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ABSTRACT 

Among the many chemicals we use in daily life, 'forever chemicals' such as per- and 

polyfluoroalkyl substances (PFAS), can persist and accumulate in the environment and may 

cause long-term harm. These substances can remain with us for an extended period not only in 

the products we use but also as contaminants in the environment. They can also slowly 

transform to form toxic byproducts. 

There is an increased awareness and concern about the use of these chemicals, leading to efforts 

at both the regulatory level and within academic, industrial, and societal spheres. Risk 

assessments for chemicals have typically focused on either emission during use or from 

manufacturing facilities rather than the whole life cycle. On the other hand, life cycle 

assessment (LCA) often considers greenhouse gas emissions but omits toxicity concerns. There 

is a need for tools that can quantify the impacts of these chemicals along product life cycles, 

integrating them into LCA. Without calculating toxicity characterization factors (CFs) using 

tools such as USEtox, LCA is unable to quantify ecotoxicity impacts of chemicals. In addition, 

there are limitations regarding the availability of ecotoxicity data required to calculate these 

CFs. Even when data is available, there are concerns about the applicability of existing tools to 

accurately calculate CFs. 

The research presented in this licentiate thesis is based on two studies. The aims are to 

determine the gaps in the availability of ecotoxicity CFs for persistent and mobile substances, 

examine the influence of ecotoxicity data selection and harmonization alternatives on Effect 

factors (EFs), and explore the calculation of extrapolation factors to convert effect 

concentration indicators. The first study offers methodological contributions on the 

harmonization of ecotoxicity data of chemicals for use in calculating CFs. It also assesses 

whether QSAR-based data can effectively replace experimental data. Additionally, it offers 

practical use values for ecotoxicity CFs of persistent and mobile chemicals, which were 

previously unavailable in existing USEtox database, thus supporting their inclusion in LCA 

studies. The second study addresses the uncertainty in the extrapolation factors when 

converting different effect concentration indicators (endpoints). This aids in reducing the 

uncertainty of using generic extrapolation values for chemicals by providing species group-

specific extrapolation values for EC10 and EC50 effect concentration indicators.  
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The study concludes that the coverage of persistent and mobile chemicals in the USEtox 

database (version 2.01) is only 28% for the chemicals in focus in this thesis (18 out of 64). 

Consequently, emissions of chemicals lacking CFs cannot be included in ecotoxicity impact 

assessments in LCA due to the absence of CFs. Additionally, the ecotoxicity data 

harmonization approach can significantly influence the calculation of EFs. A pragmatic 

harmonization approach is recommended to ensure the process is feasible without 

compromising the accuracy and reliability of the harmonized data. Furthermore, QSAR 

methods should be considered a last resort when experimental ecotoxicity values are 

unavailable. QSAR methods lack accuracy in estimating ecotoxicity values for EF calculations. 

Finally, extrapolation factors at the species group level differ considerably from those at the 

generic level, leading to the conclusion that species-level factors should be used to reduce 

uncertainty in the extrapolated effect concentration indicators. 

Several challenges have also been identified which should be addressed for LCA to contribute 

to the quantification of impacts of forever chemicals. These include adaptation of the USEtox 

model to persistent and mobile chemicals, and the availability of ecotoxicity data for these 

chemicals.  
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1. INTRODUCTION 

Chemicals play a dual role in modern society, both offering advantages and constituting 

hazards. On one hand, they have catalyzed progress across various industries such as energy, 

transportation, and healthcare, considerably improving the lifestyles of billions of people 

(Barrett, 2000; ICCA, 2011; Ogunseitan, 2023; UNEP, 2019). On the other hand, their 

widespread use has introduced risks to human health and the environment. These include toxic 

environmental contaminants and health issues such as hormone disruption and neurotoxicity, 

sometimes causing impacts exceeding those of major infectious diseases (Arp et al., 2021; 

Gerster et al., 2014; Landrigan et al., 2018; Levallois et al., 2018; Villarrubia-Gómez et al., 

2018; Wu et al., 2020). The 1984 Bhopal methyl isocyanate incident, for example, had 

devastating consequences (Trushna & Tiwari, 2022). The Chemical Abstracts Service (CAS) 

has cataloged over 200 million chemical entities since the 1800s, with more than 350,000 

chemicals or combinations thereof currently registered for commercial production and use 

(CAS, 2023; ECHA, 2023c; Wang et al., 2020). European Chemicals Agency (ECHA) alone 

has registrations for over 26,500 chemicals (ECHA, 2023c).  

PMT (Persistent, Mobile, and Toxic) and vPvM (Very Persistent and Very Mobile) chemicals, 

which include the well-known per- and polyfluoroalkyl substances (PFAS) (colloquially 

known as 'forever chemicals'), are increasingly recognized as chemicals of concern due to their 

potential for environmental accumulation and considerable mobility in aquatic ecosystems 

(Neumann & Schliebner, 2019). PFAS are utilized in a wide array of applications such as fire-

fighting foams, electroplating, ammunition, and climbing ropes (Aminot et al., 2023; Glüge et 

al., 2020). ECHA defines PFAS as substances containing at least one aliphatic CF2 or CF3 

element, like PTFE (polytetrafluoroethylene) (ECHA, 2023a; Herzke et al., 2012; Wollin et 

al., 2023). Considering the widespread use of these chemicals, in 2020, the European 

Commission, in its Chemical Strategy for Sustainability, decided to categorize PMT/vPvM as 

Substances of Very High Concern (SVHC) under REACH by 2022, aiming for tighter control 

and potential restrictions (EU, 2020). By 2023, the Commission implemented a delegated 

regulation updating the Classification, Labelling and Packaging (CLP) regulation to include 

new hazard classifications for PMT and vPvM, mandating their new classifications by 2026 

(ECHA, 2023b). PMT and vPvM classes are defined in detail by ECHA (2023b) under 

European Union (EU) hazard statements.  
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Chemical management and assessment tools including LCA, chemical alternatives assessment 

(CAA), comparative risk screening, and risk assessment are available for analyzing the 

toxicological effects of chemicals (Bare, 2006; P. Fantke et al., 2020; McCarty et al., 2018). 

These frameworks have differences in their aims, applications and underlying assumptions. 

Over the past decades, the LCA methodology, supported by standards like ISO 14040, has 

gained recognition for quantifying potential ecotoxicity impacts over a product lifecycle 

(Fantke & Ernstoff, 2018; Jacobs et al., 2016; Rosenbaum, 2015; Tickner et al., 2021). 

However, LCA methods for including ecotoxicity impacts of product system containing 

chemicals, including PMT/vPvM substances, depend on the availability of characterization 

factors (CFs) for each and every chemical substance (Henderson et al., 2011; Holmquist et al., 

2020; Roos et al., 2017). These CFs are essential as they provide the necessary link between 

chemical emissions and potential ecotoxicity impacts as calculated by the LCIA (Pennington 

et al., 2004).  

Calculation of ecotoxicity CFs depends on environmental fate, exposure, and ecotoxicological 

effects of chemicals (Jolliet et al., 2006; Rosenbaum et al., 2008). USEtox, an open-source life 

cycle impact assessment (LCIA) method, is widely utilized for determining ecotoxicity CFs. It 

is officially endorsed by the UNEP/SETAC Life Cycle Initiative, the European Commission, 

the World Business Council for Sustainable Development, and the United States 

Environmental Protection Agency (Fantke et al., 2017). The USEtox model (version 2.13) 

provides a consensus approach for determining freshwater ecotoxicity CFs for various 

chemicals (Fantke et al., 2017; Rosenbaum et al., 2008; USEtox, 2023). It establishes a cause-

effect linkage tracing an environmental emission via fate and exposure to ecotoxicity impacts. 

Within USEtox, the CF [PAF.m³.d/kg emitted] is calculated in a matrix system including three 

factors: Fate factors (FF) in kg.kg-1.d-1, representing the residence time of a substance in 

different compartments; exposure factors (XF), which are unitless and represent the fraction of 

a substance dissolved in freshwater (i.e., bioavailable to aquatic species); and ecotoxicological 

EFs in PAF.m³.kg-1, illustrating the relationship between the potentially affected fraction 

(PAF) of aquatic species and the concentration of a substance. The CF is calculated according 

to the formula:  

CF = FF × XF × EF   (Eq. 1)  



3 
 

The official USEtox documentation by Fantke et al. (2017) provides detailed explanations of 

all equations, abbreviations, and input data used in the model to calculate chemical CFs. This 

licentiate thesis utilizes USEtox to determine aquatic CFs for 64 persistent and mobile (PM) 

chemicals, including 24 PFAS, 17 triazines, and 23 triazoles. 

Despite the known risks that many chemicals pose to the natural environment, including 

freshwater, marine, and soil compartments, only a relatively small fraction of these chemicals 

have been integrated into LCA, leading to considerable data gaps and inaccuracies in the 

assessment of ecotoxicity impacts (Rosenbaum et al., 2017). This is underscored by the 

disparity between the 145,299 substances documented by the ECHA and the 3,104 substances 

(3,077 organic and 27 inorganic) available in the USEtox database (version 2.01) (Fantke et 

al., 2017; USEtox, 2023). Specifically, USEtox provides freshwater ecotoxicity Effect Factors 

(EFs) for only 2,499 substances, leaving many chemicals uncharacterized due to the scarcity 

of ecotoxicity data. In particular, among PFAS and other fluorinated compounds, the CompTox 

Chemicals Dashboard PFAS suspect list identifies 16,120 PFAS substances (CompTox, 2023; 

PubChem, 2023), yet the USEtox database (version 2.01) includes CFs for only 14 of these. 

This substantial gap in available CFs for PFAS substances severely hinders their integration 

into LCA. In past years, attempts were made to fill the data gaps, including experimental EFs 

and CFs, from studies conducted by Saouter et al. (2018), which calculated CFs for 6,711 

chemicals. Additionally, Douziech et al. (2024) calculated EFs for 9,862 chemicals, with 8,876 

using a default slope of 0.7 to derive SSDs to estimate HC20EC10, 701 based on Owsianiak et 

al. (2023) with intra-species extrapolated effect data, and 285 by combining intra-species 

extrapolated effect data and QSAR-based estimates to reach five species from three species 

groups.  
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2. AIM AND RESEARCH QUESTIONS 

The overarching aim of this thesis is to advance the integration of chemical ecotoxicity impacts 

within LCAs, particularly focusing on persistent and mobile chemicals due to their potential to 

accumulate in the environment and cause long-term harm. The research is structured around 

three specific research questions. 

Research Question 1: Are there important gaps in the availability of ecotoxicity CFs for PM 

substances? 

The first research question addresses the gaps in the inclusion of PM substances' ecotoxicity 

impacts in LCA. PM substances are defined as those persistent in the environment and mobile 

in the aquatic environment based on combinations of their intrinsic properties. However, the 

criteria for classifying a substance as PM may vary depending on the qualifying values for 

these intrinsic properties as defined by regulatory organizations such as the German 

Environment Agency (UBA) or the ECHA (Hale et al., 2020). For a truly holistic life cycle 

assessment, the inclusion of ecotoxicity impacts from PM chemicals is essential, given their 

considerable effects on the environment. The USEtox database (version 2.01) has coverage of 

only 109 out of the 343 chemicals identified as PMT/vPvM by the UBA (Arp et al., 2023; 

Fantke et al., 2017; Rosenbaum et al., 2017). Paper 1 considers a group of 64 chemicals 

identified as chemicals of concern due to their persistence, mobility, and widespread use within 

Europe. For these selected PM chemicals, the coverage is only 18 out of 64 in USEtox. To 

overcome this lack of CFs for these chemicals, Paper 1 calculated CFs for all 64 chemicals, 

thus facilitating their inclusion in LCA studies.  

Research Question 2: How does the selection of ecotoxicity data and its harmonization 

influence the calculation of EFs? 

This research question explores the calculation of ecotoxicity CFs, which depends on matrix 

calculation of FF, XF, and EF. Studies have shown that CFs are particularly sensitive to the 

values of EFs (Holmquist et al., 2020; Roos et al., 2017), which are calculated using ecotoxicity 

data. However, ecotoxicity raw data need harmonization to standardize into the USEtox input 

format, as raw data often vary in terms of units, exposure durations, effect concentration 

indicators, and species tested. Paper 1 presents advancements in the harmonization of 

ecotoxicity data for chemicals to calculate EFs. A data harmonization strategy was developed 

for ecotoxicological effect data. Alternative data harmonization strategies were also developed 
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and tested to determine the influence of different steps in the EF calculation and different 

ecotoxicity data sources. Different in silico methods were also utilized and compared to 

experimental data to test the reliability of these methods in addressing data gaps.  

Research Question 3: What are the challenges and opportunities with alternative ecotoxicity 

data translation and aggregation approaches in calculating extrapolation factors for CFs? 

This research question investigates the challenges in using ecotoxicity databases where 

chemicals have ecotoxicity values at different effect concentration indicators that cannot be 

directly used but require conversion into effect concentration indicators suitable for EF 

calculation. In USEtox, chronic EC50 (effective concentration inducing a 50% of the response) 

values are required. Available extrapolation factors usually consider the type of effect 

concentration indicators and exposure durations but generally fail to address variations across 

species groups, which can be considerable. Paper 2 delves into the current lack of species 

group-specific extrapolation factors to convert effect concentration indicators (EC10 eq and 

EC50 eq) to a chronic EC10 eq and chronic EC50 eq. The paper introduces both generic and 

species group-specific extrapolation factors. This advancement enables more precise 

ecotoxicity CF calculations in USEtox, enhancing its scope and accuracy. Along with 

proposing new generic and species group-specific extrapolation factors, Paper 2 also analyzes 

the influence of alternative ecotoxicity data aggregation approaches. It compares the methods 

of aggregation (geometric mean vs. arithmetic mean) and the classification of effect 

concentration indicators (EC10 eq and EC50 eq vs. NOEC, EC10, and EC50 eq). Additionally, 

the paper examines the differences in generic extrapolation factors across various chemical 

groups. 

 

 

 

 



6 
 

3. METHODS  

3.1. Transformation products  

Paper 1 made an attempt to include TPs in the calculation of CFs for chemicals, in particular 

those PM chemicals on the UBA list. Including every possible TP from the 64 chemicals 

considered in Paper 1 was infeasible. This is due to the limitations of TP prediction tools, which 

can only predict the probable TPs without providing their quantities, making it difficult to 

determine which TPs to include. To address this challenge, a simplified TP screening strategy 

was developed based on the chemical parameters of persistence in the freshwater environment 

and ecotoxicity values as shown in Figure 1. In this strategy, potential TPs up to three 

generations from the parent compound were estimated for each parent compound using two 

openly available TP prediction tools: the United States Environmental Protection Agency’s 

Chemical Transformation Simulator (CTS) (Wolfe et al., 2016; Yuan et al., 2021) and enviPath 

(enviPath, 2022; Wicker et al., 2016). First, persistence data for all TPs was collected using the 

EPI Suite level III fugacity model with a fixed temperature of 25°C to estimate the half-life in 

water (Aronson et al., 2006; U.S.EPA, 2023b). TPs that were less persistent than their 

respective parent chemicals were excluded. Next, for the remaining persistent TPs, ecotoxicity 

data (LC50) for the fathead minnow over a 96-hour exposure duration was collected using the 

EPA T.E.S.T. QSAR (Quantitative Structure-Activity Relationship) method (U.S.EPA, 2020). 

TPs that were less toxic than their respective parent chemicals were excluded. The resulting 

relevant TPs were then added to the list of the 64 chemicals for the CF calculations. In total, 

three TPs were added to the list. 
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Figure 1: Simplified in silico PM transformation products screening-level assessment strategy. 

3.2. Data sources 

In Paper 1, the selection of 64 PM chemicals was based on a literature review by Hale, Kalantzi, 

et al. (2022), focusing on chemicals with a potential risk of contaminating drinking water 

sources due to their persistence and mobility, as well as their widespread use in Europe (Arp 

& Hale, 2022; Hale, Neumann, et al., 2022; Jin et al., 2020). These chemicals are classified 

into three groups: PFAS, triazines, and triazoles. For the calculation of EF, experimental 

ecotoxicity data was collected from purely experimental chemistry data sources including in 

the CompTox Version 2.1.1, which includes data from ToxValDB v9.1.1 (CompTox, 2022; 

Williams et al., 2017). A total of 5,002 ecotoxicity data points were collected, covering 15 

PFAS, 12 triazines, and 21 triazoles. Additionally, QSAR-based ecotoxicity data was collected 

from various QSAR models, including ECOSAR™ Version 1.11 through EPI Suite v4.11 

(Benfenati et al., 2013; U.S.EPA, 2023b), US EPA Toxicity Estimation Software Tool 

Primary Chemicals 
(ZeroPM Box Chemicals-64) 

24-PFAS 
17-Triazine 
23-Triazole 

Tool Used:  
1. Chemical Transformation Simulator (CTS) provided by USEPA 
2. enviPath 

 

Poten�al Transforma�on Products 
(Upto 3rd Genera�on) 

Persistence (P) check 
(Persistence (P)/ Very Persistence (vP)) 

(Based on Half-Life in water from EPI Suite) 
PD : Persistency of the Transforma�on product 

PP: Persistency of the Primary chemical 

PD ≥ PP PD < PP 

Toxicity (T) check 
(Based on LD50 oral from TEST tool) 

TD : Toxicity of the transforma�on product 
Tp : Toxicity of the Primary chemical 

TD > Tp TD ≤ Tp 

Test Tool: 
1. EPA TEST QSAR method 

 

Included Transforma�on Products  
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(T.E.S.T.) (Mayo-Bean et al., 2012; U.S.EPA, 2020), VEGA (VEGA HUB, 2022), and the 

Danish (Q)SAR database (Danish (Q)SAR, 2022). Data collected from ECOSAR include 

effect concentration indicators such as LC50 96h for fish, LC50 48h for daphnia, and EC50 

96h for green algae. Ecotoxicity data collected from US EPA T.E.S.T. v5.1.2 includes effect 

concentration indicators such as LC50 96h for fathead minnow, LC50 48h for Daphnia magna, 

and IC50 48h for Tetrahymena pyriformis. 

Physicochemical data were retrieved from several sources: molecular weight (MW) from 

ChemSpider (Chemspider, 2022); pKa, chemical class (neutral, acid, base, amphoter), 

pKa.gain, and pKa.loss from ChemAxon (Chemaxon, 2022); and partition coefficients (KOW, 

KOC), Henry's Law constant at 25°C (KH25C), vapor pressure at 25°C (Pvap25), water 

solubility at 25°C (Sol25), and degradation rate constants in air, water, sediment, and soil 

(kdegA, kdegW, kdegSd, kdegSl) from EPI Suite v4.11 (U.S.EPA, 2023b). 

In Paper 1, the EFs of the PM chemicals were calculated based on experimental data after 

harmonization. This dataset included, on average, data from 10 species and three species 

groups per chemical. Specifically, for the 14 PFAS compounds, data from an average of five 

species and two species groups were considered. For the 12 triazines, the dataset included data 

from 20 species and four species groups, and for the 21 triazoles, data from nine species and 

four species groups were used. The harmonized dataset covers a broad temporal span, from 

1965 to 2020, with 58% of the data points from 2004 onwards, and 35% from 2010 onwards. 

The year 2004 is particularly notable as it can be considered as the cut-off year for most of the 

available input data in the USEtox database. The temporal distribution of data also varies across 

chemical groups. For PFAS, 90% of the data is from post-2004 and 77% from post-2010, 

highlighting that a substantial portion of PFAS data was generated in the past decade. In 

contrast, for triazines, 44% of the data is from post-2004 and 22% from post-2010. For 

triazoles, 69% of the data is from post-2004 and 39% from post-2010.  

To address research question 2 regarding the influence of different ecotoxicity data sources on 

the EFs, two approaches were used. First, various QSAR methods were employed to calculate 

the EFs, which are then compared. Secondly, the results from all QSAR methods were 

combined and compared with experimental values to assess the reliability of QSAR models in 

calculating the EFs. The combined QSAR based ecotoxicity data from ECOSAR™ Version 

1.11 [n=39], US EPA T.E.S.T. [n=44] and Danish (Q)SAR database [n=50] (Danish (Q)SAR 

Database, 2022) were collected and then harmonized. The harmonized data resulted in 524 data 
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points consisting of 161 data points for 21 PFAS, 158 data points for 17 triazines, and 205 data 

points for 21 triazoles.  

To generate extrapolation factors in Paper 2, aquatic ecotoxicity data were collected from 

REACH dossiers and the CompTox database (Adkins, 2023; REACH, 2020; Williams et al., 

2017). The REACH database accessed contained 225,517 ecotoxicity records for 12,411 

chemicals identified by a European Commission Number. The CompTox data from the U.S. 

EPA ToxValDB (version 9.4) includes 517,067 ecotoxicity data points, for 8,640 chemicals 

identified by CAS number. 

3.3. Harmonization of ecotoxicity data 

The harmonization of ecotoxicity raw data is required for the calculation of the EFs. 

Ecotoxicity data harmonization refers to the process of standardizing ecotoxicity data from 

different sources to ensure consistency, comparability, and reliability across datapoints. This 

is usually done by converting the data from different formats to a standardized format based 

on the intended use of the data. In this study, the data is harmonized based on the format needed 

in USEtox. A data harmonization strategy for ecotoxicological effect data was developed in 

Paper 1, as illustrated by the decision tree in Figure 2.  



10 
 

 

 

 Procedure steps Ecotoxicity data points with iden�fiers 

1. Chemical match  

2. Ecosystem type 

3. Data point qualifiers   

4. Data point units  

5. Effect concentra�on indicators 
classifica�on 

6. Test species name 

8. Exposure dura�on 

7. Species grouping 

Discarded 
data points  

Data point iden�fiers matching with the reported chemical  

Data points ecosystem matching with analysis ecosystem 

Data points qualifiers checking 

9. Acute/chronic exposure dura�on 
threshold 

10. Species Life stages 

11. Acute/chronic based on 
exposure dura�on 

12. Acute/chronic based on 
life stages 

13. Source availability 

14. Data type 

15. Study reliability 

16. Endpoint harmoniza�on 

17. Ecologically relevant effects 

19. Exclude duplicates 

Data points unit conversion into consistent units 

Data points categoriza�on into indicators groups 

Assigning common name to data points test species 

Grouping tested species under species groups 

Data points unit conversion into consistent exposure dura�on 
units 

Checking availability of data points original data source  

Checking data points data type acceptability 

Checking data points Klimisch score 

Data points endpoint conversion into consistent endpoint  

Checking relevance of the effect on the ecosystem 

Removing duplicate data points  

Inputs 

Selected ecosystem 

Acceptable unit 

Selected iden�fiers 

Unacceptable qualifiers 

Effect concentra�on indicators 
grouping 

Species common name 

Species groups 

Exposure dura�on units 

Assigning species groups exposure dura�on threshold above 
which the exposure is considered chronic 

Species groups exposure dura�on 
threshold 

Categorizing species life stages into sensi�ve/non-sensi�ve Defined species sensi�ve life stages  

Data points categoriza�on as acute/chronic as per exposure 
dura�on threshold 

Categorizing data points with sensi�ve life stages as chronic  

Data type 

Data endpoint 

Duplicate removal strategy  

Harmonized data 

No Match 

No Match 

Unacceptable 

Inconsistent 

Uncategorized 

Not found 

Ungrouped 

Inconsistent 

Unavailable 

Unacceptable 

Unacceptable 

Inconsistent 

Irrelevant 

Duplicate 

Iden�fying data points with the most sensi�ve effect with 
most relevant endpoint per study per test species 

Methodology to iden�fy sensi�ve 
and relevant data points 

Less relevant 18. Most sensi�ve effect with most 
relevant endpoint 

Figure 2:  Decision tree for ecotoxicity data harmonization for effect factors calculation (Source: Paper 1) 
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The harmonization process begins with checking the chemical identifiers to ensure that the data 

corresponds to the chemical under consideration. This step is crucial because chemicals can 

have multiple identifiers, some unique and some not. Various databases use their own chemical 

identifiers, such as the European Commission number. To address this, commonly available 

chemical identifiers, specifically CAS registry numbers, were collected for all chemicals from 

the data sources and matched with the chemical under consideration. The next step is to ensure 

that the data pertains to the aquatic system since the CFs are to be calculated for the freshwater 

ecosystem as per the USEtox model. Data from other ecosystems were excluded. During data 

collection, some values may not be definitive, being either statistically estimated or outside the 

measurable range of instruments. This results in data with numeric qualifiers such as >, ≥, <, 

and ≤. To minimize uncertainty, only data points with the qualifier "=" were included. 

Subsequently, the effect values were harmonized to common units of mg/L for the calculation 

of the EFs. Data in units that could not be converted to mg/L, such as mg/day or mg/kg, were 

excluded due to the incompatibility with USEtox data requirements. Effect concentration 

indicators were harmonized into four groups: "NOEC eq," "EC10 eq," "EC50 eq," and "LOEC 

eq," based on available extrapolation factors to convert to chronic EC50 (Aurisano et al., 2019). 

Species names were standardized according to the US EPA ECOTOX knowledgebase 

(U.S.EPA, 2023a), and species were grouped into seven categories to determine chronic 

exposure duration thresholds for exposure type classification (Aurisano et al., 2019; Payet, 

2004). Exposure duration was harmonized in days and then classified into different exposure 

type in multiple steps. First, a chronic exposure duration threshold was set as follows: >1 day 

for algae, cyanobacteria, and microorganisms; >4 days for invertebrates (crustaceans); and >7 

days for fish, invertebrates (non-crustaceans), vertebrates, and aquatic plants other than algae, 

as given in Aurisano et al. (2019). Secondly, tests with early life stages (e.g., embryo, larva) 

were then combined with the chronic test class irrespective of test duration. 

Data source references were checked to ensure the data type was experimental only, followed 

by assessing study reliability based on the Klimisch score, accepting scores of either 1 (reliable 

without restriction) or 2 (reliable with restrictions) (Klimisch et al., 1997). If necessary, effect 

concentration indicators were extrapolated to chronic EC50 (Aurisano et al., 2019; Fantke et 

al., 2015). Only effects relevant to the aquatic ecosystem level were included, excluding effects 

such as biomarkers, as described in the data harmonization applied by Holmquist et al. (2020). 

Among multiple relevant effects, only the most sensitive effect per study, per chemical, and 

per test species was retained. Finally, all duplicate values were removed.  
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The ecotoxicity raw data retrieved from CompTox Version 2.1.1 in Paper 1 includes in total 

5,002 experimental ecotoxicity data points. The harmonization steps including Step 2 

(Ecosystem Type), Step 3 (Numeric Qualifiers), Step 4 (Data Point Unit), Step 5 (Effect 

concentration indicators Classification), Step 15 (Study Reliability), and Step 18 (Most 

Sensitive Effect) resulted in the exclusion of most of the data points in total that did not conform 

to the required format. As a result of these harmonization steps, the initial data set was notably 

reduced. The final harmonized dataset contained 1,189 data points: 174 for 14 PFAS, 668 for 

12 triazines, and 347 for 21 triazoles.  

Research question 2 addresses the impact of data selection and harmonization on the EFs. To 

illustrate this, Paper 1 developed alternative data harmonization strategies by modifying the 

baseline harmonization framework shown in Figure 2. Alternative Data Harmonization 

Strategy 1 included all data points regardless of the numeric qualifiers. By doing so, it assessed 

the impact of including data points with unacceptable numeric qualifiers (e.g., >, ≥, <, ≤). 

Alternative Data Harmonization Strategy 2 altered the exposure type classification by assuming 

all data points to be acute and then extrapolating them to a chronic equivalent. Alternative Data 

Harmonization Strategy 3 assumed all effects and effect concentration indicators to be equally 

sensitive and relevant, disregarding their specific distinctions. To assess the impact of these 

alternative strategies on the final CF results, a correlation analysis was conducted. This analysis 

involved log-transformed regression fits between the EFs calculated from the alternative 

strategies and those from the baseline harmonization strategy. The R² values were used to 

determine the extent of correlation.  

Paper 2 developed a simplified framework for data selection and harmonization, building on 

the framework of Paper 1, for the calculation of extrapolation factors across effect 

concentration indicators, exposure type, and test species groups. Simplification was necessary 

because the aim of Paper 2 was to develop extrapolation factors rather than CFs. Consequently, 

steps such as effect concentration indicators harmonization, selection of the most sensitive 

effect, and other time-consuming processes like assessing species life stages and sensitivity 

and combining acute/chronic exposure based on life stages with risk assessment class, were 

excluded. The data harmonization process in Paper 2 included five main steps: chemical 

identification, data reliability control, data harmonization, consistency checking, and selection 

of ecologically relevant effects, as illustrated in Figure 3. The final harmonized dataset 

comprises 339,729 datapoints for 10,668 chemicals.  
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Figure 3:  Decision tree for ecotoxicity data harmonization framework for extrapolation factors calculation (Source: Paper 2) 

3.4. Extrapolation factor calculation  

In the absence of data availability in the required format as required by USEtox, extrapolation 

factors are commonly employed to convert different effect concentration indicators (NOEC, 
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extrapolation accuracy. A number of studies have addressed the development of extrapolation 
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for three species groups—algae/cyanobacteria, crustaceans, and fish—covering effect 

concentration indicators such as EC50, NOEC, and EC10. Conversely, Payet (2004) data was 

collected from sources like ECETOC and the US-EPA, compiling 134,088 data points across 

species groups including plants and algae, vertebrates, and invertebrates, and effect 

concentration indicators EC50, LOEC, and NOEC. Saouter, Wolff, et al. (2019), used ECHA 

2015 data, harmonized 305,068 raw data points to a set of 54,353, focusing on algae, 

crustaceans, and fish for effect concentration indicators like EC50 chronic, EC50 acute, and 

NOEC chronic. 

In Paper 2, 339,729 harmonized datapoints for 10,668 chemicals were aggregated and then 

used to calculate the extrapolation factors. The data aggregation occurs at three levels: starting 

at the species level, followed by the species group level, and finally at the generic level with 

all organisms as one group using geometric means. The harmonized data aggregation at the 

species level yielded 79,001 aggregated effect concentration datapoints for 10,668 chemicals. 

At the species group level, there were 41,303 aggregated datapoints for these chemicals. 

Finally, at the generic level, there were 23,215 aggregated datapoints for the 10,668 chemicals. 

Then the aggregated, log10-transformed, harmonized dataset undergoes pairwise comparisons 

using linear regression analysis to calculate extrapolation factors. Linear regressions were 

applied in two different ways: one with a free slope and the other with a fixed slope of 1. The 

strength of the correlation was indicated by the coefficients of determination (R²). Specifically, 

the free-slope regression was employed to derive the regression equation. Conversely, the 

regression with a fixed slope of unity was used to determine the default extrapolation factors. 

Initially, generic extrapolation factors for EC10 chronic were calculated from three effect 

concentration indicators: EC50 acute, EC10 acute, and EC50 chronic. Then, species group-

specific extrapolation factors were calculated for different species for EC10 chronic from the 

same three effect concentration indicators: EC50 acute, EC10 acute, and EC50 chronic. 

Additionally, the study provided the best-fit regression equations for converting to EC10 

chronic, enhancing the accuracy of extrapolation across various species and effect 

concentration indicators. In this study, the extrapolation factor is a multiplier. When applied to 

the effect concentration indicators to be extrapolated, it converts the value to the extrapolated 

chronic EC10.  
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4. RESULTS AND DISCUSSION 

4.1. Influence of data harmonization strategies 

The ecotoxicity data harmonization framework is the backbone of calculating the EFs, which 

dominate the CFs of a chemical. Ecotoxicity data varies due to the high diversity in factors 

affecting the data, ranging from different species, effect concentration indicators, and exposure 

types to units of measurement. In Paper 1, a detailed harmonization strategy is provided as the 

baseline, reducing the initial raw data from 5,002 experimental ecotoxicity data points to 1,189 

data points, a reduction of 76.2%. This reduction is not due to the unreliability of the data points 

but because the data was collected for different purposes and lacked the required format for CF 

calculations. However, the harmonization framework might also exclude data points that could 

still be useful, leading to unnecessary data loss. In addition, three simplified data harmonization 

schemes that included more data were tested. 

Alternative Data Harmonization Strategy 1 included data points regardless of numeric 

qualifiers, resulting in a total of 1,336 points for 48 substances. This strategy increased the data 

points from 23.8% to 26.7% in relation to the raw data points, a 2.9% increase. The calculated 

EFs were correlated with EFs calculated using the baseline harmonizing strategy, with an R² 

value of 0.94, indicating a strong correlation. This suggests that the removal of unacceptable 

numeric qualifiers had a low influence on most of the EFs, though this may not always be the 

case.  

Alternative Data Harmonization Strategy 2 assumed all data points were acute and extrapolated 

them to a chronic equivalent exposure type, resulting in a total of 1,215 points for 47 

substances. This strategy increased the data points from 23.8% to 24.3% in relation to the raw 

data points, a 0.5% increase. The correlation analysis showed an R² value of 0.99, indicating a 

very strong correlation. This suggests that the classification of acute and chronic effects did not 

notably affect most EFs, as the majority of the data points in the raw dataset are acute.  

Alternative Data Harmonization Strategy 3 assumed all effects and effect concentration 

indicators to be equally sensitive and relevant, disregarding their specific distinctions, resulting 

in a total of 2,214 points for 47 substances. This strategy increased the data points from 23.8% 

to 55.7% in relation to the raw data points, a 31.9% increase. The correlation analysis showed 

an R² value of 0.94, indicating a strong correlation. This suggests that considering only 

sensitive effects and relevant effect concentration indicators does not have a notable influence 
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on most of the EFs. This result indicates that including all effect concentration indicators and 

effect types regardless of their sensitivity would not significantly alter the results. Therefore, if 

time and resources are limited, this step may be excluded in a simplified analysis and only 

included if detailed analysis or higher accuracy is needed.  

4.2. Transformation product inclusion  

The TPs identification strategy developed in Paper 1 was used. Using the TP prediction tools, 

a total of 322 TPs were determined, including 166 predicted with the CTS tool and 156 with 

enviPath. The identified TPs underwent a persistence test for 386 substances (64 primary 

chemicals and their 322 TPs), resulting in 78 TPs being equally or more persistent, and 242 

being less persistent compared to their primary chemicals. Following the persistence test, the 

equally or more persistent TPs underwent an ecotoxicity test, resulting in 3 TPs being more 

toxic and 109 being less toxic compared to their primary chemicals. 

In Paper 1, 3 TPs included were difenoconazole-ketone, 1-(2,4-dichlorophenyl)-2-(1H-1,2,4-

triazol-1-yl) ethenone, and 1-[(2Z)-3-(2-chlorophenyl)-2-(4-fluorophenyl)prop-2-en-1-yl]-1H-

1,2,4-triazole. The CF values of these TPs were 9%, 7%, and 13% of their respective primary 

chemicals. It was reasonably assumed that the CF values of the TPs might be equal to or higher 

than the primary chemicals, especially since the TPs were selected based on having greater 

ecotoxicity than the primary chemicals, and EFs, which depend on ecotoxicity, play a dominant 

role in CFs. However, this was not the case. This result is due to the limitations in the 

ecotoxicity testing for TPs, which was based on a single species (fathead minnow), whereas 

the EF calculation aggregated all available data across different species. Using EFs in the 

ecotoxicity step to identify the most toxic TPs can improve the accuracy of the ecotoxicity step 

in the simplified TPs selection framework. Paper 1 emphasis the need for further research to 

refine this approach and develop more reliable tools and guidelines for the inclusion of TPs in 

CF calculations and LCAs.  

4.3. QSAR data inclusion  

Experimental data is costly and often scarce, particularly as the number of chemicals in the 

global marketplace continues to increase. To fill data gaps, many QSAR tools are available. 

However, the availability of these tools does not necessarily equate to their reliability. The final 

benefits come from tools that can reliably estimate ecotoxicity within a reasonably good 

applicability domain. 
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To test this for the PM chemicals in Paper 1, two QSARs were evaluated by correlating their 

EFs with experimental data. First, one of the most applicable tools, ECOSAR QSAR from EPI 

Suite, estimated ecotoxicity data for 33 chemicals, resulting in an R² of 0.36 for the calculated 

EFs. This weak correlation prompted further testing for different chemical groups to classify 

them at a more specific level. ECOSAR could estimate ecotoxicity for only 2 PFAS, thus no 

correlation was calculated for this group of chemicals. For the triazines chemical group, the R² 

was 0.14 based on 12 chemicals, indicating a weak correlation. For triazoles, the R² was 0.46 

for 19 chemicals, suggesting a moderate correlation. 

The second QSAR model tested was T.E.S.T., resulting in an R² of 0.53 based on 33 chemicals, 

indicating a moderate correlation but better than ECOSAR. For different chemical groups, the 

R² values were 0.29 for 12 PFAS, 0.62 for 8 triazines, and 0.66 for 13 triazoles.  

Combining different QSARs might fill data gaps by covering more chemicals. In Paper 1, a 

comparison was made between experimental and combined QSAR-based EFs by integrating 

results from five QSARs with data availability for 45 chemicals. The resulting R² was 0.37, 

indicating a weak correlation. Additionally, the QSAR-based EFs were within two orders of 

magnitude of the experimental EFs. This result suggests that combining different QSARs may 

not be an effective approach to fill data gaps, as the uncertainty in the QSARs may be amplified 

by combining them.  

4.4. Effect factor results 

One reliable source that is available for the CFs in the form of a database is the USEtox 

database. In Paper 1, we compared the EFs calculated in Paper 1 to the EFs in the USEtox 

database. We found that 18 of the chemicals in Paper 1 overlapped with the USEtox database, 

so the study compared them with the USEtox organic substances database (version 2.01). For 

the comparison, linear regression analysis was used with R² as the indicator of the degree of 

correlation. The result was an R² of 0.63, showing a moderate correlation. 

However, given that the CFs matrix equation involves three factors in the calculation of CFs, 

the study aimed to determine the influence of the other factors, or in general terms, the impact 

of other physical and chemical properties except for ecotoxicity. The study input the physical 

and chemical properties for the overlapping 18 chemicals from the USEtox database and used 

the EFs calculated in the study. The correlation between the initial calculated CFs with USEtox 

inputs and EFs, compared to the CFs calculated in Paper 1, was R² = 0.99. This indicates that 
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the physical and chemical properties used are similar to those in USEtox and that the 

differences are primarily due to the EF values, which depend on the ecotoxicity values. This 

observation implies that changes in CFs are predominantly related to differences in ecotoxicity 

values rather than other input data, aligning with previous findings (Holmquist, 2020; Roos et 

al., 2017).  

The original ecotoxicity factors in USEtox were calculated using ecotoxicity data from two 

sources: the e-toxBase database from the National Institute for Public Health and the 

Environment (RIVM) by van Zelm et al. (2009); Zelm et al. (2007); and the ECOTOX and 

IUCLID databases as referenced by Payet (2004). The USEtox database was thus created using 

older data and may need updating. In Paper 1, more recent data was used, which may lead to 

changes. However, these changes will not necessarily increase or decrease the factors 

uniformly, as new ecotoxicity data can result in either an increase or decrease in factors.  

4.5. Characterization factor results 

In Paper 1, CFs were calculated for 67 chemicals, including 64 primary chemicals and 3 TPs. 

The chemicals consisted of 24 PFAS, 17 triazines, and 23 triazoles. The 67 CFs calculated in 

Paper 1 ranged over almost six orders of magnitude. The main results led to the conclusion that 

there is no specific relationship between a chemical belonging to a particular chemical class 

and its CFs. All three chemical classes exhibited diversity across the minimum to maximum 

range, indicating that chemicals in a particular class do not necessarily have relatively high or 

low CFs compared to other classes. 

Secondly, the findings highlight that at that time available CF databases lack coverage of PM 

chemicals. Out of the 64 primary chemicals, there was only a 28% overlap (18/64) with the 

USEtox organic substances database (version 2.01). This includes none of the 24 PFAS, 10 out 

of 17 triazines, and 8 out of 23 triazoles. The changes in CF values are due to differences in EF 

values, with temporal differences in the ecotoxicity data. This indicates that the USEtox 

database has limited coverage of certain chemical groups, especially PFAS. 

Another result is that ecotoxicity data sources' lack of experimental data, resulting in only 70% 

of the CFs (47/67) being calculated using experimental ecotoxicity data for 14 PFAS, 12 

triazines, and 21 triazoles. This leaves a gap of 30%. To fill this gap, ecotoxicity data from 

QSARs were used, providing CFs for an additional 17 chemicals, including 8 PFAS, 5 

triazines, 1 triazole, and 3 TPs. However, the QSARs were unable to predict values for two 
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PFAS and one triazole. Two methods were adopted to estimate their CFs. First, for the PFAS, 

a simplified regression analysis was developed relating the number of perfluorinated carbons 

with the calculated CFs to estimate the CFs for the PFAS with unknown CFs. However, the 

correlation was low due to the diverse nature of PFAS, and the number of perfluorinated 

carbons was not directly related to ecotoxicity. The correlation might be improved if PFAS 

were subdivided, but due to the lack of PFAS with experimental CFs, this was not explored. 

The second method involved averaging the CFs within a chemical group and assigning this 

average to the chemicals in that group with unknown CFs. In the study, the average of 22 PFAS 

within the PFAS group was used to fill the data gaps for the two PFAS, and the average CF of 

the 22 triazoles was used for one triazole.  

To understand the relative freshwater ecotoxicity potential of the PM chemicals in Paper 1 

compared to all the other chemicals in the USEtox 2.01 organic substances database, the 

harmonized datasets for PFAS, triazines, and triazoles are ranked against the USEtox 2.01 

dataset. The study also examines the influence of being grouped in a particular group of PM 

chemicals, such as PFAS, triazines, and triazoles, and related ecotoxicity potential range. The 

plotting of calculated CFs against USEtox CFs (version 2.01) [n=2499] shows the range of CF 

values for different PM chemical groups as presented in Paper 1. The plots highlight variability 

and diversity in CF values across different groups, indicating that no particular group 

consistently has higher or lower CFs. However, all the CFs for the different groups fall within 

the range of USEtox CF values and vary widely from lower to higher, rather than being 

concentrated in a narrow range.  

4.6. Extrapolation factor results 

Paper 2 advances previous research by utilizing a more extensive database of experimental 

ecotoxicity data, comprising 339,729 data points across 10,668 chemicals. It also implements 

a modified curation process and delivers extrapolation factors that convert various effect 

concentration indicators to a chronic EC10, which is recommended for calculating USEtox 

EFs. Paper 2 calculated three generic and 24 species group-specific extrapolation factors, for 

two effect concentration indicators and two exposure type. These facilitate the extrapolation of 

effect concentration indicators (EC10 eq and EC50 eq) to a chronic EC10, thereby enabling 

more accurate ecotoxicity CF calculations in USEtox. 
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The first results of the extrapolation factors include the calculation of both generic and species 

group-specific extrapolation factors. There are two main types of extrapolation factors 

calculated: Firstly, extrapolation to EC10 chronic from different effect concentration 

indicators, in line with the recommended USEtox methodology for calculating CFs. Secondly, 

extrapolation to EC50 chronic from different effect concentration indicators, following the 

existing USEtox methodology for calculating CFs. The values of the default extrapolation 

factor, along with the extrapolation equations, are provided in Paper 2 and its supplementary 

information. It is recommended to use extrapolation factors equations instead of the default 

factors for accuracy and reliability. 

There are two important aspects related to the calculated extrapolation factors. Firstly, due to 

a lack of data for certain species groups, such as aquatic plants, fungi, moss, hornworts, and 

reptiles, extrapolation factors were not calculated for these groups. It is recommended that users 

either use generic extrapolation factors or judgment to apply extrapolation factors from closely 

related species groups. Secondly, the overall reliability was not high, with R² values less than 

0.80. However, there were also differences based on the exposure type, with weaker 

correlations observed for acute effect extrapolation compared to chronic effect extrapolation. 

This suggests that extrapolation within the same exposure type is more reliable than across 

different exposure types. 

The second part of the results involves comparing generic and species group-specific 

extrapolation factors. Studies often use generic extrapolation factors instead of species group-

specific ones, which may lead to uncertainty. In this thesis, the level of uncertainty is assessed 

by comparing generic extrapolation factors to different species group-specific extrapolation 

factors for different effect concentration indicators. Figure 4 and Table 1 shows the differences 

in default extrapolation factors for different species groups compared to generic extrapolation 

factors for converting EC10 acute, EC50 acute and EC50 chronic effect concentration 

indicators to EC10 chronic. The comparison indicates that species group-specific extrapolation 

factors may provide different results, so it is recommended to use them if available instead of 

diluting the extrapolation using generic factors. However, the difference also varies between 

species group, effect concentration indicators, exposure duration, and the number of data points 

considered in the calculation of the extrapolation factor. For example, converting EC10 acute 

data for algae using the generic factor would underestimate EC10 chronic by a factor of 2.6. 
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Figure 4: Generic and species group specific extrapolation factors to convert EC10 acute, EC50 acute and EC50 chronic 

effect concentration indicators to EC10 chronic 

The third part of the results is the comparison of the generic and species group-specific 

extrapolation factors calculated in Paper 2 with other available literature. Only Aurisano et al. 

(2019) and Saouter, Wolff, et al. (2019) provide species group-specific extrapolation factors. 

While the factors were not vastly different, they were distinct enough to be notable. The species 

groups specific extrapolation factors differ maximum with a factor of 4 for algae, 2.6 for 

crustaceans, 2.6 for fish, and 6 for Invertebrates and the default generic extrapolation factors 

available for EC50eq acute to EC10eq chronic are within a factor of 4.2 (0.25/0.06). These 

differences can be attributed to several factors: Firstly, how the ecotoxicity data is aggregated. 

Different studies use different aggregation methods to combine data points. Aurisano et al. 

(2019) used arithmetic means, whereas Saouter, Wolff, et al. (2019) used geometric means. 

Paper 2 also used geometric means, as recommended by REACH and also used in the USEtox 

methodology. Secondly, which extrapolation factor calculation methodology was used. 

Aurisano et al. (2019) and Payet (2004) relied on regression analyses, while Saouter, Wolff, et 

al. (2019) used the geometric mean of the ratios of the compared effect concentration 

indicators. In Paper 2, we employed regression analyses with a free slope for best-fit regression 

equations and a slope with unity for default factors. Thirdly, how effect concentration 

indicators are classified. The classification of effect concentration indicators in Paper 2 was 

different from previous studies. We combined EC10 and NOEC to EC10eq based on literature 
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suggesting that the biological effects observed at concentrations reported as NOECs typically 

range from 10 to 30% (Crane & Newman, 2000; Moore & Caux, 1997; US EPA, 1991). This 

approach aligns with risk assessment-based regulations such as the European Union’s REACH 

regulation, the plant protection product regulation, and the Water Framework Directive, which 

use NOEC and EC10 interchangeably (ECHA, 2008; EFSA, 2013; European Commission, 

2011).  

Table 1: Overview of statistical parameters in calculation of generic and species group specific extrapolation factors to 

convert EC10 acute, EC50 acute and EC50 chronic effect concentration indicators to EC10 chronic  
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EC10 acute Generic 0.30 3192 -0.37 -0.40 -0.33 0.76 0.73 0.78 0.74 0.55 -0.52 -0.55 -0.48 
EC50 acute Generic 0.14 3679 -0.64 -0.68 -0.61 0.76 0.74 0.79 0.71 0.51 -0.86 -0.89 -0.83 
EC50 chronic Generic 0.30 3543 -0.42 -0.44 -0.39 0.82 0.80 0.83 0.84 0.70 -0.53 -0.55 -0.50 
EC10 acute Algae 0.79 342 -0.07 -0.17 0.04 0.66 0.60 0.72 0.77 0.59 -0.10 -0.22 0.02 
EC50 acute Algae 0.12 425 -0.53 -0.64 -0.42 0.53 0.47 0.59 0.63 0.40 -0.93 -1.05 -0.81 
EC50 chronic Algae 0.28 2937 -0.47 -0.50 -0.44 0.90 0.88 0.92 0.88 0.77 -0.55 -0.57 -0.52 
EC10 acute Amphibians 0.26 154 -0.56 -0.74 -0.37 0.67 0.55 0.79 0.66 0.44 -0.58 -0.78 -0.38 
EC50 acute Amphibians 0.07 143 -0.74 -0.97 -0.52 0.45 0.32 0.58 0.49 0.24 -1.16 -1.40 -0.92 
EC50 chronic Amphibians 0.14 59 -0.77 -1.02 -0.52 0.83 0.65 1.00 0.78 0.61 -0.87 -1.10 -0.63 
EC10 acute Crustaceans 0.22 1133 -0.61 -0.66 -0.55 0.76 0.73 0.80 0.80 0.64 -0.66 -0.72 -0.60 
EC50 acute Crustaceans 0.09 1514 -0.93 -0.98 -0.88 0.81 0.78 0.84 0.79 0.63 -1.04 -1.09 -0.99 
EC50 chronic Crustaceans 0.35 859 -0.44 -0.49 -0.40 0.87 0.84 0.90 0.89 0.79 -0.45 -0.50 -0.41 
EC10 acute Fish 0.20 1119 -0.64 -0.71 -0.58 0.77 0.73 0.81 0.73 0.54 -0.69 -0.76 -0.62 
EC50 acute Fish 0.07 1205 -1.04 -1.10 -0.98 0.84 0.80 0.88 0.77 0.59 -1.16 -1.22 -1.11 
EC50 chronic Fish 0.25 443 -0.55 -0.63 -0.47 0.75 0.69 0.80 0.79 0.63 -0.61 -0.69 -0.52 
EC10 acute Insects/Spiders 0.17 167 -0.84 -1.00 -0.68 0.60 0.52 0.69 0.74 0.55 -0.77 -0.97 -0.57 
EC50 acute Insects/Spiders 0.06 224 -1.10 -1.26 -0.94 0.57 0.48 0.66 0.66 0.43 -1.19 -1.38 -1.00 
EC50 chronic Insects/Spiders 0.47 107 -0.60 -0.79 -0.40 0.71 0.62 0.80 0.83 0.70 -0.33 -0.53 -0.12 
EC10 acute Invertebrates 0.42 152 -0.46 -0.64 -0.27 0.80 0.67 0.92 0.70 0.49 -0.38 -0.56 -0.20 
EC50 acute Invertebrates 0.05 119 -1.13 -1.37 -0.90 0.59 0.42 0.77 0.53 0.28 -1.27 -1.52 -1.02 
EC50 chronic Invertebrates 0.36 55 -0.54 -0.75 -0.33 0.63 0.47 0.79 0.73 0.54 -0.44 -0.69 -0.20 
EC10 acute Molluscs 0.26 253 -0.75 -0.90 -0.60 0.60 0.51 0.69 0.63 0.40 -0.58 -0.75 -0.42 
EC50 acute Molluscs 0.04 221 -1.27 -1.42 -1.11 0.68 0.57 0.79 0.64 0.40 -1.41 -1.56 -1.25 
EC50 chronic Molluscs 0.32 107 -0.60 -0.74 -0.45 0.80 0.69 0.92 0.80 0.65 -0.50 -0.64 -0.35 
EC10 acute Worms 0.29 120 -0.39 -0.59 -0.18 0.61 0.48 0.75 0.64 0.40 -0.54 -0.76 -0.32 
EC50 acute Worms 0.08 98 -0.69 -1.03 -0.35 0.52 0.30 0.74 0.43 0.18 -1.09 -1.40 -0.77 
EC50 chronic Worms 0.34 55 -0.45 -0.62 -0.29 0.93 0.78 1.08 0.86 0.75 -0.47 -0.63 -0.31 

Note:* sta�s�cal parameters with slope as unity 

The last part of the results focuses on understanding the influence of different choices in the 

calculation of the extrapolation factors including extrapolation factors calculated for different 

chemical groups. Similar to species group-specific extrapolation factors, chemical group-

specific factors may be more accurate than generic factors. However, this approach has 

limitations: Firstly, a lack of data availability can make the extrapolation factor calculation less 
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robust. Secondly, some chemical groups, like PFAS, are very diverse and very large - which is 

a reason for the huge variations and may need further sub-grouping for more comprehensive 

results. An attempt was made to calculate generic extrapolation factors to EC50eq chronic for 

15 chemical groups with median values, 0.99 from EC10 acute, 3.48 from EC10 chronic, and 

0.42 from EC50 acute. These values correspond to generic values of 0.99, 3.51, and 0.45 

calculated for all organic chemicals in the freshwater ecosystem in Paper 2. For extrapolation 

to EC10eq chronic as shown in Figure 5 and Table 2, the median values of the extrapolation 

factors were 0.30 from EC10 acute, 0.11 from EC50 acute, and 0.29 from EC50 chronic, 

corresponding to generic values of 0.29, 0.13, and 0.29 calculated for all organic chemicals in 

the freshwater ecosystem, respectively. These results indicate that while generic extrapolation 

factors can provide a baseline, chemical group-specific extrapolation factors may offer more 

accuracy and should be used when available to reduce uncertainty.  However, the differences 

will not vary significantly for many chemical groups at generic level, as shown in Figure 5, 

except for groups that are diverse, such as PFAS. 

 

Figure 5: Default generic extrapolation factors for different chemical groups to convert EC10 acute, EC50 acute and EC50 

chronic effect concentration indicators to EC10 chronic 
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Table 2: Overview of statistical parameters in calculation of default generic extrapolation factors for different chemical 

groups to convert EC10 acute, EC50 acute and EC50 chronic effect concentration indicators to EC10 chronic  

Ex
tr

ap
ol

at
io

n 
to

 E
C1

0 
ch

ro
ni

c 
fr

om
 d

iff
er

en
t 

ef
fe

ct
 c

on
ce

nt
ra

tio
n 

in
di

ca
to

rs
 

Ch
em

ic
al

 g
ro

up
s 

D
ef

au
lt 

ex
tr

ap
ol

at
io

n 
fa

ct
or

 

D
at

ap
oi

nt
s 

In
te

rc
ep

t 

In
te

rc
ep

t L
ow

er
 9

5%
 

In
te

rc
ep

t U
pp

er
 9

5%
 

Sl
op

e 

Sl
op

e 
Lo

w
er

 9
5%

 

Sl
op

e 
U

pp
er

 9
5%

 

Co
rr

el
at

io
n 

(r
 ) 

Rs
qu

ar
e 

(R
2 ) 

In
te

rc
ep

t*
 (S

lo
pe

 =
1)

 

In
te

rc
ep

t*
 L

ow
er

 9
5%

 

In
te

rc
ep

t*
 U

pp
er

 9
5%

 

EC10 acute 
Generic 

0.30 3192 -0.37 -0.40 -0.33 0.76 0.73 0.78 0.74 0.55 -0.52 -0.55 -0.48 
EC50 acute 0.14 3679 -0.64 -0.68 -0.61 0.76 0.74 0.79 0.71 0.51 -0.86 -0.89 -0.83 
EC50 chronic 0.30 3543 -0.42 -0.44 -0.39 0.82 0.80 0.83 0.84 0.70 -0.53 -0.55 -0.50 
EC10 acute Androgen 

Receptor 
Chemicals 

0.36 71 -0.66 -0.88 -0.43 0.68 0.51 0.85 0.69 0.48 -0.44 -0.65 -0.23 
EC50 acute 0.05 63 -1.28 -1.50 -1.05 0.85 0.61 1.09 0.67 0.45 -1.33 -1.54 -1.11 
EC50 chronic 0.30 50 -0.61 -0.81 -0.42 0.80 0.64 0.97 0.82 0.67 -0.52 -0.70 -0.33 
EC10 acute 

Antimicrobials 
0.28 42 -0.51 -0.79 -0.23 0.92 0.73 1.12 0.83 0.69 -0.55 -0.81 -0.30 

EC50 acute 0.09 43 -0.94 -1.23 -0.66 0.89 0.73 1.06 0.86 0.75 -1.06 -1.29 -0.83 
EC50 chronic 0.24 34 -0.55 -0.72 -0.37 0.90 0.78 1.01 0.94 0.89 -0.61 -0.78 -0.45 
EC10 acute 

Cosmetics 
0.31 454 -0.24 -0.35 -0.13 0.76 0.70 0.82 0.74 0.54 -0.51 -0.60 -0.42 

EC50 acute 0.14 509 -0.55 -0.66 -0.43 0.77 0.71 0.84 0.73 0.54 -0.85 -0.93 -0.77 
EC50 chronic 0.26 438 -0.39 -0.47 -0.31 0.82 0.77 0.87 0.85 0.73 -0.58 -0.65 -0.52 
EC10 acute 

Endocrine 
chemicals 

0.28 1416 -0.41 -0.46 -0.35 0.73 0.70 0.77 0.74 0.54 -0.56 -0.61 -0.50 
EC50 acute 0.11 1524 -0.73 -0.79 -0.67 0.77 0.73 0.81 0.73 0.53 -0.95 -1.00 -0.90 
EC50 chronic 0.29 1376 -0.43 -0.47 -0.39 0.80 0.77 0.83 0.84 0.70 -0.54 -0.58 -0.50 
EC10 acute 

Flame Retardants 
0.31 51 -0.45 -0.69 -0.20 0.87 0.70 1.05 0.82 0.67 -0.51 -0.74 -0.28 

EC50 acute 0.13 43 -0.51 -0.85 -0.18 0.62 0.42 0.82 0.70 0.49 -0.87 -1.19 -0.55 
EC50 chronic 0.23 36 -0.51 -0.78 -0.24 0.83 0.64 1.02 0.84 0.71 -0.63 -0.87 -0.39 
EC10 acute 

Estrogen Receptor 
0.29 1683 -0.38 -0.43 -0.32 0.73 0.70 0.77 0.73 0.53 -0.54 -0.59 -0.49 

EC50 acute 0.12 1801 -0.66 -0.72 -0.61 0.75 0.71 0.78 0.71 0.50 -0.91 -0.95 -0.86 
EC50 chronic 0.29 1717 -0.42 -0.46 -0.39 0.83 0.81 0.85 0.85 0.73 -0.53 -0.57 -0.50 
EC10 acute 

Natural Product 
Insecticides 

0.41 41 -0.59 -0.86 -0.32 0.73 0.54 0.93 0.77 0.60 -0.39 -0.64 -0.14 
EC50 acute 0.15 44 -0.87 -1.10 -0.64 0.90 0.69 1.10 0.80 0.65 -0.83 -1.05 -0.61 
EC50 chronic 0.37 39 -0.75 -1.09 -0.41 0.66 0.43 0.88 0.69 0.48 -0.43 -0.73 -0.14 
EC10 acute 

Neurotoxicants 
0.29 134 -0.43 -0.59 -0.27 0.79 0.69 0.90 0.81 0.65 -0.53 -0.69 -0.37 

EC50 acute 0.06 126 -1.06 -1.26 -0.85 0.86 0.74 0.97 0.79 0.63 -1.22 -1.38 -1.06 
EC50 chronic 0.23 108 -0.53 -0.70 -0.35 0.81 0.71 0.92 0.83 0.69 -0.64 -0.81 -0.48 
EC10 acute Persistent, Mobile 

and Toxic (PMT) 
Substance 

0.31 304 -0.30 -0.43 -0.17 0.81 0.73 0.90 0.74 0.55 -0.50 -0.60 -0.40 
EC50 acute 0.12 334 -0.70 -0.85 -0.55 0.85 0.77 0.94 0.74 0.55 -0.90 -1.00 -0.81 
EC50 chronic 0.29 309 -0.40 -0.49 -0.31 0.86 0.81 0.92 0.86 0.75 -0.53 -0.61 -0.46 
EC10 acute 

GC-EI-MS suspect 
list 

0.30 518 -0.37 -0.46 -0.29 0.76 0.71 0.82 0.76 0.58 -0.53 -0.61 -0.44 
EC50 acute 0.11 575 -0.73 -0.83 -0.63 0.80 0.74 0.85 0.75 0.56 -0.97 -1.05 -0.89 
EC50 chronic 0.22 475 -0.50 -0.57 -0.42 0.80 0.75 0.85 0.83 0.68 -0.65 -0.72 -0.58 
EC10 acute 

Biocides 
0.30 88 -0.62 -0.82 -0.42 0.79 0.66 0.92 0.79 0.62 -0.52 -0.72 -0.32 

EC50 acute 0.11 89 -0.97 -1.16 -0.78 0.81 0.67 0.95 0.77 0.60 -0.97 -1.16 -0.77 
EC50 chronic 0.35 77 -0.54 -0.71 -0.37 0.84 0.73 0.95 0.87 0.75 -0.45 -0.62 -0.28 
EC10 acute 

Pesticide Chemical 
0.24 755 -0.55 -0.62 -0.48 0.70 0.65 0.74 0.71 0.50 -0.62 -0.70 -0.54 

EC50 acute 0.10 784 -0.85 -0.93 -0.77 0.74 0.70 0.79 0.73 0.53 -1.01 -1.08 -0.94 
EC50 chronic 0.30 686 -0.49 -0.55 -0.42 0.77 0.73 0.81 0.80 0.64 -0.52 -0.59 -0.45 
EC10 acute 

PFAS 
0.28 66 -0.27 -0.55 0.01 0.41 0.25 0.58 0.53 0.28 -0.56 -0.91 -0.20 

EC50 acute 0.06 47 -0.83 -1.26 -0.40 0.70 0.46 0.95 0.66 0.43 -1.21 -1.52 -0.89 
EC50 chronic 0.13 41 -0.57 -0.87 -0.27 0.72 0.55 0.89 0.81 0.66 -0.89 -1.15 -0.63 
EC10 acute 

Pharmaceuticals 
0.34 321 -0.36 -0.48 -0.24 0.81 0.74 0.88 0.78 0.61 -0.47 -0.58 -0.35 

EC50 acute 0.08 319 -0.86 -1.02 -0.71 0.83 0.75 0.91 0.74 0.54 -1.08 -1.20 -0.96 
EC50 chronic 0.27 264 -0.41 -0.52 -0.31 0.81 0.75 0.87 0.85 0.73 -0.57 -0.67 -0.47 
EC10 acute 

Metabolites 
0.29 1534 -0.41 -0.46 -0.36 0.74 0.71 0.78 0.73 0.53 -0.54 -0.59 -0.49 

EC50 acute 0.13 1643 -0.68 -0.74 -0.63 0.75 0.72 0.79 0.71 0.50 -0.89 -0.94 -0.84 
EC50 chronic 0.29 1619 -0.46 -0.49 -0.42 0.84 0.82 0.87 0.86 0.74 -0.54 -0.58 -0.51 

Note:* sta�s�cal parameters with slope as unity 
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In this study the geometric mean was chosen for the aggregation of data points. To understand 

the influence of using geometric mean over arithmetic mean, Paper 2 compared both 

aggregation methods. Additionally, the impacts of classifying chemicals into different types 

(organic and inorganic versus only organic chemicals) and classifying compartments 

(freshwater, marine, or both freshwater and marine as aquatic) were examined. Effect 

concentration indicators classification into only EC10 and EC50 versus NOEC, EC10, and 

EC50 was also considered. Table 3 provides all the scenarios considered in Paper 2 to 

determine the uncertainty in different choices in the calculation of the extrapolation factors. 

Table 3: Scenarios considered in the study for calculating extrapolation factors  

Scenario classification Chemical type Compartment classification Aggregation method 
Scenario 1 Organic and Inorganic Aquatic (Freshwater & Marine) Geometric mean 
Scenario 2 Only Organic Aquatic (Freshwater & Marine) Geometric mean 
Scenario 3 Organic and Inorganic Aquatic (Freshwater & Marine) Arithmetic mean 
Scenario 4 Only Organic Aquatic (Freshwater & Marine) Arithmetic mean 
Scenario 5 Organic and Inorganic Freshwater Geometric mean 
Scenario 6 Only Organic Freshwater Geometric mean 
Scenario 7 Organic and Inorganic Freshwater Arithmetic mean 
Scenario 8 Only Organic Freshwater Arithmetic mean 
Scenario 9 Organic and Inorganic Marine water Geometric mean 
Scenario 10 Only Organic Marine water Geometric mean 
Scenario 11 Organic and Inorganic Marine water Arithmetic mean 
Scenario 12 Only Organic Marine water Arithmetic mean 

 

In Figure 6 and Table 4, the extrapolation factors are given for different scenarios as outlined 

in Table 3 for the effect concentration indicators classification of EC10 and EC50. Figure 7 

and Table 5 also shows extrapolation factors calculated for different scenarios, for effect 

concentration indicators classification into NOEC, EC10, and EC50. The reliability of the 

extrapolation factors in marine water is lower due to the smaller number of data points 

available. Scenarios reflect the various combinations of chemical type classifications, 

compartment classifications, effect concentration indicator classifications, and aggregation 

methods considered in the study to calculate extrapolation factors. This approach helps to 

assess the influence of different factors on the reliability and accuracy of extrapolation factors 

calculated. In the analysis, as shown in Figure 6, the extrapolation from EC50 chronic to EC10 

chronic with geometric mean-based aggregation differs significantly compared to arithmetic 

mean-based aggregation. This discrepancy is mainly due to the EC10 acute equivalent, which 

combines both NOEC acute and EC10 acute. In Figure 7, it is shown that extrapolation from 

EC10 acute to EC10 chronic is higher, but NOEC acute to EC10 chronic is lower in arithmetic 

mean-based aggregation. By combining both effect concentration indicators, the differences 
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balance out, making the results similar to geometric mean-based aggregation. This may explain 

why there is a difference based on how effect concentration indicators are combined in the 

EC10 acute which is not in EC50 chronic. 

Table 4: Overview of statistical parameters in calculation of default generic extrapolation factors for different scenarios with 

the effect concentration indicators classification limited to EC10 and EC50 to convert EC10 acute, EC50 acute and EC50 

chronic effect concentration indicators to EC10 chronic  
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EC10 acute Scenario 1 0.30 3192 -0.37 -0.40 -0.33 0.76 0.73 0.78 0.74 0.55 -0.52 -0.55 -0.48 
EC50 acute 0.14 3679 -0.64 -0.68 -0.61 0.76 0.74 0.79 0.71 0.51 -0.86 -0.89 -0.83 
EC50 chronic 0.30 3543 -0.42 -0.44 -0.39 0.82 0.80 0.83 0.84 0.70 -0.53 -0.55 -0.50 
EC10 acute Scenario 2 0.31 2608 -0.37 -0.41 -0.33 0.75 0.72 0.77 0.74 0.55 -0.51 -0.55 -0.47 
EC50 acute 0.13 2965 -0.65 -0.69 -0.61 0.75 0.72 0.77 0.71 0.50 -0.87 -0.91 -0.84 
EC50 chronic 0.29 2829 -0.43 -0.46 -0.40 0.81 0.79 0.83 0.83 0.69 -0.54 -0.57 -0.51 
EC10 acute Scenario 3 0.31 3192 -0.18 -0.23 -0.13 0.68 0.65 0.70 0.66 0.44 -0.52 -0.55 -0.48 
EC50 acute 0.14 3679 -0.41 -0.45 -0.36 0.66 0.63 0.68 0.63 0.39 -0.84 -0.88 -0.81 
EC50 chronic 0.40 3543 -0.19 -0.22 -0.16 0.76 0.74 0.78 0.78 0.61 -0.39 -0.42 -0.37 
EC10 acute Scenario 4 0.31 2608 -0.18 -0.23 -0.13 0.66 0.63 0.68 0.65 0.43 -0.51 -0.56 -0.47 
EC50 acute 0.14 2965 -0.39 -0.44 -0.34 0.63 0.60 0.66 0.61 0.38 -0.86 -0.90 -0.81 
EC50 chronic 0.40 2829 -0.20 -0.23 -0.16 0.75 0.73 0.78 0.77 0.59 -0.40 -0.43 -0.37 
EC10 acute Scenario 5 0.29 2698 -0.38 -0.42 -0.34 0.74 0.71 0.76 0.72 0.52 -0.54 -0.58 -0.50 
EC50 acute 0.13 2977 -0.65 -0.69 -0.60 0.76 0.73 0.79 0.69 0.48 -0.87 -0.91 -0.83 
EC50 chronic 0.30 2960 -0.43 -0.46 -0.41 0.85 0.83 0.87 0.86 0.74 -0.53 -0.55 -0.50 
EC10 acute Scenario 6 0.29 2196 -0.38 -0.42 -0.33 0.73 0.70 0.76 0.73 0.53 -0.53 -0.58 -0.49 
EC50 acute 0.13 2368 -0.65 -0.70 -0.60 0.74 0.71 0.77 0.69 0.48 -0.89 -0.93 -0.84 
EC50 chronic 0.29 2340 -0.45 -0.48 -0.41 0.84 0.82 0.86 0.86 0.73 -0.54 -0.57 -0.52 
EC10 acute Scenario 7 0.31 2698 -0.20 -0.25 -0.15 0.68 0.65 0.71 0.65 0.43 -0.51 -0.56 -0.47 
EC50 acute 0.14 2977 -0.43 -0.49 -0.38 0.68 0.65 0.71 0.62 0.38 -0.84 -0.88 -0.80 
EC50 chronic 0.39 2960 -0.24 -0.27 -0.21 0.80 0.78 0.82 0.79 0.63 -0.41 -0.44 -0.38 
EC10 acute Scenario 8 0.31 2196 -0.20 -0.25 -0.14 0.67 0.63 0.70 0.66 0.43 -0.51 -0.56 -0.46 
EC50 acute 0.14 2368 -0.42 -0.48 -0.36 0.66 0.62 0.69 0.61 0.38 -0.85 -0.89 -0.80 
EC50 chronic 0.37 2340 -0.27 -0.30 -0.23 0.81 0.78 0.83 0.80 0.64 -0.43 -0.46 -0.40 
EC10 acute Scenario 9 0.23 599 -0.66 -0.76 -0.56 0.75 0.69 0.82 0.69 0.48 -0.63 -0.74 -0.53 
EC50 acute 0.09 584 -0.94 -1.05 -0.83 0.75 0.68 0.82 0.66 0.44 -1.04 -1.14 -0.93 
EC50 chronic 0.23 461 -0.64 -0.73 -0.56 0.82 0.77 0.88 0.81 0.66 -0.65 -0.73 -0.56 
EC10 acute Scenario 10 0.21 466 -0.74 -0.85 -0.62 0.73 0.66 0.81 0.67 0.44 -0.67 -0.80 -0.55 
EC50 acute 0.07 445 -1.05 -1.17 -0.92 0.75 0.67 0.82 0.66 0.44 -1.13 -1.26 -1.00 
EC50 chronic 0.20 343 -0.72 -0.82 -0.62 0.80 0.74 0.86 0.80 0.65 -0.69 -0.80 -0.58 
EC10 acute Scenario 11 0.19 599 -0.56 -0.68 -0.45 0.63 0.56 0.70 0.57 0.33 -0.73 -0.85 -0.61 
EC50 acute 0.08 584 -0.75 -0.88 -0.61 0.61 0.53 0.68 0.53 0.28 -1.09 -1.22 -0.97 
EC50 chronic 0.36 461 -0.37 -0.47 -0.27 0.75 0.69 0.81 0.74 0.55 -0.44 -0.54 -0.34 
EC10 acute Scenario 12 0.15 466 -0.68 -0.81 -0.54 0.59 0.50 0.67 0.53 0.28 -0.81 -0.96 -0.67 
EC50 acute 0.06 445 -0.88 -1.03 -0.72 0.59 0.49 0.68 0.51 0.26 -1.21 -1.36 -1.06 
EC50 chronic 0.34 343 -0.45 -0.57 -0.34 0.73 0.66 0.80 0.73 0.54 -0.47 -0.60 -0.35 

Note:* sta�s�cal parameters with slope as unity 
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Figure 6:  Default generic extrapolation factors for different scenarios with the effect concentration indicators classification 

limited to EC10 and EC50 to convert EC10 acute, EC50 acute and EC50 chronic effect concentration indicators to EC10 

chronic 

 

Figure 7:  Default generic extrapolation factors for different scenarios with the effect concentration indicators classification 

limited to NOEC, EC10, and EC50, to convert EC10 acute, EC50 acute, EC50 chronic, NOEC acute, and NOEC chronic 

effect concentration indicators to EC10 chronic 
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Table 5: Overview of statistical parameters in calculation of default generic extrapolation factors for different scenarios with 
the effect concentration indicators classification limited to NOEC, EC10, and EC50, to convert EC10 acute, EC50 acute, 
EC50 chronic, NOEC acute, and NOEC chronic effect concentration indicators to EC10 chronic  
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EC10 acute Scenario 1 0.36 1452 -0.38 0.70 0.71 0.51 -0.44 
EC50 acute 0.15 2666 -0.65 0.79 0.70 0.49 -0.83 
EC50 chronic 0.35 2650 -0.38 0.85 0.82 0.67 -0.46 
NOEC acute 0.34 2254 -0.37 0.77 0.72 0.52 -0.47 
NOEC chronic 1.55 2688 0.17 0.93 0.88 0.77 0.19 
EC10 acute Scenario 2 0.36 1156 -0.40 0.68 0.70 0.49 -0.44 
EC50 acute 0.14 2171 -0.65 0.78 0.69 0.48 -0.84 
EC50 chronic 0.34 2147 -0.38 0.84 0.81 0.65 -0.47 
NOEC acute 0.33 1841 -0.38 0.77 0.72 0.52 -0.48 
NOEC chronic 1.58 2128 0.18 0.93 0.87 0.75 0.20 
EC10 acute Scenario 3 0.34 1452 -0.19 0.63 0.63 0.40 -0.46 
EC50 acute 0.12 2666 -0.51 0.68 0.61 0.37 -0.93 
EC50 chronic 0.37 2650 -0.27 0.81 0.77 0.59 -0.43 
NOEC acute 0.28 2254 -0.26 0.68 0.64 0.41 -0.55 
NOEC chronic 1.28 2688 0.14 0.86 0.82 0.67 0.11 
EC10 acute Scenario 4 0.34 1156 -0.21 0.60 0.61 0.37 -0.47 
EC50 acute 0.11 2171 -0.50 0.65 0.59 0.35 -0.94 
EC50 chronic 0.36 2147 -0.27 0.80 0.75 0.57 -0.44 
NOEC acute 0.27 1841 -0.28 0.66 0.62 0.38 -0.57 
NOEC chronic 1.28 2128 0.13 0.85 0.80 0.64 0.11 
EC10 acute Scenario 5 0.31 1221 -0.43 0.68 0.70 0.49 -0.51 
EC50 acute 0.14 2286 -0.67 0.80 0.69 0.48 -0.85 
EC50 chronic 0.34 2296 -0.39 0.86 0.84 0.70 -0.47 
NOEC acute 0.32 1940 -0.38 0.76 0.71 0.50 -0.50 
NOEC chronic 1.56 2337 0.18 0.93 0.88 0.77 0.19 
EC10 acute Scenario 6 0.33 955 -0.43 0.66 0.69 0.47 -0.49 
EC50 acute 0.14 1840 -0.66 0.78 0.68 0.47 -0.86 
EC50 chronic 0.33 1844 -0.39 0.86 0.83 0.69 -0.48 
NOEC acute 0.32 1571 -0.39 0.76 0.71 0.51 -0.50 
NOEC chronic 1.61 1839 0.19 0.93 0.87 0.75 0.21 
EC10 acute Scenario 7 0.34 1221 -0.22 0.64 0.63 0.39 -0.47 
EC50 acute 0.12 2286 -0.56 0.72 0.62 0.39 -0.91 
EC50 chronic 0.36 2296 -0.30 0.82 0.78 0.62 -0.44 
NOEC acute 0.29 1940 -0.27 0.69 0.64 0.41 -0.54 
NOEC chronic 1.39 2337 0.16 0.86 0.83 0.69 0.14 
EC10 acute Scenario 8 0.34 1221 -0.22 0.64 0.63 0.39 -0.47 
EC50 acute 0.12 2286 -0.56 0.72 0.62 0.39 -0.91 
EC50 chronic 0.36 2296 -0.30 0.82 0.78 0.62 -0.44 
NOEC acute 0.29 1940 -0.27 0.69 0.64 0.41 -0.54 
NOEC chronic 1.39 2337 0.16 0.86 0.83 0.69 0.14 
EC10 acute Scenario 9 0.33 331 -0.59 0.76 0.69 0.48 -0.48 
EC50 acute 0.07 416 -1.11 0.81 0.67 0.45 -1.15 
EC50 chronic 0.18 338 -0.75 0.82 0.75 0.56 -0.74 
NOEC acute 0.19 403 -0.79 0.79 0.71 0.50 -0.72 
NOEC chronic 1.00 501 -0.11 0.87 0.88 0.77 0.00 
EC10 acute Scenario 10 0.28 233 -0.73 0.74 0.68 0.47 -0.55 
EC50 acute 0.05 300 -1.28 0.80 0.68 0.46 -1.30 
EC50 chronic 0.15 236 -0.87 0.78 0.73 0.53 -0.82 
NOEC acute 0.17 292 -0.90 0.77 0.68 0.46 -0.76 
NOEC chronic 1.03 355 -0.13 0.88 0.88 0.77 0.01 
EC10 acute Scenario 11 0.32 331 -0.46 0.58 0.53 0.28 -0.49 
EC50 acute 0.05 416 -0.97 0.63 0.52 0.27 -1.26 
EC50 chronic 0.27 338 -0.48 0.70 0.64 0.41 -0.57 
NOEC acute 0.15 403 -0.75 0.71 0.62 0.38 -0.81 
NOEC chronic 1.02 501 -0.08 0.81 0.82 0.67 0.01 
EC10 acute Scenario 12 0.23 233 -0.68 0.52 0.48 0.23 -0.63 
EC50 acute 0.03 300 -1.20 0.62 0.51 0.26 -1.46 
EC50 chronic 0.23 236 -0.61 0.68 0.62 0.39 -0.63 
NOEC acute 0.12 292 -0.93 0.68 0.58 0.34 -0.93 
NOEC chronic 1.00 355 -0.14 0.81 0.81 0.66 0.00 

Note:* sta�s�cal parameters with slope as unity 



29 
 

4.7. Challenges in calculating characterization factors 

This section focuses on the limitations related to the CFs and ecotoxicity data used in the 

calculation of EFs and extrapolation factors. However, in a broader sense, if one considers 

LCA as a whole, there are additional limitations beyond CF availability. One limitation is 

related to how to account for and include the inventory of chemical emissions in an LCA study, 

including both direct and indirect emissions in different compartments. Accurate measurement 

and reporting of emissions are crucial for a comprehensive LCA, yet often challenging due to 

data gaps and variability in emission sources and pathways. Another limitation arises once the 

analysis provides the ecotoxicity impacts. Interpreting these results involves understanding the 

varying levels of impact from different types of chemical emissions. Some emissions have 

more significant impacts than others based on the amount released, the compartment into which 

they are emitted, and the CFs values of those emissions. This complexity requires careful 

consideration to ensure accurate representation of ecotoxicity impacts. All these limitations 

related to the inclusion of ecotoxicity impacts in LCA are broader. However, this study is 

limited in scope, and the limitations are focused on the specific aspects covered within the 

study's context of calculation of CFs. 

4.7.1. Applicability of the characterization factor methods 

There is uncertainty regarding the suitability of USEtox for chemical substances such as 

inorganic anions and oxoanions, reactive gases, nanoparticles, ionic liquids, and PFAS 

(Owsianiak et al., 2023). USEtox is generally recognized as a global consensus model suitable 

for a wide range of chemicals but not one tailored for specific chemical groups (Rosenbaum et 

al., 2008). Paper 1 focuses on PM chemicals, noting their unique challenges due to their 

persistency and mobility. As noted by Holmquist et al. (2020), USEtox does not specifically 

accommodate the unique characteristics of PFAS chemicals, which are a notable group of PM 

chemicals. To address these limitations, Holmquist et al. (2020) developed a PFAS-adapted 

version of the USEtox model (version 2.1), introducing several enhancements to better assess 

the ecotoxicity impacts of PFAS.  

A solution for calculating the CFs for PM chemicals would be to utilize the PFAS-adapted 

model for calculating CFs, which is expected to provide more relevant results for PFAS 

chemicals. However, the PFAS-adapted model also introduces notable challenges due to its 

requirements for more input data: 31 values per chemical as compared to 18 in the default 

USEtox model. This motivates an evaluation of trade-offs between the additional data 
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requirements of the PFAS-adapted model and how much these improve the calculated CFs. In 

Paper 1, a comparison was made between the PFAS-adapted model and USEtox (version 2.13) 

to calculate CFs for three specific PFASs: perfluorooctanoic acid (PFOA), perfluorohexanoic 

acid (PFHxA), and perfluorobutanesulfonic acid (PFBS) (Aggarwal et al., 2024). The CFs were 

calculated for the freshwater compartment, disregarding species richness and groundwater 

recirculation aspects in the PFAS-adapted model. This comparison resulted in an average 

difference of only 2.5%, with a range from 0 to 7%, leading to the indication that the PFAS-

adapted model and USEtox CFs are not notably different. Given these similarities and the 

additional data requirements of the PFAS-adapted model, it was decided to use USEtox version 

2.13 without PFAS-specific adaptations in Paper 1. 

Additionally, recent advancements by Owsianiak et al. (2023) introduced further modifications 

for ecotoxicity CF calculation in USEtox. These recommendations resulted from collaborative 

work by the Ecotoxicity Task Force and the SETAC Pellston Workshop (Owsianiak et al., 

2019). These recommendations shift from a traditional HC50EC50eq based approach, which 

uses chronic EC50 values, to an HC20EC10eq based approach utilizing chronic EC10 

equivalents. HC20 represents the environmental concentration affecting 20% of species, 

quantified using the equation: EF = 0.2/HC20EC10eq [PAF m³ kg-1]. Although these 

recommendations have not yet been incorporated into the official USEtox model, they have 

been implemented in the product environmental footprint (PEF) methodology for calculating 

CFs related to freshwater ecotoxicity in the EU environmental footprint version 3.0 (Sala et al., 

2022; Saouter et al., 2018). Thus, Paper 1 adheres to the established methodologies of USEtox 

(version 2.13) while acknowledging these emerging recommendations.  

Overall, while theoretical CFs offer a methodological framework for evaluating chemical 

impacts, their practical verification in environmental settings remains challenging. The 

reliability and accuracy of these theoretical values are difficult to verify, underscoring the need 

for a universally acceptable methodology that allows for comparative and relative assessments 

of CFs. Resolving these uncertainties is particularly crucial for PM chemicals, as the current 

methodologies may not adequately reflect their environmental behaviors and effects. 

4.7.2. The temporal validity of characterization factors  

In Paper 1, the comparison of newly calculated CFs with those available in the USEtox database 

serves as a temporal sensitivity test, illustrating the effects of incorporating additional 

ecotoxicity data. In Paper 1, 51% of the datapoints for 18 analyzed chemicals were collected 
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since 2005, and 28% since 2011. The introduction of this new data notably influences the CFs, 

largely due to the crucial role of EFs in the CFs calculation.  

The original USEtox CFs were derived from ecotoxicity datasets that are now over a decade 

old (Payet, 2004; van Zelm et al., 2009; Zelm et al., 2007). Compared to these, CFs calculated 

with updated data exhibit substantial changes. It is crucial to recognize the variability in EF 

values, which depend on both the quantity and the diversity of the ecotoxicity data used (Roos 

et al., 2017). This diversity spans different species and species groups covered, as well as the 

methodologies employed and the environmental conditions of the tests (Saouter et al., 2017). 

Unlike other physical-chemical properties that are determined using standardized methods 

yielding consistent values with less variability and reflecting intrinsic properties, ecotoxicity 

assessments vary considerably (von Borries et al., 2023). This variability leads to uncertainty 

in EF values and consequently, CF values, as EFs are a dominant influence on CF calculations 

(Roos et al., 2017). Moreover, including data for a broader range of species has made the EFs 

more representative of average ecotoxicity across species, thereby enhancing both the accuracy 

and relevance of the CFs. This underscores the need for ongoing updates and refinements in 

CF calculations to better reflect the latest ecotoxicological data and account for biological 

diversity. 

Given the online availability of various ecotoxicity databases and the increasing focus on 

transparency and accessibility of data (Peter Fantke et al., 2020; Grulke et al., 2019; Olker et 

al., 2022; Williams et al., 2017), it is important to view the calculated CFs as provisional values 

that can be improved with more comprehensive ecotoxicity data. This perspective 

acknowledges that CFs derived from limited data sets may not fully capture the complexity of 

environmental impacts and highlights the need for continuous updates and refinement as new 

data becomes available. As a result, CFs should be regularly updated based on the latest 

available ecotoxicity databases and in response to new recommendations in calculation 

methodologies. This includes different harmonization processes, conversion and extrapolation 

factors such as species distribution, and moving from acute to chronic conversions from the 

generic level to the species group level (Oginah et al., 2023). This necessitates the creation of 

a dynamic database for CFs that includes regular updates, rather than relying on static values. 

Such an approach would ensure that the CFs remain current and scientifically robust, reflecting 

the latest advancements and data in ecotoxicity. 
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However, there is a practical perspective to consider about the stability of CF values. CFs 

should remain stable to ensure their applicability and comparability with previous literature, 

avoiding the need to constantly update CFs (Arvidsson et al., 2020). Temporal reliability of 

CFs is crucial over the long term, as temporally unstable CFs will result in changing assessment 

conclusions. In USEtox, CFs depend on the availability of ecotoxicity data. Due to the lack of 

data for many chemicals, some CFs are recommended while others are interim, which may 

change as more data becomes available. In an LCA study, multiple chemicals are often 

involved, leading to chemical emissions and the use of CFs, with some recommended and some 

interim that can be improved over time. It is not practical from an accuracy standpoint to use 

less accurate CFs if more accurate CFs are available. Therefore, a pragmatic approach is needed 

to ensure transparency in the Life Cycle Inventory (LCI) data used, allowing users to update 

results with new CFs as needed. Additionally, there should be a predefined minimum data 

requirement for the calculation of CFs to maintain stability. This means that CFs for chemicals 

with already sufficient data should not change, while those with insufficient data can be 

updated when new information becomes available. Balancing transparency in LCI to update 

results and avoiding unnecessary changes to CFs for well-documented chemicals can be a way 

forward. Indicating which CFs are not recommended due to insufficient data can help maintain 

scientific integrity and practicality without compromising the accuracy of the results. 

4.7.3. Lack of ecotoxicity data 

One limitation in the calculation of CFs is non-availability of ecotoxicity values for various 

species groups at desired effect concentration indicators (Douziech et al., 2024; Oginah et al., 

2023; Posthuma et al., 2019; Saouter, Biganzoli, et al., 2019). This gap is the main cause of the 

lack of CFs in LCA studies for different chemicals. There are very few ecotoxicity data 

produced specifically to calculate CFs. To address this, data originally collected for other 

purposes, such as risk assessment, can be used for CF calculations (Müller et al., 2017). 

However, this introduces the challenge of data harmonization. It is not just about the data 

availability but also about standardizing it in the USEtox format to make it usable in CF 

calculations. For example, Paper 1 began with ecotoxicity data from CompTox Version 2.1.1, 

initially retrieving 5002 data points, which, after harmonization, were reduced to 1189 data 

points, categorized by chemical groups: PFAS, triazines, and triazoles. Similarly, in Paper 2, 

data from REACH and CompTox underwent rigorous harmonization, resulting in a 51% 

reduction in data points.   
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Complexities also arise from challenges and gaps in available information. For instance, 

outdated species names create uncertainty in naming and classification, while exposure 

classifications also show inconsistencies. For example, algae tests typically do not differentiate 

between acute and chronic effects due to the rapid reproduction rate of algae, suggesting a 

leaning towards chronic evaluation (Hahn et al., 2014). Moreover, the classification of effect 

concentration indicators remains ambiguous, with uncertainties especially at the lower range 

of species sensitivity distributions, complicating the statistical distinction between NOEC, 

LOEC, and EC1-10 values (Iwasaki et al., 2015).  

Once data is harmonized, there are additional challenges with conversion factors needed to 

transform the harmonized data into the required format of exposure type and effect 

concentration indicator type. Another limitation is determining which data is relevant in terms 

of the type of effects considered. This is critical even if all effects are chronic, as the sensitivity 

of these effects can vary and lead to inconsistencies that can result in data exclusion. These 

limitations related to data and its harmonization need to be addressed to find a feasible way to 

mitigate these issues in the CF calculations.  
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5. CONCLUSIONS 
This licentiate thesis aimed to summarize three research questions answered in Paper 1 and 

Paper 2: 1) Are there important gaps in the availability of ecotoxicity CFs for PM substances? 

2) How does the selection of ecotoxicity data and its harmonization influence the calculation 

of EFs? and 3) What are the challenges and opportunities with alternative ecotoxicity data 

translation and aggregation approaches in calculating extrapolation factors for CFs? 

To address Research Question 1, Paper 1 presented the results of the EFs and CFs calculations. 

It evaluates the coverage of PM chemicals in the USEtox database, which has only 18 

chemicals available out of 64. The findings indicate that the coverage of PM chemicals is low 

in the USEtox database, highlighting the need to increase the coverage of PM chemicals. As a 

result, in Paper 1, ecotoxicity CFs for 67 chemicals were provided, including 49 that were 

previously not characterized. In total, it provided CFs for 24 PFAS, 17 triazines, 23 triazoles, 

and 3 TPs. Benchmarking these CFs against all pre-calculated CFs from the USEtox database 

shows that the new CFs fall within the existing range of USEtox CFs. Paper 1 also compares 

the available 18 chemicals with the calculated EFs and CFs to understand the influence of 

including additional ecotoxicity data since the availability of the USEtox database. The 

comparison indicates the visible influence of including up-to-date ecotoxicity data. The 

addition of new data influences the CFs and underscores the relevance of up-to-date 

toxicological research and the regular updating of ecotoxicity data in the USEtox database to 

ensure more reliability in ecotoxicity CFs.  

Research question 2 addresses the influence of ecotoxicity data harmonization alternatives on 

EFs. A data harmonization strategy for ecotoxicological effect data was developed in Paper 1. 

The analysis revealed that non-harmonized ecotoxicity data, once harmonized into the format 

of USEtox, resulted in over a 70% reduction of the raw data. This mirrors results from other 

literature studies, where harmonized data often leads to a reduction in the data available and, 

in some cases, also the chemicals, as the data is not in a format that is easily harmonized. 

The second part of the research question 2 explores the impact of three alternative data 

harmonization strategies on the EFs. By removing certain resource- and time-intensive steps in 

the EF calculations, the number of ecotoxicity data points increased without reducing the 

reliability of the data compared to baseline harmonization. The conclusions from the 

comparison of alternative data harmonization strategies with baseline strategy indicate that 
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adopting a highly detailed harmonization strategy does not notably alter the relative ranking of 

CFs. However, it can lead to the removal of data points, thus reducing the data available for 

analysis. This suggests that a pragmatic approach is necessary to balance the trade-offs between 

removing inconsistent data and retaining enough data for meaningful analysis. The goal is to 

harmonize data to a level where inconsistencies do not considerably influence the final CF 

values, without excessively eliminating useful data. 

The last part of research question 2, regarding the selection of different ecotoxicity data sources 

on the EFs, was addressed by employing various QSARs to calculate the EFs and comparing 

them with experimental EFs. The findings indicate that in this case QSARs have low reliability 

in calculating the EFs. Comparisons between EFs based on experimental ecotoxicity data and 

those derived from QSAR models revealed a weak correlation. This indicates that QSAR 

models may not yet be mature or reliable enough to provide ecotoxicity data suitable for 

accurate CF calculations. This points to a need for further development of in-silico tools for 

CF calculations.  

Research Question 3 explores the challenges and opportunities with alternative ecotoxicity data 

translation and aggregation approaches on the calculation of extrapolation factors for CFs. The 

findings indicate that species group-specific extrapolation factors exhibit variations both within 

different species groups and as compared to the generic level. The extent varies depending on 

factors such as the species group and type of exposure considered as well as data availability. 

For instance, using a generic factor to convert acute EC10 data for algae could result in an 

underestimation of EC10 by a factor of 2.6. Paper 2 also compares the influence of different 

choices in extrapolation factors on the results, beginning with the calculation of extrapolation 

factors for chemical groups. The comparison of the generic extrapolation factors calculated for 

all chemicals versus those calculated for different chemical groups does not show significant 

differences. However, the comparison between generic extrapolation factors for all chemicals 

and species group-specific extrapolation factors reveals notable differences. This leads to the 

recommendation that species group-specific extrapolation factors should be used when 

available to reduce uncertainty. The study also compares the use of geometric mean over 

arithmetic mean in the aggregation of data points. Additionally, the impacts of classifying 

chemicals into different types (organic and inorganic versus only organic chemicals) and 

classifying compartments (freshwater, marine, or both freshwater and marine as aquatic) were 

examined. Effect concentration indicators classification into only EC10 and EC50 versus 
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NOEC, EC10, and EC50 was also considered. The study evaluated 12 different scenarios. The 

conclusion is that detailed classifications, such as species group-specific, chemical group-

specific, aquatic compartment-specific, and chemical type-specific detailing, can provide better 

reliability and accuracy. However, this must be balanced with the challenge of data availability, 

as a lack of data can make detailed classifications less robust and lead to uncertainty.  
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6. SUGGESTIONS FOR FUTURE RESEARCH 

6.1. AI for generating ecotoxicity data 
A large number of chemicals remain uncharacterized, primarily due to the scarcity of 

ecotoxicity data, such as chronic EC50 and EC10 values needed for CF calculations. In the 

absence of experimental data, QSAR-based data are increasingly used as fast and cost-efficient 

alternatives to traditional methods (Cherkasov et al., 2014; Hou et al., 2020; Muratov et al., 

2020). However, they often exhibit limitations in accurately predicting ecotoxicity data, 

highlighting the need for improved methodologies (Benfenati et al., 2013; Martin, 2020; Mayo-

Bean et al., 2012). The availability of experimental data for tens of thousands of chemicals 

across various species has enabled the use of advanced deep learning methods, which hold the 

potential to enhance computational predictions of chemical ecotoxicity for these species groups 

(Gustavsson et al., 2024). 

One such advanced artificial intelligence (AI) tool is TRIDENT, developed by Gustavsson et 

al. (2024) for aquatic ecotoxicity data. It has demonstrated superior performance compared to 

commonly used QSAR methods such as ECOSAR v2.2, VEGA v1.1.5, and T.E.S.T. v5.1.1.0, 

with a broader applicability domain and notably lower error rates. TRIDENT is freely 

accessible and processes inputs in SMILES format, outputting predicted effect concentrations. 

TRIDENT employs transformers to extract ecotoxicity-specific features from chemical 

structures and utilizes deep neural networks to predict EC50 and EC10 effect concentrations, 

focusing on organisms across three trophic levels—algae, aquatic invertebrates, and fish. It 

also accommodates various effects such as development, growth, intoxication, mortality, 

morphology, population, and reproduction, and can handle these effects across acute and 

chronic exposure durations. 

In calculating the EFs, new AI tools like TRIDENT may help overcome the limitations of 

traditional QSAR models. Additionally, the use of AI tools facilitates the easy integration of 

newly generated data into the training dataset, allowing for regular updates to dynamically 

predict data for EFs, ensuring reliable and up-to-date EF calculations. 

6.2. Inclusion of transformation products in CFs  
Traditional chemical regulations have focused on individual parent chemical evaluations rather 

than assessing their holistic impact including TPs. While a large body of information is 

available on the environmental effects of parent chemicals, we know much less about the 
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effects of TPs since it is very complicated to perform the experiments to identify TPs, which 

are furthermore dependent on several different environmental conditions. The detrimental 

impact of TPs to environmental and human health is not a recent issue (Sinclair & Boxall, 

2009). Some of the most noticed historical cases of environmental and human health effects of 

pesticides have been shown to be due to TPs rather than the parent compounds (Walker et al., 

2005). The need to include stable and/or toxic TPs in risk assessment is mentioned in several 

regulatory assessment schemes, including the Pesticide Directive and REACH (Escher & 

Fenner, 2011; EU, 2009; EU, 2006). The ecotoxicity impacts of the parent chemical are 

compounded if the chemicals also transform in the environment, and some of the TPs are 

known to be more abundant in the aquatic environment than their parent compounds (Boxall, 

2009; Boxall et al., 2004). The additional concern is that the majority of TPs of the parent 

chemicals have not even been identified yet, leading to exposure of the aquatic environment to 

the variable ecotoxicity of the parent chemical with unidentified TPs. TPs may contribute 

considerably to the risk posed by the parent compound (i) if they are formed with a high yield; 

(ii) if they are more persistent or more mobile than the parent compounds; or (iii) if they have 

a high toxicity (Escher & Fenner, 2011). TPs cannot be regarded in isolation from their parent 

compounds as they often exhibit the same mode of toxic action and act concentration-additive 

in mixtures, meaning that the effects from TPs and parent compounds must conservatively be 

considered additive, but synergistic effects could even enhance overall ecotoxicity (Escher & 

Fenner, 2011; Neuwoehner et al., 2009; Neuwoehner et al., 2010).  

There is currently no well-defined approach for including TPs in LCA studies. One method, as 

applied in Paper 1, involves identifying relevant TPs and incorporating them into the CF 

calculations, including their emissions when known. An alternative approach, proposed by Van 

Zelm et al. (2010), suggests increasing the parent compound CF in proportion to the CFs of its 

TPs. This method acknowledges that the total environmental impact of a chemical includes 

both its own impact and that of its TPs. Another approach involves adding TPs that translate 

emissions of primarily emitted substances, such as PFASs, into their highly persistent terminal 

degradation products, as discussed by Holmquist et al. (2020). This method aims to account 

for the entire lifecycle impact of the chemical, including all known degradation pathways. Each 

of these approaches is a way to reflect the environmental impact of chemicals more accurately, 

including their TPs, in LCA studies. However, there is a need for further research to develop 

an acceptable method for including both parent chemicals and their TPs in LCA assessments. 
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This is crucial to avoid underestimating the impacts due to not including TPs of the parent 

chemicals.  

6.3. LCA of engineered nanomaterials and CFs calculations 
There is a potential new field of research developing nanomaterials that can match or surpass 

the functionalities and performance levels of existing technologies, materials, and chemicals. 

These engineered nanomaterial (ENM)-enabled products are emerging as high-performance 

alternatives to conventional materials and chemicals (Falinski et al., 2018). For example, 

graphene oxide (GO) shows promise in applications such as semiconductors, batteries, and 

electronics due to its exceptional material properties (Chen et al., 2012). Similarly, carbon 

nanotube (CNT) products are recognized for their potential societal benefits (Upadhyayula et 

al., 2012). However, alongside these potential advantages, these emerging nanomaterials could 

also pose undesired negative impacts on public health and the environment once released 

(Zhang et al., 2023). With commercial production of these ENMs already underway and 

expected to increase rapidly, there is a growing concern about their environmental 

concentrations and the associated risks (Deng et al., 2017). 

There is a need to conduct impact assessment of products containing ENMs across their entire 

life cycle to adequately quantify their negative impacts and balance these against the benefits 

they provide. LCA has been recognized as a systematic approach to evaluate and identify 

potential environmental and human health impacts of products containing nanomaterials 

(Klöpffer et al., 2007; Zhang et al., 2023). A key limitation in this process is the absence of 

CFs that effectively model the environmental impacts of nanomaterials, highlighting the need 

for calculating such factors to support life cycle impact assessments of nano-enabled products 

(Salieri et al., 2018). A number of studies have been undertaken to calculate CFs for various 

nanomaterials as summarized by Zhang et al. (2023). Notable examples include CFs for silver 

nanoparticles (Hicks et al., 2015; Meyer et al., 2011; Miseljic, 2014; Pourzahedi & Eckelman, 

2015; Temizel-Sekeryan & Hicks, 2020, 2021; Walser et al., 2011), carbon nanotubes 

(Eckelman et al., 2012), graphene oxide (Deng et al., 2017), copper nanoparticles (Pu et al., 

2016), and titanium dioxide nanoparticles (Buist et al., 2017; Ettrup et al., 2017; Miseljic & 

Olsen, 2014; Pini et al., 2016; Salieri et al., 2015). These studies provide a foundation for 

developing comprehensive CFs that encompass a broader range of nanomaterials, essential for 

fully assessing their life cycle impacts.  
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As ENMs behave differently from traditional materials, they may require separate, specialized 

approaches. USEtox is a fate-effect model for calculating CFs, but it cannot be directly applied 

to ENMs because the parameters of USEtox are not suitable for multimedia fate modeling of 

nanomaterials (Praetorius et al., 2014). Currently, the literature identifies several methods for 

calculating the fate of nanoparticles. One increasingly used tool is SimpleBox4Nano (SB4N), 

a fate model specifically designed to handle nanomaterials (Blázquez et al., 2022; Meesters et 

al., 2014; Meesters et al., 2016). Methodological studies have been conducted to integrate 

SimpleBox4.0-Nano and USEtox to create a compatible nano-specific version of USEtox, 

referred to as 'USEtox4Nano' (Blázquez et al., 2022; Salieri et al., 2019). This adaptation seeks 

to bridge the gap between traditional chemical fate models and the unique behavior of ENMs 

in the environment. This represents a future area of research for integrating nanomaterial CFs 

into LCA frameworks.  

6.4. ProScale for assessing toxicity 
Efforts are ongoing to develop alternative methods to USEtox for estimating the life cycle 

impacts of chemicals. An increasingly popular alternative is ProScale, developed by the 

ProScale Consortium. Formed in 2015, the consortium aims to create a life cycle method that 

uses a hazard and exposure-based scoring system to compare chemical risks associated with 

products from a life cycle perspective (Lexén et al., 2021). The proposed scoring system 

incorporates four combined characteristics: the toxicity of a product’s ingredients, the exposure 

potential of these ingredients, the application of life cycle thinking from cradle to grave, and 

the aggregation of data from individual ingredients to the product level. It is designed to 

encompass both human and ecotoxicity as well as to assess the toxicological exposure potential 

of hazardous substances in products across their entire lifecycle. ProScale scores can be 

calculated at various levels of aggregation and can be declared separately for different exposure 

routes (inhalation, oral, and dermal).  

This method focuses on direct exposure to hazardous substances at each stage of the product's 

life. The methodology utilizes four key parameters to determine the ProScale score: the hazard 

factor (HF), exposure concentration factor (ECF), person-hours factor (PHF), and mass flow 

(Lexén et al., 2021). Each of these factors is calculated for every substance involved in each 

unit process within the lifecycle and then combined to establish the ProScale score. ProScale 

scores can be computed at two different levels of aggregation: ProScale of unit process (PSU), 

which analyzes individual processes, and ProScale of product, which assesses the overall 
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product. This dual approach allows for evaluations of specific processes as well as assessments 

of the entire product. 

This easy-to-use method for aggregating ecotoxicity impacts is increasingly utilized in 

assessments. Not all decision-makers require detailed analysis of ecotoxicity impacts from 

chemicals like that provided by USEtox; sometimes a simplified analysis is sufficient to make 

decisions or to identify areas needing more detailed analysis. Research to clarify the 

applicability domain of simplified methods and enhance their usability is warranted.  
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