance technique employed (i.e. runtime verification or
field-based testing), a classification of the applied techniques
according to the taxonomies for runtime verification [29] and
field-based testing [34], the software quality attributes assessed
in the studies, use cases, motivation, and rationale. Finally, if
the study needed to be more precise about how they used RV
or FT, we would query about the used technique, whether it
is static or dynamic, and whether it was performed offline or
online. With the classification scheme and the studies in hand,
data extraction is a matter of carefully reading and collecting
information from the studies. The extraction activity resulted in
9 studies reporting on field-based testing, 16 studies reporting
on runtime verification, 1 study discussing both, and 2 studies
discussing none of them, but, instead, providing valuable in-
sights into runtime verification and field-based testing in ROS.

B. Specific Search and Repository Mining

Guided by the comments from experts (2nd cycle), we (three
authors of this paper) searched for additional information to
complement the guidelines. As defined in the description of the
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third cycle, we focused on finding additional papers and con-
crete code examples to make guidelines more useful. We per-
formed both a specific search4 and mined online repositories.
First, for the specific search, we manually selected results
searched from Google Scholar and the ACM digital library.
Then, we followed the mining approach by Malavolta [26]
to collect new online repositories. We collected and cloned
1088 repositories, searched for patterns in the files within the
repositories, performed a manual context analysis. The results
went through a peer review with the other authors of our paper.
The peer review aimed at a refinement of the search, or at
potentially finding new exemplars. Further information and the
scripts described in this section are available in our online
replication package [38].

To collect and clone the 1088 repositories we relied on
rosmap,5 a tool designed for dependency mapping, which al-
lowed the gathering of an exhaustive list of all public ROS
projects available on Github, as well as Bitbucket and Gitlab.
Then, to filter out unwanted repositories and download repos-
itories to a local server, we modified the Python script from
Malavolta’s replication package.6

• explorer.py removes repositories that are duplicate, forked,
lower than 100 commits, have a low star count (≤ 2), and
are demo projects; such repositories have a low relevance
to our study, which looks into exemplars to complement
the guidelines.

• cloner.py downloads the repositories to a local server.
The local setup allows for quick targeted searches inside
the source files of mature projects, with a high degree of
search-term flexibility.

We curated the downloaded repositories by manual inspec-
tion. We used the UNIX ‘grep’ utility to efficiently scan large
numbers of files. Particularly for guidelines with no straight-
forward exemplars, we searched for exemplars by looking up
keywords relevant to each of the guidelines and examining
code comments in the files (e.g., LLVM, LibFuzzer, which we
found while looking for fuzzing mechanisms, used by PX4
Autopilot, a large open source project [40]). Moreover, for
guidelines that already contained exemplars from the literature,
we performed dependency analysis by looking into source files
of the other repositories, specifically in their import statements.
Whenever we found matching files, either by keyword search
or dependency analysis, we analyzed peripheral code which
helped us to discard irrelevant exemplars. Finally, the remaining
repositories went through peer-review sessions in which other
authors of this paper determined whether the repositories were
viable exemplars discovered for the corresponding guidelines.

C. Online Survey and Follow-Up

Although our guidelines are grounded on data, provenient
from the scientific literature and mined repositories, we made an
additional validation step with experts in robotics particularly

4The search was performed in December 2023.
5https://github.com/jr-robotics/rosmap
6https://github.com/S2-group/jss-2021-replication-package

in runtime verification, or field-based testing to validate the ad-
herence of the guidelines with the target groups. The validation
aims at collecting the practitioner’s sentiment on whether each
guideline is useful, clear, and applicable. The instrument of this
validation was online questionnaires with follow-up emails. Our
validation strategy comprised (i) recruitment, (ii) questionnaire
design, (iii) results analysis, and (iv) follow-ups and reporting
data.

1) Recruitment: Collecting Names and Contacts of Robotics
Experts: The guidelines intend to contribute practical sugges-
tions on how (i) developers should design robotic systems to
enable runtime verification and field-based testing, and how
(ii) quality assurance teams can verify and test ROS-based
applications. We targeted practitioners, i.e., developers and QA
teams with experience in robotics (ROS specifically), runtime
verification [29], field-based testing [34], and researchers with
experience in robotics. We used three data sources to collect
names and contacts: authorship and email addresses in the
papers and repositories used as sources of information for the
synthesis of the guidelines, advertisement in social media and
forums, and renowned experts in software robotic research.

Overall, our survey received 55 answers to the questionnaire.
We manually collected names and emails from papers, which
resulted in 306 contacts. Our mining algorithm provided 772
emails from the authors from mined repositories. In addition,
we shared the questionnaire in the ROS discourse forum.7 By
March of 2024, the post was accessed by 1.6k ROS discourse
users. Moreover, the link to the questionnaire targeting de-
velopers was accessed 60 times and the link to the question-
naire targeting quality assurance teams was accessed 8 times.
OpenRobotics also shared the discourse post on LinkedIn8 and
X (Twitter).9

We also participated in conferences, meetings, workshops,
and summer schools during the study. We invited a list of 67
robotics experts to participate in this survey. To avoid bias,
before inviting candidate respondents, we did not discuss the
subject matter of any of the guidelines but discussed the idea
of synthesizing guidelines to support runtime verification and
field-based testing of ROS-based applications.

Our recruitment campaign started on November 29th 2023
and ended on the 5th of January of 2024, when we were not
receiving any more answers from the candidate respondents.

2) Questionnaire Design: The survey aims to capture the
target group’s opinion and experience in runtime verification
and field-based testing ROS-based systems. Since we decided
to separate the guidelines targeting to two different audiences,
developers and QA teams, we also decided to use two separate
questionnaires. First, the introduction sets the context and gives
instructions on how to answer the questions. Then, the main
part for each guideline consisted of three questions eliciting

7https://discourse.ros.org/t/we-need-participants-for-a-survey-on-field-
based-testing-of-ros-applications/34879

8https://www.linkedin.com/feed/update/urn:li:activity:
7138595420783484929/

9https://twitter.com/OpenRoboticsOrg/status/1732832183507951929?
t=_bBFf7RptL7QM3wrEQ0KnA&s=19

https://github.com/jr-robotics/rosmap
https://github.com/S2-group/jss-2021-replication-package
https://discourse.ros.org/t/we-need-participants-for-a-survey-on-field-based-testing-of-ros-applications/34879
https://discourse.ros.org/t/we-need-participants-for-a-survey-on-field-based-testing-of-ros-applications/34879
https://www.linkedin.com/feed/update/urn:li:activity:7138595420783484929/
https://www.linkedin.com/feed/update/urn:li:activity:7138595420783484929/
https://twitter.com/OpenRoboticsOrg/status/1732832183507951929?t=_bBFf7RptL7QM3wrEQ0KnA{&}s=19
https://twitter.com/OpenRoboticsOrg/status/1732832183507951929?t=_bBFf7RptL7QM3wrEQ0KnA{&}s=19


2550 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 10, OCTOBER 2024

usefulness, clarity, and applicability. We also included open-
ended questions that enabled respondents to express their opin-
ions about one or more guidelines. Third, the profiling section
asked about the respondents’ background and previous experi-
ence with software engineering for robotics, especially ROS-
based applications.

We piloted the questionnaire design with a member of the
ROS community, who was responsible for maintaining the
ROS Discourse Forum,10 and with an additional expert from
academia. In addition, we contacted a professor with over ten
years of research on robotics software engineering, and a post-
doc that has recognizable contributions to the robotics software
engineering field. The main comments from the pre-study high-
lighted that (i) the term “field-based testing” was not clear, (ii)
some guidelines were not guidelines, and (iii) the guidelines
were written too formally, with academic jargon. We addressed
their comments and rectified the questionnaire with the same
member who assisted in publishing the post.

3) Result Analysis: We mainly relied on quantitative data
analysis combined with statistical tests to help us build confi-
dence in our results and steer follow-up analyses. To analyze
the Likert questions we used (i) Likert plot visualizations of
responses and (ii) quantitative statistical analyses, i.e., Boxplot,
significance test. We used the analysis to follow-up with the
respondents to better understand variance in the responses on
specific guidelines. To perform the statistical analyses (ii), we
assume that the Likert items can be interpreted as intervals, and
we use consistent confidence levels (α= 0.05) and the Cohen’s
r parameters to analyse the effect size.

IV. GUIDELINES

We now describe the guidelines we synthesized in our study.
Section IV-A provides an overview of the guidelines for prepar-
ing and performing runtime verification and field-based testing
for ROS-based systems. Then, before describing the guidelines
in detail, Section IV-B describes the template used to specify
guidelines. Finally, Sections IV-C and IV-D highlight two rep-
resentative guidelines. The complete list of guidelines can be
found on our dedicated website [38].

A. Guidelines Overview

Fig. 5 provides an overview of the guidelines. The guide-
lines are organized into two groups: (i) guidelines concerning
activities that are performed to prepare ROS-based systems for
field-based testing and to enable runtime verification, and (ii)
guidelines concerning the actual runtime verification and field-
based testing of ROS-based systems. The first set of guidelines
is mostly defined for developers, and the second set is for quality
assurance (QA) teams. Then, guidelines are organized into eight
activities, each focused on specific activities:

• Constraint Identification (CI) guidelines concerns the elic-
itation of non-functional requirements that may be critical
or non-negotiable to the system under design and test.

10https://discourse.ros.org/

Preparing or running test scenarios to attest correct be-
havior of the system should not violate the identified con-
straints. These constraints might be useful for the Specify
(Un)Desired behavior SDB group of guidelines (explained
shortly); however, the specification of properties or test
cases can use other sources of information, e.g., a require-
ment document.

• Code Design and Implementation (CD) includes guide-
lines that may facilitate testing and verification by modify-
ing the source code of the robotics software under scrutiny
[41], [42].

• Instrumentation for runtime verification and field-based
testing(I) includes guidelines to support either the devel-
opers or the testers in instrumenting the code resulting in a
system ready to test. Instrumentation in this context refers
to modifying the source code to expose internal variables
to monitors or oracles [28], [29], [43].

• Specify (Un)Desired behavior (SDB) takes into consid-
eration the elicited constraints and provides the means to
abstract the system behavior in terms of states and events
(a.k.a. state changes) and how specification languages can
be used to describe properties of a set of such states or
events [28], [29].

• Monitor and Test Automation (MTA) concerns guidelines
to automate the generation of monitors or test, including
the synthesis of test cases or test scenarios that may accept
or reject an observed execution trace [28], [29], [34], [43].

• Prepare Execution Environment (PE) concerns guidelines
to prepare the environment by setting up supporting de-
vices such as stubs and mocks to runtime verification
and field-based testing [41], [42], [44]. The environment
preparation may take into consideration testing constraints
previously elicited to avoid damages to the test or lead to
skewed results.

• System Execution for Field-based Testing (SE) includes
guidelines concerning the activity of running one or more
test cases or test scenarios in a given execution environ-
ment to exercise a system under test, which results in field
data [29], [34], [43].

• Analysis and Reporting (AR) gathers the field data gen-
erated during test execution and derives evidence, con-
clusions, and finally a report on the observed behavior
[29], [34], [43]. In the case of inconclusive results, the
report may be used by the developers to further refine the
constraints or code design. Otherwise, the report may be
used as a collection of assurance arguments to leverage
confidence in the tested ROS-based system.

It is important to highlight that the overview offered in Fig. 5
does not define a new development process for ROS-based
systems. The guidelines are agnostic to the development pro-
cess used. Moreover, the guidelines are independent of each
other, and each of them can be used in isolation. Also, it is the
responsibility of the developers or the QA team to select and use
those guidelines that are more beneficial for the system they are
developing and/or analysing. However, as shown Fig. 5 groups
of guidelines are connected by arrows, since the artifact pro-
duced by some guidelines might be useful for other guidelines.

https://discourse.ros.org/
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Fig. 5. Overview of the guidelines organized according to the engineering activities of developers and the QA teams when engineering ROS-based software
and who strive to establish field-based testing and runtime verification.

Specifically, the relationships among guidelines are of three
different types: (i) an artifact might be used by an activity, (ii)
an artifact is used by an activity, and (iii) an activity produces
an artifact. In the legend of the figure, we explain the graphical
representation used for these three types of relationships.

The guidelines are detailed in Sections IV-C and IV-D after
the description of the template used to document them (in
Section IV-B). Our dedicated website [38] contains the full list
of guidelines for enabling and facilitating runtime verification
and field-based testing of ROS-based systems.

B. Template for Guideline Specification

In the following, we describe the fields that compose the
template. The template is used in Sections IV-C and IV-D,
as well as, to document all guidelines in our dedicated
website [38].
ID: Identifier used to facilitate tracing guidelines between
groups.
Title: Title summarizes an action that practitioners should fol-
low to mitigate or avoid a recurring problem.
Context (WHEN): The Context is a paragraph placing the
guideline among a known set of conditions. This paragraph
should delimit the scope in which the guideline is applicable.
It should also introduce the conceptual terminology used in the
guideline, which is defined by the conditions under which the
guideline is valid.
Reason (WHY): Reason introduces the recurring problem
faced by practitioners. It intends to leverage the relevance of
the guideline to practitioners.

Suggestion (WHAT): Suggestion is a sentence or two introduc-
ing WHAT should the practitioners do to mitigate the recurring
problem.
Process (HOW): Process is a paragraph that carefully guides
the practitioners through HOW they can practice the guide-
line. In this paragraph, there should be references to tools
that may help, concrete examples, or references to precise
explanations of researchers or practitioners who have done
something similar.
Exemplars: Exemplars are concrete descriptions of papers/ar-
tifacts that follow the guidelines. An exemplar can be generic
such as an artifact or rather specific such as a model problem
in testing ROS-based systems in the field.
Strengths: Strengths is a list of benefits that the practitioners
should consider when applying the guideline.
Weaknesses: Weaknesses is a list of technological/theoreti-
cal barriers that may slow the actual implementation of the
guideline, either by undesired side-effects or scenarios in
which applying the guideline might not lead to the desired
effect.

C. Guidelines for Development to Support Runtime
Verification and Field-Based Testing

We synthesized the guidelines in Table I relevant for en-
abling and facilitating runtime verification and field-based test-
ing through development activities, except I4 that concerns QA
activities. The guidelines are organized in groups, as explained
in Section IV-A and summarized in Fig. 5. For each guide-
line we summarize the name of the guideline, and according
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TABLE I
GUIDELINES TO FACILITATING FIELD-BASED TESTING AND RUNTIME VERIFICATION OF ROS-BASED SYSTEMS

Guideline Initial Lit.Review Specific Search Exemplars

C
on

st
ra

in
t

Id
en

tifi
ca

tio
n CI1. Identify timing constraints [34], [45] [46], [47] [48], [49] Autoware_Perf [48] �

CI2. Identify security and privacy
constraints

[26], [29]
[34], [41] [50], [51] [52], [53]

ROSRV [51] �
SROS [52] �

CI3. Identify safety constraints [54], [34] [51] [55], [56], [19]
ROMoSu [56] �
Kobuki �

C
od

e
de

si
gn

an
d

im
pl

. CD1. Strive for ROS nodes with single
responsibility [26], [34] [57], [58]

[59], [60], [61]
[62], [63]

bsn [63] �
skiros2 [61] �
hmrs_mission_control [12] �

CD2. Ensure global time monotonicity
of events and states [26] [64] [65], [66], [67]

ros2-picas [66] �
mavros �

In
st

ru
m

en
ta

tio
n

I1. Provide an API for querying and
updating internal lifecycle [26], [29], [34] [68], [58] [69], [70], [71]

Micro-ROS [69] �
system_modes [70] �
rclc_lifecycle [71] �
lifecycle_service_client [70] �

I2. Provide an API for logging and
filtering [54], [29], [34] [72] [73], [74]

rosout �
cloudwatchlogs-ros2 �
ROSMonitoring [72] �
fault-tolerant-ros-master �
black-box [74] �

I3. Provide an API for injecting faults
in execution scenarios [54], [29], [34] [58] [75], [76], [77]

imfit [78] �
ros1_fuzzer �
ros2_fuzzer �

I4. Isolate components for testing [29], [34] [51], [72] [79], [80]
ROSRV [51] �
ROSMonitoring [72] �

to the main activities described in the research methodology
(Section III), we provide the links to (i) the relevant initial
surveys (column Initial), (ii) the papers identified during the
systematic literature review (column Lit. Review), (iii) papers
identified during the specific search phase (column Specific
Search), and (iv) exemplars identified with the repositories min-
ing (column exemplars). The group of Constraint Identification
(CI) guidelines contains three guidelines, CI1, CI2, and CI3,
devoted to identifying constraints of different nature, i.e., timing
constraints, security and privacy constraints, and safety con-
straints. The group of Code Design and Implementation (CD)
guidelines contains two guidelines, CD1 recommending to de-
sign ROS nodes with single responsibility and CD2 guiding
towards ensuring global time monotonicity of events and states.
The last group contains four Instrumentation (I) guidelines. I1,
I2, and I3 focus on providing APIs for querying and updating
an internal lifecycle (I1), for logging and filtering (I2), and for
injecting faults in execution scenarios (I3). The last one (I4)
focuses on isolating components for testing. We elaborate on
the guideline I2 (provision of an API for logging and filtering)
in depth because we believe I2 can help understand each field
of the template as well as the group of guidelines to facilitating
field-based testing and runtime verification since it contains
several exemplars.

Guideline I2: Provide an API for Logging and Filtering:
The guideline I2 recommends developers provide an API for
inline or outline logging and filtering to gather relevant data
from runtime or the field given that the quality assurance team
might not have access to the system under test. Using I2 renders
effortless observability of inner states and events, but warns that

the misuse of I2 may turn into performance issues, adding noise
to data, false positives, or open security breaches.
ID I2
Title Provide an API for Logging and Filtering
Context (WHEN) Dynamically gathering information is a
fundamental step for gaining confidence in ROS-based sys-
tems. Logging (and playback) is, in fact, one of the most used
techniques for testing ROS-based systems [54]. Often named
monitoring [29] or logging [34], the process of recording textual
or numerical information about events of interest may be a
valuable input to the testing team. With such data at hand, the
testing team will process the data and transform it into useful
information to challenge their hypotheses about how the system
should work.
Reason (WHY) Logging important events depends on instru-
menting the code (with ‘hooks’) that enables the monitoring or
logging. It is unrealistic to assume that the testing team will
have access to the source code or that the testing team knows
what events to log or how to do so.
Suggestion (WHAT) The development team should provide
an API for logging and filtering data to enable access to
valuable runtime data used for runtime verification and field-
based testing. The standard for logging and filtering is ros-
bag (wiki: rosbag). Though, in addition, AWS CloudWatch
(git: aws-robotics/cloudwatchlogs-ros2) collects data from the
rosout topic and provides a filter for eliminating noise from
the logged events. Another example is the Robotic Black Box
(git: ropod-project/black-box) which allows for listening to
data traffic from distinct sources and logging the messages
using MongoDB.

https://github.com/azu-lab/ROS2-E2E-Evaluation
https://github.com/cansuerdogan/ROSRV/blob/master/docs/Usage.md
https://github.com/ros2/sros2
https://github.com/MStadler-Organization/ROMoSu
https://github.com/yujinrobot/kobuki
https://github.com/lesunb/bsn
https://github.com/RVMI/skiros2
https://github.com/lesunb/hmrs_mission_control
https://github.com/rtenlab/ros2-picas
https://github.com/mavlink/mavros
https://github.com/micro-ROS
https://github.com/micro-ROS/system_modes
https://github.com/ros2/rclc/tree/master/rclc_lifecycle
https://github.com/ros2/demos/blob/foxy/lifecycle/src/lifecycle_service_client.cpp
https://github.com/ros/ros_comm/blob/noetic-devel/clients/rospy/src/rospy/impl/rosout.py
https://github.com/aws-robotics/cloudwatchlogs-ros2
https://github.com/autonomy-and-verification-uol/ROSMonitoring/blob/master/generator/online_config.yaml
https://github.com/PushyamiKaveti/fault-tolerant-ros-master/blob/master/src/ros_comm/rosmaster/src/rosmaster/master_api.py
https://github.com/ropod-project/black-box
https://github.com/inomuh/imfit
https://github.com/aliasrobotics/ros1_fuzzer
https://github.com/aliasrobotics/ros2_fuzzer
https://github.com/cansuerdogan/ROSRV
https://github.com/autonomy-and-verification-uol/ROSMonitoring
http://wiki.ros.org/rosbag
https://github.com/aws-robotics/cloudwatchlogs-ros2
https://github.com/ropod-project/black-box
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Process (HOW) We divide, according to Falcone et al. [29],
techniques for gathering information in two: inline, and outline.
Inline logging and filtering stand for techniques that ask for
actually inserting snippets of code in the system under scrutiny
as a means to provide an API for logging, e.g., [134]. Outline
logging and filtering stands for techniques that enable an exter-
nal means to gather and filter information that does not require
changing the source code, e.g., [72], [73], [74]. Developers may
choose one or another given their domain of application.
Exemplars Exemplar implementations for providing an API for
logging and filtering may be inline or outline.

Inline Logging and Filtering. ROS, by standard, contains a
system-wide logging mechanism, namely ROS logging (wiki:
logging). ROS logging works with macros for instrumenting
the ROS nodes with information hooks. In the background,
the macros send messages with the information to be logged
through a standard topic called rosout. On the other side of
the topic, an extra node, within the roscore package, persists
the data in a textual format (git: noetic-devel/ros/../rosout �).
Developers can use the macros to log information that might be
used for testing in a later stage, given the application-specific
requirements. For instance, the Amazon AWS service for
robotics provides AWS CloudWatch Logs (git: aws-robotics/
cloudwatchlogs-ros2 �) interfaces directly with rosout to moni-
tor applications using the standard ROS logging interface. In ad-
dition, the standard library provides logging macros with em-
bedded filtering capabilities, which enables eliminating noise
from the logged events and can render a useful tool for
testers. ROS Rescue [134] is another example of inline logging.
The tool aims to solve the ROSMaster problem as a single point
of failure. The authors approach check-pointing and restoring
state by logging changes in the metadata stored in the master
node. Such metadata contains URIs from various nodes, port
numbers, published or subscribed topics, services, and param-
eters from the parameter server. Kaveti et al. create an API for
the ROS master node (git: master_api.py �) using the official
logging library from Pythonto persist metadata in YAML for-
mat. Their technique opens space for further inspection of ROS
applications without access to the source code.

Outline Logging and Filtering. ROSMonitoring [72] em-
ploys monitors to persist events in textual format. The mon-
itors contain filtering capabilities to eliminate entries that are
inconsistent with the specification (requires an oracle). In this
context, the launch files to configure ROSMonitoring can be
seen as an API for logging and filtering (git: ROSMonitoring/
../online_config.yaml �). Monitors in ROSMonitoring are
nodes, so the API is a set of known topics and message for-
mats. The tester, in that case, only needs to specify what top-
ics ROSMonitoring will listen to and the type of message to
be recorded. Logging and filtering happens within a separate
service. On a similar stance, and inspired by aircraft black
box (and software black box [73]), Mitrevski et al. [74] pro-
poses the concept of Robotic Black Box (git: ropod-project/
black-box �). The black box operates as an isolated com-
ponent responsible for listening to data traffic from distinct
sources and logging in an easily retrievable medium. Sim-
ilarly to ROSMonitoring, Mitrevski’s black box approach

to logging (git: ropod-project/black-box/../logger_main.* �)
inspects topics and message types that are configured in
advance. Different from ROSMonitoring, Robotic Black Box
offers logging not only in textual format but also in a MongoDB
database, which supports data processing, filtering, and re-
trieval. Robotic Black Box stands out when it comes to its filter-
ing and retrieval capabilities. The approach builds a customized
query interface over the MongoDB database using names
of collections, timestamps and metadata to filter the results
(git: black_box_tools/db_utils.py �).
Strengths An API for retrieval and filtering facilitates access
to valuable information resulting in effortless observability of
inner states and events.
Weaknesses Overuse of logging may result in performance
issues. Incorrectly implemented logging and filtering capabil-
ities may lead to noise in the data, impacting the reliability
of the tests. Insufficient logging may result in an incomplete
assessment of the system behavior and might generate false
positives. Finally, it may also lead to security breaches if not
done with caution.

D. Guidelines for Quality Assurance Through Runtime
Verification and Field-Based Testing

We synthesized the guidelines in Table II relevant to pro-
viding runtime verification and field-based testing quality as-
surance through testing activities. Analogous to the guidelines
presented in Section IV-C, the guidelines for provisioning qual-
ity assurance through runtime verification and field-based test-
ing are organized in groups and summarized in Fig. 5). We trace
each guideline to the sources of information, namely, the rel-
evant initial surveys (column Initial), the systematic literature
review (column Lit. Review), the specific search phase (column
Specific Search), and the repositories mining (column Exem-
plars). The Prepare Execution Environment (PE) group contains
two guidelines: PE1 to warn about the overhead acceptance
criteria, and PE2 to create models for runtime assessment.
The Specify (Un)-Desired Behavior group (SDB) contains three
guidelines concerning the specification of desired and/or un-
desired behaviors. SDB1 and SDB2 concern the specification
of properties through the use of logic-based languages (SDB1)
or Domain Specific Languages (DSLs) (SDB2). SDB3, in turn,
focuses on scenario-based specifications of test cases. The Gen-
erate Monitors and Test Cases group (MTA) contains two guide-
lines. MTA1 focuses on how to improve the robustness of the
system by performing noise and fault injection. MTA2 discusses
how to exploit automation for monitoring and testing, e.g., gen-
eration and prioritization of test cases. The System Execution
group (SE) contains two guidelines focusing on the importance
of using record-and-replay when performing exploratory field
tests (SE1) and the importance of headless simulation (without
GUI) for optimization and/or automation (SE2). Finally, the
Analysis & Reporting group (AR) contains two guidelines. AR1
focuses on performing postmortem analysis to diagnose non-
passing test cases. While AR2 focuses on the use of reliable
tooling to manage field data. In the remainder of this section, we

http://wiki.ros.org/roscpp/Overview/Logging
https://github.com/ros/ros_comm/blob/noetic-devel/clients/rospy/src/rospy/impl/rosout.py
https://github.com/aws-robotics/cloudwatchlogs-ros2
https://github.com/aws-robotics/cloudwatchlogs-ros2
https://github.com/PushyamiKaveti/fault-tolerant-ros-master/blob/master/src/ros_comm/rosmaster/src/rosmaster/master_api.py
https://github.com/autonomy-and-verification-uol/ROSMonitoring/blob/master/generator/online_config.yaml
https://github.com/autonomy-and-verification-uol/ROSMonitoring/blob/master/generator/online_config.yaml
https://github.com/ropod-project/black-box
https://github.com/ropod-project/black-box
https://github.com/ropod-project/black-box/blob/master/pybb/logger_main.py
https://github.com/ropod-project/black-box-tools/blob/master/black_box_tools/db_utils.py
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TABLE II
GUIDELINES FOR PERFORMING RUNTIME VERIFICATION AND FIELD-BASED TESTING ON ROS-BASED APPLICATIONS

Guideline Initial Lit.Review Specific search Exemplars

Pr
ep

ar
e

E
xe

cu
tio

n
E

nv
ir

on
m

en
t PE1. Understand the overhead

acceptance criteria [26], [29], [34] [81], [72] [82], [48], [83], [84]

ROS-Immunity [81]
ROSMonitoring [72] �
ros2_tracing [80] �
RTF4ADS [83] and
Secure Channels in ROS [84]

PE2. Create models for runtime
assessment [34]

[85], [47], [86]
[87], [88], [89]

[90], [91], [92], [93]
[94], [95], [96], [97]
[98]

ROS_Tecnomatix [93] �
cpsaml [94] �
dtron + adapter [95], [96]
ros-model [97], [98] �

Sp
ec

if
y

(U
n)

-
D

es
ir

ed
B

eh
av

io
r SDB1. Define properties using a

logic-based language [41] [25], [50], [99] [100], [9], [101], [102]

MTL [25], [50]
rtamt4ros [103] �
LTL [101]
Past-Time LTL [102]

SDB2. Use Domain Specific
Languages (DSLs) to specify
properties

[41]
[51], [72], [56]
[104], [105] [106]

ROSRV [51] �
ROSMonitoring [72] �
RuBaSS [106]

SDB3. Use languages and tools to
scenario-based specification of
test cases

[54], [41], [34] [107], [108], [109] [110], [111], [112]

Geoscenario [110] �
SCENIC [111] �
PerceMon [107] �
pedsim_ros [109] �

M
on

ito
r

an
d

Te
st

A
ut

om
at

io
n

MTA1. Improve the robustness of
the system by performing noise
and fault injection

[34] [58], [113], [114] [78], [115], [116]

ros1_fuzzer �
ros2_fuzzer �
RoboFuzz [116] �
imfit [78] �
camfitool �
ROSPenTo [117] �

MTA2. Exploit automation for test
case generation, test case
prioritization and selection, oracle
and monitor generation

[34], [54] [58] [118]

Equiv. Part. [118]

Mithra [119]
Trajectory Generator [120]
Hypothesis [121] �

Sy
st

em
E

xe
cu

tio
n SE1. Use record-and-replay when

performing exploratory field tests [34], [54] [46]
[122], [118], [123]
[124], [63]

rosbag �
rosbag2 �
Rerun.io �
NUbots [123] �
BSN [124], [63] �

SE2. No GUIs! Prioritize headless
simulation [34], [54] [58] [125], [126]

CI [127]
OpenDaVinci [128] �

A
na

ly
si

s
&

R
ep

or
tin

g AR1. Perform postmortem analysis
to diagnose non-passing test cases. [29] [129] [130], [131], [132]

Overseer [129]
RoSHA [130]
CARE [131] �
Rason [132] �

AR2. Use reliable tooling in order
to manage field data [34], [26] [83], [57], [129] [118], [133]

wstool11 [118] �
Overseer [129]
FTT [133] �
warehouse_ros �

show in detail the guideline PE1 on understanding the overhead
acceptance criteria.

We provide an in-depth view of a representative guideline
(PE1) for understanding the overhead acceptance criteria in the
preparation of the execution environment.

PE1. Understand the Overhead Acceptance Criteria: The
guideline PE1 recommends quality assurance teams understand
the monitoring, isolation, or security and privacy overhead ac-
ceptance criteria as a basis for deciding the runtime assurance
strategy given that performance is fundamental in robotics ap-
plications. Using PE1 helps to avoid unexpected interruptions in
the robotic mission due to the testing apparatus. However, the
overhead calculation process may turn laborious and conflict
with time-to-market requirements.

ID PE1
Title Understand the overhead acceptance criteria
Context (WHEN) According to practitioners, performance is
among the three most important quality attributes when design-
ing a robotic application in ROS [26], intended as the degree to
which a robotic application performs its functions within spec-
ified time and is efficient in the use of resources. Performance
is often important in robotics because many computations per-
formed by robots tend to be data-intensive, e.g., computer vi-
sion, planning, and navigation [26]. Gaining confidence in, e.g,
correctness, reliability, robustness, of robotic applications, then,
should not interfere with the nominal performance of the robot

11Named also rosws, and vcstool.

https://github.com/autonomy-and-verification-uol/ROSMonitoring
https://github.com/ros2/ros2_tracing
https://github.com/INTELYMEC/ROS_Tecnomatix
https://github.com/me-big-tuwien-ac-at/cpsaml
https://github.com/ipa-nhg/ros-model
https://github.com/nickovic/rtamt4ros
https://github.com/cansuerdogan/ROSRV
https://github.com/autonomy-and-verification-uol/ROSMonitoring
https://github.com/rodrigoqueiroz/geoscenarioserver
https://github.com/BerkeleyLearnVerify/Scenic
https://github.com/CPS-VIDA/PerceMon.git
https://github.com/srl-freiburg/pedsim_ros
https://github.com/aliasrobotics/ros1_fuzzer
https://github.com/aliasrobotics/ros2_fuzzer
https://github.com/sslab-gatech/RoboFuzz
https://github.com/inomuh/imfit
http://wiki.ros.org/camfitool
https://github.com/jr-robotics/ROSPenTo
https://github.com/HypothesisWorks/hypothesis
https://github.com/ros/ros_comm/tree/noetic-devel/tools/rosbag
https://github.com/ros2/rosbag2
https://github.com/rerun-io/rerun
https://github.com/NUbots/NUbots
https://github.com/lesunb/bsn
https://github.com/se-research/OpenDaVINCI/tree/master/automotive/miniature/studies/example-boxparker
https://github.com/softsys4ai/care
https://github.com/lsa-pucrs/rason/
http://wiki.ros.org/wstool
https://github.com/fkie/field_test_tool
https://github.com/ros-planning/warehouse_ros_mongo
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under scrutiny. Less (or no) impact on performance is especially
desirable when the assurance gathering process interacts with
the running system, for instance, in-the-field testing and run-
time verification. We name the extra load available for gaining
confidence on ROS-based applications as overhead acceptance
criteria. The overhead acceptance criteria can be allocated to
monitoring, isolation, or maintaining the security of privacy
during the runtime assessment session [34].
Reason (WHY) A rule of thumb says that more observations
tend to enable more precise assurance arguments within a limit.
Observing, however, is never free from side effects, incurring in
overhead [29]. Therefore, the quality assurance team must con-
trast the precision of the assurance arguments against overhead
introduced by the observation medium. The overhead accep-
tance criteria are the basis for deciding the runtime assurance
strategy.
Suggestion (WHAT) The use of runtime verification or field-
based techniques might add computational overhead. The QA
team should understand how much overhead is acceptable; this
is important to decide on a test strategy that will not severely im-
pact the performance of the running system. Such overhead may
be due to monitoring with ros_tracing (git: ros2/ros2_tracing
�), component isolation, or security and privacy maintenance
overhead with ROSploit (git: seanrivera/rosploit).
Process (HOW) Typically, understanding the overhead ac-
ceptance criteria follows from contrasting the required per-
formance for delivering the required service, aka nominal
performance (e.g., time to reaction, latency, speed), against
available resources (e.g., computing power). The QA team may
use off-the-shelf ROS tooling, like git: ApexAI/Performance_
test �, to understand the nominal performance of the ROS-
based application. The difference between nominal perfor-
mance and expected performance may be allocated to the
overhead acceptance criteria. If the nominal performance is
close enough to the expected performance, there is not enough
space for implementing runtime assurance techniques. We
categorize three types of overhead that may affect the run-
time assurance process: Runtime Monitoring [72], [80], Isola-
tion overhead [83], [135], and Security and Privacy overhead
[81], [84].
Exemplars Exemplar overhead analyses may be due to mon-
itoring, isolation, and security and privacy. Monitoring Over-
head is all extra load put on the system-under-test due to
gathering, interpreting, and elaborating data about the execu-
tion. For example, ROSMonitoring (git: autonomy-and-verifi-
cation-uol/ROSMonitoring �) [72] determines the monitoring
overhead by calculating the delay introduced in the message
delivery time between ROS nodes. The authors analyze the
overhead by varying the size of the system under monitor-
ing, message passing frequency, and number of monitor nodes.
However, their overhead analysis is not transparent for gath-
ering, interpreting, or elaborating on data, the analysis looks
at the monitoring overhead as a black box. Another example
is ros2 tracing (git: ros2/ros2_tracing �) [80] that provides
a tool for tracing ROS2 systems with low latency overhead.
The authors measure monitoring overhead by collecting the
time between publishing a message and when it is handled by

the subscription callback. In short, monitoring and tracing tools
add some overhead that typically affects the message passing
latency, the QA team must understand and define a precise time
allowance for this overhead.

Isolation Overhead is all extra load put on the system-under-
test to guarantee that the runtime assessment will not interfere
with the normal operation or produce undesired side effects.
As an example, Lahami et al. [83] propose a safe and resource-
aware approach to test dynamic and distributed systems. They
achieve safety by employing testing isolation techniques such
as BIT-based, tagging-based, aspect-based, cloning-based, and
blocking-based and resource awareness by setting resource
monitors such as processor load, main memory, and network
bandwidth. The authors show that the overall overhead is rel-
atively low and tolerable, mainly if dynamic adaptations are
not commonly requested. However, there is no fine-grained
evaluation of the overhead introduced by isolation techniques.
In fact, isolation overhead is rarely reported [135].

Security and Privacy Overhead is all extra load put on the
system-under-test for maintaining security and privacy con-
straints while testing. For example, ROS-Immunity is a secu-
rity tool for defending ROS-based applications from malicious
attackers. Rivera et al. [81], determine overhead for maintain-
ing the ROS-based system secure, while operating, in terms
of power consumption (in Watts) by comparing the system’s
power draw with and without their tool. From another stance,
Breiling et al. [84] present a secure communication channel
to enable communication between ROS nodes using protocols
such as Transport Layer Security (TLS) and Datagram Trans-
port Layer Security (DTLS) per each ROS topic in the appli-
cation. The protocols follow three steps: an initial handshake
with mutual authentication, using symmetric encryption (AES-
256), and using Message Authentication Codes (MAC) for data
integrity. Importantly, they evaluate the overhead introduced for
each step, which amounted to a few percentage points (2%-5%)
of increase in average CPU load.
Strengths Understanding the overhead acceptance criteria in
advance may avoid unexpected interruptions in the ROS ap-
plication functionality due to runtime quality assessment pro-
cedures. For example, when testing procedures are mistakenly
scheduled whenever the ROS-based application is operating
under a high load. Learning about the overhead in advance
criteria may also ask for re-design due to a lack of verifiability
during runtime. For example, when the nominal performance of
the ROS system is close to the expected performance, in value.
Weaknesses Although there is tooling to support the assess-
ment of the overhead acceptance criteria, the process for
understanding involves executing the system, collecting perfor-
mance data, and analysis. This may conflict with time-to-market
requirements, asking for further negotiation with the business
goals of the ROS-based system.

V. VALIDATION

This section discusses the outcomes of the validation with ex-
perts from industry and academia made through questionnaires
(available in the replication package section of the website

https://github.com/ros2/ros2_tracing
https://github.com/ros2/ros2_tracing
https://gitlab.com/ApexAI/performance_test
https://gitlab.com/ApexAI/performance_test
https://github.com/autonomy-and-verification-uol/ROSMonitoring
https://github.com/autonomy-and-verification-uol/ROSMonitoring
https://github.com/ros2/ros2_tracing
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TABLE III
SUMMARY OF THE REPRESENTATIVE PROFILES FOR THE 55 QUESTIONNAIRE RESPONDENTS

ID Time Experience Organization Domain Role # Individuals

P1 >10y Contributed to ROS packages Academia and Industry Service Robotics Developer 18
P2 3–5y Worked on app. using ROS Industry Industrial automation Developer 17
P3 1–3y Contributed to ROS packages Academia General-purpose Developer 6
P4 1–3y Worked on app. using ROS Academia and Industry General-purpose QA 3
P5 3–5y Worked on app. using ROS Academia and Independent Groups Marine Robotics QA 11

Note: App. stands for applications.

[38]). Our goal is to check whether the guidelines synthesized
from literature and insights extracted from open-source ROS
repositories are considered to be useful, clear, and applicable
by developers and QA teams testing and verifying ROS code.
To this end, we elicit three hypotheses per guideline:
H1. Overall, the guideline is useful. (Usefulness)
H2. The formulation of the guideline is clear. (Clarity)
H3. The guideline is applicable to ROS-based systems.

(Applicability)
Differently from usefulness, we note that applicability refers

to the extent to which the respondents consider that the guide-
line could be directly applied to ROS-based systems that they
have worked with at the moment of the survey or in the past.
In turn, usefulness refers to ROS-based systems in general.

It is important to note that applicability, clarity, and use-
fulness are not independent aspects. In Section VI we will
investigate discrepancies among them to identify research gaps
and research challenges for future work.

A. Participants

We received 55 answers to the questionnaire, of which 33
were from developers and 22 from quality assurance (QA)
teams. To obtain those answers, we sent 1032 emails out of
which: 306 targeted paper authors, 772 targeted developers
(extracted from repositories), and 68 targeted experts we met
personally. We excluded 114 emails due to intersections, e.g.
paper authors that were also targeted developers. Additionally,
we shared posts in the ROS discourse forum. Duplicated emails
were removed. The 39-day campaign stopped when we did
not receive any more answers from the candidate respondents.
The questionnaires were tailored to check the three hypotheses.
In addition, we asked each respondent to answer four other
questions: (i) for how long they have worked in robotics, (ii)
what their experience with ROS was, (iii) what kinds of orga-
nizations they have worked in, and (iv) what robotics domains
they have worked on. Based on their answers, we created a sum-
mary of five fictitious but representative profiles, as described
in Table III.

B. Questionnaire Results

The Likert plot in Fig. 6 provides an overview of the answers
from the questionnaire. While the majority of votes lean to
the ‘Agree’ side, some guideline descriptions (i.e., CD2, CI1,
CI2, CI3, I1, I2, I3, I4, MTA1, MTA2, PE2, SDB1, SDB2,
SDB3, SE2) received ‘Strongly Disagree’ votes. This subsec-
tion mostly analyses disagreements in contrast to agreements

since they might shed light on new research opportunities. To
clarify the disagreements, we collected comments left in free
text from the online questionnaire12. The questionnaire targeted
per group comments, in which respondents could direct their
suggestion either to the whole group or to specific guidelines,
usually indicating their identifier.

Guideline CD2 concerns ensuring global time monotonicity
of events and states to address the potential non-determinism in
the scheduling of events in ROS-based applications. In general,
comments left to CD2 emphasize the need to ensure the mono-
tonicity of events, “While typically small, occasionally you will
see a large time jump if NTP does something unexpected.
With enough robots and enough usage, these (and surely
other) odd events will occur.”. While some comments question
whether monotonicity of events should be an explicit or implicit
property of the design phase, there is a suggestion on how to
address the time synchronization problem using the NTP/PTP
time protocols, i.e.,“NTP/PTP status and verifying that these
time protocols have converged to a stable solution with
small offsets”.

Guideline CI2 concerns security and privacy, which are of-
ten under-explored in the design of ROS-based applications.
Threats to privacy and security may be catastrophic and may
be an unacceptable side-effect of runtime assessment of such
robotic applications. During the validation of this guideline,
the respondents were mostly unsatisfied with the wording.
They claim that the guideline uses “complicated language”
or “worded confusingly”. Ultimately asking for a guideline
refinement with a better understanding of the SROS tool and
the Alias Robotics company, and leveraging separate crite-
ria to form security constraints: “(1) software BOM and
patch process, (2) application security, and (3) user data
privacy controls”.

Guideline I3 concerns providing an API for stimulating unex-
pected scenarios for testing the robustness of the target system;
this can help addressing challenges in finding both fault and
error that are representative of real software faults. During the
validation of this guideline, respondents claim that they agree
with the guideline’s intention but warn that implementing such
a solution might lead to little return on investment, they assert
that “[...] it will result in a lot of development to implement
fake faults, and you’re still going to miss so many real faults”.
While they say that “Building tools to simulate faults can
also be very difficult and time-consuming.”, they also highlight

12We make available the anonymized transcript of all comments in the
replication package [38].
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Response Fully disagree Disagree Agree Fully agree

Fig. 6. Likert plot for the questionnaire answers.

that such approaches also introduce safety risks when injecting
faults in field tests: “Injecting faults as part of the codebase in
safety systems [...] would never be approved by certification
entities. [...].”.

Guideline SDB1 concerns the use of a logic-based language
for specifying properties that describe observable actions, out-
puts, how they relate to each other and when they should
manifest. To simplify the specification of properties in tem-
poral logic, some of the tools refer to existent property spec-
ification patterns [136], which also enable the formulation of
properties in structured and unambiguous English. Guideline
SDB2 proposes to address the specification problem with a
code-like alternative, a built-in ROS-tailored language allow-
ing quality assurance teams to specify and validate the correct
behaviour of the system. Focusing on testing, SDB3 proposes
to use scenario-based test case generation approaches for the
systematic exploration of different situations and conditions
that the robotic system may encounter in the real world. For
the SDB group, the respondents discussed that they believe that
behavior specification is an activity that is targeted to senior
developers rather than QA experts. They say “I wish QA teams
could do such advanced tasks. Those are senior developers,
not QA”.

In light of this discussion, we have some understanding con-
cerning the applicability of the SDB group of guidelines, as well
as of CD2, CI2, and I3.

Guideline I1 recommends the use of ROS nodes with lifecy-
cle management to provide a structured way to manage the state
of the nodes and the interactions between them. This structure
helps (i) ensuring that nodes are in the right state for testing,
(ii) guaranteeing that the interactions between nodes are pre-
dictable, and (iii) mitigating dangling references to nodes that
are no longer in use. Concerning I1, this guideline recommends
an API for querying and updating internal lifecycle. This is
considered to be, overall a useful guideline, but we understand
that it requires special conditions to realize it, e.g., full control of
the robotic system. It is interesting to highlight that this guide-
line is very similar to guideline B1 in [26], where the authors
suggest that the behavior of each node should follow a well-
defined life cycle, which should be queryable and updatable
at runtime.

We do not have enlightening comments for the remaining
guidelines CI1, CI3, I2, I4, MTA1, MTA2, PE2, and SE2. How-
ever, the overall evaluation of many of them is quite positive
and no further investigation is needed. Instead, we feel that
it would be worth better investigating the usefulness, clarity,
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Fig. 7. Boxplots for the results bird’s eye view.

and applicability of guidelines MTA2, PE2, and CI2, which
are those with scores of applicability lower than 65% and for
which we have no further information from the questionnaires.
To better analyze the validation results we performed statistical
and practical significance analysis.

C. Statistical Analysis

In complement to the Likert plot analysis, we back up the
responses using statistical analysis. First, we assume that the an-
swers from the Likert items are symmetric and this allows us to
use boxplots and visualize whether the hypotheses (H1 −H3)
hold for each guideline from a bird’s eye view. We map the
Likert items to integer values according to the following rule:
Strongly Disagree=1, Disagree=2, Agree=3, Strongly Agree=4.
The resulting Fig. 7 compares the boxplots for each guide-
line (y-axis) for the attributes we tested against, i.e., appli-
cability, clarity, and usefulness; while the x-axis determines
the Likert Items, i.e., Strongly Disagree, Disagree, Agree, and
Strongly Agree.

At first glance at the plot from Fig. 7, we observe that the
medians revolve around Agree and Strongly Agree for the three
dimensions (i.e., applicability, clarity, and usefulness). There-
fore, overall developers and QA teams agree that the synthe-
sized guidelines are applicable, useful, and clear.

In light of such results, we further analyzed the statistical and
practical significance regarding the agreement for these guide-
lines (see Section V-C1). For those guidelines where the sig-
nificance test failed or practical significance had a small effect,
we conducted a follow-up discussion with the questionnaire

respondents to understand the causes for disagreement (see
Section V-D).

1) Significance Analysis: In light of the significance anal-
ysis, we can claim that all guidelines are applicable, clearly
formulated, and useful according to the 55 responses from the
questionnaire. We conclude also that guidelines CI2, MTA2,
and PE2 ask for more information to draw solid conclusions on
whether they are applicable or not. We reached this conclusion
thanks to the analysis detailed in the following.

In preparation for the significance analysis tests, we trans-
form the input data from categorical (i.e., Strongly Disagree,
Disagree, Agree, Strongly Agree), to numeric (Strongly Dis-
agree & Disagree = -1 and Strongly Agree & Agree = 1).
The mapping separates the answers in a format such that both
sides entail an equal Euclidean distance from the center, 0. This
format allows us to sum the points for each respondent and
evaluate whether the aggregate rejects (sum < 0) or accepts
(sum > 0) the hypotheses H1 −H3. In addition, we applied
Shapiro Wilk’s normality test to understand whether the data
is normal (available in the validation section of the guide-
lines website [38]) and the test reveals that it is not. Thus,
we employed the non-parametric one-sample Wilcoxon test for
statistical and practical significance.

Statistical Significance: We test our hypotheses for statis-
tical significance by employing the one-sample Wilcoxon test.
The test checks whether the sum of all the respondents for each
guideline, e.g. AR1, and each dimension, e.g., applicability, is
greater than 0 with a 5% significance level. The resulting plot
(Fig. 8) summarises all the tests, combinations of guidelines,
and dimensions.
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Fig. 8. Wilcoxon one-sample test for statistical significance (hypothesis:
μ≥ 0).

Fig. 9. Effect size for one sample Wilcoxon test for practical significance.

Importantly, Fig. 8 highlights that guidelines CI2, MTA2, and
PE2 resulted in p-values larger than 0.05, specifically for appli-
cability. Precisely, CI2p−value = 0.1948536, MTA2p−value =
0.3416874, and PE2p−value = 0.1037148. The result suggests
that the data collected does not confirm that the aforementioned
guidelines are applicable to ROS-based systems, as pointed out
by the medians from Fig. 7. In complement, the tests confirm
that the remaining correlation between guideline (below the red
dashed line in Fig. 8) and attributes applicability, clarity, and
usefulness is statistically significant.

Practical Significance: We test our hypotheses for practical
significance by calculating the effect size given by the one-
sample Wilcoxon signed-rank test. Similarly to the statistical
significance test, the test checks whether the effect size for
one sample Wilcoxon test is greater than zero for the sum of
all respondent’s answers to the combinations of guidelines and
dimensions. The resulting plot (Fig. 9) summarises the effect
size for all combinations of guidelines and dimensions.

According to the definitions from Cohen J. [137] limiting
values for effect size are small effect < 0.3, moderate effect
> 0.3 and < 0.5, and large effect > 0.5. When it comes
to applicability, guidelines CI2, MTA2, and PE2 fall in the
small effect category, confirming that we need further data
to strengthen our conclusions. Guidelines AR2, CI2, I1, I3,
SDB1, and SDB3 are ranked with moderate size effect, which is
enough in our case to justify their practical significance. Finally,

the large-size effect guidelines are the rest, which confirms their
practical significance.

D. Follow-Up With Respondents

Given the lack of statistical and practical significance to
guidelines CI2, MTA2, and PE2, we followed up with respon-
dents who willingly left their contact in the questionnaire and
opted for disagree or strongly disagree. Then, we sent to the
respondents an email asking for further details and reasoning.

According to their availability to provide further feedback
in the follow-up process, we contacted 15 individuals, out of
which 10 were academics and 5 were practitioners in the in-
dustry. From the 10 responses we received, 7 were academics,
and more specifically, 3 were professors, 3 were PhD students
and 1 was a technician. Meanwhile, on the practitioner side, out
of the 3 responses, two were research engineers and one was a
developer/software architect.

In the remainder of this section, we summarize the points
made by the researchers and practitioners concerning the ap-
plicability of guidelines CI2, MTA2, and PE2 in their line
of work.

For MTA2, which refers to exploiting automation tools for
test case generation, test case selection, and oracle generation,
the main points made were:

• As one researcher suggested, the project needs to be large
enough to justify developing models for exploiting test and
monitor automation:

“If the project is too small, the additional effort
required to develop some sort of digital twin is too
high compared to the project.”

• For complex scenarios, the automatic generation of test
environments could be computationally too demanding.

For PE2, which refers to exploiting system models system
or its environment, as well as the creation of digital twins, the
main points were:

• The amount of work surpasses the project’ scale.
• It is a difficult challenge to create realistic data for large

complex scenarios, even if the model is accurate, given that
the computational load can be so high that the real-time
factor is so low that it compromises the testing reliability
testing. As one expert put it:

“I am working now in a system which the goal is
identifying cracks in tunnels, we could not create
digital twins (at least yet) because [if] even we have
the perfect model, super detailed, of the real world,
it is not reliable to run in simulators, because the
model is too big, and then the real time factor of
the simulation is smaller than 0.3, even with a really
good computer.”

For CI2, which refers to identifying security or privacy vul-
nerabilities, the major issues raised were:

• It is not applicable or relevant to their projects in the
current state.

• Academic projects usually see no need for such mea-
sures as there is not an abundance of sensitive informa-
tion present.
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TABLE IV
OPEN CHALLENGES FOR RUNTIME VERIFICATION AND FIELD-BASED TESTING

OF ROS-BASED SYSTEMS

Open Challenge Guidelines FT or RV?

Lack of (Formal) Specifications [34] SDB1, SDB2, SDB3, PE2 FT
Generating and implementing field test cases [34] MTA2, SEI1, PE2 FT
Isolation Strategies [34] I4, CD1, PE1 FT
Oracle Definition [34] MTA2 FT
Security and Privacy [34], [138] CI2, PE1 RV & FT
Distributed monitoring [29], [138] - RV
Monitoring states [29] I1 RV
Richer reactions [29] - RV
Support to imprecise traces [29] CD2, AR2 RV

• There are alternative ways to address some of the more fre-
quent vulnerabilities e.g., making the system unreachable
from the Internet. As one expert mentions:

“We’ve built a new version of the Gateway around
the super-secure Turris Omnia router, the only ex-
tra security feature we use from this router is the
dynamic firewall Sentinel it offers out of the box.”

As a result of our follow-up, we revised the guidelines CI2,
MTA2, and PE2 for further clarification following the respon-
dents’ latest feedback. Acknowledging the experts’ comments,
we added statements to the Weaknesses field of the guidelines
addressing their concern and better delimiting the scope of
applicability each guideline. The modifications are both rep-
resented in our online guidelines repository in a pull request13

and represented in the guidelines in the appendix – additions
are marked with blue highlight and deletions with red.

VI. DISCUSSION

We now discuss open challenges in field-based testing [34]
and runtime verification [29], [138], how our guidelines mit-
igate them, and what opportunities for future research exist.
We selected challenges from the main papers on field-based
testing and runtime verification used as initial surveys in our
paper. We merged two challenges and excluded two challenges
that are not relevant either for the robotics domain or are not
focused on software. It is important to highlight that these
survey papers do not focus on ROS systems. This explains why
some of the challenges are not connected to any guideline, as
summarized in Table IV, which provides a mapping between
open challenges and guidelines. We will also exploit identified
discrepancies among the applicability, clarity, and usefulness
validation to identify research gaps and challenges.

A. Lack of (Formal) Specification

Formal specifications are used in test case generation and
oracle or monitor definition. However, formal specifications are
typically not found in real systems [34]. This poses a threat
to using automated processes to indulging in generating test
artifacts. Guidelines on specification of (un)desired behavior
(SDB1, SDB2, SDB3) propose means to discuss and present

13https://github.com/ros-rvft/ros-rvft.github.io/pull/1/files

languages, e.g., LTL, MTL, STL, ROSRV, RuBaSS, Geosce-
nario, SCENIC, that may assist the specification of behavior.
Towards this direction, works from Hammoudeh [97], [98]
take a step forward and propose a model-driven engineering
approach by creating meta-models for ROS, further detailed
in PE2. What is not defined by their work is the extent to
which data from the field may be used in the specifications to
shorten the gap between high-level models and concrete real-
world scenarios.

According to the evaluation in Section V, these guidelines
(SDB ones) have all a discrepancy between usefulness, gener-
ally considered as high, and applicability to projects in which
respondents have been working, where the evaluation shows
less support. This could imply that, even though the respon-
dents see value in this set of guidelines, as supported by the
usefulness, the specific conditions of the project in which they
have been working were not ideal for these guidelines. This
interpretation is supported by the results in Section V. In fact,
respondents reported that behavior specification is an activity
that is targeted to senior developers rather than QA teams,
which do not have the competencies to do such advanced tasks.
The use of languages for the specification of (un)desired be-
haviors more accessible and easy to use for senior developers
(rather than quality assurance experts) would potentially miti-
gate this discrepancy.

Concerning specification, we can identify a gap between aca-
demics and practitioners. In fact, stimulated by research results,
we attempted to define a guideline concerning the application of
Contract Programming or Design by Contract (DbC), a software
design technique that enables the software designer to declare
what the code is supposed to do [139], [140], to ROS, where
the software components are represented by ROS nodes.

On the one hand, we found some interesting academic works.
Contracts_lite �14 is a ROS package from the safety working
group that enables the explicit definition of contracts and en-
forcement of rules. As a different alternative, Luckcuck et al.
[141] take a stance on contract-based verification for ROS sys-
tems. In their work, the contracts are manually written using
the ROS Contract Language (RCL) and the ROS-based system
needs to be abstracted into a model before writing the contracts.
On the other hand, we did not find much use of DbC for robotics

14https://github.com/ros-safety/contracts_lite

https://github.com/ros-rvft/ros-rvft.github.io/pull/1/files
https://github.com/ros-safety/contracts_lite
https://github.com/ros-safety/contracts_lite
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in industrial settings. We found an informal discussion on this
topic on ROS215, however, we believe that there are not enough
available solutions and examples to formulate it as a guideline.
This could be an interesting research direction to investigate.

Still concerning specification, some approaches in space
ROS16 use properties implicitly specified. Implicit specification
happens when there is a general understanding of a particular
desired behavior. For instance, Cobra and IKOS provide support
for two static analysis tools from NASA with embedded or
implicit properties.

We conclude this subsection by highlighting the opportunity
to make formal specifications more accessible and usable in
practice. A first step in this direction can be found in patterns
for properties specification [9], [136], [142], which we mention
in SDB1. This would make it easier for practitioners to use a
set of tools for runtime verification and field-based testing that
require a formal specification as input.

B. Generating, Implementing, Orchestrating, and Governing
Field Test Cases

We proposed various guidelines on field-based testing, as
summarized in the following:

• MTA2 aims at exploiting automation for field-based test-
ing. In this guideline, we describe approaches concerning
automatic test case generation and selection.

• Guideline SE1 focuses on the use of record-and-playback
when performing exploratory field tests. Among other rec-
ommendations, this guideline suggests using exploratory
field testing to find corner cases, and then field endurance
tests [118] to test these corner cases.

• Guideline PE2 recommends the use of model-based run-
time assessment to help manage complexity and ensure
the safe operation of ROS-based applications. However,
maintaining models always adds overhead.

However, we believe that generating, implementing, orches-
trating, and governing field test cases includes many other as-
pects, and test automation in field-based testing is still limited
and relies heavily on human contributions as already high-
lighted in [34]. In the following we discuss promising future
research directions.

• Because of environment uncertainty, field test cases shall
adapt to the operational environment. Also, testers should
rely on rules and policies to establish when, how, by whom,
and in which order, a selected set of tests can be executed
[34]. This is made clear by the category of testing called
self-adaptive testing in the field (SATF) [143], which fo-
cuses on field-based testing approaches that change over
time to follow and adapt to the changes and evolution
of systems, environments, or users’ behaviors. We do not
have a specific guideline focusing on this challenge.

• One of our respondents recommends using state machines
when needed. State machines are useful to the extent that
the robot knows precisely what state it is in and there
is a discrete set of transitions to choose from. However,

15https://discourse.ros.org/t/design-by-contract/2405
16https://github.com/space-ros

the robot may not have a single state (e.g., multimodal
distribution of pose estimations). Furthermore, the vast
majority of important control code pertains to the pro-
cesses running within states, not to the transition logic
between states. So, the recommendation is to not make
a state-based architecture and quality assurance system
if the majority of bugs do not have anything to do with
state transitions.

• Another respondent would like to see guidelines concern-
ing CI/CD pipelines in the quality assurance process. This
can ensure that the code is automatically tested at every
stage of development, thus identifying issues early and
improving the overall quality of the software.

• Another of our respondents highlighted the wish for a
guideline focusing on the identification of tests that should
be re-executed at runtime to avoid the re-execution of all
tests at runtime.

Because of environmental uncertainty, field test cases shall
adapt to the operational environment. Also, testers should rely
on rules and policies to establish when, how, by whom, and in
which order, a selected set of tests can be executed [34].

C. Isolation Strategies

Field test cases must be non-intrusive. They should not in-
tervene with the running processes or their data. However, it
can be difficult and expensive to apply strategies to guarantee
the isolation of the field test cases in practice [34]. Guideline
I4 focuses on isolating components for testing. Similarly to
what was recommended in [34], we found that Man-in-the-
Middle (MITM) can be a good strategy to provide isolation
of computing nodes for field test case isolation. However, this
can be difficult for robotics. In fact, the two-way interaction
between the software and the physical environment makes it
impossible to assess the behaviour of one in isolation from the
other. This can be mitigated, e.g., with model or software in-
the-loop testing approaches.

I4 identifies two means to enact MITM in ROS, through a
proxy design pattern, e.g., ROSRV [51], or through topic remap-
ping, e.g., ROSMonitoring [72]. Guideline CD1 recommends
that developers strive for ROS nodes with a single responsibil-
ity. It should reduce the cost of observing and controlling mod-
ules, or skills [60], to facilitate isolation. Guideline PE1 focuses
on understanding the overhead acceptance criteria. It concerns
the extra load put on the system-under-test for guaranteeing that
the runtime assessment will not interfere with normal operation
or produce undesired side effects.

D. Oracle Definition

Field testing oracles need to adapt to the uncertainty and the
unknown execution conditions of the environment [34]. We do
not have a specific guideline focusing on this challenge. MTA2
aims at exploiting automation for field-based testing, including
the oracle generation. The guideline highlights Mithra [119],
a novel and unsupervised oracle learning technique for Cyber-
Physical Systems (CPS). Further work in this direction would
help make field-based testing more popular in robotics. One

https://discourse.ros.org/t/design-by-contract/2405
https://github.com/space-ros
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of the respondents highlights the importance of incorporating
guidelines for the use of CI/CD pipelines in the quality assur-
ance process. This would include the use of autonomous oracles
to automate the testing phase.

E. Security and Privacy

Executing test cases in the field can challenge security and
privacy [34]. This is indeed an important challenge. Guide-
line CI2 concerns the identification of security and privacy
constraints. These constraints can help mitigate this challenge.
Guideline PE1 concerns with understanding the overhead ac-
ceptance criteria and it focuses also on the overhead due to
maintaining security and privacy constraints while testing. Be-
sides security and privacy, one of our respondents would like
to see guidelines covering broader aspects of quality assurance,
including resource management, adaptability, data-driven ap-
proaches, system resilience, energy, and ethical considerations.
This can be an interesting direction for future research. Inte-
grating other aspects of quality assurance can help in building a
more robust, efficient, and reliable quality assurance framework
for ROS-based systems, ensuring they are well-prepared for
real-world deployment and operation.

F. Distributed Monitoring and Monitoring States

Decentralization of the monitoring architecture is identified
as an area that has not received much attention [29], probably
due to its inherent complexity. We did not identify guidelines
related to this aspect.

Concerning monitoring states, it is not very common to find
tools able to monitor the states of a program directly [29].
Guideline I1 focuses on APIs for querying and updating the
internal lifecycle. The internal states within ROS nodes are
typically hidden and not easily accessible. This limits the abil-
ity to diagnose and understand unexpected behavior. Exposing
these hidden states is crucial for providing granular information
on the system’s behavior, rendering increased observability.
Furthermore, managing these hidden states allows for actions
such as starting, stopping, and rolling back to a specific state,
in other words, increased controllability.

Most monitoring tools do not support active reactions, like
enforcement, recovery, and explanations for declarative speci-
fications [29]. Our respondents would like to have guidelines to
design APIs for extra-node enforcement and for bringing a node
for a specific state (e.g., rollback). We did not find guidelines
related to this aspect.

G. Support to Imprecise Traces

Runtime verification tools rarely support imprecision in their
input traces, e.g., imprecise timestamps, traces with incom-
plete events or inconsistencies in event sources, or due to pur-
posefully omitted events when sampling [29]. Our guidelines
do not provide recommendations or solutions on how to deal
with imprecise traces. Instead, some guidelines try to explain
how to mitigate imprecision. Guideline CD2 focuses on en-
suring global time monotonicity of events and states. Ensuring

global time monotonicity of events and states permits address-
ing the potential non-determinism in the scheduling of events
in ROS-based applications. A way to achieve that is to annotate
messages with timestamps and synchronization to guarantee
ordering. Also, guideline AR2 promotes the use of reliable
tooling to manage field data. The quality assurance team should
use reliable tools for field data management to avoid problems
with corrupted, unreliable, and/or incomplete data.

VII. THREATS TO VALIDITY

Internal validity focuses on the level of influence that extra-
neous variables may have on the design of the study [144].
Concerning the systematic literature review, we formalized the
design of this study into a detailed research protocol and thor-
oughly discussed it before the actual execution of the study.
Our research protocol is based on well-accepted guidelines for
systematic literature reviews and mapping studies [145]. Con-
cerning the repository mining, we strictly followed the approach
in [26], which successfully gathered repositories from ROS.
In addition, we make the protocols for the systematic literature
review and repository mining available online [38]. The online
material contains all the artifacts generated during the study,
including the motivation behind our decisions.
External validity concerns the generalizability of the study’s
results [144]. The generalizability of our study depends strongly
on whether the primary studies collected in the literature review
represent runtime verification and field-based testing in robotic
systems using the robot operating system. We mitigated the
threat by carefully defining the terminology used for the search
strings, and inclusion and exclusion criteria. The terminology
was validated with researchers credited for their contributions
in the domains of robotics (more specifically, in ROS), run-
time verification, and field-based testing. Additionally, we use
multiple data sources, i.e., ACM Digital Library, IEEE Xplore,
Scopus, to increase the coverage of the state-of-the-art. More-
over, we performed an additional round of in-depth searches
targeting specific facets of runtime verification and field-based
testing in ROS. This covers studies that do not mention runtime
verification or field-based testing explicitly, but that can be
relevant for the study.
Construct validity concerns whether the constructs used are
suited to answer the research questions [144]. To mitigate
such threats, we performed a thorough quantitative and qual-
itative validation of each of the guidelines. The validation fol-
lowed well-established advice surveys in software engineering
[39]. Our study considered experts from different backgrounds
within robotics domains and experience with ROS, including
a large group of experts who claimed more than 10 years of
experience. Whenever the quantitative results rendered incon-
clusive results, we discussed with experts and presented their
comments ipsis litteris in our paper. The comments are also
in the replication package [38]. The questionnaire asked the
respondents about usefulness, applicability, and clarity, which
might have led to the hypothesis guessing phenomenon [144].
We mitigate such threat by asking questions specific to each
of the guidelines and asking open-ended questions. In light of



CALDAS et al.: RUNTIME VERIFICATION AND FIELD-BASED TESTING 2563

this, we tried not to make bold conclusions but incorporated
the comments, critiques, and suggestions for improvement in
the guidelines.
Reproducibility The synthesis of guidelines from diverse
sources of knowledge, in our case scientific literature and mined
repositories, may turn out to be hard to replicate and reproduce.
To mitigate such issues, we provided a guideline specification
template that caters to how the information collected from the
diverse knowledge source is composed to generate a guideline.

VIII. RELATED WORK

This section compares our proposed guidelines to approaches
for robotics systems, field-based testing, and other literature
about devising guidelines for autonomous systems.

A. Testing Robotics Systems

Testing Autonomous and Robotics Systems is an area in
expansion. However, it still faces barriers to support the verifi-
cation and testing [3], [19]. Song et al. [146], for instance, elicit
testing challenges in the industry: unpredictable environment,
complexity stemming from the system, scenario, or modeling,
data accessibility, and, finally, lack of support standards and
guidelines to the adoption of testing.

Brito et al. [147] promotes integration testing in ROS by
releasing a testing framework for checking functional behavior
or reaching a high structural coverage thus revealing common
faults in mobile robotic systems. Similarly, Laval et al. [148]
introduces a methodology to support the definition of repeat-
able, reusable, and semi-automated testing for mobile robotic
systems. Babić et al. [149] implements a testing framework
targeting heterogeneous marine robots to benefit from simu-
lations while also reflecting the complexity of the real world.
Their approach contributes to developing a vehicle-in-the-loop
system that can seamlessly be swapped during testing. Biagola
and Tonella [150] proposed a test generator for online testing of
autonomous driving systems (ADS), namely GENBO (GENer-
ator of BOundary state pairs). GENBO works by mutating the
driving conditions of the ego vehicle controlled by the DNN
model, within a fixed driving condition scenario from an exist-
ing failure-free environment instance. Although the approach is
not particularly tailored for ROS-based systems and is limited
to the ADS domain, the methodology could shed some light on
improving runtime models through exploratory test generation
of ROS-based systems.

B. Field-Based Testing

Uniquely, Ortega et al. [118] report the experience of three
developers in performing exploratory and endurance field tests
in the Kelo AD disinfection (mobile) robot. Differently from
our approach, their work defines a necessary first step to explor-
ing field testing practices in the company’s particular context.
We, instead, survey the literature and repositories and synthe-
size guidelines based on data.

Moreover, Bertolino et al. [34] and Gazzola et al. [151]
discuss Field Testing as a technique for attaining confidence in

software-intensive systems. Bertolino surveys the literature and
classifies field-based testing techniques of ex-vivo, offline, and
online field testing approaches according to their own taxon-
omy. Gazzola et al. [151] presented the concept of field-ready
test cases, tests designed to run in production environments.
They showcase the usefulness of testing JFreeChart and Apache
Commons Lang libraries in the field by exposing faults that es-
cape testing during development. Differently, our work focuses
on understanding field-based testing and runtime verification
for robotics systems.

Riedesel [152] defines software telemetry as a set of practices
including centralized logging, distributed tracing, and security
information event management to handle data from produc-
tion until delivery to consumers such as software engineers,
customer support, or compliance teams. Riedesel’s book [152]
offers a practical view of telemetry (i.e. monitoring) systems
and dives into a pipeline for telemetry as a conceptual archi-
tecture for building telemetry systems. Differently from our
work, the book does not consider issues that are specific to
ROS-based systems and, although their suggestions are fruitful
to the discussion at a higher level, they do not help to solve
ROS particularities. Moreover, we present guidance targeting
software development that should facilitate telemetry (in their
terms), which is not discussed in the book.

C. Guidelines

We also discuss existing studies that propose guidelines to
support the development of robotic systems. Related works on
specific guidelines can be found in the description of every
guideline, as summarized in Tables I and II, especially columns
specific search and exemplars and in the detailed description
of the guidelines, where, for each guideline, we provide some
related works and exemplars. The guidelines are described as a
whole in a website destined for them [38].

Malavolta et al. [26] propose 47 guidelines for supporting
roboticists in architecting ROS-based systems. The guidelines
are mined from a dataset of 335 GitHub repositories containing
open-source ROS-based systems. Our work is also focused on
ROS-based systems, but instead of focusing on architectural as-
pects, we focus on field-based testing and runtime verification.

Weyns et al. [153] provide a set of guidelines for artifacts
that support industry-relevant research on self-adaptation. Ar-
tifact providers can use these guidelines for aligning future
artifacts with industry needs. The guidelines are based on data
obtained from a survey of practitioners and have been defined
during working sessions at the SEAMS 2022 (17th International
Symposium on Software Engineering for Adaptive and Self-
Managing Systems) conference. In [154] Weyns et al. present
six principles for engineering smarter CPS covering the main
stages of the lifetime of CPS: domain engineering, design, oper-
ation, and evolution. In their work, they raise the need for both
new toolchains and engineers with a deep-rooted understanding
of how to develop software able to adapt and evolve under
continuous change. None of these guidelines are particularly
tailored to robotics, as we do instead; also, we focus on field-
based testing and runtime verification.
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In the healthcare domain, Bombarda et al. [155] build on their
experience in certifying software produced under emergency.
By “under emergency”, the author refers to development under
strict and pressing time constraints and with the difficulty of
establishing a heterogeneous development team made of vol-
unteers. The paper’s contribution consists of lessons learned
and guidelines, aiming to assist developers in producing safety-
critical devices in similar emergencies. The authors discuss
each guideline’s benefits and risks with the guidelines. These
guidelines focus on a specific domain different from robotics
and focus on a specific setting, i.e., certifying software produced
under emergency.

IX. CONCLUSION

We proposed 20 guidelines for developers and QA teams
that aim at testing and verifying ROS-based robotic systems
in the field. Iteratively using design science, we identified and
constructed them via a literature review of runtime verification
and field-based testing studies on robotic systems, and min-
ing ROS-based application repositories. Grounded on data, the
guidelines were deemed actionable by robotics practitioners
and researchers who answered a questionnaire that assessed
whether the guidelines were clear, useful, and applicable in their
work domain. Our catalogue of guidelines is extensible and the
connected website provides instruments to collect suggestions
and recommendations from other researchers and practitioners
interested in the domain.

Our guidelines are relevant for researchers and practitioners.
The former can benefit from promising future research direc-
tions highlighted in our mapping from known challenges to
guidelines, e.g., lack of formal specifications, isolation strate-
gies, richer monitoring reactions, and support to imprecise
traces. The latter can find best practices and recommendations
on designing systems to facilitate effective verification and
validation of their ROS-based systems at runtime.
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